1
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
D'Onofrio F, Butler F, Krasteva I, Schirone M, Iannetti L, Torresi M, Di Pancrazio C, Perletta F, Maggetti M, Marcacci M, Ancora M, Di Domenico M, Di Lollo V, Cammà C, Tittarelli M, Sacchini F, Pomilio F, D'Alterio N, Luciani M. Integrative analysis of transcriptomic and immunoproteomic data reveals stress response mechanisms in Listeria monocytogenes. Heliyon 2024; 10:e39832. [PMID: 39524754 PMCID: PMC11550065 DOI: 10.1016/j.heliyon.2024.e39832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Listeria monocytogenes is a significant concern in the food industry due to its association with outbreaks of listeriosis, particularly affecting vulnerable populations. High-throughput technologies such as RNA sequencing (RNA-seq) and proteomics offer valuable insights into the molecular responses of L. monocytogenes to stress environments. In this study, a combined transcriptomic and immunoproteomic approach was applied to explore the stress response mechanisms of the L. monocytogenes strain ST7, which was responsible for an outbreak in central Italy. The bacterium was exposed to both optimal conditions and a stress environment representative of pork product matrices (pH 5.5; 7 % NaCl) and thermal abuse prior to consumption (12 °C).Transcriptomic analysis revealed variations in gene expression related to pathogenesis, stress responses, and virulence factors under different environmental conditions. Transcriptomic analysis of Listeria involves studying the complete set of RNA transcripts produced by the bacterium under various conditions or during different stages of its lifecycle. It can provide insights into its pathogenicity and virulence mechanisms. Immunoproteomic analysis identified proteins involved in stress response pathways, including oxidoreductases and DNA repair enzymes, uniquely expressed under stress conditions. Furthermore, the study highlighted proteins linked to antibiotic resistance and cell wall biosynthesis. By delineating specific proteins crucial in the stress response pathways, these findings not only deepen our comprehension of L. monocytogenes biology but also pave the way for designing more targeted mitigation strategies to safeguard food safety and public health effectively.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Francis Butler
- Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Fabrizia Perletta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Marta Maggetti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Campo Boario, 64100, Teramo, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
3
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
5
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Bombelli A, Araya-Cloutier C, Boeren S, Vincken JP, Abee T, den Besten HMW. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res Int 2024; 175:113687. [PMID: 38128979 DOI: 10.1016/j.foodres.2023.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Lee UH, Park SJ, Ju SA, Lee SC, Kim BS, Ahn B, Yi J, Park J, Won YW, Han IS, Lee BJ, Cho WJ, Park JW. DRG2 in macrophages is crucial for initial inflammatory response and protection against Listeria monocytogenes infection. Clin Immunol 2023; 257:109819. [PMID: 37918467 DOI: 10.1016/j.clim.2023.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Innate immune response is critical for the control of Listeria monocytogenes infection. Here, we identified developmentally regulated GTP-binding protein 2 (DRG2) in macrophages as a major regulator of the innate immune response against L. monocytogenes infection. Both whole-body DRG2 knockout (KO) mice and macrophage-specific DRG2 KO mice had low levels of IL-6 during early infection and increased susceptibility to L. monocytogenes infection. Following an initial impaired inflammatory response of macrophages upon i.p. L. monocytogenes infection, DRG2-/- mice showed delayed recruitment of neutrophils and monocytes into the peritoneal cavity, which led to elevated bacterial burden, inflammatory cytokine production at a late infection time point, and liver micro-abscesses. DRG2 deficiency decreased the transcriptional activity of NF-κB and impaired the inflammatory response of both bone marrow-derived and peritoneal macrophages upon L. monocytogenes stimulation. Our findings reveal that DRG2 in macrophages is critical for the initial inflammatory response and protection against L. monocytogenes infection.
Collapse
Affiliation(s)
- Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sang Jin Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Seong A Ju
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Sang Chul Lee
- CRONEX Co., Ltd., Hwaseong-si, Gyeonggi-do 18333, Republic of Korea
| | - Byung Sam Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea; RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Republic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, TX 76203-5017, USA; RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Republic of Korea
| | - In Seob Han
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea.
