1
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism, Cryptococcus neoformans, vaccine deficient in chitosan. mBio 2024; 15:e0174624. [PMID: 38980038 PMCID: PMC11323574 DOI: 10.1128/mbio.01746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆, which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells. IMPORTANCE The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans, designated as cda1∆2∆3∆. When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction.
Collapse
Affiliation(s)
- Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christina Gomez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhongming Mou
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chrono K. Lee
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Camaron R. Hole
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C. Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism Cryptococcus neoformans vaccine deficient in chitosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598760. [PMID: 38915489 PMCID: PMC11195286 DOI: 10.1101/2024.06.12.598760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.
Collapse
|
3
|
Xu J, Hissong R, Bareis R, Creech A, Goughenour KD, Freeman CM, Olszewski MA. Batf3-dependent orchestration of the robust Th1 responses and fungal control during cryptococcal infection, the role of cDC1. mBio 2024; 15:e0285323. [PMID: 38349130 PMCID: PMC10936214 DOI: 10.1128/mbio.02853-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.
Collapse
Affiliation(s)
- Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rylan Hissong
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rachel Bareis
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Arianna Creech
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christine M. Freeman
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, Lawrence DS, Abassi M, Rajasingham R, Meya DB, Boulware DR. Cryptococcal meningitis. Nat Rev Dis Primers 2023; 9:62. [PMID: 37945681 DOI: 10.1038/s41572-023-00472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes cause meningoencephalitis with high fatality rates and considerable morbidity, particularly in persons with deficient T cell-mediated immunity, most commonly affecting people living with HIV. Whereas the global incidence of HIV-associated cryptococcal meningitis (HIV-CM) has decreased over the past decade, cryptococcosis still accounts for one in five AIDS-related deaths globally due to the persistent burden of advanced HIV disease. Moreover, mortality remains high (~50%) in low-resource settings. The armamentarium to decrease cryptococcosis-associated mortality is expanding: cryptococcal antigen screening in the serum and pre-emptive azole therapy for cryptococcal antigenaemia are well established, whereas enhanced pre-emptive combination treatment regimens to improve survival of persons with cryptococcal antigenaemia are in clinical trials. Short courses (≤7 days) of amphotericin-based therapy combined with flucytosine are currently the preferred options for induction therapy of cryptococcal meningitis. Whether short-course induction regimens improve long-term morbidity such as depression, reduced neurocognitive performance and physical disability among survivors is the subject of further study. Here, we discuss underlying immunology, changing epidemiology, and updates on the management of cryptococcal meningitis with emphasis on HIV-associated disease.
Collapse
Affiliation(s)
- Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Jayne Ellis
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel M Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jane Gakuru
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David S Lawrence
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Radha Rajasingham
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Alselami A, Drummond RA. How metals fuel fungal virulence, yet promote anti-fungal immunity. Dis Model Mech 2023; 16:dmm050393. [PMID: 37905492 PMCID: PMC10629672 DOI: 10.1242/dmm.050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Invasive fungal infections represent a significant global health problem, and present several clinical challenges, including limited treatment options, increasing rates of antifungal drug resistance and compounding comorbidities in affected patients. Metals, such as copper, iron and zinc, are critical for various biological and cellular processes across phyla. In mammals, these metals are important determinants of immune responses, but pathogenic microbes, including fungi, also require access to these metals to fuel their own growth and drive expression of major virulence traits. Therefore, host immune cells have developed strategies to either restrict access to metals to induce starvation of invading pathogens or deploy toxic concentrations within phagosomes to cause metal poisoning. In this Review, we describe the mechanisms regulating fungal scavenging and detoxification of copper, iron and zinc and the importance of these mechanisms for virulence and infection. We also outline how these metals are involved in host immune responses and the consequences of metal deficiencies or overloads on how the host controls invasive fungal infections.
Collapse
Affiliation(s)
- Alanoud Alselami
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments. Microorganisms 2022; 10:microorganisms10122419. [PMID: 36557672 PMCID: PMC9780901 DOI: 10.3390/microorganisms10122419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
Collapse
|
7
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
8
|
Wang SY, Lo YF, Shih HP, Ho MW, Yeh CF, Peng JJ, Ting HT, Lin KH, Huang WC, Chen YC, Chiu YH, Hsu CW, Tseng YT, Wang LS, Lei WY, Lin CY, Aoh Y, Chou CH, Wu TY, Ding JY, Lo CC, Lin YN, Tu KH, Lei WT, Kuo CY, Chi CY, Ku CL. Cryptococcus gattii Infection as the Major Clinical Manifestation in Patients with Autoantibodies Against Granulocyte-Macrophage Colony-Stimulating Factor. J Clin Immunol 2022; 42:1730-1741. [PMID: 35947322 DOI: 10.1007/s10875-022-01341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are a predisposing factor for pulmonary alveolar proteinosis (PAP) and Cryptococcus gattii cryptococcosis. This study aimed to investigate clinical manifestations in anti-GM-CSF Ab-positive patients with C. gattii cryptococcosis and analyze the properties of anti-GM-CSF Abs derived from these patients and patients with PAP. METHODS Thirty-nine patients diagnosed with cryptococcosis (caused by C. neoformans or C. gattii) and 6 with PAP were enrolled in the present study. Clinical information was obtained from medical records. Blood samples were collected for analysis of autoantibody properties. We also explored the National Health Insurance Research Database (NHIRD) of Taiwan to investigate the epidemiology of cryptococcosis and PAP. RESULTS High titers of neutralizing anti-GM-CSF Abs were identified in 15 patients with cryptococcosis (15/39, 38.5%). Most anti-GM-CSF Ab-positive cryptococcosis cases had central nervous system (CNS) involvement (14/15, 93.3%). Eleven out of 14 (78.6%) anti-GM-CSF Ab-positive CNS cryptococcosis patients were confirmed to be infected with C. gattii, and PAP did not occur synchronously or metachronously in a single patient from our cohort. Exploration of an association between HLA and anti-GM-CSF Ab positivity or differential properties of autoantibodies from cryptococcosis patients and PAP yielded no significant results. CONCLUSION Anti-GM-CSF Abs can cause two diseases, C. gattii cryptococcosis and PAP, which seldom occur in the same subject. Current biological evidence regarding the properties of anti-GM-CSF Abs cannot provide clues regarding decisive mechanisms. Further analysis, including more extensive cohort studies and investigations into detailed properties, is mandatory to better understand the pathogenesis of anti-GM-CSF Abs.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - He-Ting Ting
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Hsi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chi Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Hsin Chiu
- Division of Infectious Diseases, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chien-Wei Hsu
- Department of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Tseng
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Disease, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chen-Yuan Lin
- Department of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan.,School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yu Aoh
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan city, Taiwan
| | - Chih-Yu Chi
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan. .,Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Center for Clinical and Medical Immunology, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Dragotakes Q, Jacobs E, Ramirez LS, Yoon OI, Perez-Stable C, Eden H, Pagnotta J, Vij R, Bergman A, D’Alessio F, Casadevall A. Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms. PLoS Pathog 2022; 18:e1010697. [PMID: 35816543 PMCID: PMC9302974 DOI: 10.1371/journal.ppat.1010697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ella Jacobs
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lia Sanchez Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Olivia Insun Yoon
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Caitlin Perez-Stable
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hope Eden
- Department of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jenlu Pagnotta
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Raghav Vij
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York City, New York, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Franco D’Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Serum Cytokine Profile in Patients with Candidemia versus Bacteremia. Pathogens 2021; 10:pathogens10101349. [PMID: 34684298 PMCID: PMC8537900 DOI: 10.3390/pathogens10101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bloodstream Candida infections constitute a major threat for hospitalized patients in intensive care units and immunocompromised hosts. Certain serum cytokines play a decisive role in anti-microbial host defense. Cytokines may act as discriminatory biomarkers that can significantly increase in candidemia compared to bacteremia patients. The concentration of secreted cytokine/chemokines was determined using a multiplexed cytometric bead array run on a cell analyzer. The cytokines tested during the study were interleukin (IL)-1β, IL-6, IL-17A, IL-10, IFN-γ, IL-4, IL-2, IL-8, IL-12p70 and the tumor necrosis factor (TNF)-α. The cytokines of 51 candidemia patients were characterized and compared to the cytokine levels of 20 bacteremia patients. Levels were significantly elevated in patients with bloodstream infections compared to healthy controls. Cytokines comprising IL-2, IL-17A, IL-6 and IL-10 were significantly elevated in the patients with bloodstream Candida infection as compared to the patients having bloodstream bacterial infections. The levels were found to be promising as a potential diagnostic marker for bloodstream Candida infections.
