1
|
Mathews IT, Saminathan P, Henglin M, Liu M, Nadig N, Fang C, Mercader K, Chee SJ, Campbell AM, Patel AA, Tiwari S, Watrous JD, Ramesh K, Dicker M, Dao K, Meyer MA, Jousilahti P, Havulinna AS, Niiranen T, Salomaa V, Joosten LA, Netea MG, Zheng P, Kronenberg M, Patel SP, Gutkind JS, Ottensmeier C, Long T, Kaech SM, Hedrick CC, Cheng S, Jain M, Sharma S. Linoleoyl-lysophosphatidylcholine suppresses immune-related adverse events due to immune checkpoint blockade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24310974. [PMID: 39148854 PMCID: PMC11326322 DOI: 10.1101/2024.08.07.24310974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Immune related adverse events (irAEs) after immune checkpoint blockade (ICB) therapy occur in a significant proportion of cancer patients. To date, the circulating mediators of ICB-irAEs remain poorly understood. Using non-targeted mass spectrometry, here we identify the circulating bio-active lipid linoleoyl-lysophosphatidylcholine (LPC 18:2) as a modulator of ICB-irAEs. In three independent human studies of ICB treatment for solid tumor, loss of circulating LPC 18:2 preceded the development of severe irAEs across multiple organ systems. In both healthy humans and severe ICB-irAE patients, low LPC 18:2 was found to correlate with high blood neutrophilia. Reduced LPC 18:2 biosynthesis was confirmed in preclinical ICB-irAE models, and LPC 18:2 supplementation in vivo suppressed neutrophilia and tissue inflammation without impacting ICB anti-tumor response. Results indicate that circulating LPC 18:2 suppresses human ICB-irAEs, and LPC 18:2 supplementation may improve ICB outcomes by preventing severe inflammation while maintaining anti-tumor immunity.
Collapse
Affiliation(s)
- Ian T. Mathews
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | | | - Mir Henglin
- Cedars Sinai Medical Center, Los Angeles CA 90048
| | - Mingyue Liu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | | | - Camille Fang
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kysha Mercader
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | - Serena J. Chee
- University of Southampton, Southampton, United Kingdom
- Institute of Systems, Molecular and Integrative Biology,University of Liverpool, Liverpool, United Kingdom
| | | | | | - Saumya Tiwari
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Karthik Ramesh
- Department of Medicine, University of California San Diego, La Jolla CA 92093
| | | | - Khoi Dao
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | | | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Genomics and Immunometabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Pan Zheng
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| | - Sandip Pravin Patel
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla CA 92037
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla CA 92037
- Department of Pharmacology, University of California San Diego, La Jolla CA 92093
| | - Christian Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Institute of Systems, Molecular and Integrative Biology,University of Liverpool, Liverpool, United Kingdom
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Susan M. Kaech
- Salk Institute for Biological Studies, La Jolla CA 92037
| | - Catherine C. Hedrick
- Immunology Center of Georgia and Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Susan Cheng
- Cedars Sinai Medical Center, Los Angeles CA 90048
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla CA 92093
- Sapient Bioanalytics, San Diego CA 92121
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
2
|
Lu DE, Ou TY, Kang JW, Ong JY, Chen IJ, Lee CH, Lee MC. The association between tocilizumab and the secondary bloodstream infection maybe nonsignificant in hospitalized patients with SARS-CoV-2 infection: A cohort study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:38-47. [PMID: 37951803 DOI: 10.1016/j.jmii.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Immunomodulatory agents, such as tocilizumab (TCZ), exert promising effects against SARS-CoV-2 infection. However, growing evidence indicates that using TCZ may carry higher risks of secondary bloodstream infection (sBSI). This study determined whether TCZ is associated with an increased risk of sBSI. METHODS We retrospectively collected the demographic and clinical data of hospitalized patients with SARS-CoV-2 infection from two Taiwanese hospitals. The time-to-incident sBSI in the TCZ users and nonusers was compared using the log-rank test. A multivariate Cox proportional hazards model was performed to identify independent risk factors for sBSI. RESULTS Between May 1 and August 31, 2021, among 453 patients enrolled, 12 (2.65 %) developed sBSI. These patients were in hospital for longer duration (44.2 ± 31.4 vs. 17.6 ± 14.3 days, p = 0.014). Despite sBSI being more prevalent among the TCZ users (7.1 % vs. 1.6 %, p = 0.005), Kaplan-Meier survival analysis and multivariate Cox proportional hazards model both revealed no significant difference in risks of sBSI between the TCZ users and nonusers [adjusted HR (aHR) = 1.32 (95 % confidence interval (CI) = 0.29-6.05), p = 0.724]. Female sex [aHR = 7.00 (95 % CI = 1.45-33.92), p = 0.016], heavy drinking [aHR = 5.39 (95 % CI = 1.01-28.89), p = 0.049], and mechanical ventilation [aHR = 5.65 (95 % CI = 1.67-19.30), p = 0.006] were independently associated with a higher sBSI risk. CONCLUSION This real-world evidence indicates that in hospitalized patients with SARS-CoV-2 infection, TCZ does not significantly increase the risk of sBSI.
Collapse
Affiliation(s)
- De-En Lu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Tsong-Yih Ou
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Cardinal Tien College of Healthcare and Management, Taipei, Taiwan.
| | - Jyun-Wei Kang
- Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan.
| | - Jie Ywi Ong
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - I-Ju Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, New Taipei City Hospital, New Taipei City, Taiwan.
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chia Lee
- Department of Nursing, Cardinal Tien College of Healthcare and Management, Taipei, Taiwan; Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Yun JH, Hong Y, Hong MH, Kim G, Lee JS, Woo RS, Lee J, Yang EJ, Kim IS. Anti-inflammatory effects of neuregulin-1 in HaCaT keratinocytes and atopic dermatitis-like mice stimulated with Der p 38. Cytokine 2024; 174:156439. [PMID: 38134557 DOI: 10.1016/j.cyto.2023.156439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023]
Abstract
Neuregulin (NRG)-1 plays fundamental roles in several organ systems after binding to its receptors, ErbB2 and ErbB4. This study examines the role of NRG-1 in atopic dermatitis (AD), a chronic skin disease that causes dryness, pruritus, and inflammation. In mice administered Der p 38, the skin presents AD-like symptoms including filaggrin downregulation and infiltration of neutrophils and eosinophils. Noticeably, there is an increased expression of NRG-1, ErbB2, and ErbB4 in the skin. Upregulation of these proteins is significantly correlated to the clinical skin severity score. In human keratinocyte HaCaT cells, exposure to Der p 38 decreased filaggrin expression, and NRG-1 alone had no effect on the expression. However, co-treatment of Der p 38 with NRG-1 enhanced the filaggrin expression decreased by Der p 38. Pre-treatment with AG879 (an ErbB2 inhibitor) or ErbB4 siRNA blocked the recovery of filaggrin expression in the cells after co-treatment with Der p 38 and NRG-1. Der p 38 treatment enhanced the secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1). Co-treatment of Der p 38 with NRG-1 lowered the cytokine secretion increased by Der p 38, although NRG-1 alone was not effective on cytokine alteration. Neutrophil apoptosis was not altered by NRG-1 or supernatants of cells treated with NRG-1, but the cell supernatants co-treated with Der p 38 and NRG-1 blocked the anti-apoptotic effects of Der p 38-treated supernatants on neutrophils, which was involved in the activation of caspase 9 and caspase 3. Taken together, we determined that NRG-1 has anti-inflammatory effects in AD triggered by Der p 38. These results will pave the way to understanding the functions of NRG-1 and in the future development of AD treatment.
Collapse
Affiliation(s)
- Jeong Hee Yun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yujin Hong
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Juram Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Eun Ju Yang
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea.
| | - In Sik Kim
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea; Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea.
| |
Collapse
|
4
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Neutralization of Staphylococcus aureus Protein A Prevents Exacerbated Osteoclast Activity and Bone Loss during Osteomyelitis. Antimicrob Agents Chemother 2023; 67:e0114022. [PMID: 36533935 PMCID: PMC9872667 DOI: 10.1128/aac.01140-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus is an important and current health care problem worldwide. Treatment of this infection frequently fails not only due to the increasing incidence of antimicrobial-resistant isolates but also because of the ability of S. aureus to evade the immune system, adapt to the bone microenvironment, and persist within this tissue for decades. We have previously demonstrated the role of staphylococcal protein A (SpA) in the induction of exacerbated osteoclastogenesis and increased bone matrix degradation during osteomyelitis. The aim of this study was to evaluate the potential of using anti-SpA antibodies as an adjunctive therapy to control inflammation and bone damage. By using an experimental in vivo model of osteomyelitis, we demonstrated that the administration of an anti-SpA antibody by the intraperitoneal route prevented excessive inflammatory responses in the bone upon challenge with S. aureus. Ex vivo assays indicated that blocking SpA reduced the priming of osteoclast precursors and their response to RANKL. Moreover, the neutralization of SpA was able to prevent the differentiation and activation of osteoclasts in vivo, leading to reduced expression levels of cathepsin K, reduced expression of markers associated with abnormal bone formation, and decreased trabecular bone loss during osteomyelitis. Taken together, these results demonstrate the feasibility of using anti-SpA antibodies as an antivirulence adjunctive therapy that may prevent the development of pathological conditions that not only damage the bone but also favor bacterial escape from antimicrobials and the immune system.
