1
|
Wang H, Clapp B, Hoffman C, Yang X, Pascual DW. A Single Nasal Dose Vaccination with a Brucella abortus Mutant Potently Protects against Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1576-1588. [PMID: 37036290 PMCID: PMC10159994 DOI: 10.4049/jimmunol.2300071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
2
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
3
|
Goodwin ZI, Yang X, Hoffman C, Pascual DW. Live mucosal vaccination stimulates potent protection via varied CD4+ and CD8+ T cell subsets against wild-type Brucella melitensis 16M challenge. Front Immunol 2022; 13:995327. [PMID: 36263034 PMCID: PMC9574439 DOI: 10.3389/fimmu.2022.995327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ−/− mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4−/−, CD8−/−, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17−/− mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.
Collapse
|
4
|
Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Lactococcus-based vaccine against brucellosis: IgG immune response in mice with rOmp16-IL2 fusion protein. Arch Microbiol 2021; 203:2591-2596. [PMID: 33689001 DOI: 10.1007/s00203-021-02241-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 02/12/2021] [Indexed: 01/18/2023]
Abstract
This study was designed to introduce the recombinant Lactococcus lactis MG1363 as a cell factory candidate for production of recombinant Brucella melitensis Omp16-Human IL2 (r-Omp16-IL2) and to suggest it as a promising safe, non-pathogenic mucosal live vaccine against brucellosis. Three groups of BALB/c mice (10 mice per group) were intragastrically administrated with phosphate-buffered saline (PBS), L. lactis harboring the empty pAMJ2008 plasmid and with L. lactis expressing rOmp-IL2. The first two groups were classified as control groups and the third one is indicated as treatment group. Another group was injected by the intraperitoneal (i.p.) route with purified rOmp16-IL2 protein. The total serum IgG of each group was assessed with indirect ELISAs at two days before immunization and also two weeks after the last immunization. Results showed that BALB/c mice intragastrically administrated with L. lactis expressing rOmp-IL2 had dominant IgG response compared to the control (PBS administrated) group (P < 0.05). The level of IgG was significantly increased by intraperitoneally injection of recombinant Omp-IL2 in adjuvant compared to the intragastrically administration of PBS and L. lactis/pAMJ2008 as control groups, and also compared to L. lactis/pAMJ2008-rOmp-IL2 (P < 0.05). Our findings provide the use of L. lactis rOmp16-IL2 as a new promising alternative safe strategy than presently live attenuated vaccines toward developing an oral vaccine or subunit-based vaccine against brucellosis.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, 817467344, Isfahan, Islamic Republic of Iran
| | - Mohammad Rabbani-Khorasgani
- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, 817467344, Isfahan, Islamic Republic of Iran.
| | - Sayyed Hamid Zarkesh-Esfahani
- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, 817467344, Isfahan, Islamic Republic of Iran
| | - Rahman Emamzadeh
- Department of Cell & Molecular Biology and Microbiology, Faculty of Science and Biotechnology, University of Isfahan, 817467344, Isfahan, Islamic Republic of Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Science, Arak, Islamic Republic of Iran
| |
Collapse
|
5
|
Pathogenesis and immune response in Brucella infection acquired by the respiratory route. Microbes Infect 2020; 22:407-415. [DOI: 10.1016/j.micinf.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023]
|
6
|
López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune Response to Mucosal Brucella Infection. Front Immunol 2019; 10:1759. [PMID: 31481953 PMCID: PMC6710357 DOI: 10.3389/fimmu.2019.01759] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is one of the most prevalent bacterial zoonosis of worldwide distribution. The disease is caused by Brucella spp., facultative intracellular pathogens. Brucellosis in animals results in abortion of fetuses, while in humans, it frequently manifests flu-like symptoms and a typical undulant fever, being osteoarthritis a common complication of the chronic infection. The two most common ways to acquire the infection in humans are through the ingestion of contaminated dairy products or by inhalation of contaminated aerosols. Brucella spp. enter the body mainly through the gastrointestinal and respiratory mucosa; however, most studies of immune response to Brucella spp. are performed analyzing models of systemic immunity. It is necessary to better understand the mucosal immune response induced by Brucella infection since this is the main entry site for the bacterium. In this review, some virulence factors and the mechanisms needed for pathogen invasion and persistence are discussed. Furthermore, some aspects of local immune responses induced during Brucella infection will be reviewed. With this knowledge, better vaccines can be designed focused on inducing protective mucosal immune response.