Collapse
|
11
|
Links between Infections, Lung Cancer, and the Immune System. Int J Mol Sci 2021; 22:ijms22179394. [PMID: 34502312 PMCID: PMC8431665 DOI: 10.3390/ijms22179394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading disease of cancer-related deaths worldwide. Since the beginning of the 20th century, various infectious agents associated with lung cancer have been identified. The mechanisms that include systemic inflammatory pathways as effect of microbial persistence in the lung can secondarily promote the development of lung carcinogenesis. Chronic inflammation associated with lung-cancer infections is known to precede tumor development, and it has a strong effect on the response(s) to therapy. In fact, both viral and bacterial infections can activate inflammatory cells and inflammatory signaling pathways. In this review, an overview of critical findings of recent studies investigating associations between each of viral and bacterial pathogens and lung carcinoma is provided, with particular emphasis on how infectious organisms can interfere with oncogenic processes and all the way through immunity. Moreover, a discussion of the direct crosstalk between lung tumor development and inflammatory processes is also presented.
Collapse
|
12
|
Midiri A, Mancuso G, Lentini G, Famà A, Galbo R, Zummo S, Giardina M, De Gaetano GV, Teti G, Beninati C, Biondo C. Characterization of an immunogenic cellulase secreted by Cryptococcus pathogens. Med Mycol 2021; 58:1138-1148. [PMID: 32246714 DOI: 10.1093/mmy/myaa012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/25/2023] Open
Abstract
Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.
Collapse
Affiliation(s)
- Angelina Midiri
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Miriam Giardina
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
13
|
da Silva TA, Hauser PJ, Bandey I, Laskowski T, Wang Q, Najjar AM, Kumaresan PR. Glucuronoxylomannan in the Cryptococcus species capsule as a target for Chimeric Antigen Receptor T-cell therapy. Cytotherapy 2021; 23:119-130. [PMID: 33303326 PMCID: PMC11375790 DOI: 10.1016/j.jcyt.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AIMS The genus Cryptococcus comprises two major fungal species that cause clinical infections in humans: Cryptococcus gattii and Cryptococcus neoformans. To establish invasive human disease, inhaled cryptococci must penetrate the lung tissue and reproduce. Each year, about 1 million cases of Cryptococcus infection are reported worldwide, and the infection's mortality rate ranges from 20% to 70%. Many HIV+/AIDS patients are affected by Cryptococcus infections, with 220,000 cases of cryptococcal meningitis reported worldwide in this population every year (C. neoformans infection statistics, via the Centers for Disease Control and Prevention, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/statistics.html). To escape from host immune cell attack, Cryptococcus covers itself in a sugar-based capsule composed primarily of glucuronoxylomannan (GXM). To evade phagocytosis, yeast cells increase to a >45-µm perimeter and become titan, or giant, cells. Cryptococci virulence is directly proportional to the percentage of titan/giant cells present during Cryptococcus infection. To combat cryptococcosis, the authors propose the redirection of CD8+ T cells to target the GXM in the capsule via expression of a GXM-specific chimeric antigen receptor (GXMR-CAR). RESULTS GXMR-CAR has an anti-GXM single-chain variable fragment followed by an IgG4 stalk in the extracellular domain, a CD28 transmembrane domain and CD28 and CD3-ς signaling domains. After lentiviral transduction of human T cells with the GXMR-CAR construct, flow cytometry demonstrated that 82.4% of the cells expressed GXMR-CAR on their surface. To determine whether the GXMR-CAR+ T cells exhibited GXM-specific recognition, these cells were incubated with GXM for 24 h and examined with the use of brightfield microscopy. Large clusters of proliferating GXMR-CAR+ T cells were observed in GXM-treated cells, whereas no clusters were observed in control cells. Moreover, the interaction of GXM with GXMR-CAR+ T cells was detected via flow cytometry by using a GXM-specific antibody, and the recognition of GXM by GXMR-CAR T cells triggered the secretion of granzyme and interferon gamma (IFN-γ). The ability of GXMR-CAR T cells to bind to the yeast form of C. neoformans was detected by fluorescent microscopy, but no binding was detected in mock-transduced control T cells (NoDNA T cells). Moreover, lung tissue sections were stained with Gomori Methenamine Silver and evaluated by NanoZoomer (Hamamatsu), revealing a significantly lower number of titan cells, with perimeters ranging from 50 to 130 µm and giant cells >130 µm in the CAR T-cell treated group when compared with other groups. Therefore, the authors validated the study's hypothesis by the redirection of GXMR-CAR+ T cells to target GXM, which induces the secretion of cytotoxic granules and IFN-γ that will aid in the control of cryptococcosis CONCLUSIONS: Thus, these findings reveal that GXMR-CAR+ T cells can target C. neoformans. Future studies will be focused on determining the therapeutic efficacy of GXMR-CAR+ T cells in an animal model of cryptococcosis.
Collapse
Affiliation(s)
- Thiago Aparecido da Silva
- Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Paul J Hauser
- Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irfan Bandey
- Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tamara Laskowski
- Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amer M Najjar
- Deparment of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pappanaicken R Kumaresan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Biswas PS. Vaccine-Induced Immunological Memory in Invasive Fungal Infections - A Dream so Close yet so Far. Front Immunol 2021; 12:671068. [PMID: 33968079 PMCID: PMC8096976 DOI: 10.3389/fimmu.2021.671068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
The invasive fungal infections (IFIs) are a major cause of mortality due to infectious disease worldwide. Majority of the IFIs are caused by opportunistic fungi including Candida, Aspergillus and Cryptococcus species. Lack of approved antifungal vaccines and the emergence of antifungal drug-resistant strains pose major constraints in controlling IFIs. A comprehensive understanding of the host immune response is required to develop novel fungal vaccines to prevent death from IFIs. In this review, we have discussed the challenges associated with the development of antifungal vaccines. We mentioned how host-pathogen interactions shape immunological memory and development of long-term protective immunity to IFIs. Furthermore, we underscored the contribution of long-lived innate and adaptive memory cells in protection against IFIs and summarized the current vaccine strategies.