| |
Collapse
|
9
|
Elfmann C, Zhu B, Stülke J, Halbedel S. ListiWiki: A database for the foodborne pathogen Listeria monocytogenes. Int J Med Microbiol 2023; 313:151591. [PMID: 38043216 DOI: 10.1016/j.ijmm.2023.151591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that regularly causes outbreaks of systemic infectious diseases. The bacterium maintains a facultative intracellular lifestyle; it thrives under a variety of environmental conditions and is able to infect human host cells. L. monocytogenes is genetically tractable and therefore has become an attractive model system to study the mechanisms employed by facultative intracellular bacteria to invade eukaryotic cells and to replicate in their cytoplasm. Besides its importance for basic research, L. monocytogenes also serves as a paradigmatic pathogen in genomic epidemiology, where the relative stability of its genome facilitates successful outbreak detection and elucidation of transmission chains in genomic pathogen surveillance systems. In both terms, it is necessary to keep the annotation of the L. monocytogenes genome up to date. Therefore, we have created the database ListiWiki (http://listiwiki.uni-goettingen.de/) which stores comprehensive information on the widely used L. monocytogenes reference strain EDG-e. ListiWiki is designed to collect information on genes, proteins and RNAs and their relevant functional characteristics, but also further information such as mutant phenotypes, available biological material, and publications. In its present form, ListiWiki combines the most recent annotation of the EDG-e genome with published data on gene essentiality, gene expression and subcellular protein localization. ListiWiki also predicts protein-protein interactions networks based on protein homology to Bacillus subtilis proteins, for which detailed interaction maps have been compiled in the sibling database SubtiWiki. Furthermore, crystallographic information of proteins is made accessible through integration of Protein Structure Database codes and AlphaFold structure predictions. ListiWiki is an easy-to-use web interface that has been developed with a focus on an intuitive access to all information. Use of ListiWiki is free of charge and its content can be edited by all members of the scientific community after registration. In our labs, ListiWiki has already become an important and easy to use tool to quickly access genome annotation details that we can keep updated with advancing knowledge. It also might be useful to promote the comprehensive understanding of the physiology and virulence of an important human pathogen.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany.
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany; Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
10
|
D'Onofrio F, Schirone M, Krasteva I, Tittarelli M, Iannetti L, Pomilio F, Torresi M, Paparella A, D'Alterio N, Luciani M. A comprehensive investigation of protein expression profiles in L. monocytogenes exposed to thermal abuse, mild acid, and salt stress conditions. Front Microbiol 2023; 14:1271787. [PMID: 37876777 PMCID: PMC10591339 DOI: 10.3389/fmicb.2023.1271787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Preventing L. monocytogenes infection is crucial for food safety, considering its widespread presence in the environment and its association with contaminated RTE foods. The pathogen's ability to persist under adverse conditions, for example, in food processing facilities, is linked to virulence and resistance mechanisms, including biofilm formation. In this study, the protein expression patterns of two L. monocytogenes 1/2a strains, grown under environmental stressors (mild acidic pH, thermal abuse, and high concentration of NaCl), were investigated. Protein identification and prediction were performed by nLC-ESI-MS/MS and nine different bioinformatic software programs, respectively. Gene enrichment analysis was carried out by STRING v11.05. A total of 1,215 proteins were identified, of which 335 were non-cytosolic proteins and 265 were immunogenic proteins. Proteomic analysis revealed differences in protein expression between L. monocytogenes strains in stressful conditions. The two strains exhibited unique protein expression profiles linked to stress response, virulence, and pathogenesis. Studying the proteomic profiles of such microorganisms provides information about adaptation and potential treatments, highlighting their genetic diversity and demonstrating the utility of bioinformatics and proteomics for a broader analysis of pathogens.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
11
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Fernández-Gómez P, Cobo-Díaz JF, Oliveira M, González-Raurich M, Alvarez-Ordóñez A, Prieto M, Walsh JL, Sivertsvik M, Noriega-Fernández E, López M. Susceptibility and transcriptomic response to plasma-activated water of Listeria monocytogenes planktonic and sessile cells. Food Microbiol 2023; 113:104252. [PMID: 37098419 DOI: 10.1016/j.fm.2023.104252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Plasma-Activated Water (PAW) was generated from tap water using a surface dielectric barrier discharge at different discharge power (26 and 36 W) and activation time (5 and 30 min). The inactivation of a three-strain Listeria monocytogenes cocktail in planktonic and biofilm state was evaluated. PAW generated at 36 W-30 min showed the lowest pH and the highest hydrogen peroxide, nitrates, nitrites contents and effectiveness against cells on planktonic state, resulting in 4.6 log reductions after a 15-min treatment. Although the antimicrobial activity in biofilms formed on stainless steel and on polystyrene was lower, increasing the exposure time to 30 min allowed an inactivation >4.5 log cycles. The mechanisms of action of PAW were investigated using chemical solutions that mimic its physico-chemical characteristics and also RNA-seq analysis. The main transcriptomic changes affected carbon metabolism, virulence and general stress response genes, with several overexpressed genes belonging to the cobalamin-dependent gene cluster.