Collapse
|
9
|
López-Anglada E, Collazos J, Montes AH, Pérez-Is L, Pérez-Hevia I, Jiménez-Tostado S, Suárez-Zarracina T, Alvarez V, Valle-Garay E, Asensi V. IL-1 β gene (+3954 C/T, exon 5, rs1143634) and NOS2 (exon 22) polymorphisms associate with early aseptic loosening of arthroplasties. Sci Rep 2022; 12:18382. [PMID: 36319725 PMCID: PMC9626623 DOI: 10.1038/s41598-022-22693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Aseptic prosthetic loosening (APL) and prosthetic joint infections (PJI) are frequent complications of hip and knee implants. Polymorphisms of cytokines and nitric oxide (NO), key inflammatory molecules in APL and PJI pathogenesis, could explain individual susceptibility to these complications. Three cytokines (IL-1-a, IL-1-β, TNF-α) and two nitric oxide synthase (NOS2, NOS3) genes polymorphisms were genotyped in 77 APL and 117 PJI patients and 145 controls with aseptic hip or knee implants that were implanted for > 16 years. Plasma cytokines and nitrate-nitrite (NOx) levels also were measured. The TT genotype and T allele of (+3954 C/T, exon 5, rs1143634) IL-1β polymorphism were more frequent in APL patients compared to controls (P = 0.03 and P = 0.02, respectively). No genotypic associations in PJI patients were observed. Plasma IL-6, TNF-α and NOx were significantly different between APL and controls (P < 0.0001). Plasma IL-1β and IL-6 were significantly higher in APL T allele carriers vs. non-carriers (P < 0.03). Knee implant (HR 2.488, 95% CI 1.307-4.739, P = 0.005), male gender (HR 2.252, 95% CI 1.121-4.525, P = 0.023), carriages of the TT genotype of the (+3954 C/T) IL-1β polymorphism (HR 3.704, 95% CI 1.274-10.753, P = 0.016) and AA genotype of the (exon 22) NOS2 polymorphism (HR 3.509, 95% CI 1.266-9.709, P = 0.016) were independently associated with a shorter implant survival by Cox regression. No genotypic associations in PJI patients were observed. Genotyping of IL-1β (+3954 C/T, exon 5, rs1143634) and NOS2 (exon 22) polymorphisms could be useful as predictors of early hip or knee APL.
Collapse
Affiliation(s)
- Esteban López-Anglada
- grid.411052.30000 0001 2176 9028Traumatology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Julio Collazos
- grid.414476.40000 0001 0403 1371Infectious Diseases Section, Hospital de Galdacano, Vizcaya, Spain
| | - A. Hugo Montes
- grid.10863.3c0000 0001 2164 6351Biochemistry and Molecular Biology Department, University of Oviedo School of Medicine, Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| | - Laura Pérez-Is
- grid.10863.3c0000 0001 2164 6351Biochemistry and Molecular Biology Department, University of Oviedo School of Medicine, Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| | - Imanol Pérez-Hevia
- grid.411052.30000 0001 2176 9028Traumatology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Sergio Jiménez-Tostado
- grid.411052.30000 0001 2176 9028Traumatology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Tomás Suárez-Zarracina
- grid.411052.30000 0001 2176 9028Infectious Diseases Unit, Infectious Diseases Section, Hospital Universitario Central de Asturias, University of Oviedo School of Medicine, Avda Roma s/n, 33011 Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| | - Victoria Alvarez
- grid.411052.30000 0001 2176 9028Molecular Genetics Section, Hospital Universitario Central de Asturias, Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| | - Eulalia Valle-Garay
- grid.10863.3c0000 0001 2164 6351Biochemistry and Molecular Biology Department, University of Oviedo School of Medicine, Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| | - Víctor Asensi
- grid.411052.30000 0001 2176 9028Infectious Diseases Unit, Infectious Diseases Section, Hospital Universitario Central de Asturias, University of Oviedo School of Medicine, Avda Roma s/n, 33011 Oviedo, Spain ,grid.511562.4Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)., Oviedo, Spain
| |
Collapse
|
10
|
Hollenhorst MI, Nandigama R, Evers SB, Gamayun I, Abdel Wadood N, Salah A, Pieper M, Wyatt A, Stukalov A, Gebhardt A, Nadolni W, Burow W, Herr C, Beisswenger C, Kusumakshi S, Ectors F, Kichko TI, Hübner L, Reeh P, Munder A, Wienhold SM, Witzenrath M, Bals R, Flockerzi V, Gudermann T, Bischoff M, Lipp P, Zierler S, Chubanov V, Pichlmair A, König P, Boehm U, Krasteva-Christ G. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. J Clin Invest 2022; 132:150951. [PMID: 35503420 PMCID: PMC9246383 DOI: 10.1172/jci150951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.
Collapse
Affiliation(s)
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Saskia B Evers
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Igor Gamayun
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Noran Abdel Wadood
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Amanda Wyatt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Alexey Stukalov
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Anna Gebhardt
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Wiebke Nadolni
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Wera Burow
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Christian Herr
- Department of Internal Medicine V, Saarland University Hospital, Homburg, Germany
| | | | - Soumya Kusumakshi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Hübner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Bals
- Department of Internal Medicine V, Saarland University Hospital, Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Susanna Zierler
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Pichlmair
- Immunopathology of Virus Infection Laboratory, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Peter König
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Ulrich Boehm
- Institute for Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | | |
Collapse
|
11
|
Perez Rosero E, Heron S, Jovel J, O'Neil CR, Turvey SL, Parashar P, Elahi S. Differential Signature of the Microbiome and Neutrophils in the Oral Cavity of HIV-Infected Individuals. Front Immunol 2021; 12:780910. [PMID: 34858437 PMCID: PMC8630784 DOI: 10.3389/fimmu.2021.780910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
HIV infection is associated with a wide range of changes in microbial communities and immune cell components of the oral cavity. The purpose of this study was to evaluate the oral microbiome in relationship to oral neutrophils in HIV-infected compared to healthy individuals. We evaluated oral washes and saliva samples from HIV-infected individuals (n=52) and healthy controls (n=43). Using 16S-rRNA gene sequencing, we found differential β-diversity using Principal Coordinate Analysis (PCoA) with Bray-Curtis distances. The α-diversity analysis by Faith’s, Shannon, and observed OTUs indexes indicated that the saliva samples from HIV-infected individuals harbored significantly richer bacterial communities compared to the saliva samples from healthy individuals. Notably, we observed that five species of Spirochaeta including Spirochaetaceae, Spirochaeta, Treponema, Treponema amylovorum, and Treponema azotonutricum were significantly abundant. In contrast, Helicobacter species were significantly reduced in the saliva of HIV-infected individuals. Moreover, we found a significant reduction in the frequency of oral neutrophils in the oral cavity of HIV-infected individuals, which was positively related to their CD4+ T cell count. In particular, we noted a significant decline in CD44 expressing neutrophils and the intensity of CD44 expression on oral neutrophils of HIV-infected individuals. This observation was supported by the elevation of soluble CD44 in the saliva of HIV-infected individuals. Overall, the core oral microbiome was distinguishable between HIV-infected individuals on antiretroviral therapy compared to the HIV-negative group. The observed reduction in oral neutrophils might likely be related to the low surface expression of CD44, resulting in a higher bacterial diversity and richness in HIV-infected individuals.
Collapse
Affiliation(s)
| | - Samantha Heron
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Conar R O'Neil
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Shannon Lee Turvey
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the Ageing Immune System. NATURE AGING 2021; 1:769-782. [PMID: 34746804 PMCID: PMC8570568 DOI: 10.1038/s43587-021-00114-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a global health threat with particular risk for severe disease and death in older adults and in adults with age-related metabolic and cardiovascular disease. Recent advances in the science of ageing have highlighted how ageing pathways control not only lifespan but also healthspan, the healthy years of life. Here, we discuss the ageing immune system and its ability to respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We specifically focus on the intersect of severe COVID-19 and immunosenescence to highlight pathways that may be determinant for the risk of complications and death following infection with SARS-CoV-2. New or adapted therapeutics that target ageing-associated pathways may be important tools to reduce the burden of death and long-term disability caused by this pandemic. Proposed interventions aimed at immunosenescence could enhance immune function not only in the elderly but in susceptible younger individuals as well, ultimately improving complications of severe COVID-19 for all ages.
Collapse
Affiliation(s)
| | - Dina Radenkovic
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Hooke, Health, Longevity Optimisation, London, UK
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
13
|
Abstract
Abstract
The innate immune system is mandatory for the activation of antiviral host defense and eradication of the infection. In this regard, dendritic cells, natural killer cells, macrophages, neutrophils representing the cellular component, and cytokines, interferons, complement or Toll-Like Receptors, representing the mediators of unspecific response act together for both activation of the adaptive immune response and viral clearance. Of great importance is the proper functioning of the innate immune response from the very beginning. For instance, in the early stages of viral infection, the defective interferon response leads to uncontrolled viral replication and pathogen evasion, while hypersecretion during the later stages of infection generates hyperinflammation. This cascade activation of systemic inflammation culminates with cytokine storm syndrome and hypercoagulability state, due to a close interconnection between them. Thus an unbalanced reaction, either under- or over- stimulation of the innate immune system will lead to an uncoordinated response and unfavorable disease outcomes. Since both cellular and humoral factors are involved in the time-course of the innate immune response, in this review we aimed to address their gradual involvement in the antiviral response with emphasis on key steps in SARS-CoV-2 infection.