Collapse
Affiliation(s)
- Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Beatriz Sánchez-Argáez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Gabriela De Alba-Núñez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
7
|
Pascual DW, Yang X, Wang H, Goodwin Z, Hoffman C, Clapp B. Alternative strategies for vaccination to brucellosis. Microbes Infect 2017; 20:599-605. [PMID: 29287984 DOI: 10.1016/j.micinf.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023]
Abstract
Brucellosis remains burdensome for livestock and humans worldwide. Better vaccines for protection are needed to reduce disease incidence. Immunity to brucellosis and barriers to protection are discussed. The benefits and limitations of conventional and experimental brucellosis vaccines are outlined, and novel vaccination strategies needed to ultimately protect against brucellosis are introduced.
Collapse
Affiliation(s)
- David W Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Xinghong Yang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Hongbin Wang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Zakia Goodwin
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and Advancement of Brucellosis Vaccinology. PLoS One 2016; 11:e0166582. [PMID: 27846274 PMCID: PMC5112997 DOI: 10.1371/journal.pone.0166582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background/Objectives In spite of all the research effort for developing new vaccines against brucellosis, it remains unclear whether these new vaccine technologies will in fact become widely used. The goal of this study was to perform a meta-analysis to identify parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advancing concerning type of vaccine, improvement of protection on animal models over time, and factors that may affect protection in the mouse model. Methods A total of 117 publications that met the criteria were selected for inclusion in this study, with a total of 782 individual experiments analyzed. Results Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38) vaccines provided protection indexes lower than 2. When all categories of experimental vaccines are analyzed together, the trend line clearly demonstrates that there was no improvement of the protection indexes over the past 30 years, with a low negative and non significant linear coefficient. A meta-regression model was developed including all vaccine categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the protection index as a dependent variable and the other parameters (mouse strain, route of vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as independent variables. Some of these variables influenced the expected protection index of experimental vaccines against Brucella spp. in the mouse model. Conclusion In spite of the large number of publication over the past 30 years, our results indicate that there is not clear trend to improve the protective potential of these experimental vaccines.
Collapse
Affiliation(s)
- Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A. Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
9
|
Goodwin ZI, Pascual DW. Brucellosis vaccines for livestock. Vet Immunol Immunopathol 2016; 181:51-58. [DOI: 10.1016/j.vetimm.2016.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/18/2023]
|
10
|
Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci 2016; 78:1541-1548. [PMID: 27349900 PMCID: PMC5095622 DOI: 10.1292/jvms.16-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid
antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile
PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C
mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 ×
109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were
considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)
were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant
level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice
from systemic infection with virulent B. abortus.
Collapse
Affiliation(s)
- Ae Jeong Kwon
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Pandey A, Cabello A, Akoolo L, Rice-Ficht A, Arenas-Gamboa A, McMurray D, Ficht TA, de Figueiredo P. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 2016; 10:e0004572. [PMID: 27537413 PMCID: PMC4990199 DOI: 10.1371/journal.pntd.0004572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| | - Ana Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lavoisier Akoolo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Allison Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Angela Arenas-Gamboa
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| |
Collapse
|
12
|
Kim WK, Moon JY, Kim S, Hur J. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model. Front Microbiol 2016; 7:550. [PMID: 27148232 PMCID: PMC4837157 DOI: 10.3389/fmicb.2016.00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis.
Collapse
Affiliation(s)
- Won K Kim
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| | - Ja Y Moon
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University Jinju, South Korea
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University Iksan, South Korea
| |
Collapse
|
13
|
Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model. PLoS One 2016; 11:e0150432. [PMID: 26959235 PMCID: PMC4784796 DOI: 10.1371/journal.pone.0150432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.
Collapse
|
14
|
Samuelson DR, de la Rua NM, Charles TP, Ruan S, Taylor CM, Blanchard EE, Luo M, Ramsay AJ, Shellito JE, Welsh DA. Oral Immunization of Mice with Live Pneumocystis murina Protects against Pneumocystis Pneumonia. THE JOURNAL OF IMMUNOLOGY 2016; 196:2655-65. [PMID: 26864029 DOI: 10.4049/jimmunol.1502004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients, particularly those infected with HIV. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 d postinfection even after CD4(+) T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4(+) T cells, CD8(+) T cells, CD19(+) B cells, and CD11b(+) macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Furthermore, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared with control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. To our knowledge, our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Nicholas M de la Rua
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Tysheena P Charles
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Sanbao Ruan
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Eugene E Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112; Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112;
| |
Collapse
|
15
|
Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge. Immunol Cell Biol 2016; 94:496-508. [PMID: 26752510 PMCID: PMC4879022 DOI: 10.1038/icb.2016.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement.