Collapse
|
13
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
14
|
Contreras Á, Díaz G, Mendoza SN, Canto M, Agosín E. Metabolic behavior for a mutant Oenococcus oeni strain with high resistance to ethanol to survive under oenological multi-stress conditions. Front Microbiol 2023; 14:1100501. [PMID: 36970676 PMCID: PMC10033693 DOI: 10.3389/fmicb.2023.1100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Malolactic fermentation (MLF) positively influences the quality of the wine, and it occurs as a result of a lactic acid bacteria's metabolism, mainly of the Oenococcus oeni species. However, delays and halting of MLF are frequent problems in the wine industry. This is mainly because O. oeni's development is inhibited by different kinds of stress. Even though the sequencing of the genome of the PSU-1 strain of O. oeni, as well as other strains, has made it possible to identify genes involved in the resistance to some types of stress, all of the factors that could be involved are still unknown. With the aim of contributing to this knowledge, the random mutagenesis technique was used in this study as a strategy for genetic improvement of strains of the O. oeni species. The technique proved to be capable of generating a different and improved strain when compared to the PSU-1 strain (the parent from which it descends). Then, we evaluated the metabolic behavior of both strains in three different wines. We used synthetic MaxOeno wine (pH 3.5; 15% v/v ethanol), red wine (Cabernet Sauvignon), and white wine (Chardonnay). Furthermore, we compared the transcriptome of both strains, grown in MaxOeno synthetic wine. The specific growth rate of the E1 strain was on average 39% higher in comparison to the PSU-1 strain. Interestingly, E1 strain showed an overexpression of the OEOE_1794 gene, which encodes a UspA-like protein, which has been described as promoting growth. We observed that the E1 strain was able to convert, on average, 34% more malic acid into lactate than the PSU-1 strain, regardless of the wine being used. On the other hand, the E1 strain showed a flux rate of fructose-6-phosphate production that was 86% higher than the mannitol production rate, and the internal flux rates increase in the direction of pyruvate production. This coincides with the higher number of OEOE_1708 gene transcripts observed in the E1 strain grown in MaxOeno. This gene encodes for an enzyme fructokinase (EC 2.7.1.4) involved in the transformation of fructose to fructose-6-phosphate.
Collapse
Affiliation(s)
- Ángela Contreras
- Applied Microbiology Laboratory, Center for Biotechnology of Natural Resources, Faculty of Agricultural and Forestry Sciences, School of Biotechnology, Universidad Católica del Maule, Talca, Chile
- *Correspondence: Angela Contreras,
| | - Gabriela Díaz
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N. Mendoza
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mauricio Canto
- Applied Microbiology Laboratory, Center for Biotechnology of Natural Resources, Faculty of Agricultural and Forestry Sciences, School of Biotechnology, Universidad Católica del Maule, Talca, Chile
| | - Eduardo Agosín
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Eduardo Agosin,
| |
Collapse
|
15
|
Cahoon LA, Alejandro‐Navarreto X, Gururaja AN, Light SH, Alonzo F, Anderson WF, Freitag NE. Listeria monocytogenes two component system PieRS regulates secretion chaperones PrsA1 and PrsA2 and enhances bacterial translocation across the intestine. Mol Microbiol 2022; 118:278-293. [PMID: 35943959 PMCID: PMC9545042 DOI: 10.1111/mmi.14967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread environmental Gram-positive bacterium that can transition into a pathogen following ingestion by a susceptible host. To cross host barriers and establish infection, Lm is dependent upon the regulated secretion and activity of many proteins including PrsA2, a peptidyl-prolyl cis-trans isomerase with foldase activity. PrsA2 contributes to the stability and activity of a number of secreted virulence factors that are required for Lm invasion, replication, and cell-to-cell spread within the infected host. In contrast, a second related secretion chaperone, PrsA1, has thus far no identified contributions to Lm pathogenesis. Here we describe the characterization of a two-component signal transduction system PieRS that regulates the expression of a regulon that includes the secretion chaperones PrsA1 and PrsA2. PieRS regulated gene products are required for bacterial resistance to ethanol exposure and are important for bacterial survival during transit through the gastrointestinal tract. PrsA1 was also found to make a unique contribution to Lm survival in the GI tract, revealing for the first time a non-overlapping requirement for both secretion chaperones PrsA1 and PrsA2 during the process of intra-gastric infection.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Avinash N. Gururaja
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sam H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Francis Alonzo
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Wayne F. Anderson
- Center for Genomics and Infectious Diseases, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Nancy E. Freitag
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
16
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
17
|
Rukit J, Boonmee A, Kijpornyongpan T, Tulsook K, Baranyi J, Chaturongakul S. Roles of Alternative Sigma Factors in Invasion and Growth Characteristics of Listeria monocytogenes 10403S Into Human Epithelial Colorectal Adenocarcinoma Caco-2 Cell. Front Microbiol 2022; 13:901484. [PMID: 35910626 PMCID: PMC9329085 DOI: 10.3389/fmicb.2022.901484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterium with a broad host range. With its housekeeping sigma factor and four alternative ones (namely SigB, SigC, SigH, and SigL), L. monocytogenes can express genes in response to changing environments. However, the roles of these sigma factors in intracellular survival are still unclear. The objectives of this study were to characterize the role of each alternative σ factor on L. monocytogenes invasion and growth inside human epithelial colorectal adenocarcinoma Caco-2 cells. We used L. monocytogenes 10403S wild type and its 15 alternative sigma factor deletion mutants at a multiplicity of infection of 100 and 1 in invasion and intracellular growth assays in the Caco-2 cells, respectively. At 1.5, 2, 4, 6, 8, 10, and 12 h post-infection, Caco-2 cells were lysed, and intracellular L. monocytogenes were enumerated on brain-heart infusion agar. Colony-forming and growth rates were compared among strains. The results from phenotypic characterization confirmed that (i) SigB is the key factor for L. monocytogenes invasion and (ii) having only SigA (ΔsigBCHL strain) is sufficient to invade and multiply in the host cell at similar levels as the wild type. Our previous study suggested the negative role of SigL in bile stress response. In this study, we have shown that additional deletion of the rpoN (or sigL) gene to ΔsigB, ΔsigC, or ΔsigH could restore the impaired invasion efficiencies of the single mutant, suggesting the absence of SigL could enhance host invasion. Therefore, we further investigated the role of SigL during extracellular and intracellular life cycles. Using RNA sequencing, we identified 118 and 16 SigL-dependent genes during the extracellular and intracellular life cycles, respectively. The sigL gene itself was induced by fivefolds prior to the invasion, and 5.3 folds during Caco-2 infection, further suggesting the role of SigL in intracellular growth.