Collapse
|
14
|
Hamilton D, Lehman H. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies. Clin Rev Allergy Immunol 2021; 59:160-174. [PMID: 31359247 DOI: 10.1007/s12016-019-08760-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma has been increasingly recognized as being a heterogeneous disease with multiple distinct mechanisms and pathophysiologies. Evidence continues to build regarding the existence of different cell types, environmental exposures, pathogens, and other factors that produce a similar set of symptoms known collectively as asthma. This has led to a movement from a "one size fits all" symptom-based methodology to a more patient-centered, individualized approach to asthma treatment targeting the underlying disease process. A significant contributor to this shift to more personalized asthma therapy has been the increasing availability of numerous biologic therapies in recent years, providing the opportunity for more targeted treatments. When targeted biologics began to be developed for treatment of asthma, the hope was that distinct biomarkers would become available, allowing the clinician to determine which biologic therapy was best suited for which patients. Presence of certain biomarkers, like eosinophilia or antigen-specific IgE, is important features of specific asthma phenotypes. Currently available biomarkers can help with decision making about biologics, but are generally too broad and non-specific to clearly identify an asthma phenotype or the single biologic best suited to an asthmatic. Identification of further biomarkers is the subject of intense research. Yet, identifying a patient's asthma phenotype can help in predicting disease course, response to treatment, and biologic therapies to consider. In this review, major asthma phenotypes are reviewed, and the evidence for the utility of various biologics, both those currently on the market and those in the development process, in each of these phenotypes is explored.
Collapse
Affiliation(s)
- Daniel Hamilton
- SUNY Upstate Medical University College of Medicine, Syracuse, NY, USA
| | - Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
15
|
Kim H, You S, Park Y, Choi JY, Ma Y, Hong KT, Koh KN, Yun S, Lee KH, Shin HY, Lee S, Yoo KH, Im HJ, Kang HJ, Kim JH. Interplay between IL6 and CRIM1 in thiopurine intolerance due to hematological toxicity in leukemic patients with wild-type NUDT15 and TPMT. Sci Rep 2021; 11:9676. [PMID: 33958640 PMCID: PMC8102572 DOI: 10.1038/s41598-021-88963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/13/2021] [Indexed: 11/14/2022] Open
Abstract
NUDT15 and TPMT variants are strong genetic determinants of thiopurine-induced hematological toxicity. Despite the impact of homozygous CRIM1 on thiopurine toxicity, several patients with wild-type NUDT15, TPMT, and CRIM1 experience thiopurine toxicity, therapeutic failure, and relapse of acute lymphoblastic leukemia (ALL). Novel pharmacogenetic interactions associated with thiopurine intolerance from hematological toxicities were investigated using whole-exome sequencing for last-cycle 6-mercaptopurine dose intensity percentages (DIP) tolerated by pediatric ALL patients (N = 320). IL6 rs13306435 carriers (N = 19) exhibited significantly lower DIP (48.0 ± 27.3%) than non-carriers (N = 209, 69.9 ± 29.0%; p = 0.0016 and 0.0028 by t test and multiple linear regression, respectively). Among 19 carriers, 7 with both heterozygous IL6 rs13306435 and CRIM1 rs3821169 showed significantly decreased DIP (24.7 ± 8.9%) than those with IL6 (N = 12, 61.6 ± 25.1%) or CRIM1 (N = 94, 68.1 ± 28.4%) variants. IL6 and CRIM1 variants showed marked inter-ethnic variability. Four-gene-interplay models revealed the best odds ratio (8.06) and potential population impact [relative risk (5.73), population attributable fraction (58%), number needed to treat (3.67), and number needed to genotype (12.50)]. Interplay between IL6 rs13306435 and CRIM1 rs3821169 was suggested as an independent and/or additive genetic determinant of thiopurine intolerance beyond NUDT15 and TPMT in pediatric ALL.
Collapse
Affiliation(s)
- Hyery Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seungwon You
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yoomi Park
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Korea.,Seoul National University Cancer Research Institute, Seoul, Korea
| | - Youngeun Ma
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Korea
| | - Kyung Tak Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyung-Nam Koh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sunmin Yun
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Kye Hwa Lee
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hee Young Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Suehyun Lee
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Informatics, College of Medicine, Konyang University, Taejon, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Seoul National University Cancer Research Institute, Seoul, Korea.
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
16
|
Chauhan PS, Wagner JG, Benninghoff AD, Lewandowski RP, Favor OK, Wierenga KA, Gilley KN, Ross EA, Harkema JR, Pestka JJ. Rapid Induction of Pulmonary Inflammation, Autoimmune Gene Expression, and Ectopic Lymphoid Neogenesis Following Acute Silica Exposure in Lupus-Prone Mice. Front Immunol 2021; 12:635138. [PMID: 33732257 PMCID: PMC7959771 DOI: 10.3389/fimmu.2021.635138] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational exposure to crystalline silica (cSiO2) is etiologically associated with systemic lupus erythematosus (lupus) and other autoimmune diseases. cSiO2's autoimmune effects in humans can be mimicked chronically in female lupus-prone NZBWF1 mice following repeated exposure to the particle. However, the immediate and short-term effects of cSiO2 in this widely used model of autoimmune disease are not well-understood. In the present study, we tested the hypothesis that a single acute cSiO2 dose triggers early presentation of cellular, histopathological, transcriptomic, and protein biomarkers of inflammation and autoimmunity in lupus-prone mice. Eight-week old female NZBWF1 mice were intranasally instilled once with 2.5 mg cSiO2 or saline vehicle and necropsied at 1, 7, 14, 21, and 28 d post-instillation (PI). Analyses of bronchoalveolar lavage fluid (BALF) and lung tissue revealed that by 7 d PI, acute cSiO2 exposure persistently provoked: (i) robust recruitment of macrophages, neutrophils, and lymphocytes into the alveoli, (ii) cell death as reflected by increased protein, double-stranded DNA, and lactate dehydrogenase activity, (iii) elevated secretion of the cytokines IL-1α, IL-1β, IL-18, TNF-α, IL-6, MCP-1, and B cell activation factor (BAFF), and (iv) upregulation of genes associated with chemokines, proinflammatory cytokines, lymphocyte activation, and type I interferon signaling. The appearance of these endpoints was subsequently followed by the emergence in the lung of organized CD3+ T cells (14 d PI) and CD45R+ B cells (21 d PI) that were indicative of ectopic lymphoid structure (ELS) development. Taken together, acute cSiO2 exposure triggered a rapid onset of autoimmune disease pathogenesis that was heralded in the lung by unresolved inflammation and cell death, proinflammatory cytokine production, chemokine-driven recruitment of leukocytes, an interferon response signature, B and T cell activation, and ELS neogenesis. This short-term murine model provides valuable new insight into potential early mechanisms of cSiO2-induced lupus flaring and, furthermore, offers a rapid venue for evaluating interventions against respirable particle-triggered inflammation and autoimmunity.
Collapse
Affiliation(s)
- Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Olivia K. Favor
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Kristen N. Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Ross
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, East Lansing, MI, United States
| |
Collapse
|
17
|
Paul AM, Cheng-Campbell M, Blaber EA, Anand S, Bhattacharya S, Zwart SR, Crucian BE, Smith SM, Meller R, Grabham P, Beheshti A. Beyond Low-Earth Orbit: Characterizing Immune and microRNA Differentials following Simulated Deep Spaceflight Conditions in Mice. iScience 2020; 23:101747. [PMID: 33376970 PMCID: PMC7756144 DOI: 10.1016/j.isci.2020.101747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Spaceflight missions can cause immune system dysfunction in astronauts with little understanding of immune outcomes in deep space. This study assessed immune responses in mice following ground-based, simulated deep spaceflight conditions, compared with data from astronauts on International Space Station missions. For ground studies, we simulated microgravity using the hindlimb unloaded mouse model alone or in combination with acute simulated galactic cosmic rays or solar particle events irradiation. Immune profiling results revealed unique immune diversity following each experimental condition, suggesting each stressor results in distinct circulating immune responses, with clear consequences for deep spaceflight. Circulating plasma microRNA sequence analysis revealed involvement in immune system dysregulation. Furthermore, a large astronaut cohort showed elevated inflammation during low-Earth orbit missions, thereby supporting our simulated ground experiments in mice. Herein, circulating immune biomarkers are defined by distinct deep space irradiation types coupled to simulated microgravity and could be targets for future space health initiatives.