Collapse
|
15
|
Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020; 130:110550. [DOI: 10.1016/j.biopha.2020.110550] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
|
16
|
Wang Q, Wang C, Yang M, Li X, Cui J, Wang C. Diagnostic efficacy of serum cytokines and chemokines in patients with candidemia and bacteremia. Cytokine 2020; 130:155081. [PMID: 32247169 DOI: 10.1016/j.cyto.2020.155081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The role of serum cytokines/chemokines in differential diagnosis between fungal infections and bacterial infections have not been fully understood. This study aims to measure the serum levels of cytokines/chemokines in cases of candidemia and to compare them with those observed in cases of bacteremia. MATERIAL AND METHODS Patients with febrile episodes and were identified as bloodstream infections through blood culture were enrolled, while healthy people were included as control group. Fourteen serum cytokine and chemokine levels were detected with multiplex platform. ROC analysis was performed and an area under the curve (AUC), sensitivity and specificity values were calculated to determine the efficacy of various cytokines and chemokines for candidemia and bacteremia. Binary logistic regression was performed to further explore the combination mode of cytokines and chemokines, which could increase the diagnostic efficiency. RESULTS We included 40 patients with an episode of microbiologically proven fungal infection, 175 patients with bacteremia (85 with Gram-positive bacteremia and 90 with Gram-negative bacteremia) and another 30 healthy controls. Routine laboratory parameters including CRP and PCT were not statistically significant between candidemia group and bacteremia group (both gram-positive and gram-negative). There were significantly higher levels of IFN-γ, TNF-α, IL-10 and lower levels of IL-3, IL-4 in candidemia group, compared with gram-positive and gram-negative bacteremia groups. G-CSF was significantly lower and MIP-1β was higher in candidemia group, when compared with gram-negative bacteremia group. While IL-6, IL-8 and IL-17 were all significantly higher in candidemia group, when compared with gram-positive bacteremia group. Combination of IFN-γ and IL-17 could improve the diagnostic efficiency between candidemia and gram-positive bacteremia, with the AUROC of 0.873 (95% CI: 0.767-0.929). While combination of G-CSF and MIP-1β improved the diagnostic efficiency between candidemia and gram-negative bacteremia, with the AUROC of 0.896 (95% CI: 0.792-0.939). CONCLUSION Our study demonstrates that serum cytokines and chemokines including IFN-γ, MIP-1β, IL-17 and G-CSF could be considered as diagnostic markers to distinguish between candidemia and bacteremia. Combination of these biomarkers might improve the diagnostic efficiency of candidemia when compared with bacteremia.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; Department of Orthopedics, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Ming Yang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinjun Li
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Jiayue Cui
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
17
|
Wang Q, Yang M, Wang C, Cui J, Li X, Wang C. Diagnostic efficacy of serum cytokines and chemokines in fungal bloodstream infection in febrile patients. J Clin Lab Anal 2020; 34:e23149. [PMID: 31971308 PMCID: PMC7171303 DOI: 10.1002/jcla.23149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of serum cytokines/chemokines in early diagnosis of fungal infections has not been clearly clarified yet. This study aims to measure the serum levels of cytokines/chemokines in cases of fungemia and to compare them with culture-negative controls. METHODS In total, fourteen types of serum cytokines and chemokines from 41 patients with fungemia were compared with 57 patients with negative blood culture results. The cytokine and chemokine levels were detected with multiplex platform. We then performed statistical analysis as a two-tailed P < .05. ROC analysis was performed, and an area under the curve (AUC), and sensitivity and specificity values were calculated to determine the efficacy of various cytokines and chemokines for fungemia. Binary logistic regression was performed to further explore the combination mode of cytokines and chemokines, which could increase the diagnostic efficiency. RESULTS C-reactive protein and procalcitonin were significantly higher compared with those in negative control group, while white blood cell, percentage of neutrophil, percentage of lymphocyte, and ratio of neutrophil and lymphocyte did not differentiate between two groups. Serum levels of IFN-γ, TNF-α, MIP-1β, IL-6, IL-8, IL-10, IL-12p70, and IL-17 were significantly higher in patients with fungemia compared with the control group. Combination of MIP-1β and IL-17 could improve the AUC, sensitivity, and specificity for the diagnosis of fungemia. CONCLUSION Our study demonstrates that serum cytokines and chemokines including IFN-γ, TNF-α, MIP-1β, IL-6, IL-8, IL-10, IL-12p70, and IL-17 could be considered as diagnostic markers for fungemia. Combination of these biomarkers might improve the diagnostic efficiency of fungemia.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ming Yang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Jiayue Cui
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinjun Li
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
18
|
Oliveira-Brito PKM, Rezende CP, Almeida F, Roque-Barreira MC, da Silva TA. iNOS/Arginase-1 expression in the pulmonary tissue over time during Cryptococcus gattii infection. Innate Immun 2019; 26:117-129. [PMID: 31446837 PMCID: PMC7016403 DOI: 10.1177/1753425919869436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inhalation of Cryptococcus gattii yeasts (causing cryptococcosis) triggers an anti-cryptococcal immune response initiated by macrophages, neutrophils or dendritic cells, and the iNOS expressed by various cells may regulate the function and differentiation of innate and adaptive immune cells. Here, we evaluated the effect of progression of C. gattii infection on the host innate immune response. C. gattii infection in BALB/c mice spreads to several organs by 21 d post infection. The numbers of neutrophils and lymphocytes in the peripheral blood of C. gattii–infected mice were remarkably altered on that day. The frequency of CD11b+ cells and cell concentrations of CD4+ and CD8+ T cells was significantly altered in the pulmonary tissue of infected mice. We found a higher frequency of CD11b+/iNOS+ cells in the lungs of infected mice, accompanied by an increase in frequency of CD11b+/Arginase-1+ cells over time. Moreover, the iNOS/Arginase-1 expression ratio in CD11b+ cells reached its lowest value at 21 d post infection. In addition, the cytokine micro-environment in infected lungs did not show a pro-inflammatory profile. Surprisingly, iNOS knock-out prolonged the survival of infected mice, while their pulmonary fungal burden was higher than that of infected WT mice. Thus, C. gattii infection alters the immune response in the pulmonary tissue, and iNOS expression may play a key role in infection progression.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Brazil.,These authors contributed equally to this work
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil.,These authors contributed equally to this work
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
19
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Hazra I, Sk Md OF, Datta A, Mondal S, Moitra S, Singh MK, Chaudhuri S, Das PK, Basu AK, Dhar I, Basu N, Chaudhuri S. T11TS immunotherapy augments microglial and lymphocyte protective immune responses against Cryptococcus neoformans in the brain. Scand J Immunol 2018; 89:e12733. [PMID: 30450625 DOI: 10.1111/sji.12733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans, the encapsulated yeast acquired through inhalation, remains localized in lungs, but harbours the CNS in immunocompromised individuals. Several treatment regimes have failed combating this disease totally, but long-term usage of drugs leads to organ damage. As T11-target structure (T11TS) has documented profound immune potentiation, we aimed to investigate the role of microglia, pivotal immune cells of brain in ameliorating cryptococcosis, with T11TS immunotherapy. Murine model with C neoformans infection was prepared by intraperitoneal injection and the brains of rats examined 7 days post-infections for histopathology by PAS and Alcian blue staining corroborated with organ fungal burden evidencing restorative T11TS action on Cryptococcal meningitis. Immunotherapy with three doses of T11TS, a CD2 ligand, in C neoformans infected rats, upregulates toll-like receptors 2, -4 and -9 of microglia, indicating increased phagocytosis of the fungus. Flowcytometric analysis revealed increased numbers of T11TS treated brain infiltrating CD4+ and CD8+ T-lymphocytes along with increased MHC I and MHC II on microglia, activating the infiltrating lymphocytes aiding the killing mechanism. Present study also indicated that T11TS increased production of Th1 inflammatory cytokines conducive to fungal elimination while the inhibitory Th2 cytokines were dampened. This preclinical study is first of its kind to show that T11TS effected profound immune stimulation of microglial activity of C neoformans infected rats eradicating residual fungal burden from the brain and can be a useful therapeutic strategy in fighting against this deadly disease.