Collapse
Affiliation(s)
- Junyaluck Rukit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Kan Tulsook
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - József Baranyi
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Soraya Chaturongakul,
| |
Collapse
|
18
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
19
|
Sévellec Y, Ascencio E, Douarre PE, Félix B, Gal L, Garmyn D, Guillier L, Piveteau P, Roussel S. Listeria monocytogenes: Investigation of Fitness in Soil Does Not Support the Relevance of Ecotypes. Front Microbiol 2022; 13:917588. [PMID: 35770178 PMCID: PMC9234652 DOI: 10.3389/fmicb.2022.917588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes the serious foodborne illness listeriosis. Although soil is a primary reservoir and a central habitat for Lm, little information is available on the genetic features underlying the fitness of Lm strains in this complex habitat. The aim of this study was to identify (i) correlations between the strains fitness in soil, their origin and their phylogenetic position (ii) identify genetic markers allowing Lm to survive in the soil. To this end, we assembled a balanced panel of 216 Lm strains isolated from three major ecological compartments (outdoor environment, animal hosts, and food) and from 33 clonal complexes occurring worldwide. The ability of the 216 strains to survive in soil was tested phenotypically. Hierarchical clustering identified three phenotypic groups according to the survival rate (SR): phenotype 1 “poor survivors” (SR < 2%), phenotype 2 “moderate survivors” (2% < SR < 5%) and phenotype 3 “good survivors” (SR > 5%). Survival in soil depended neither on strains’ origin nor on their phylogenetic position. Genome-wide-association studies demonstrated that a greater number of genes specifically associated with a good survival in soil was found in lineage II strains (57 genes) than in lineage I strains (28 genes). Soil fitness was mainly associated with variations in genes (i) coding membrane proteins, transcription regulators, and stress resistance genes in both lineages (ii) coding proteins related to motility and (iii) of the category “phage-related genes.” The cumulative effect of these small genomic variations resulted in significant increase of soil fitness.
Collapse
Affiliation(s)
- Yann Sévellec
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Eliette Ascencio
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Pierre-Emmanuel Douarre
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Laurent Gal
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Dominique Garmyn
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Laurent Guillier
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | | | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- *Correspondence: Sophie Roussel,
| |
Collapse
|
20
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
21
|
Chandra K, Roy Chowdhury A, Chatterjee R, Chakravortty D. GH18 family glycoside hydrolase Chitinase A of Salmonella enhances virulence by facilitating invasion and modulating host immune responses. PLoS Pathog 2022; 18:e1010407. [PMID: 35482710 PMCID: PMC9049553 DOI: 10.1371/journal.ppat.1010407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella. Chitinases and chitin-binding proteins have been implicated in the pathogenesis of several human pathogens associated with the mucosal barrier. Interestingly, chitinases from the major enteric pathogen, Salmonella enterica, were reported to be upregulated during macrophage and epithelial cell infection. Although Salmonella Chitinase ChiA (encoded by STM14_0022) shares sequence similarity with the pathogenic chitinases, its role as a virulence determinant remained obscured. Here we aim to investigate the role of chitinase in the context of Salmonella pathogenesis using cell culture, mouse, and nematode models. We found that Salmonella requires ChiA to remodel the intestinal epithelium and access the host system. In the phagocytes, chitinase-mediated upregulation of nitric oxide (NO) leads to inhibition of MHC-I bound antigen presentation and CD8+ T cell proliferation. Furthermore, the absence of ChiA impairs bacterial adhesion and colonization in vivo. During the systemic phase in the murine host, Salmonella Typhimurium chitinase prevents immune activation and antimicrobial responses. Additionally, in the Caenorhabditis elegans, Salmonella Typhi chitinase promotes bacterial attachment to the intestinal epithelium and enhances pathogen colonization and persistence in the intestine by downregulating the antimicrobial peptides SPP1 and ABF2. In conclusion, our study provides novel insights into the role of Salmonella chitinase as a novel virulence factor.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
22
|
Sriwastva MK, Deng Z, Wang B, Teng Y, Kumar A, Sundaram K, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Merchant ML, Egilmez NK, Zhang H. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep 2022; 23:e53365. [PMID: 34994476 PMCID: PMC8892346 DOI: 10.15252/embr.202153365] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.