Collapse
|
16
|
Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 2015; 6:1085. [PMID: 26500629 PMCID: PMC4595839 DOI: 10.3389/fmicb.2015.01085] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal “dysbiosis” affects lung health.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
17
|
Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308. PLoS One 2014; 9:e107180. [PMID: 25225910 PMCID: PMC4166413 DOI: 10.1371/journal.pone.0107180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/07/2014] [Indexed: 12/16/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4(+) and CD8(+) T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 10(9), 10(10) and 10(11) CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 10(11) CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.
Collapse
|
18
|
Iqbal S, Zebeli Q, Mansmann DA, Dunn SM, Ametaj BN. Repeated oronasal exposure to lipopolysaccharide induced mucosal IgA responses in periparturient dairy cows. PLoS One 2014; 9:e103504. [PMID: 25061754 PMCID: PMC4111619 DOI: 10.1371/journal.pone.0103504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/03/2014] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of repeated oronasal treatment with lipopolysaccharide (LPS) on the humoral immune responses in saliva, vaginal mucus, and the plasma markers of the acute phase response in periparturient dairy cows. One hundred pregnant Holstein cows were administered either 3 increasing doses of LPS (n = 50) as follows: 1) 0.01 µg/kg body weight (BW) on d −28, 2) 0.05 µg/kg BW on d −25, and −21, and 3) 0.1 µg/kg BW on d −18, and −14, or sterile saline solution (controls; n = 50) oronasally for 3 consecutive wk starting at 28 d before parturition. Intensive sampling was conducted on thirty cows (n = 15/group). Multiple saliva, vaginal mucus and blood samples were collected around parturition and analyzed for total immunoglobulin-(Ig)A, plasma serum amyloid A (SAA), lipopolysaccharide-binding protein (LBP), anti-LPS IgA, IgG, IgM, tumour necrosis factor(TNF)-α, and interleukin(IL)-1. Results regarding total secretory IgA (sIgA) antibodies showed greater concentrations in the saliva and an overall tendency for higher total sIgA in the vaginal mucus of the LPS-treated cows. Treatment had no effect on plasma sIgA, IgG, IgM anti-LPS antibodies, haptoglobin, SAA, LBP, TNF-α, and IL-1. Treatments by time interactions were observed for SAA and IL-1 with lowered concentrations of both variables in the plasma of LPS-treated cows after parturition. Overall, repeated oronasal LPS treatment clearly enhanced total sIgA antibodies in the saliva, stimulated their production in vaginal mucus shortly before calving, and lowered plasma IL-1 around parturition, but showed limited effects on markers of the acute phase response in the plasma in dairy cows around parturition.
Collapse
Affiliation(s)
- Summera Iqbal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Qendrim Zebeli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Vienna, Austria
| | - Dominik A. Mansmann
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Suzanna M. Dunn
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
19
|
Oliveira SC, Giambartolomei GH, Cassataro J. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines 2014; 10:1291-305. [DOI: 10.1586/erv.11.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
CD8 knockout mice are protected from challenge by vaccination with WR201, a live attenuated mutant of Brucella melitensis. Clin Dev Immunol 2013; 2013:686919. [PMID: 24288554 PMCID: PMC3830850 DOI: 10.1155/2013/686919] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/09/2013] [Indexed: 01/18/2023]
Abstract
CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ) by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals' anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.
Collapse
|
21
|
Todd TE, Tibi O, Lin Y, Sayers S, Bronner DN, Xiang Z, He Y. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates. BMC Bioinformatics 2013; 14 Suppl 6:S3. [PMID: 23735014 PMCID: PMC3633026 DOI: 10.1186/1471-2105-14-s6-s3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. RESULTS Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. CONCLUSIONS Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases.