Collapse
Affiliation(s)
- Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Omar Faruk Sk Md
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Manoj Kumar Singh
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Suhnrita Chaudhuri
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Prasanta Kumar Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Anjan Kumar Basu
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, Kolkata, India
| | - Indranil Dhar
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| | - Nandita Basu
- Department of Pathology, School of Tropical Medicine, Kolkata, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, India
| |
Collapse
|
21
|
Teitz-Tennenbaum S, Viglianti SP, Roussey JA, Levitz SM, Olszewski MA, Osterholzer JJ. Autocrine IL-10 Signaling Promotes Dendritic Cell Type-2 Activation and Persistence of Murine Cryptococcal Lung Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:2004-2015. [PMID: 30097531 DOI: 10.4049/jimmunol.1800070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022]
Abstract
The substantial morbidity and mortality caused by invasive fungal pathogens, including Cryptococcus neoformans, necessitates increased understanding of protective immune responses against these infections. Our previous work using murine models of cryptococcal lung infection demonstrated that dendritic cells (DCs) orchestrate critical transitions from innate to adaptive immunity and that IL-10 signaling blockade improves fungal clearance. To further understand interrelationships among IL-10 production, fungal clearance, and the effect of IL-10 on lung DCs, we performed a comparative temporal analysis of cryptococcal lung infection in wild type C57BL/6J mice (designated IL-10+/+) and IL-10-/- mice inoculated intratracheally with C. neoformans (strain 52D). Early and sustained IL-10 production by lung leukocytes was associated with persistent infection in IL-10+/+ mice, whereas fungal clearance was improved in IL-10-/- mice during the late adaptive phase of infection. Numbers of monocyte-derived DCs, T cells, and alveolar and exudate macrophages were increased in lungs of IL-10-/- versus IL-10+/+ mice concurrent with evidence of enhanced DC type-1, Th1/Th17 CD4 cell, and classical macrophage activation. Bone marrow-derived DCs stimulated with cryptococcal mannoproteins, a component of the fungal capsule, upregulated expression of IL-10 and IL-10R, which promoted DC type-2 activation in an autocrine manner. Thus, our findings implicate fungus-triggered autocrine IL-10 signaling and DC type-2 activation as important contributors to the development of nonprotective immune effector responses, which characterize persistent cryptococcal lung infection. Collectively, this study informs and strengthens the rationale for IL-10 signaling blockade as a novel treatment for fungal infections.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| | - Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical Center, Worcester, MA 01605
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and.,Pulmonary Section Medical Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| |
Collapse
|
22
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
23
|
Hünniger K, Kurzai O. Phagocytes as central players in the defence against invasive fungal infection. Semin Cell Dev Biol 2018; 89:3-15. [PMID: 29601862 DOI: 10.1016/j.semcdb.2018.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022]
Abstract
Fungal pathogens cause severe and life-threatening infections worldwide. The majority of invasive infections occurs in immunocompromised patients and is based on acquired as well as congenital defects of innate and adaptive immune responses. In many cases, these defects affect phagocyte functions. Consequently, professional phagocytes - mainly monocytes, macrophages, dendritic cells and polymorphonuclear neutrophilic granulocytes - have been shown to act as central players in initiating and modulating antifungal immune responses as well as elimination of fungal pathogens. In this review we will summarize our current understanding on the role of these professional phagocytes in invasive fungal infection to emphasize two important aspects. (i) Analyses on the interaction between fungi and phagocytes have contributed to significant new insights into phagocyte biology. Important examples for this include the identification of pattern recognition receptors for β-glucan, a major cell wall component of many fungal pathogens, as well as the identification of genetic polymorphisms that determine individual host responses towards invading fungi. (ii) At the same time it was shown that fungal pathogens have evolved sophisticated mechanisms to counteract the attack of professional phagocytes. These mechanisms range from complete mechanical destruction of phagocytes to exquisite adaptation of some fungi to the hostile intracellular environment, enabling them to grow and replicate inside professional phagocytes.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Germany; Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany.
| |
Collapse
|
24
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Scriven JE, Tenforde MW, Levitz SM, Jarvis JN. Modulating host immune responses to fight invasive fungal infections. Curr Opin Microbiol 2017; 40:95-103. [PMID: 29154044 PMCID: PMC5816974 DOI: 10.1016/j.mib.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Abstract
Modulation of host immunity in invasive fungal infection is an appealing but as yet mostly elusive treatment strategy. Animal studies in invasive candidiasis and aspergillosis have demonstrated beneficial effects of colony stimulating factors, interferon-gamma and monoclonal antibodies. More recent studies transfusing leukocytes pre-loaded with lipophilic anti-fungal drugs, or modulated T-cells, along with novel vaccination strategies show great promise. The translation of immune therapies into clinical studies has been limited to date but this is changing and the results of new Candida vaccine trials are eagerly awaited. Immune modulation in HIV-associated mycoses remains complicated by the risk of immune reconstitution inflammatory syndrome and although exogenous interferon-gamma therapy may be beneficial in cryptococcal meningitis, early initiation of anti-retroviral therapy leads to increased mortality. Further study is required to better target protective immune responses.