Collapse
Affiliation(s)
- Mukesh K Sriwastva
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Bin Deng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Bomei Wang
- Department of Translational OncologyGenentechSan FranciscoCaliforniaUSA
| | - Yun Teng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Anil Kumar
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kumaran Sundaram
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jingyao Mu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Chao Lei
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Gerald W Dryden
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Fangyi Xu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Lifeng Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jun Yan
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Xiang Zhang
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
| | - Juw Won Park
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
- Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleKYUSA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Nejat K Egilmez
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Huang‐Ge Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
| |
Collapse
|
23
|
Inhibitory effects of 3-(methylthio) propyl isothiocyanate in comparison with benzyl isothiocyanate on Listeria monocytogenes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Non-coding RNA regulates phage sensitivity in Listeria monocytogenes. PLoS One 2021; 16:e0260768. [PMID: 34928977 PMCID: PMC8687577 DOI: 10.1371/journal.pone.0260768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have gained increasing attention as their diverse roles in virulence and environmental stress in Listeria monocytogenes have become clearer. The ncRNA rliB is an atypical member of the CRISPR family, conserved at the same genomic locus in all analyzed L. monocytogenes genomes and also in other Listeria species. In this study, rliB defective mutants (Lm3-22-ΔrliB) were constructed by homologous recombination. The growth cycle of Lm3-22-ΔrliB mutants was slower than that of wild-type Lm3-22. The sensitivity of Lm3-22-ΔrliB to the Listeria phage vB-LmoM-SH3-3 was significantly increased, and the efficiency of plaque formation was enhanced by 128 fold. Compared with wild type, the adhesion and invasion of Lm3-22-ΔrliB decreased significantly (9.3% and 1.33%, respectively). After 4 hours of infection, the proliferation of Lm3-22-ΔrliB in RAW264.7 cells also decreased significantly. Transcription level of invasion-related surface proteins showed that the internalin genes lmo0610 and lm0514, and the peptidoglycan binding protein gene lmo1799 in Lm3-22-ΔrliB were significantly increased. In addition, after interaction with phage, the transcription levels of inlA, lmo0610, lmo1799, lmo2085, and lmo0514 in Lm3-22-ΔrliB cells were significantly upregulated, while inlB was downregulated, compared with Lm3-22 control group with phage treatment. Therefore, rliB deletion effectively regulated the interaction between Listeria and phage, weaken its invasion ability, and provided a new theoretical basis for biocontrol of phage.
Collapse
|
25
|
Chakravarty D, Sahukhal G, Arick M, Davis ML, Donaldson JR. Transcriptomic Analysis of Listeria monocytogenes in Response to Bile Under Aerobic and Anaerobic Conditions. Front Microbiol 2021; 12:754748. [PMID: 34867878 PMCID: PMC8636025 DOI: 10.3389/fmicb.2021.754748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a gram-positive facultative anaerobic bacterium that causes the foodborne illness listeriosis. The pathogenesis of this bacterium depends on its survival in anaerobic, acidic, and bile conditions encountered throughout the gastrointestinal (GI) tract. This transcriptomics study was conducted to analyze the differences in transcript levels produced under conditions mimicking the GI tract. Changes in transcript levels were analyzed using RNA isolated from L. monocytogenes strain F2365 at both aerobic and anaerobic conditions, upon exposure to 0 and 1% bile at acidic and neutral pH. Transcripts corresponding to genes responsible for pathogenesis, cell wall associated proteins, DNA repair, transcription factors, and stress responses had variations in levels under the conditions tested. Upon exposure to anaerobiosis in acidic conditions, there were variations in the transcript levels for the virulence factors internalins, listeriolysin O, etc., as well as many histidine sensory kinases. These data indicate that the response to anaerobiosis differentially influences the transcription of several genes related to the survival of L. monocytogenes under acidic and bile conditions. Though further research is needed to decipher the role of oxygen in pathogenesis of L. monocytogenes, these data provide comprehensive information on how this pathogen responds to the GI tract.