Collapse
Affiliation(s)
- Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94043, USA
| | - Margareth Cheng-Campbell
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Elizabeth A. Blaber
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94043, USA
- Department of Biomedical Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95112, USA
| | | | - Sara R. Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Robert Meller
- Department of Neurobiology/Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10027, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94043, USA
| |
Collapse
|
18
|
Grand M, Waqasi M, Demarta-Gatsi C, Wei Y, Peronet R, Commere PH, Puig A, Axelrod J, Caldelari R, Heussler V, Amino R, Mecheri S. Hepatic Inflammation Confers Protective Immunity Against Liver Stages of Malaria Parasite. Front Immunol 2020; 11:585502. [PMID: 33329563 PMCID: PMC7710885 DOI: 10.3389/fimmu.2020.585502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Deciphering the mechanisms by which Plasmodium parasites develop inside hepatocytes is an important step toward the understanding of malaria pathogenesis. We propose that the nature and the magnitude of the inflammatory response in the liver are key for the establishment of the infection. Here, we used mice deficient in the multidrug resistance-2 gene (Mdr2-/-)-encoded phospholipid flippase leading to the development of liver inflammation. Infection of Mdr2-/- mice with Plasmodium berghei ANKA (PbANKA) sporozoites (SPZ) resulted in the blockade of hepatic exo-erythrocytic forms (EEFs) with no further development into blood stage parasites. Interestingly, cultured primary hepatocytes from mutant and wild-type mice are equally effective in supporting EEF development. The abortive infection resulted in a long-lasting immunity in Mdr2-/- mice against infectious SPZ where neutrophils and IL-6 appear as key effector components along with CD8+ and CD4+ effector and central memory T cells. Inflammation-induced breakdown of liver tolerance promotes anti-parasite immunity and provides new approaches for the design of effective vaccines against malaria disease.
Collapse
Affiliation(s)
- Morgane Grand
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Mishelle Waqasi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Yu Wei
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai, China
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Paris, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | | | - Amandine Puig
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| | - Jonathan Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Organization, Jerusalem, Israel
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Rogerio Amino
- Institut Pasteur, Malaria Infection and Immunity Unit, Paris, France
| | - Salaheddine Mecheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- CNRS ERL9195, Paris, France
- INSERM U1201, Paris, France
| |
Collapse
|
19
|
Chen C, Zhang Z, Tan F, Meng F, Lai L, Chi X, Zhu Q. Stabilizing mast cells improves acute lung injury after orthotopic liver transplantation via promotion of apoptosis in polymorphonuclear neutrophils. Am J Physiol Lung Cell Mol Physiol 2020; 320:L266-L275. [PMID: 33174448 DOI: 10.1152/ajplung.00046.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Postoperative pulmonary complications including acute lung injury (ALI) and acute respiratory distress syndrome have contributed to mortality and morbidity of orthotopic liver transplantation (OLT) with unclear mechanisms. Mast cells (MCs) and polymorphonuclear neutrophils (PMNs) are the main inflammatory cells and participants in the process of ALI. The present study was designed to investigate the role of MCs and PMNs and their potential relation to ALI following OLT. Rat orthotopic autologous liver transplantation (OALT) model was designed to determine lung injury at different time points after liver reperfusion. We also evaluated the function of MCs and the effect of tumor necrosis factor-α (TNF-α) and tryptase on ALI and PMN apoptosis in rats subjected to OALT. Histological scores and inflammatory factor levels as well as PMN apoptosis were measured. Rats suffered from ALI after OALT, which was demonstrated by a collapse of the pulmonary architecture, pulmonary edema, and infiltration of inflammatory cells in alveolar and interstitial spaces, as well as increased levels of proinflammatory cytokines. ALI maximized at 8 h after OALT. However, PMN apoptosis lagged behind the pulmonary injury and maximized at 16 h after OALT, when the acute inflammation resolution initiated. MC stabilization, and tryptase and TNF-α inhibitors could significantly decrease the lung pathophysiologic scores accompanied by an increase in PMN apoptosis. ALI after OALT was associated with MC activation and PMN apoptosis. ALI progression might be affected by delayed PMN apoptosis, which was related to MC activation. Induction of PMN apoptosis might alleviate ALI after OALT.
Collapse
Affiliation(s)
- Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou City, People's Republic of China
| | - Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou City, People's Republic of China
| | - Fang Tan
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen City, People's Republic of China
| | - Fanbing Meng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou City, People's Republic of China
| | - Lifei Lai
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen City, People's Republic of China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen City, People's Republic of China
| | - Qianqian Zhu
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen City, People's Republic of China
| |
Collapse
|
20
|
Guan RW, Wang DM, Wang BB, Jiang LY, Liu JX. Prognostic potential of pre-partum blood biochemical and immune variables for postpartum mastitis risk in dairy cows. BMC Vet Res 2020; 16:136. [PMID: 32408873 PMCID: PMC7222453 DOI: 10.1186/s12917-020-02314-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background Mastitis is the most frequent diseases for transition cows. Identification of potential biomarkers for diagnosis of mastitis is important for its prevention. Thus, this study was conducted to investigate blood variables related to lipid metabolism, oxidative stress and inflammation, and serum variables that are related to health in postpartum cows. Results Seventy-six healthy Holstein dairy cows at week 4 before calving were selected to collect blood samples from weeks − 4 to 4 weekly relative to calving, respectively. Milk yield and composition were recorded weekly. According to the cut-off of somatic cell counts (SCC) for diagnosis of mastitis, 33 cows with SCC ≥ 500,000 cells ml− 1, 20 cows with 200,000 cells ≤ SCC < 500,000 cells ml− 1, and 23 cows with SCC < 200,000 cells ml− 1 were defined as high, middle, and low SCC, respectively. Serum concentrations of β-hydroxybutyrate were higher (P < 0.01) during all weeks, and non-esterified fatty acids were higher in high SCC than in low SCC cows from weeks − 3 to 2 relative to calving. Higher serum concentrations of superoxide dismutase (P < 0.01) and lower malondialdehyde levels (P < 0.01) in low SCC than in high SCC cows indicate that the latter suffered from oxidative stress. The difference analysis of the three groups suggested that none of the above-mentioned variables can be used as potential prognostic candidates. On the other hand, high SCC cows exhibited higher blood neutrophil to lymphocyte ratio (NLR, P < 0.01) and platelet to lymphocyte ratio (PLR, P < 0.01) than low SCC cows, with a higher NLR (P < 0.01) in middle SCC than in low SCC cows. The high SCC cows had lower levels of anti-inflammatory factors including IL-10 (P = 0.05), but higher levels of proinflammatory factors such as IL-6 (P < 0.01), TNF-α (P < 0.05), and PSGL-1 (P < 0.01) than low SCC cows. Conclusions The significantly different NLR and PLR pre-partum between the middle and low SCC cows suggest their prognostic potential for postpartum mastitis risk.
Collapse
Affiliation(s)
- Ruo-Wei Guan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Di-Ming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bei-Bei Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lu-Yi Jiang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
21
|
Wu Y, Lai AC, Chi P, Thio CL, Chen W, Tsai C, Lee YL, Lukacs NW, Chang Y. Pulmonary IL-33 orchestrates innate immune cells to mediate respiratory syncytial virus-evoked airway hyperreactivity and eosinophilia. Allergy 2020; 75:818-830. [PMID: 31622507 DOI: 10.1111/all.14091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is epidemiologically linked to asthma. During RSV infection, IL-33 is elevated and promotes immune cell activation, leading to the development of asthma. However, which immune cells are responsible for triggering airway hyperreactivity (AHR), inflammation and eosinophilia remained to be clarified. We aimed to elucidate the individual roles of IL-33-activated innate immune cells, including ILC2s and ST2+ myeloid cells, in RSV infection-triggered pathophysiology. METHODS The role of IL-33/ILC2 axis in RSV-induced AHR inflammation and eosinophilia were evaluated in the IL-33-deficient and YetCre-13 Rosa-DTA mice. Myeloid-specific, IL-33-deficient or ST2-deficient mice were employed to examine the role of IL-33 and ST2 signaling in myeloid cells. RESULTS We found that IL-33-activated ILC2s were crucial for the development of AHR and airway inflammation, during RSV infection. ILC2-derived IL-13 was sufficient for RSV-driven AHR, since reconstitution of wild-type ILC2 rescued RSV-driven AHR in IL-13-deficient mice. Meanwhile, myeloid cell-derived IL-33 was required for airway inflammation, ST2+ myeloid cells contributed to exacerbation of airway inflammation, suggesting the importance of IL-33 signaling in these cells. Local and peripheral eosinophilia is linked to both ILC2 and myeloid IL-33 signaling. CONCLUSIONS This study highlights the importance of IL-33-activated ILC2s in mediating RSV-triggered AHR and eosinophilia. In addition, IL-33 signaling in myeloid cells is crucial for airway inflammation.