Collapse
Affiliation(s)
- James E Scriven
- Liverpool School of Tropical Medicine, Liverpool, UK; Birmingham Heartlands Hospital, Birmingham, UK.
| | - Mark W Tenforde
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK; Botswana UPenn Partnership, Gaborone, Botswana; Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
26
|
Roussey JA, Viglianti SP, Teitz-Tennenbaum S, Olszewski MA, Osterholzer JJ. Anti-PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:3535-3546. [PMID: 29038249 DOI: 10.4049/jimmunol.1700840] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
Activation of immunomodulatory pathways in response to invasive fungi can impair clearance and promote persistent infections. The programmed cell death protein-1 (PD-1) signaling pathway inhibits immune effector responses against tumors, and immune checkpoint inhibitors that block this pathway are being increasingly used as cancer therapy. The objective of this study was to investigate whether this pathway contributes to persistent fungal infection and to determine whether anti-PD-1 Ab treatment improves fungal clearance. Studies were performed using C57BL/6 mice infected with a moderately virulent strain of Cryptococcus neoformans (52D), which resulted in prolonged elevations in fungal burden and histopathologic evidence of chronic lung inflammation. Persistent infection was associated with increased and sustained expression of PD-1 on lung lymphocytes, including a mixed population of CD4+ T cells. In parallel, expression of the PD-1 ligands, PD-1 ligands 1 and 2, was similarly upregulated on specific subsets of resident and recruited lung dendritic cells and macrophages. Treatment of persistently infected mice for 4 wk by repetitive administration of neutralizing anti-PD-1 Ab significantly improved pulmonary fungal clearance. Treatment was well tolerated without evidence of morbidity. Immunophenotyping revealed that anti-PD-1 Ab treatment did not alter immune effector cell numbers or myeloid cell activation. Treatment did reduce gene expression of IL-5 and IL-10 by lung leukocytes and promoted sustained upregulation of OX40 by Th1 and Th17 cells. Collectively, this study demonstrates that PD-1 signaling promotes persistent cryptococcal lung infection and identifies this pathway as a potential target for novel immune-based treatments of chronic fungal disease.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103
| | - Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, University of Michigan Health System, Ann Arbor, MI 48103.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48103; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48103; and.,Pulmonary Section, Medical Service, University of Michigan Health System, Ann Arbor, MI 48103
| |
Collapse
|
27
|
Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3548-3557. [PMID: 28298522 DOI: 10.4049/jimmunol.1700057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The scavenger receptor macrophage receptor with collagenous structure (MARCO) promotes protective innate immunity against bacterial and parasitic infections; however, its role in host immunity against fungal pathogens, including the major human opportunistic fungal pathogen Cryptococcus neoformans, remains unknown. Using a mouse model of C. neoformans infection, we demonstrated that MARCO deficiency leads to impaired fungal control during the afferent phase of cryptococcal infection. Diminished fungal containment in MARCO-/- mice was accompanied by impaired recruitment of Ly6Chigh monocytes and monocyte-derived dendritic cells (moDC) and lower moDC costimulatory maturation. The reduced recruitment and activation of mononuclear phagocytes in MARCO-/- mice was linked to diminished early expression of IFN-γ along with profound suppression of CCL2 and CCL7 chemokines, providing evidence for roles of MARCO in activation of the CCR2 axis during C. neoformans infection. Lastly, we found that MARCO was involved in C. neoformans phagocytosis by resident pulmonary macrophages and DC. We conclude that MARCO facilitates early interactions between C. neoformans and lung-resident cells and promotes the production of CCR2 ligands. In turn, this contributes to a more robust recruitment and activation of moDC that opposes rapid fungal expansion during the afferent phase of cryptococcal infection.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Adam Flaczyk
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Zhenzong Fa
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Antoni N Malachowski
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Daphne Cheng
- Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Pulmonary Section, Medical Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and
| |
Collapse
|
28
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Li XZ, Zhang SN, Lu F, Liu SM. Microarray Expression Analysis for the Paradoxical Roles of Acanthopanax senticosus Harms in Treating α-Synucleinopathies. Phytother Res 2015; 30:243-52. [PMID: 26612828 DOI: 10.1002/ptr.5522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 01/04/2023]
Abstract
α-Synuclein is a key player in the pathogenesis of neurodegenerative disorders with Lewy bodies. Our previous studies have also showed that Acanthopanax senticosus harms (AS) could significantly suppress α-synuclein overexpression and toxicity. Identifying the RNAs related to α-synucleinopathies may facilitate understanding the pathogenesis of the diseases and the safe application of AS in the clinic. Microarray expression profiling of long non-coding RNAs (lncRNAs) and mRNAs was undertaken in control non-transgenic and human α-synuclein transgenic mice. The effects of AS on central nervous system (CNS) in pathology and physiology were investigated based on the lncRNA/mRNA targets analysis. In total, 341 lncRNAs and 279 mRNAs were differentially expressed by α-synuclein stimulus, among which 29 lncRNAs and 25 mRNAs were involved in the anti-α-synucleinopathies mechanism of AS. However, the levels of 19/29 lncRNAs and 12/25 mRNAs in AS group were similar to those in α-synuclein group, which may cause potential neurotoxicity analogous to α-synuclein. This study demonstrated that some of lncRNAs/mRNAs were involved in α-synuclein related pathophysiology, and AS produced the bidirectional effects on CNS under pathological and physiological conditions.
Collapse
Affiliation(s)
- Xu-zhao Li
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Pharmacy, GuiYang College of Traditional Chinese Medicine, GuiYang, 550025, China
| | - Shuai-nan Zhang
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fang Lu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shu-min Liu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
30
|
Schulze B, Piehler D, Eschke M, von Buttlar H, Köhler G, Sparwasser T, Alber G. CD4(+) FoxP3(+) regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection. Eur J Immunol 2014; 44:3596-604. [PMID: 25187063 DOI: 10.1002/eji.201444963] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/11/2022]
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lung inflammation and fatal meningitis in immunocompromised patients. Regulatory T (Treg) cells play an important role in controlling immunity and homeostasis. However, their functional role during fungal infection is largely unknown. In this study, we investigated the role of Treg cells during experimental murine pulmonary C. neoformans infection. We show that the number of CD4(+) FoxP3(+) Treg cells in the lung increases significantly within the first 4 weeks after intranasal infection of BALB/c wild-type mice. To define the function of Treg cells we used DEREG mice allowing selective depletion of CD4(+) FoxP3(+) Treg cells by application of diphtheria toxin. In Treg cell-depleted mice, stronger pulmonary allergic inflammation with enhanced mucus production and pronounced eosinophilia, increased IgE production, and elevated fungal lung burden were found. This was accompanied by higher frequencies of GATA-3(+) T helper (Th) 2 cells with elevated capacity to produce interleukin (IL)-4, IL-5, and IL-13. In contrast, only a mild increase in the Th1-associated immune response unrelated to the fungal infection was observed. In conclusion, the data demonstrate that during fungal infection pulmonary Treg cells are induced and preferentially suppress Th2 cells thereby mediating enhanced fungal control.
Collapse
Affiliation(s)
- Bianca Schulze
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA, Osterholzer JJ. Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:4107-16. [PMID: 25225664 DOI: 10.4049/jimmunol.1400650] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.