Collapse
Affiliation(s)
- Damayanti Chakravarty
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, United States
| | - Morgan L. Davis
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Janet R. Donaldson
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
26
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
27
|
Nguyen Huu C, Rai R, Yang X, Tikekar RV, Nitin N. Synergistic inactivation of bacteria based on a combination of low frequency, low-intensity ultrasound and a food grade antioxidant. ULTRASONICS SONOCHEMISTRY 2021; 74:105567. [PMID: 33957369 PMCID: PMC8113753 DOI: 10.1016/j.ultsonch.2021.105567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 05/19/2023]
Abstract
This study evaluated a synergistic antimicrobial treatment using a combination of low frequency and a low-intensity ultrasound (LFU) and a food-grade antioxidant, propyl gallate (PG), against a model gram-positive (Listeria innocua) and the gram-negative bacteria (Escherichia coli O157:H7). Bacterial inactivation kinetic measurements were complemented by characterization of biophysical changes in liposomes, changes in bacterial membrane permeability, morphological changes in bacterial cells, and intracellular oxidative stress upon treatment with PG, LFU, and a combination of PG + LFU. Combination of PG + LFU significantly (>4 log CFU/mL, P < 0.05) enhanced the inactivation of both L. innocua and E. coli O157:H7 compared to PG or LFU treatment. As expected, L. innocua had a significantly higher resistance to inactivation compared to E. coli using a combination of PG + LFU. Biophysical measurements in liposomes, bacterial permeability measurements, and scanning electron microscope (SEM)-based morphological measurements show rapid interactions of PG with membranes. Upon extended treatment of cells with PG + LFU, a significant increase in membrane damage was observed compared to PG or LFU alone. A lack of change in the intracellular thiol content following the combined treatment and limited effectiveness of exogenously added antioxidants in attenuating the synergistic antimicrobial action demonstrated that oxidative stress was not a leading mechanism responsible for the synergistic inactivation by PG + LFU. Overall, the study illustrates synergistic inactivation of bacteria using a combination of PG + LFU based on enhanced membrane damage and its potential for applications in the food and environmental systems.
Collapse
Affiliation(s)
- Cuong Nguyen Huu
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Rewa Rai
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Xu Yang
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, USA; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
28
|
Chong A, Cooper KG, Kari L, Nilsson OR, Hillman C, Fleming BA, Wang Q, Nair V, Steele-Mortimer O. Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium. Cell Host Microbe 2021; 29:1177-1185.e6. [PMID: 34043959 DOI: 10.1016/j.chom.2021.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Persistent and intermittent fecal shedding, hallmarks of Salmonella infections, are important for fecal-oral transmission. In the intestine, Salmonella enterica serovar Typhimurium (STm) actively invades intestinal epithelial cells (IECs) and survives in the Salmonella-containing vacuole (SCV) and the cell cytosol. Cytosolic STm replicate rapidly, express invasion factors, and induce extrusion of infected epithelial cells into the intestinal lumen. Here, we engineered STm that self-destruct in the cytosol (STmCytoKill), but replicates normally in the SCV, to examine the role of cytosolic STm in infection. Intestinal expansion and fecal shedding of STmCytoKill are impaired in mouse models of infection. We propose a model whereby repeated rounds of invasion, cytosolic replication, and release of invasive STm from extruded IECs fuels the high luminal density required for fecal shedding.
Collapse
Affiliation(s)
- Audrey Chong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kendal G Cooper
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olof R Nilsson
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Chad Hillman
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brittany A Fleming
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Qinlu Wang
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinod Nair
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
29
|
Nowak J, Visnovsky SB, Pitman AR, Cruz CD, Palmer J, Fletcher GC, Flint S. Biofilm Formation by Listeria monocytogenes 15G01, a Persistent Isolate from a Seafood-Processing Plant, Is Influenced by Inactivation of Multiple Genes Belonging to Different Functional Groups. Appl Environ Microbiol 2021; 87:e02349-20. [PMID: 33741610 PMCID: PMC8117777 DOI: 10.1128/aem.02349-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants.IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Sandra B Visnovsky
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Andrew R Pitman
- The Foundation for Arable Research, Christchurch, New Zealand
| | - Cristina D Cruz
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
30
|
Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms. Appl Environ Microbiol 2021; 87:AEM.03027-20. [PMID: 33608290 DOI: 10.1128/aem.03027-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 ± 0.21 mg/ml and 0.06 ± 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor σB IMPORTANCE Listeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that long-chain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L. monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.