Collapse
Affiliation(s)
- Yi‐Hsiu Wu
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Po‐Yu Chi
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Wei‐Yu Chen
- Institute for Translational Research in Biomedicine Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Ching‐Hui Tsai
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | | | - Ya‐Jen Chang
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| |
Collapse
|
22
|
Lüthje FL, Jensen LK, Jensen HE, Skovgaard K. The inflammatory response to bone infection - a review based on animal models and human patients. APMIS 2020; 128:275-286. [PMID: 31976582 DOI: 10.1111/apm.13027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Bone infections are difficult to diagnose and treat, especially when a prosthetic joint replacement or implant is involved. Bone loss is a major complication of osteomyelitis, but the mechanism behind has mainly been investigated in cell cultures and has not been confirmed in human settings. Inflammation is important in initiating an appropriate immune response to invading pathogens. However, many of the signaling molecules used by the immune system can also modulate bone remodeling and contribute to bone resorption during osteomyelitis. Our current knowledge of the inflammatory response relies heavily on animal models as research based on human samples is scarce. Staphylococcus aureus is one of the most common causes of bone infections and is the pathogen of choice in animal models. The regulation of inflammatory genes during prosthetic joint infections and implant-associated osteomyelitis has only been studied in rodent models. It is important to consider the validity of an animal model when results are extrapolated to humans, and both bone composition and the immune system of pigs has been shown to be more similar to humans, than to rodents. Here in vivo studies on the inflammatory response to prosthetic joint infections and implant-associated osteomyelitis are reviewed.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
23
|
Cheng W, Wang M, Liu P, Zhao S, Liu X, Wang X. Protective Effects of Dexmedetomidine and Oxycodone in Patients Undergoing Limb Ischemia-Reperfusion. Med Sci Monit 2019; 25:9073-9084. [PMID: 31782408 PMCID: PMC6902314 DOI: 10.12659/msm.918261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Tourniquet-related complications are a common clinical problem. In the present study, we compared the effects of dexmedetomidine vs. oxycodone in patients undergoing limb ischemia-reperfusion. Material/Methods Fifty-four patients undergoing unilateral lower-extremity surgery under combined spinal and epidural anesthesia were randomly assigned to a control (ischemia-reperfusion, I/R) group, a dexmedetomidine (Dex) group, and an oxycodone (Oxy) group. Tourniquet-induced hemodynamic parameters changes among groups were compared. The serum concentration of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), fatty acid binding protein 3 (FABP3), endothelin-1 (ET-1), and brain-derived neurotrophic factor (BDNF) were measured using ELISA before anesthesia and at 30 min and at 6 h after tourniquet release. Results In the control group, tourniquet use caused significant increases in systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), and rate-pressure product. Compared with Oxy, Dex significantly decreased heart rate (HR). Both Dex and Oxy lowered SAP compared with the control group. No significant difference was observed in DAP between Dex and Oxy. The levels of MDA, TNF-α, IL-6, FABP3, and ET-1 were significantly higher, while the SOD and BDNF were significantly lower compared to baseline in the I/R group, but the variation range of those agents was significantly smaller in the Dex and Oxy groups, and the measured values were comparable between the 2 groups. Conclusions Compared with Dex, Oxy was not inferior in mitigating tourniquet-induced hyperdynamic response, ameliorating the inflammatory reaction, and protecting remote multiple organs in lower-extremity surgery patients.
Collapse
Affiliation(s)
- Wenjie Cheng
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mingjie Wang
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Peng Liu
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Shuang Zhao
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xin Liu
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xiuli Wang
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
24
|
The N125S polymorphism in the cathepsin G gene (rs45567233) is associated with susceptibility to osteomyelitis in a Spanish population. PLoS One 2019; 14:e0220022. [PMID: 31647805 PMCID: PMC6812796 DOI: 10.1371/journal.pone.0220022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/06/2019] [Indexed: 11/19/2022] Open
Abstract
Background Osteomyelitis is a bone infection, most often caused by Staphylococcus aureus, in which neutrophils play a key role. Cathepsin G (CTSG) is a bactericidal serine protease stored in the neutrophil azurophilic granules. CTSG regulates inflammation, activating matrix metalloproteinases (MMPs), and coagulation. Lactoferrin (LF), a neutrophil glycoprotein, increases CTSG catalytic activity and induces inflammation. The aim of this study was to analyze a potential association between a CTSG gene polymorphism (Asn125Ser or N125S, rs45567233), that modifies CTSG activity, and could affect susceptibility to, or outcome of, bacterial osteomyelitis. Methods CTSG N125S polymorphism was genotyped in 329 osteomyelitis patients and 415 controls), Blood coagulation parameters, serum CTSG activity, LF, MMP-1, MMP-13, and soluble receptor activator for nuclear factor κ B ligand (sRANKL) levels were assessed in carriers of the different CTSG genotypes. Results CTSG N125S (AG) genotype was significantly more frequent among osteomyelitis patients than controls (15.5% vs. 9.4%, p = 0.014). CTSG N125S variant G allele (AG +GG) was also more frequent among osteomyelitis patients (8.1% vs. 4.7%, p = 0.01). Serum CTSG activity and LF levels were significantly higher in osteomyelitis patients carrying the G allele compared to those with the AA genotype, (p<0.04). Serum MMP-1 was lower in the G allele carriers (p = 0.01). There was no association between these genotypes and clinical characteristics of osteomyelitis, or coagulation parameters, MMP-13, and sRANKL serum levels. Conclusions Differences in the CTSG gene might enhance osteomyelitis susceptibility by increasing CTSG activity and LF levels.
Collapse
|
25
|
Baek HJ, Lim MJ, Park W, Park SH, Shim SC, Yoo DH, Kim HA, Lee SK, Lee YJ, Park YE, Cha HS, Song YW. Efficacy and safety of tocilizumab in Korean patients with active rheumatoid arthritis. Korean J Intern Med 2019; 34:917-931. [PMID: 29334721 PMCID: PMC6610180 DOI: 10.3904/kjim.2017.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIMS To investigate the efficacy and safety of tocilizumab (TCZ) humanized anti-interleukin-6 receptor monoclonal antibody, in Korean patients with active rheumatoid arthritis (RA) refractory to conventional disease modifying anti-rheumatic drugs (DMARDs) including methotrexate (MTX). METHODS The main study was a 24-week, randomized, double-blind, controlled trial that was followed by a 48-week, open-labeled, extension phase. TCZ (8 mg/kg) or placebo was intravenously administered every 4 weeks. RESULTS Those treated with TCZ showed more favorable outcomes in terms of 20% according to the American College of Rheumatology response criteria (ACR20) and ACR50 responses, individual parameters of ACR core set, disease activity score in 28 joints (DAS28) remission, and European League Against Rheumatism (EULAR) response at week 24. These improvements were maintained or increased during the extension period. DAS28 remission at week 72 was associated with EULAR good response at week 12. The patients who experienced any adverse event (AE) were more frequent in the TCZ group compared to the placebo group. Most AEs were mild or moderate in intensity, although TCZ therapy had possible AEs including serious infection, abnormal liver function, and atherogenic lipid profile. CONCLUSION TCZ infusion add-on is highly efficacious and well-tolerated in Korean patients with active RA refractory to conventional DMARDs including MTX. EULAR good response at week 12 could predict DAS28 remission at week 72.
Collapse
Affiliation(s)
- Han Joo Baek
- Division of Rheumatology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Mie Jin Lim
- Division of Rheumatology, Department of Internal Medicine, Inha University Hospital, Incheon, Korea
| | - Won Park
- Division of Rheumatology, Department of Internal Medicine, Inha University Hospital, Incheon, Korea
| | - Sung Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Seung-Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Dae-Hyun Yoo
- Division of Rheumatology, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Soo Kon Lee
- Division of Rheumatology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Eun Park
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Hoon-Suk Cha
- Division of Rheumatology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeong-Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Yeong-Wook Song, M.D. Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2234 Fax: +82-2-762-9662 E-mail:
| |
Collapse
|
26
|
Mohamed MH, Hamawy TY. Comparative evaluation between ascorbic acid and N-acetyl cysteine for preventing tourniquet induced ischaemic reperfusion injury during lower limb surgery, a randomized controlled trial. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Tamer Yosef Hamawy
- Department of Anesthesiology, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
27
|
Puyo CA, Earhart A, Staten N, Prince OA, Haug C, Kollef M, Awad M. Endotracheal intubation results in acute tracheal damage induced by mtDNA/TLR9/NF-κB activity. J Leukoc Biol 2018; 105:577-587. [PMID: 30548974 PMCID: PMC7379990 DOI: 10.1002/jlb.5a0718-254rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Tracheitis secondary to placement of an endotracheal tube (ETT) is characterized by neutrophil accumulation in the tracheal lumen, which is generally associated with epithelial damage. Mitochondrial DNA (mtDNA), has been implicated in systemic inflammation and organ dysfunction following trauma; however, less is known about the effects of a foreign body on local trauma and tissue damage. We hypothesized that tracheal damage secondary to the ETT will result in local release of mtDNA at sufficient levels to induce TLR9 and NF‐κB activation. In a swine model we compared the differences between uncoated, and chloroquine (CQ) and N‐acetylcysteine (NAC) coated ETTs as measured by tracheal lavage fluids (TLF) over a period of 6 h. The swine model allowed us to recreate human conditions. ETT presence was characterized by neutrophil activation, necrosis, and release of proinflammatory cytokines mediated by TLR9/NF‐κB induction. Amelioration of the tracheal damage was observed in the CQ and NAC coated ETT group as shown in tracheal tissue specimens and TLF. The role of TLR9/NF‐κB dependent activity was confirmed by HEK‐Blue hTLR9 reporter cell line analysis after coincubation with TLF specimens with predetermined concentrations of NAC or CQ alone or TLR9 inhibitory oligodeoxynucleotide (iODN). These findings indicate that therapeutic interventions aimed at preventing mtDNA/TLR9/NF‐κB activity may have benefits in prevention of acute tracheal damage.