Collapse
Affiliation(s)
- Benjamin J Murdock
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Seagal Teitz-Tennenbaum
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Gwo-Hsiao Chen
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Anthony J Dils
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Antoni N Malachowski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Michal A Olszewski
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Liu TB, Subbian S, Pan W, Eugenin E, Xie J, Xue C. Cryptococcus inositol utilization modulates the host protective immune response during brain infection. Cell Commun Signal 2014; 12:51. [PMID: 25201772 PMCID: PMC4172957 DOI: 10.1186/s12964-014-0051-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptococcus neoformans is the most common cause of fungal meningitis among individuals with HIV/AIDS, which is uniformly fatal without proper treatment. The underlying mechanism of disease development in the brain that leads to cryptococcal meningoencephalitis remains incompletely understood. We have previously demonstrated that inositol transporters (ITR) are required for Cryptococcus virulence. The itr1aΔ itr3cΔ double mutant of C. neoformans was attenuated for virulence in a murine model of intra-cerebral infection; demonstrating that Itr1a and Itr3c are required for full virulence during brain infection, despite a similar growth rate between the mutant and wild type strains in the infected brain. RESULTS To understand the immune pathology associated with infection by the itr1aΔ itr3cΔ double mutant, we investigated the molecular correlates of host immune response during mouse brain infection. We used genome-wide transcriptome shotgun sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) methods to examine the host gene expression profile in the infected brain. Our results show that compared to the wild type, infection of mouse brains by the mutant leads to significant activation of cellular networks/pathways associated with host protective immunity. Most of the significantly differentially expressed genes (SDEG) are part of immune cell networks such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) regulon, indicating that infection by the mutant mounts a stronger host immune response compared to the wild type. Interestingly, a significant reduction in glucuronoxylomannan (GXM) secretion was observed in the itr1aΔ itr3cΔ mutant cells, indicating that inositol utilization pathways play a role in capsule production. CONCLUSIONS Since capsule has been shown to impact the host response during Cryptococcus-host interactions, our results suggest that the reduced GXM production may contribute to the increased immune activation in the mutant-infected animals.
Collapse
|
33
|
Mizoguchi Y, Tsumura M, Okada S, Hirata O, Minegishi S, Imai K, Hyakuna N, Muramatsu H, Kojima S, Ozaki Y, Imai T, Takeda S, Okazaki T, Ito T, Yasunaga S, Takihara Y, Bryant VL, Kong XF, Cypowyj S, Boisson-Dupuis S, Puel A, Casanova JL, Morio T, Kobayashi M. Simple diagnosis of STAT1 gain-of-function alleles in patients with chronic mucocutaneous candidiasis. J Leukoc Biol 2013; 95:667-76. [PMID: 24343863 DOI: 10.1189/jlb.0513250] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CMCD is a rare congenital disorder characterized by persistent or recurrent skin, nail, and mucosal membrane infections caused by Candida albicans. Heterozygous GOF STAT1 mutations have been shown to confer AD CMCD as a result of impaired dephosphorylation of STAT1. We aimed to identify and characterize STAT1 mutations in CMCD patients and to develop a simple diagnostic assay of CMCD. Genetic analysis of STAT1 was performed in patients and their relatives. The mutations identified were characterized by immunoblot and reporter assay using transient gene expression experiments. Patients' leukocytes are investigated by flow cytometry and immunoblot. Six GOF mutations were identified, three of which are reported for the first time, that affect the CCD and DBD of STAT1 in two sporadic and four multiplex cases in 10 CMCD patients from Japan. Two of the 10 patients presented with clinical symptoms atypical to CMCD, including other fungal and viral infections, and three patients developed bronchiectasis. Immunoblot analyses of patients' leukocytes showed abnormally high levels of pSTAT1 following IFN-γ stimulation. Based on this finding, we performed a flow cytometry-based functional analysis of STAT1 GOF alleles using IFN-γ stimulation and the tyrosine kinase inhibitor, staurosporine. The higher levels of pSTAT1 observed in primary CD14(+) cells from patients compared with control cells persisted and were amplified by the presence of staurosporine. We developed a flow cytometry-based STAT1 functional screening method that would greatly facilitate the diagnosis of CMCD patients with GOF STAT1 mutations.
Collapse
Affiliation(s)
- Yoko Mizoguchi
- 2.Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun 2013; 82:937-48. [PMID: 24324191 DOI: 10.1128/iai.01477-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of C57BL/6 mice with the moderately virulent Cryptococcus neoformans strain 52D models the complex adaptive immune response observed in HIV-negative patients with persistent fungal lung infections. In this model, Th1 and Th2 responses evolve over time, yet the contribution of interleukin-17A (IL-17A) to antifungal host defense is unknown. In this study, we show that fungal lung infection promoted an increase in Th17 T cells that persisted to 8 weeks postinfection. Our comparison of fungal lung infection in wild-type mice and IL-17A-deficient mice (IL-17A(-/-) mice; C57BL/6 genetic background) demonstrated that late fungal clearance was impaired in the absence of IL-17A. This finding was associated with reduced intracellular containment of the organism within lung macrophages and deficits in the accumulation of total lung leukocytes, including specific reductions in CD11c+ CD11b+ myeloid cells (dendritic cells and exudate macrophages), B cells, and CD8+ T cells, and a nonsignificant trend in the reduction of lung neutrophils. Although IL-17A did not alter the total number of CD4 T cells, decreases in the total number of CD4 T cells and CD8 T cells expressing gamma interferon (IFN-γ) were observed in IL-17A(-/-) mice. Lastly, expression of major histocompatibility complex class II (MHC-II) and the costimulatory molecules CD80 and CD86 on CD11c+ CD11b+ myeloid cells was diminished in IL-17A(-/-) mice. Collectively, these data indicate that IL-17A enhances host defenses against a moderately virulent strain of C. neoformans through effects on leukocyte recruitment, IFN-γ production by CD4 and CD8 T cells, and the activation of lung myeloid cells.
Collapse
|
35
|
Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:219-38. [PMID: 24050625 DOI: 10.1146/annurev-pathol-012513-104653] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461;
| | | | | |
Collapse
|
36
|
Abstract
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15201, USA
| | | |
Collapse
|
37
|
B cell-deficient mice display enhanced susceptibility to Paracoccidioides brasiliensis Infection. Mycopathologia 2013; 176:1-10. [PMID: 23765323 DOI: 10.1007/s11046-013-9671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022]
Abstract
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the thermally dimorphic fungus Paracoccidioides brasiliensis. T helper 1 (Th1)-mediated immunity is primarily responsible for acquired resistance during P. brasiliensis infection. On the contrary, the susceptibility is associated with occurrence of type-2 immunity (Th2), which is characterized by IL-4 release, B cell activation, and production of antibodies. Although antibodies are frequently associated with severe PCM, it is not clear whether they contribute to susceptibility or merely constitute a marker of infection stage. Here, we assessed the function of B cells during experimental P. brasiliensis infection in mice, and our results showed that B cell-knockout (B(KO)) mice are more susceptible than their wild-type littermate controls (C57BL/6, WT). The B(KO) mice showed higher mortality rate, increased number of colony-forming units in the lungs, and larger granulomas than WT mice. In the absence of B cells, we observed high levels of IL-10, whereas IFN-γ, TNF-α, and IL-4 levels were similar between both groups. Finally, we showed that transference of WT immune serum to B(KO) mice resulted in diminished infiltration of inflammatory cells and better organization of the pulmonary granulomas. Taken together, these data suggest that B cells are effectively involved in the control of P. brasiliensis growth and organization of the granulomatous lesions observed during the experimental PCM.