Collapse
|
31
|
Nitrite reduction in fermented meat products and its impact on aroma. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:131-181. [PMID: 33745511 DOI: 10.1016/bs.afnr.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fermented meat products are important not only for their sensory characteristics, nutrient content and cultural heritage, but also for their stability and convenience. The aroma of fermented meat products is unique and its formation mechanisms are not completely understood; however, the presence of nitrite and nitrate is essential for the development of cured aroma. The use of nitrite and nitrate as curing agents in meat products is based on its preservation activity. Even though their presence has been associated with several risks due to the formation of nitrosamines, their use is guarantee due to their antimicrobial action against Clostridium botulinum. Recent trends and recommendations by international associations are directed to use nitrite but at the minimum concentration necessary to provide the antimicrobial activity against Clostridium botulinum. This chapter discuss the actual limits of nitrite and nitrite content and their role as curing agents in meat products with special impact on dry fermented products. Regulatory considerations, antimicrobial mechanisms and actual trends regarding nitrite reduction and its effect on sensory and aroma properties are also considered.
Collapse
|
32
|
Rismondo J, Schulz LM. Not Just Transporters: Alternative Functions of ABC Transporters in Bacillus subtilis and Listeria monocytogenes. Microorganisms 2021; 9:microorganisms9010163. [PMID: 33450852 PMCID: PMC7828314 DOI: 10.3390/microorganisms9010163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are usually involved in the translocation of their cognate substrates, which is driven by ATP hydrolysis. Typically, these transporters are required for the import or export of a wide range of substrates such as sugars, ions and complex organic molecules. ABC exporters can also be involved in the export of toxic compounds such as antibiotics. However, recent studies revealed alternative detoxification mechanisms of ABC transporters. For instance, the ABC transporter BceAB of Bacillus subtilis seems to confer resistance to bacitracin via target protection. In addition, several transporters with functions other than substrate export or import have been identified in the past. Here, we provide an overview of recent findings on ABC transporters of the Gram-positive organisms B. subtilis and Listeria monocytogenes with transport or regulatory functions affecting antibiotic resistance, cell wall biosynthesis, cell division and sporulation.
Collapse
|
33
|
Henderson LO, Gaballa A, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Transcriptional profiling of the L. monocytogenes PrfA regulon identifies six novel putative PrfA-regulated genes. FEMS Microbiol Lett 2020; 367:5998225. [PMID: 33220686 DOI: 10.1093/femsle/fnaa193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The transcriptional activator Positive Regulatory Factor A (PrfA) regulates expression of genes essential for virulence in Listeria monocytogenes. To define the PrfA regulon, the 10403S wildtype (WT) strain, a constitutively active prfA* mutant, and an isogenic ∆prfA mutant were grown under PrfA-inducing conditions in a medium containing glucose-1-phosphate and pre-treated with 0.2% activated charcoal. RNA-seq-generated transcript levels were compared as follows: (i) prfA* and WT; (ii) WT and ∆prfA and (iii) prfA* and ∆prfA. Significantly higher transcript levels in the induced WT or constitutively active PrfA* were identified for 18 genes and 2 ncRNAs in at least one of the three comparisons. These genes included: (i) 10/12 of the genes previously identified as directly PrfA-regulated; (ii) 2 genes previously identified as PrfA-regulated, albeit likely indirectly; and (iii) 6 genes newly identified as PrfA-regulated, including one (LMRG_0 2046) with a σA-dependent promoter and PrfA box located within an upstream open reading frame. LMRG_0 2046, which encodes a putative cyanate permease, is reported to be downregulated by a σB-dependent anti-sense RNA. This newly identified overlap between the σB and PrfA regulons highlights the complexity of regulatory networks important for fine-tuning bacterial gene expression in response to the rapidly changing environmental conditions associated with infection.
Collapse
Affiliation(s)
- L O Henderson
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - A Gaballa
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - R H Orsi
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - K J Boor
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| | - V Guariglia-Oropeza
- Department of Food Science, Cornell University, 352 Stocking Hall Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Villoria Recio M, Lee BH, Lillebæk EMS, Kallipolitis BH, Gahan CGM, Ingmer H, Larsen MH. Chitin Attenuates Expression of Listeria monocytogenes Virulence Genes in vitro. Front Microbiol 2020; 11:588906. [PMID: 33343529 PMCID: PMC7744463 DOI: 10.3389/fmicb.2020.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
External signals are crucial for bacteria to sense their immediate environment and fine-tune gene expression accordingly. The foodborne pathogen Listeria monocytogenes senses a range of environmental cues in order to activate or deactivate the virulence-inducing transcriptional factor PrfA during transition between infectious and saprophytic lifecycles. Chitin is an abundant biopolymer formed from linked β-(1-4)-N-acetyl-D-glucosamine residues associated with fungi, the exoskeleton of insects and often incorporated into foods as a thickener or stabilizer. L. monocytogenes evolved to hydrolyse chitin, presumably, to facilitate nutrient acquisition from competitive environments such as soil where the polymer is abundant. Since mammals do not produce chitin, we reasoned that the polymer could serve as an environmental signal contributing to repression of L. monocytogenes PrfA-dependent expression. This study shows a significant downregulation of the core PrfA-regulon during virulence-inducing conditions in vitro in the presence of chitin. Our data suggest this phenomenon occurs through a mechanism that differs from PTS-transport of oligosaccharides generated from either degradation or chitinase-mediated hydrolysis of the polymer. Importantly, an indication that chitin can repress virulence expression of a constitutively active PrfA∗ mutant is shown, possibly mediated via a post-translational modification inhibiting PrfA∗ activity. To our knowledge, this is the first time that chitin is reported as a molecule with anti-virulence properties against a pathogenic bacterium. Thus, our findings identify chitin as a signal which may downregulate the virulence potential of the pathogen and may provide an alternative approach toward reducing disease risk.