Collapse
Affiliation(s)
- Carlos A Puyo
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Alexander Earhart
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Nicholas Staten
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Oliver A Prince
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Colleen Haug
- Departments of Anesthesiology and Critical Care, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Marin Kollef
- Internal Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - Michael Awad
- Surgery, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study. Osteoarthritis Cartilage 2017; 25:1952-1961. [PMID: 28964890 DOI: 10.1016/j.joca.2017.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of ABT-981, a human dual variable domain immunoglobulin simultaneously targeting interleukin (IL)-1α and IL-1β, in patients with knee osteoarthritis (OA). METHOD This was a randomized, double-blind, placebo-controlled, single-center study of multiple subcutaneous (SC) injections of ABT-981 in patients with mild-to-moderate OA of the knee (NCT01668511). Three cohorts received ABT-981 (0.3, 1, or 3 mg/kg) or placebo every other week for a total of four SC injections, and one cohort received ABT-981 (3 mg/kg) or placebo every 4 weeks for a total of three SC injections. Assessment of safety and tolerability were the primary objectives. A panel of serum and urine biomarkers of inflammation and joint degradation were evaluated. RESULTS A total of 36 patients were randomized (ABT-981, n = 28; placebo, n = 8); 31 (86%) completed the study. Adverse event (AE) rates were comparable between ABT-981 and placebo (54% vs 63%). The most common AE reported with ABT-981 vs placebo was injection site erythema (14% vs 0%). ABT-981 significantly reduced absolute neutrophil count and serum concentrations of IL-1α/IL-1β, high-sensitivity C-reactive protein, and matrix metalloproteinase (MMP)-derived type 1 collagen. Serum concentrations of MMP-derived type 3 collagen and MMP-degraded C-reactive protein demonstrated decreasing trends with ABT-981. Antidrug antibodies were found in 37% of patients but were not associated with the incidence or severity of AEs. CONCLUSION ABT-981 was generally well tolerated in patients with knee OA and engaged relevant tissue targets, eliciting an anti-inflammatory response. Consequently, ABT-981 may provide clinical benefit to patients with inflammation-driven OA.
Collapse
|
29
|
Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res 2017; 2017:3743048. [PMID: 29359169 PMCID: PMC5735647 DOI: 10.1155/2017/3743048] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic inflammatory disease that undermines the airways. It is caused by dysfunction of various types of cells, as well as cellular components, and is characterized by recruitment of inflammatory cells, bronchial hyperreactivity, mucus production, and airway remodelling and narrowing. It has commonly been considered that airway inflammation is caused by the Th2 immune response, or eosinophilia, which is a hallmark of bronchial asthma pathogenesis. Some patients display a neutrophil-dominant presentation and are characterized with low (or even absent) Th2 cytokines. In recent years, increasing evidence has also suggested that neutrophils play a key role in the development of certain subtypes of asthma. This review discusses neutrophils in asthma and potentially related targeted therapies.
Collapse
|
30
|
Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000265] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin 6 (IL-6) is a 184-amino acid protein cytokine that is produced by many types of cells and is expressed during states of cellular stress, such as inflammation, infection, wound sites, and cancer. IL-6 levels may increase several thousand-fold in these states and may help to coordinate the response to dysregulation of tissue homeostasis. IL-6 acts through a membrane-bound IL-6 receptor (mIL-6R), which, together with a second receptor, glycoprotein 130 (gp130), leads to the initiation of intracellular signaling (classic signaling). Given that IL-6R is expressed on only a few types of cells, though all cells express gp130, direct stimulation by IL-6 is limited to cells that express mIL-6R. However, IL-6R is also produced as a soluble, secreted protein that, together with IL-6, can stimulate all gp130-expressing cells by a process termed IL-6 trans-signaling. IL-6 trans-signaling can be blocked without affecting IL-6 classic signaling through mIL-6R. IL-6 has major effects on the adaptive and innate immune system and on mesenchymal and stromal responses during inflammation. It promotes the development of pathogenic T-helper 17 T cells and the maturation of B lymphocytes. Many innate immune cells, neutrophils, and monocytes/macrophages produce and respond to IL-6, resulting in autocrine feedback loops that amplify inflammation. IL-6 has been implicated in the pathogenesis of fibrotic diseases in which IL-6 trans-signaling has been shown to stimulate the proliferation of fibroblasts and the release of procollagen and fibronectin.
Collapse
|
31
|
The Effect of Transcutaneous Electrical Acupoint Stimulation on Inflammatory Response in Patients Undergoing Limb Ischemia-Reperfusion. Mediators Inflamm 2017; 2017:8369737. [PMID: 28804223 PMCID: PMC5540249 DOI: 10.1155/2017/8369737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/28/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Reperfusion after tourniquet use can induce inflammation and cause remote organ injury. We evaluated the therapeutic effect of transcutaneous electrical acupoint stimulation (TEAS) on inflammatory mediators and lung function in patients receiving lower limb tourniquets. Forty patients undergoing unilateral lower extremity surgery with tourniquet were randomly assigned to two groups: the TEAS group and ischemia-reperfusion (I/R) group. The C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 8 (CXCL8), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and arterial blood gas analysis were measured preoperatively and 6 h after tourniquet removal. The levels of CXCL8, IL-1, IL-6, TNF-α, and CCL2 were significantly increased compared to baseline values in both groups, but the increase was significantly smaller in the TEAS group. In the TEAS group, the partial pressure of oxygen and arterial-alveolar oxygen tension ratio were significantly decreased, and the alveolar-arterial oxygen tension difference and respiratory index were significantly increased, compared to those in the I/R group at 6 h after reperfusion. In conclusion, TEAS diminished the upregulation of proinflammatory factors in response to lower limb ischemia-reperfusion and improved pulmonary gas exchange.
Collapse
|
32
|
COPD monocytes demonstrate impaired migratory ability. Respir Res 2017; 18:90. [PMID: 28494757 PMCID: PMC5425971 DOI: 10.1186/s12931-017-0569-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
Background Increased lung macrophage numbers in COPD may arise from upregulation of blood monocyte recruitment into the lungs. CCR5 is a monocyte chemokine receptor regulated by interleukin-6 (IL-6); the concentration of CCR5 ligands are known to be elevated in COPD lungs. The objective of this study was to investigate mechanisms of monocyte recruitment to the lung in COPD, including the role of CCR5 signalling. Methods Ninety one COPD patients, 29 smokers (S) and 37 non-smokers (NS) underwent sputum induction, plasma sampling (to measure IL-6 and soluble IL-6 receptor [sIL-6R] by immunoassay), monocyte characterization (by flow cytometry) and monocyte isolation for cell migration and quantitative polymerase chain reaction studies. Lung tissue was used for immunohistochemistry. Results Plasma IL-6 and sIL-6R levels were increased in COPD. Greater proportions of COPD CD14++CD16+ monocytes expressed CCR5 compared to controls. Monocyte stimulation with IL-6 and sIL-6R increased CCR5 gene expression. COPD monocytes demonstrated impaired migration towards sputum supernatant compared to NS (% migration, 4.4 vs 11.5, respectively; p < 0.05). Pulmonary microvessels showed reduced monocyte recruitment (% marginated cells) in COPD compared to NS, (9.3% vs 83.1%, respectively). The proportion of replicating Ki67+ alveolar macrophages was reduced in COPD compared to NS. All alveolar macrophages from COPD and S expressed the anti-apoptosis marker BCL2; this protein was not present in non-smokers or COPD ex-smokers. Conclusion COPD monocytes show decreased migratory ability despite increased CCR5 expression. Increased COPD lung macrophage numbers may be due to delayed apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0569-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Wang Q, Ding G, Xu X. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils. Open Med (Wars) 2017; 12:19-23. [PMID: 28401196 PMCID: PMC5385971 DOI: 10.1515/med-2017-0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/15/2017] [Indexed: 12/23/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.