Collapse
|
38
|
Chang CC, Lim A, Omarjee S, Levitz SM, Gosnell BI, Spelman T, Elliott JH, Carr WH, Moosa MYS, Ndung'u T, Lewin SR, French MA. Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-γ responses before antiretroviral therapy but not higher T-cell responses during therapy. J Infect Dis 2013; 208:898-906. [PMID: 23766525 DOI: 10.1093/infdis/jit271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cryptococcosis-associated immune reconstitution inflammatory syndrome (C-IRIS) may be driven by aberrant T-cell responses against cryptococci. We investigated this in human immunodeficiency virus (HIV)-infected patients with treated cryptococcal meningitis (CM) commencing combination antiretroviral therapy (cART). METHODS Mitogen- and cryptococcal mannoprotein (CMP)-activated (CD25+CD134+) CD4+ T cells and -induced production of interferon-gamma (IFN-γ), IL-10, and CXCL10 were assessed in whole blood cultures in a prospective study of 106 HIV-CM coinfected patients. RESULTS Patients with paradoxical C-IRIS (n = 27), compared with patients with no neurological deterioration (no ND; n = 63), had lower CMP-induced IFN-γ production in 24-hour cultures pre-cART and 4 weeks post-cART (P = .0437 and .0257, respectively) and lower CMP-activated CD4+ T-cell counts pre-cART (P = .0178). Patients surviving to 24 weeks had higher proportions of mitogen-activated CD4+ T cells and higher CMP-induced CXCL10 and IL-10 production in 24-hour cultures pre-cART than patients not surviving (P = .0053, .0436 and .0319, respectively). C-IRIS was not associated with higher CMP-specific T-cell responses before or during cART. CONCLUSION Greater preservation of T-cell function and higher CMP-induced IL-10 and CXCL10 production before cART are associated with improved survival while on cART. Lower CMP-induced IFN-γ production pre-cART, but not higher CMP-specific T-cell responses after cART, were risk factors for C-IRIS.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL. Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4060-8. [PMID: 22984078 DOI: 10.4049/jimmunol.1103455] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental pulmonary Cryptococcus neoformans infection in BALB/c mice is associated with polarized Th2-type cytokine production, alternative macrophage activation, and severe bronchopneumonia. In contrast, pulmonary infection with a C. neoformans strain that secretes IFN-γ, H99γ, elicits Th1-type cytokine production and classical macrophage activation. Additionally, mice infected with H99γ resolve the acute infection and are subsequently protected against challenge with wild-type C. neoformans. The present study characterizes macrophage activation during the protective response to wild-type C. neoformans in mice previously immunized with H99γ. We observed increased pulmonary Th1-type cytokine production in lung homogenates and classical macrophage activation as evidenced by enhanced expression of inducible NO synthase in the lungs of H99γ-immunized mice compared with mice given a nonprotective immunization with heat-killed C. neoformans (HKCn). Furthermore, macrophages isolated from H99γ-immunized mice on day 7 postchallenge and cultured in vitro were fungistatic against C. neoformans, whereas cryptococcal growth was uncontrolled within macrophages from HKCn-immunized mice. Th2-type cytokine production and induction of alternatively activated macrophages were also observed in lungs of HKCn-immunized mice during rechallenge. Gene expression arrays showed that classical macrophage activation during challenge infection in H99γ-immunized mice was associated with induction of the transcription factor STAT1 and its downstream targets IFN regulatory factor-1, suppressor of cytokine signaling-1, CXCL9, and CXCL10. These studies demonstrate that protective responses to C. neoformans challenge in immunized mice include classical macrophage activation and enhanced macrophage fungistasis of C. neoformans yeasts. Finally, the classical activation phenotype of protective anticryptococcal macrophages is likely mediated via STAT1 signal transduction pathways.
Collapse
Affiliation(s)
- Sarah E Hardison
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The interaction of pathogenic Cryptococcus species with their various hosts is somewhat unique compared to other fungal pathogens such as Aspergillus fumigatus and Candida albicans. Cryptococcus shares an intimate association with host immune cells, leading to enhanced intracellular growth. Furthermore, unlike most other fungal pathogens, the signs and symptoms of cryptococcal disease are typically self-inflicted by the host during the host's attempt to clear this invader from sensitive organ systems such as the central nervous system. In this review, we will summarize the story of host-Cryptococcus interactions to date and explore strategies to exploit the current knowledge for treatment of cryptococcal infections.
Collapse
Affiliation(s)
- Michael S Price
- Department of Medicine, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 2011; 58:100-6. [PMID: 22133343 DOI: 10.1016/j.cyto.2011.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 12/11/2022]
Abstract
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 So Orange Avenue, MSB-F601, Newark, NJ 07101, USA.
| | | |
Collapse
|
42
|
Piehler D, Stenzel W, Grahnert A, Held J, Richter L, Köhler G, Richter T, Eschke M, Alber G, Müller U. Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011. [PMID: 21699881 DOI: 10.1016/j.ajpath2011.04025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Susceptibility to infection with Cryptococcus neoformans is tightly determined by production of IL-4. In this study, we investigated the time course of IL-4 production and its innate cellular source in mice infected intranasally with C. neoformans. We show that pulmonary IL-4 production starts surprisingly late after 6 weeks of infection. Interestingly, in the lungs of infected mice, pulmonary T helper (Th) cells and eosinophils produce significant amounts of IL-4. In eosinophil-deficient ΔdblGATA mice, IL-33 receptor-expressing Th2s are significantly reduced, albeit not absent, whereas protective Th1 and Th17 responses are enhanced. In addition, recruitment of pulmonary inflammatory cells during infection with C. neoformans is reduced in the absence of eosinophils. These data expand previous findings emphasizing an exclusively destructive effector function by eosinophilic granulocytes. Moreover, in ΔdblGATA mice, fungal control is slightly enhanced in the lung; however, dissemination of Cryptococcus is not prevented. Therefore, eosinophils play an immunoregulatory role that contributes to Th2-dependent susceptibility in allergic inflammation during bronchopulmonary mycosis.
Collapse
Affiliation(s)
- Daniel Piehler
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Piehler D, Stenzel W, Grahnert A, Held J, Richter L, Köhler G, Richter T, Eschke M, Alber G, Müller U. Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:733-44. [PMID: 21699881 DOI: 10.1016/j.ajpath.2011.04.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/14/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
Abstract
Susceptibility to infection with Cryptococcus neoformans is tightly determined by production of IL-4. In this study, we investigated the time course of IL-4 production and its innate cellular source in mice infected intranasally with C. neoformans. We show that pulmonary IL-4 production starts surprisingly late after 6 weeks of infection. Interestingly, in the lungs of infected mice, pulmonary T helper (Th) cells and eosinophils produce significant amounts of IL-4. In eosinophil-deficient ΔdblGATA mice, IL-33 receptor-expressing Th2s are significantly reduced, albeit not absent, whereas protective Th1 and Th17 responses are enhanced. In addition, recruitment of pulmonary inflammatory cells during infection with C. neoformans is reduced in the absence of eosinophils. These data expand previous findings emphasizing an exclusively destructive effector function by eosinophilic granulocytes. Moreover, in ΔdblGATA mice, fungal control is slightly enhanced in the lung; however, dissemination of Cryptococcus is not prevented. Therefore, eosinophils play an immunoregulatory role that contributes to Th2-dependent susceptibility in allergic inflammation during bronchopulmonary mycosis.