Collapse
Affiliation(s)
- Thomas E Todd
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun 2011; 79:4165-74. [PMID: 21768283 DOI: 10.1128/iai.05080-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zoonotic transmission of brucellosis often results from exposure to Brucella-infected livestock, feral animals, or wildlife or frequently via consumption of unpasteurized milk products or raw meat. Since natural infection of humans often occurs by the oral route, mucosal vaccination may offer a means to confer protection for both mucosal and systemic tissues. Significant efforts have focused on developing a live brucellosis vaccine, and deletion of the znuA gene involved in zinc transport has been found to attenuate Brucella abortus. A similar mutation has been adapted for Brucella melitensis and tested to determine whether oral administration of ΔznuA B. melitensis can confer protection against nasal B. melitensis challenge. A single oral vaccination with ΔznuA B. melitensis rapidly cleared from mice within 2 weeks and effectively protected mice upon nasal challenge with wild-type B. melitensis 16M. In 83% of the vaccinated mice, no detectable brucellae were found in their spleens, unlike with phosphate-buffered saline (PBS)-dosed mice, and vaccination also enhanced the clearance of brucellae from the lungs. Moreover, vaccinated gamma interferon-deficient (IFN-γ(-/-)) mice also showed protection in both spleens and lungs, albeit protection that was not as effective as in immunocompetent mice. Although IFN-γ, interleukin 17 (IL-17), and IL-22 were stimulated by these live vaccines, only RB51-mediated protection was codependent upon IL-17 in BALB/c mice. These data suggest that oral immunization with the live, attenuated ΔznuA B. melitensis vaccine provides an attractive strategy to protect against inhalational infection with virulent B. melitensis.
Collapse
|
23
|
Laboratory animal models for brucellosis research. J Biomed Biotechnol 2011; 2011:518323. [PMID: 21403904 PMCID: PMC3043301 DOI: 10.1155/2011/518323] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/25/2010] [Accepted: 01/11/2011] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused by Brucella. This model is most frequently used to investigate specific pathogenic factors of Brucella spp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis.
Collapse
|
24
|
Pasquevich KA, Ibañez AE, Coria LM, García Samartino C, Estein SM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, Oliveira SC, Giambartolomei GH, Cassataro J. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS One 2011; 6:e16203. [PMID: 21264260 PMCID: PMC3021544 DOI: 10.1371/journal.pone.0016203] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/15/2010] [Indexed: 01/18/2023] Open
Abstract
As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity.
Collapse
Affiliation(s)
- Karina A. Pasquevich
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andrés E. Ibañez
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Lorena M. Coria
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Clara García Samartino
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Silvia M. Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Astrid Zwerdling
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernanda S. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Christine Seither
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Guillermo H. Giambartolomei
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juliana Cassataro
- Laboratorio de Inmunogenética, Hospital de Clínicas “José de San Martín,” Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
Pasquevich KA, García Samartino C, Coria LM, Estein SM, Zwerdling A, Ibañez AE, Barrionuevo P, Oliveira FSD, Carvalho NB, Borkowski J, Oliveira SC, Warzecha H, Giambartolomei GH, Cassataro J. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5200-12. [PMID: 20351187 DOI: 10.4049/jimmunol.0902209] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Administration, Oral
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/administration & dosage
- Bacterial Outer Membrane Proteins/biosynthesis
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Brucella Vaccine/administration & dosage
- Brucella Vaccine/immunology
- Brucellosis/immunology
- Brucellosis/prevention & control
- Cell Differentiation/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Freund's Adjuvant/administration & dosage
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Immunity, Cellular
- Injections, Intraperitoneal
- Lipids/administration & dosage
- Lipoproteins/administration & dosage
- Lipoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Th1 Cells/immunology
- Th1 Cells/microbiology
- Nicotiana/genetics
- Nicotiana/immunology
Collapse
Affiliation(s)
- Karina A Pasquevich
- Laboratory of Immunogenetics, Clinical Hospital José de San Martín, School of Medicine, University of Buenos Aires, Buenos Aires
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infect Immun 2010; 78:2283-91. [PMID: 20194591 DOI: 10.1128/iai.01433-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Delta pgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Delta pgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Delta pgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Delta pgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Delta pgk mutant may serve as a potential vaccine candidate in future studies.
Collapse
|
27
|
Protection of mice from Brucella infection by immunization with attenuated Salmonellaenterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella. Vaccine 2009; 27:5214-9. [DOI: 10.1016/j.vaccine.2009.06.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/21/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
|
28
|
Tsolis RM, Seshadri R, Santos RL, Sangari FJ, Lobo JMG, de Jong MF, Ren Q, Myers G, Brinkac LM, Nelson WC, DeBoy RT, Angiuoli S, Khouri H, Dimitrov G, Robinson JR, Mulligan S, Walker RL, Elzer PE, Hassan KA, Paulsen IT. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism. PLoS One 2009; 4:e5519. [PMID: 19436743 PMCID: PMC2677664 DOI: 10.1371/journal.pone.0005519] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.