Collapse
Affiliation(s)
- Qing Wang
- Department of Implantology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University School of Stomatology, Jinan250012, Republic of China; Department of Dentistry, Weifang People's Hospital, Weifang261000, Shandong Province, People's Republic of China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Linglongshan South Road No.4138, Qingzhou262500, Shandong Province, People's Republic of China
| | - Xin Xu
- Department of Implantology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University School of Stomatology, Wenhua West Road No.44-1, Jinan250012, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
|
35
|
Cianci E, Recchiuti A, Trubiani O, Diomede F, Marchisio M, Miscia S, Colas RA, Dalli J, Serhan CN, Romano M. Human Periodontal Stem Cells Release Specialized Proresolving Mediators and Carry Immunomodulatory and Prohealing Properties Regulated by Lipoxins. Stem Cells Transl Med 2015; 5:20-32. [PMID: 26607175 PMCID: PMC4704879 DOI: 10.5966/sctm.2015-0163] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
The actions of human periodontal ligament stem cells (hPDLSCs) on polymorphonuclear neutrophil (PMN) apoptosis and antimicrobial functions, and the impact of lipoxin A4 (LXA4) on hPDLSCs were investigated. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. hPDLSCs also were found to biosynthesize proresolving lipid mediators and prostaglandins. This study also demonstrated that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Unresolved inflammation and tissue destruction are underlying mechanisms of periodontitis, which is linked to dysregulated polymorphonuclear neutrophil (PMN) functions. Lipoxin A4 (LXA4) is a specialized proresolving lipid mediator (SPM) that dampens excessive inflammation, promotes resolution, and protects from leukocyte-mediated tissue damage. Human periodontal ligament stem cells (hPDLSCs) represent key players during tissue regeneration and may contribute to resolution of inflammation; thus, they may represent a promising tool in regenerative dentistry. In the present study, we investigated the actions of hPDLSCs on PMN apoptosis and antimicrobial functions, and determined the impact of LXA4 on hPDLSCs. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. Lipid mediator metabololipidomics analysis demonstrated that hPDLSCs biosynthesize SPMs, including resolvin D1, D2, D5, and D6; protectin D1; maresins; and LXB4; as well as prostaglandins D2, E2, and F2α. LXA4 significantly enhanced proliferation, migration, and wound healing capacity of hPDLSCs through the activation of its cognate receptor ALX/FPR2, expressed on hPDLSCs. Together, these results demonstrate that hPDLSCs modulate PMN functions, and provide the first evidence that stem cells generate SPM and that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Significance These findings uncovered unappreciated features of stem cells from the periodontal ligament, supporting the notion that these cells may act as master regulators of pathophysiological events through the release of mediators that promote the resolution of inflammation and bacterial killing. The study also demonstrated that it is possible to modulate important functions of periodontal stem cells using lipoxin A4, a potent endogenous stop signal of inflammation. Thus, this study revealed an unappreciated anti-inflammatory proregenerative circuit that may be exploited to combat periodontal pathologies using resident stem cells. Moreover, the data may represent a more general template to explain the immunomodulatory functions of stem cells.
Collapse
Affiliation(s)
- Eleonora Cianci
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mario Romano
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
36
|
Contribution of Reduced Interleukin-10 Levels to the Pathogenesis of Osteomyelitis in Children with Sickle Cell Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1020-4. [PMID: 26135971 DOI: 10.1128/cvi.00286-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022]
Abstract
Osteomyelitis is a significant complication of sickle cell disease (SCD), and several factors contribute to its pathogenesis, including altered expression of proinflammatory and anti-inflammatory cytokines. In view of the role of interleukin-10 (IL-10) as an anti-inflammatory cytokine, we tested the notion that SCD osteomyelitis is associated with a reduction in IL-10 secretion and, hence, precipitation of a proinflammatory state. Study subjects comprised 52 SCD patients with confirmed diagnosis of osteomyelitis and 165 age- and gender-matched SCD patients with negative histories of osteomyelitis. Results obtained showed that IL-10 serum levels in SCD osteomyelitis patients were significantly lower than those of control SCD patients. Receiver operating characteristic (ROC) analysis demonstrated that altered IL-10 serum levels predicted the development of osteomyelitis, and the mean area under ROC curves of IL-10 was 0.810 among SCD patients with osteomyelitis. A systematic shift in IL-10 serum levels toward lower values was seen in osteomyelitis cases, with an increased osteomyelitis risk associated with decreased IL-10 levels. Multivariate logistic regression analyses confirmed the independent association of reduced IL-10 with osteomyelitis after controlling for sickle hemoglobin (HbS), fetal hemoglobin (HbF), platelet count, and white blood cell (WBC) count. These data support the strong association of decreased IL-10 levels with osteomyelitis, thereby supporting a role for IL-10 in osteomyelitis follow-up.
Collapse
|
37
|
Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, De Benedetti F, Strippoli R. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases. PLoS One 2014; 9:e107886. [PMID: 25271853 PMCID: PMC4182736 DOI: 10.1371/journal.pone.0107886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023] Open
Abstract
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.
Collapse
Affiliation(s)
- Ivan Caiello
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gaetana Minnone
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Dirk Holzinger
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Thomas Vogl
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
| | - Giusi Prencipe
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Pavia, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- * E-mail: (FDB); (RS)
| | - Raffaele Strippoli
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
- * E-mail: (FDB); (RS)
| |
Collapse
|
38
|
Chen CP, Chen YY, Huang JP, Wu YH. The effect of conditioned medium derived from human placental multipotent mesenchymal stromal cells on neutrophils: possible implications for placental infection. Mol Hum Reprod 2014; 20:1117-25. [PMID: 25140001 DOI: 10.1093/molehr/gau062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of human placental multipotent mesenchymal stromal cells (hPMSCs) in placental inflammation is unknown. We hypothesize that hPMSCs are involved in the early phases of placental infection. hPMSCs were isolated from term placentas and neutrophils from peripheral blood. The expression of toll-like receptors (TLRs) and cytokines by hPMSCs was determined by RT-PCR, flow cytometry and enzyme-linked immunosorbent assay. The effect of conditioned medium of hPMSCs with or without lipopolysaccharide (LPS) pretreatment on neutrophil functions: migration, apoptosis and production of reactive oxygen species (ROS) was assessed by flow cytometry and western blot. hPMSCs expressed TLR1, TLR3, TLR4, TLR6, TLR7 and TLR9. LPS stimulation increased the expression of TLR4 and the production of IL-6 and IL-8 by hPMSCs. Neutrophils exhibited chemotaxis to hPMSC-conditioned medium, which was inhibited by IL-8 depletion. Neutrophil CD11b activation was promoted by hPMSC-conditioned medium, which was further enhanced in media from hPMSCs pretreated with LPS. hPMSC-conditioned medium reduced neutrophil ROS production. Neutrophil phagocytosis was increased by LPS alone but not by hPMSC-conditioned medium with or without LPS stimulation. hPMSC-conditioned medium induced STAT3 activation in neutrophils, which was inhibited by neutralizing antibody to IL-6. hPMSC-conditioned medium rescued neutrophils from apoptosis, but this effect was significantly reduced in conditioned medium of hPMSCs with LPS pretreatment. Depletion of IL-6 from the conditioned medium further inhibited the anti-apoptotic effect on neutrophils. Our results demonstrate that hPMSCs can interact with peripheral blood neutrophils in response to inflammatory signals of the placenta. Cytokines produced by hPMSCs can induce neutrophil chemotaxis and reduce neutrophil apoptosis.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, 92 Sec. 2 Zhong-Shan North Road, Taipei 104, Taiwan Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Yung Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, 92 Sec. 2 Zhong-Shan North Road, Taipei 104, Taiwan
| | - Jian-Pei Huang
- Division of High Risk Pregnancy, Mackay Memorial Hospital, 92 Sec. 2 Zhong-Shan North Road, Taipei 104, Taiwan
| | - Yi-Hsin Wu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Marriott I. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis. Front Cell Infect Microbiol 2013; 3:101. [PMID: 24392356 PMCID: PMC3867676 DOI: 10.3389/fcimb.2013.00101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 01/18/2023] Open
Abstract
The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
40
|
Kim D, Haynes CL. On-chip evaluation of neutrophil activation and neutrophil-endothelial cell interaction during neutrophil chemotaxis. Anal Chem 2013; 85:10787-96. [PMID: 24127752 DOI: 10.1021/ac4020098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are always surrounded by/interacting with other components of the immune system; however, the current mechanistic understanding of neutrophil function is largely based on how neutrophils respond to a single chemical signal in a simplified environment. Such approaches are unable to recapitulate the in vivo microenvironment; thus, cell behavior may not fully represent the physiological behavior. Herein, we exploit a microfluidic model of the complex in vivo milieu to investigate how cell-cell interactions influence human neutrophil migration and surface marker expression. Neutrophil migration against a bacterially derived chemoattractant (formyl-met-leu-phe, fMLP), with and without preactivation by interleukins (interleukin-2 or interleukin-6), was evaluated in the presence and absence of endothelial support cells. Preactivation by interleukins or interaction with endothelial cells resulted in altered migration rates compared to naïve neutrophils, and migration trajectories deviated from the expected movement toward the fMLP signal. Interestingly, interaction with both interleukins and endothelial cells simultaneously resulted in a slight compensation in the deviation-on endothelial cells, 34.4% of untreated neutrophils moved away from the fMLP signal, while only 15.2 or 22.2% (interleukin-2-or interleukin-6-activated) of preactivated cells moved away from fMLP. Neutrophils interacting with interleukins and/or endothelial cells were still capable of prioritizing the fMLP signal over a competing chemoattractant, leukotriene B4 (LTB4). Fluorescence imaging of individual human neutrophils revealed that neutrophils treated with endothelial-cell-conditioned media showed up-regulation of the surface adhesion molecules cluster determinant 11b and 66b (CD11b and CD66b) upon stimulation. On the other hand, CD11b and CD66b down-regulation was observed in untreated neutrophils. These results leverage single cell analysis to reveal that the interaction between neutrophils and endothelial cells is involved in surface marker regulation and thus chemotaxis of neutrophils. This study brings new knowledge about neutrophil chemotaxis in the context of cell-to-cell communications, yielding both fundamental and therapeutically relevant insight.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
41
|
Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6. J Invest Dermatol 2013; 134:809-817. [PMID: 24121404 PMCID: PMC4013292 DOI: 10.1038/jid.2013.415] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/11/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
Stress-induced hormones can alter the inflammatory response to tissue injury, however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (PMN)-dependent inflammatory response to a cutaneous wound. Using non-invasive real-time imaging of genetically-tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6 mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2 adrenergic receptor-dependent activation of pro-inflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.