Collapse
Affiliation(s)
- Daniel Piehler
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:198-211. [PMID: 21224057 DOI: 10.1016/j.ajpath.2010.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens.
Collapse
Affiliation(s)
- Frank L. van de Veerdonk
- Department of Medicine (463), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA The Netherlands
| | - Mihai G. Netea
- Department of Medicine (463), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA The Netherlands
| |
Collapse
|
46
|
Chen GH, Osterholzer JJ, Choe MY, McDonald RA, Olszewski MA, Huffnagle GB, Toews GB. Dual roles of CD40 on microbial containment and the development of immunopathology in response to persistent fungal infection in the lung. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2459-71. [PMID: 20864680 DOI: 10.2353/ajpath.2010.100141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Persistent pulmonary infection with Cryptococcus neoformans in C57BL/6 mice results in chronic inflammation that is characterized by an injurious Th2 immune response. In this study, we performed a comparative analysis of cryptococcal infection in wild-type versus CD40-deficient mice (in a C57BL/6 genetic background) to define two important roles of CD40 in the modulation of fungal clearance as well as Th2-mediated immunopathology. First, CD40 promoted microanatomic containment of the organism within the lung tissue. This protective effect was associated with: i) a late reduction in fungal burden within the lung; ii) a late accumulation of lung leukocytes, including macrophages, CD4+ T cells, and CD8+ T cells; iii) both early and late production of tumor necrosis factor-α and interferon-γ by lung leukocytes; and iv) early IFN-γ production at the site of T cell priming in the regional lymph nodes. In the absence of CD40, systemic cryptococcal dissemination was increased, and mice died of central nervous system infection. Second, CD40 promoted pathological changes in the airways, including intraluminal mucus production and subepithelial collagen deposition, but did not alter eosinophil recruitment or the alternative activation of lung macrophages. Collectively, these results demonstrate that CD40 helps limit progressive cryptococcal growth in the lung and protects against lethal central nervous system dissemination. CD40 also promotes some, but not all, elements of Th2-mediated immunopathology in response to persistent fungal infection in the lung.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6220 MSRB III, Box 0624, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The generation of an innate immune response is essential for rapid clearance of microbes from the respiratory tract, whereas acquired immunity is required for the generation of cellular immunity necessary for the killing of certain intracellular pathogens and the development of immunological memory. Cytokines play an integral role in host defense by serving as leukocyte chemoattractants, leukocyte-activating factors or afferent signals in the induction or regulation of other effector molecules. This review assesses the contribution of cytokine networks to the generation of antimicrobial host defenses in the lung, with an emphasis on cytokines/cytokine networks that are instrumental in innate antibacterial responses, including mucosal immunity, and also introduces networks that instruct the development of adaptive immunity.
Collapse
Affiliation(s)
- Urvashi Bhan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109-0360, USA
| | | | | |
Collapse
|
48
|
Zhang Y, Wang F, Bhan U, Huffnagle GB, Toews GB, Standiford TJ, Olszewski MA. TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:754-65. [PMID: 20581055 DOI: 10.2353/ajpath.2010.091104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To determine whether TLR9 signaling contributes to the development of the adaptive immune response to cryptococcal infection, wild-type (TLR9+/+) and TLR9 knockout (TLR9-/-) BALB/c mice were infected intratracheally with 10(4) C. neoformans 52D. We evaluated 1) organ microbial burdens, 2) pulmonary leukocyte recruitment, 3) pulmonary and systemic cytokine induction, and 4) macrophage activation profiles. TLR9 deletion did not affect pulmonary growth during the innate phase, but profoundly impaired pulmonary clearance during the adaptive phase of the immune response (a 1000-fold difference at week 6). The impaired clearance in TLR9-/- mice was associated with: 1) significantly reduced CD4(+), CD8+ T cell, and CD19+ B cell recruitment into the lungs; 2) defects in Th polarization indicated by altered cytokine responses in the lungs, lymphonodes, and spleen; and 3) diminished macrophage accumulation and altered activation profile, including robust up-regulation of Arg1 and FIZZ1 (indicators of alternative activation) and diminished induction of inducible nitric oxide synthase (an indicator of classical activation). Histological analysis revealed defects in granuloma formation and increased numbers of intracellular yeast residing within macrophages in the lungs of TLR9-/- mice. We conclude that TLR9 signaling plays an important role in the development of robust protective immunity, proper recruitment and function of effector cells (lymphocytes and macrophages), and, ultimately, effective cryptococcal clearance from the infected lungs.
Collapse
Affiliation(s)
- Yanmei Zhang
- Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Guo S, Bao L, Qin ZF, Shi XX. The CFP-10/ESAT-6 complex of Mycobacterium tuberculosis potentiates the activation of murine macrophages involvement of IFN-gamma signaling. Med Microbiol Immunol 2010; 199:129-37. [PMID: 20232079 DOI: 10.1007/s00430-010-0146-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Indexed: 11/28/2022]
Abstract
Secretory antigen of Mycobacterium tuberculosis, culture filtered protein 10(CFP-10) and early secreted antigenic target 6 kDa protein (ESAT-6) are closely correlated with immunogenicity and virulence of Mycobacterium tuberculosis. But the mechanism of its immunogenicity and virulence is still unclear. In this study, we investigated the influence of the CFP-10/ESAT-6 complex on production of IL-12 and nitric oxide (NO) produced by the ANA-1 macrophage cell line. Preincubation with the complex in a time-dependent manner significantly enhanced production of NO and IL-12 released from ANA-1 cells following IFN-gamma stimulation. In addition, the complex up-modulated expression level of IFN-gammaR1 on surface of the macrophages. Furthermore, the effect of the complex on production of IL-12 and NO in ANA-1 cells was suppressed by AG490, a selective inhibitor of JAK/STAT pathway. These data suggest that in the presence of IFN-gamma, CFP-10/ESAT-6 complex represents a new immunogenicity and protective factor that may be, at least partly, due to up modulation of IFN-gammaR1 expression and activation of JAK/STAT pathway.
Collapse
Affiliation(s)
- Si Guo
- Laboratory of West China Centre of Medical Sciences, Sichuan University, 610041, Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Goldman DL, Huffnagle GB. Potential contribution of fungal infection and colonization to the development of allergy. Med Mycol 2010; 47:445-56. [PMID: 19384753 DOI: 10.1080/13693780802641904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fungi have long been recognized as an important source of allergens in patients with atopic disease. In this review, we explore the hypothesis that fungal exposures resulting in colonization or infection directly influence the tendency of an individual to develop allergic disease. According to this hypothesis, fungal exposures especially those early in life may influence the manner in which the immune response handles subsequent responses to antigen exposures. Studies detailing this potential connection between fungi have already provided important insights into the immunology of fungal-human interactions and offer the potential to provide new approaches and targets for the therapy of allergic disease. The first half of this review summarizes the data concerning fungal infections and asthma, including possible connections between fungal infections and urban asthma. The second half explores the potential role of the fungal gastrointestinal microbiota in promoting allergic inflammation.
Collapse
Affiliation(s)
- David L Goldman
- Department of Pediatrics, Childrens' Hospital at Montefiore, Albert Einstein College of Medicine, NY 10461, USA.
| | | |
Collapse
|