Collapse
Affiliation(s)
- Renee M. Tsolis
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Rekha Seshadri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Renato L. Santos
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Escola de Veteranaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felix J. Sangari
- Molecular Biology Department, University of Cantabria, Santander, Spain
| | | | - Maarten F. de Jong
- Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Qinghu Ren
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Garry Myers
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Lauren M. Brinkac
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - William C. Nelson
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Robert T. DeBoy
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Samuel Angiuoli
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Hoda Khouri
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - George Dimitrov
- J. Craig Venter Institute, La Jolla, California, United States of America
| | | | - Stephanie Mulligan
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - Richard L. Walker
- California Animal Health and Food Safety Laboratory, Davis, California, United States of America
| | - Philip E. Elzer
- Department of Veterinary Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- J. Craig Venter Institute, La Jolla, California, United States of America
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
29
|
Izadjoo MJ, Mense MG, Bhattacharjee AK, Hadfield TL, Crawford RM, Hoover DL. A Study on the Use of Male Animal Models for Developing a Live Vaccine for Brucellosis. Transbound Emerg Dis 2008; 55:145-51. [DOI: 10.1111/j.1865-1682.2008.01019.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Kahl-McDonagh MM, Arenas-Gamboa AM, Ficht TA. Aerosol infection of BALB/c mice with Brucella melitensis and Brucella abortus and protective efficacy against aerosol challenge. Infect Immun 2007; 75:4923-32. [PMID: 17664263 PMCID: PMC2044518 DOI: 10.1128/iai.00451-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellosis is a zoonotic disease with a worldwide distribution that can be transmitted via intentional or accidental aerosol exposure. In order to engineer superior vaccine strains against Brucella species for use in animals as well as in humans, the possibility of challenge infection via aerosol needs to be considered to properly evaluate vaccine efficacy. In this study, we assessed the use of an aerosol chamber to infect deep lung tissue of mice to elicit systemic infections with either Brucella abortus or B. melitensis at various doses. The results reveal that B. abortus causes a chronic infection of lung tissue in BALB/c mice and peripheral organs at low doses. In contrast, B. melitensis infection diminishes more rapidly, and higher infectious doses are required to obtain infection rates in animals similar to those of B. abortus. Whether this difference translates to severity of human infection remains to be elucidated. Despite these differences, unmarked deletion mutants BADeltaasp24 and BMDeltaasp24 consistently confer superior protection to mice against homologous and heterologous aerosol challenge infection and should be considered viable candidates as vaccine strains against brucellosis.
Collapse
Affiliation(s)
- M M Kahl-McDonagh
- Texas A&M University, Department of Pathobiology, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
31
|
Cross ML, Buddle BM, Aldwell FE. The potential of oral vaccines for disease control in wildlife species. Vet J 2006; 174:472-80. [PMID: 17113798 DOI: 10.1016/j.tvjl.2006.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 02/01/2023]
Abstract
Numerous infectious diseases caused by bacteria or viruses persist in developed and developing countries due to ongoing transmission among wildlife reservoir species. Such diseases become the target of control and management programmes in cases where they represent a threat to public health (for example rabies, sylvatic plague, Lyme disease), or livestock production (for example bovine tuberculosis, brucellosis, pseudorabies), or where they threaten the survival of endangered animal populations. In the majority of cases, lethal control operations are neither economically feasible nor publicly supported as a practical means for disease management. Prophylactic vaccination has emerged over the last 15 years as an alternative control strategy for wildlife diseases, mainly driven by the success of widescale oral rabies vaccination programmes for meso-carnivores in North America and Northern Europe. Different methods have been trialled for the effective delivery of wildlife vaccines in the field, however oral vaccination remains the most widely used approach. Successful implementation of an oral wildlife vaccine is dependent on a combination of three components: an efficacious immunogen, a suitable delivery vehicle, and a species-specific bait. This review outlines the major wildlife disease problems for which oral vaccination is currently under consideration as a disease management tool, and also focuses on the technological challenges that face wildlife vaccine development. The major conclusion is that attenuated or recombinant live microbes represent the most widely-used vaccines that can be delivered by the oral route; this in turn places major emphasis on effective delivery systems (to maintain vaccine viability), and on selective baiting systems, as the keys to wildlife vaccine success. Oral vaccination is a valuable adjunct or alternative strategy to culling for the control of diseases which persist in wildlife reservoirs.