Collapse
|
42
|
Aragón-Sánchez J, Cabrera-Galván JJ. The role of cytokines in diabetic foot osteomyelitis. Diabet Med 2013; 30:628-9. [PMID: 23320471 DOI: 10.1111/dme.12114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
|
43
|
Xia YC, Redhu NS, Moir LM, Koziol-White C, Ammit AJ, Al-Alwan L, Camoretti-Mercado B, Clifford RL. Pro-inflammatory and immunomodulatory functions of airway smooth muscle: Emerging concepts. Pulm Pharmacol Ther 2013; 26:64-74. [DOI: 10.1016/j.pupt.2012.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
|
44
|
Ferreira GF, Moraes C, Silveira AMSD, Correa-Oliveira R, Teixeira-Carvalho A, Martins-Filho OA, Moreno EC, do Carmo LS, Fraga LADO, Malaquias LCC. Distinct cytokine profiles of circulating mononuclear cells stimulated with Staphylococcus aureus enterotoxin A in vitro during early and late episodes of chronic osteomyelitis. Mem Inst Oswaldo Cruz 2012; 107:348-55. [PMID: 22510830 DOI: 10.1590/s0074-02762012000300009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/01/2012] [Indexed: 12/16/2022] Open
Abstract
We investigated the cytokine profile of peripheral mononuclear cells from chronic osteomyelitis (OST) patients following in vitro stimulation with staphylococcal enterotoxin A (SEA). We demonstrate that stimulation with SEA induced prominent lymphocyte proliferation and high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-4 and IL-10 secretion in both OST and non-infected individuals (NI). Even though stimulation with SEA had no impact on IL-6 production in either patient group, the baseline level of IL-6 production by cells from OST patients was always significantly less than that produced by cells from NI. After classifying the osteomyelitic episodes based on the time after the last reactivation event as "early" (1-4 months) or "late" osteomyelitis (5-12 months), we found that increased levels of TNF-α and IL-4 in combination with decreased levels of IL-6 were observed in the early episodes. By contrast, increased levels of IL-10, IL-2 and IL-6 were hallmarks of late episodes. Our data demonstrate that early osteomyelitic episodes are accompanied by an increased frequency of "high producers" of TNF-α and IL-4, whereas late events are characterised by increased frequencies of "high producers" of IL-10, IL-6 and IL-2. These findings demonstrate the distinct cytokine profiles in chronic osteomyelitis, with a distinct regulation of IL-6 production during early and late episodes.
Collapse
|
45
|
Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol 2012; 33:571-7. [PMID: 22883707 DOI: 10.1016/j.it.2012.07.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 07/13/2012] [Indexed: 12/29/2022]
Abstract
The incidence and diversity of chronic inflammatory diseases is increasing worldwide. However, the complexity of clinical symptoms has made it difficult to develop therapies that provide a substantial improvement for extended periods of time in a wide range of patient groups. Thus, there is a need for new therapies that target inflammatory responses without compromising immune defense. Interleukin (IL)-6, one of the first identified cytokines, has recently been recognized as a potential target in inflammatory disease. Here, I discuss how this cytokine has evolved from being a marker of inflammation to a successful target to control inflammation. I will summarize the results from the recent clinical studies using IL-6 receptor blockade, and describe potential mechanisms by which IL-6 can contribute to the progression of inflammatory diseases.
Collapse
|
46
|
Manetsch M, Seidel P, Heintz U, Che W, Hughes JM, Ge Q, Sukkar MB, Ammit AJ. TLR2 ligand engagement upregulates airway smooth muscle TNFα-induced cytokine production. Am J Physiol Lung Cell Mol Physiol 2012; 302:L838-45. [PMID: 22245999 DOI: 10.1152/ajplung.00317.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation and respiratory infections are important factors contributing to disease exacerbation in chronic airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle (ASM) cells express Toll-like receptors (TLRs) and may be involved in the amplification of airway inflammatory responses during infectious exacerbations. We determined whether infectious stimuli (mimicked using Pam3CSK4, a synthetic bacterial lipopeptide that binds to TLR2/TLR1) further enhance ASM cell inflammatory responses to TNFα in vitro and the signaling pathways involved. Human ASM cells were pretreated for 1 h with Pam3CSK4 (1 μg/ml) in the absence or presence of TNFα (10 ng/ml), and IL-6 and IL-8 release was measured after 24 h. As expected, stimulation with Pam3CSK4 or TNFα alone induced significant IL-6 and IL-8 release. Furthermore, Pam3CSK4 significantly increased TNFα-induced IL-6 and IL-8 mRNA expression and protein release and neutrophil chemotactic activity. The potentiating effect of Pam3CSK4 on TNFα-induced inflammatory responses was not due to enhanced TLR2 expression nor did it involve augmentation of NF-κB or MAPK signaling pathways. Rather, Pam3CSK4 induced cAMP response element (CRE) binding protein phosphorylation and induced CRE-mediated transcriptional regulation, suggesting that Pam3CSK4 and TNFα are acting in concert to enhance ASM cytokine secretion via parallel transcriptional pathways. Our findings suggest that ASM cells may be involved in the amplification of airway inflammatory responses during infectious exacerbations in chronic airway disease.
Collapse
|
47
|
Effect of Shenmai injection, a traditional Chinese medicine, on pulmonary dysfunction after tourniquet-induced limb ischemia-reperfusion. ACTA ACUST UNITED AC 2011; 71:893-7. [PMID: 21336185 DOI: 10.1097/ta.0b013e318205e279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tourniquet has been considered as a recognized cause of lower limb ischemia-reperfusion injury in the orthopedic field. This study investigates pulmonary function after tourniquet deflation and the protective effect of Shenmai injection (SMI), a traditional Chinese medicine. METHODS Twenty-eight patients undergoing lower extremity surgery were randomized into a control group (group C) and a SMI group (group S), 14 patients in each group. Blood gas and circulating indicators (malondialdehyde, interleukin [IL]-6, and IL-8) were measured immediately before tourniquet inflation and at 0.5 hour, 2 hours, 6 hours, and 24 hours after tourniquet deflation. RESULTS Plasma levels of malondialdehyde, IL-6, and IL-8 in group C were significantly increased over baselines from 2 hours to 24 hours after tourniquet deflation and the levels reached their peaks at 6 hours after tourniquet deflation, when arterial partial pressures of oxygen and arterial-alveolar oxygen tension ratio were decreased, whereas alveolar-arterial oxygen difference was increased significantly. Both the changes in blood gas variables and plasma mediators were attenuated in group S. CONCLUSION Pulmonary gas exchange is impaired after lower limb ischemia-reperfusion induced by clinical tourniquet application. Pretreatment with SMI, a traditional Chinese medicine, attenuates lipid peroxidation and systemic inflammatory response and mitigates pulmonary dysfunction.
Collapse
|
48
|
Dumitru CA, Gholaman H, Trellakis S, Bruderek K, Dominas N, Gu X, Bankfalvi A, Whiteside TL, Lang S, Brandau S. Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer 2011; 129:859-69. [DOI: 10.1002/ijc.25991] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/27/2011] [Indexed: 11/09/2022]
|
49
|
Tamai R, Sugiyama A, Kiyoura Y. Alendronate regulates cytokine production induced by lipid A through nuclear factor-κB and Smad3 activation in human gingival fibroblasts. J Periodontal Res 2011; 46:13-20. [DOI: 10.1111/j.1600-0765.2010.01302.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Pesonen M, Vähäkangas K, Halme M, Vanninen P, Seulanto H, Hemmilä M, Pasanen M, Kuitunen T. Capsaicinoids, chloropicrin and sulfur mustard: possibilities for exposure biomarkers. Front Pharmacol 2010; 1:140. [PMID: 21833179 PMCID: PMC3153014 DOI: 10.3389/fphar.2010.00140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 01/05/2023] Open
Abstract
Incapacitating and irritating agents produce temporary disability persisting for hours to days after the exposure. One can be exposed to these agents occupationally in industrial or other working environments. Also general public can be exposed in special circumstances, like industrial accidents or riots. Incapacitating and irritating agents discussed in this review are chloropicrin and capsaicinoids. In addition, we include sulfur mustard, which is an old chemical warfare agent and known to cause severe long-lasting injuries or even death. Chloropicrin that was used as a warfare agent in the World War I is currently used mainly as a pesticide. Capsaicinoids, components of hot pepper plants, are used by police and other law enforcement personnel as riot control agents. Toxicity of these chemicals is associated particularly with the respiratory tract, eyes, and skin. Their acute effects are relatively well known but the knowledge of putative long-term effects is almost non-existent. Also, mechanisms of effects at cellular level are not fully understood. There is a need for further research to get better idea of health risks, particularly of long-term and low-level exposures to these chemicals. For this, exposure biomarkers are essential. Validated exposure biomarkers for capsaicinoids, chloropicrin, and sulfur mustard do not exist so far. Metabolites and macromolecular adducts have been suggested biomarkers for sulfur mustard and these can already be measured qualitatively, but quantitative biomarkers await further development and validation. The purpose of this review is, based on the existing mechanistic and toxicokinetic information, to shed light on the possibilities for developing biomarkers for exposure biomonitoring of these compounds. It is also of interest to find ideas for early effect biomarkers considering the need for studies on subchronic and chronic toxicity.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|