Collapse
Affiliation(s)
- M L Cross
- Centre for Innovation, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
32
|
Paranavitana CM, Zelazowska E, Das R, Izadjoo M, Jett M, Hoover D. Identification of novel genes in the memory response to Brucella infection by cDNA arrays. Mol Cell Probes 2005; 19:341-8. [PMID: 16146685 DOI: 10.1016/j.mcp.2005.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
This study investigated memory responses in immune mice spleen cells to brucellosis by gene expression utilizing cDNA micro arrays. Out of a total of 1176 cDNA's 21 genes were differentially regulated in three independent experiments, and generally supported a Th1 type immune response. 10 genes were validated by real time PCR, and 3 genes (CD 86, CD 40 L and CD 132) were also analyzed by Flow Cytometry for surface protein expression. We extended these findings by studying the expression of five selected genes (IRF 1, SOCS 1, IL 2 R, IRF 7, and CXCR 4) in two independent groups of Brucella immunized mice. In this study we show the potential application of utilizing gene arrays to identify and establish new correlates of protection against a cell mediated immune response.
Collapse
Affiliation(s)
- Chrysanthi M Paranavitana
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Building 503, Forest Glen, Silver Spring, MD 20910, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun 2005; 73:7297-303. [PMID: 16239526 PMCID: PMC1273852 DOI: 10.1128/iai.73.11.7297-7303.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/20/2005] [Accepted: 07/18/2005] [Indexed: 11/20/2022] Open
Abstract
The Brucella melitensis 16M genome was examined for proteins in excess of 100 amino acids and for immunogenicity-associated genes. One subset of 32 annotated genes or open reading frames was identified, and each of these were cloned into the eukaryotic vector pcDNA3.1. Purified recombinant plasmids were used to intramuscularly (i.m.) immunize BALB/c mice. After challenge with B. melitensis 16M strain, two protective antigens were found: the periplasmic protein, bp26, and the chaperone protein, trigger factor (TF). Protective efficacy was confirmed with DNA vaccines for these two B. melitensis proteins and, when combined, protection against wild-type challenge was significantly enhanced. Both proteins were found to be immunogenic since elevated serum immunoglobulin G (IgG) antibodies without a specific IgG subclass bias were induced subsequent to i.m. DNA immunization. Antigen-restimulation assays revealed that bp26 and TF stimulated gamma interferon and only bp26 induced interleukin-4 (IL-4), IL-5, and IL-6 cytokines as measured by cytokine enzyme-linked immunospot assay. These collective results suggest that both bp26 and TF are excellent candidates for use in future vaccination studies against brucellosis.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Brucella melitensis/genetics
- Brucella melitensis/immunology
- Brucellosis/immunology
- Brucellosis/microbiology
- Brucellosis/prevention & control
- Cloning, Molecular
- Epitopes/genetics
- Epitopes/immunology
- Female
- Genome, Bacterial
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred BALB C
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccination
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Xinghong Yang
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
34
|
Paranavitana C, Zelazowska E, Izadjoo M, Hoover D. Interferon-gamma associated cytokines and chemokines produced by spleen cells from Brucella-immune mice. Cytokine 2005; 30:86-92. [PMID: 15804600 DOI: 10.1016/j.cyto.2004.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/30/2004] [Accepted: 12/17/2004] [Indexed: 11/22/2022]
Abstract
It is known that interferon (IFN)-gamma plays a critical role in protection against brucellosis. In this study we have investigated several cytokines and chemokines that are associated with IFN-gamma for potential in vitro correlates of protection. We cultured spleen cells in vitro from mice immunized orally with a live, attenuated Brucella melitensis vaccine candidate (WR201) and stimulated these cells with a lysate of B. melitensis. Differential gene expression of several cytokines and chemokines in stimulated spleen cells was analysed by real-time PCR, and secreted proteins were determined by ELISA. Immunized mice produced higher levels of both protein and gene transcripts for IFN-gamma, interleukin (IL)-2, IL-18 and MIP1-alpha. Immunized mice also had elevated gene expression levels for IL12-p40, IL23-p19, IP-10, MIG and MCP-1 when compared to normal mice. In this study we have identified new cytokines and chemokines as potential immune correlates in responses to protection in Brucella-vaccinated mice.
Collapse
Affiliation(s)
- Chrysanthi Paranavitana
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Bldg 503, Room 3E10, Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|