Collapse
Affiliation(s)
- Miguel Villoria Recio
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark.,Alimentary Pharmabotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Cormac G M Gahan
- Alimentary Pharmabotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Halberg Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, Food Safety and Zoonoses-University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
35
|
Mutant and Recombinant Phages Selected from In Vitro Coevolution Conditions Overcome Phage-Resistant Listeria monocytogenes. Appl Environ Microbiol 2020; 86:AEM.02138-20. [PMID: 32887717 DOI: 10.1128/aem.02138-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages.IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy.
Collapse
|
36
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
37
|
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00209-20. [PMID: 32690554 DOI: 10.1128/jb.00209-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCE L. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.
Collapse
|
38
|
Muchaamba F, Eshwar AK, von Ah U, Stevens MJA, Tasara T. Evolution of Listeria monocytogenes During a Persistent Human Prosthetic Hip Joint Infection. Front Microbiol 2020; 11:1726. [PMID: 32849369 PMCID: PMC7399150 DOI: 10.3389/fmicb.2020.01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes associated prosthetic joint infections (PJI) are a rare but increasing clinical problem of listeriosis. We characterized two isolates of the same L. monocytogenes strain isolated within five years of each other from a recurrent human prosthetic joint infection. The two isolates although clonally identical were phenotypically distinct confirming that the original infection strain had evolved within the human host PJI environment giving rise to a phenotypically distinct variant. The recurrent PJI isolate displayed various phenotypic differences compared to the parental original PJI isolate including diminished growth and carbon source metabolism, as well as altered morphology and increased stress sensitivity. The PJI isolates were both diminished in virulence due to an identical truncation mutation in the major virulence regulator PrfA. Genome wide sequence comparison provided conclusive evidence that the two isolates were identical clonal descendants of the same L. monocytogenes strain that had evolved through acquisition of various single nucleotide polymorphisms (SNPs) as well as insertion and deletion events (InDels) during a persistent human PJI. Acquired genetic changes included a specific mutation causing premature stop codon (PMSC) and truncation of RNAse J1 protein. Based on analysis of this naturally truncated as well as other complete RNAse J1 deletion mutants we show that the long-term survival of this specific L. monocytogenes strain within the prosthetic joint might in part be explained by the rnjA PMSC mutation that diminishes virulence and activation of the host immune system in a zebrafish embryo localized infection model. Overall our analysis of this special natural case provides insights into random mutation events and molecular mechanisms that might be associated with the adaptation and short-term evolution of this specific L. monocytogenes strain within a persistent human PJI environment.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Blanchard AM, Billenness R, Warren J, Glanvill A, Roden W, Drinkall E, Maboni G, Robinson RS, Rees CED, Pfarrer C, Tötemeyer S. Characterisation of Listeria monocytogenes isolates from cattle using a bovine caruncular epithelial cell model. Heliyon 2020; 6:e04476. [PMID: 32743095 PMCID: PMC7385464 DOI: 10.1016/j.heliyon.2020.e04476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen in human and veterinary health, causing significant morbidity and mortality including abortion. It has a particular tropism for the gravid uterus, however, the route of infection in reproductive tissues of ruminants (i.e. placentome), is much less clear. In this study, we aimed to investigate a bovine caruncular epithelial cell (BCEC) line as a model for L. monocytogenes infection of the bovine reproductive tract. The BCEC infection model was used to assess the ability of 14 different L. monocytogenes isolates to infect these cells. Lysozyme sensitivity and bacterial survival in 580 μg lysozyme/ml correlated with attenuated ability to proliferate in BCEC (p = 0.004 and p = 0.02, respectively). Four isolates were significantly attenuated compared to the control strain 10403S. One of these strains (AR008) showed evidence of compromised cell wall leading to increased sensitivity to ß-lactam antibiotics, and another (7644) had compromised cell membrane integrity leading to increased sensitivity to cationic peptides. Whole genome sequencing followed by Multi Locus Sequence Type analysis identified that five invasive isolates had the same sequence type, ST59, despite originating from three different clinical conditions. Virulence gene analysis showed that the attenuated isolate LM4 was lacking two virulence genes (uhpT, virR) known to be involved in intracellular growth and virulence. In conclusion, the BCEC model was able to differentiate between the infective potential of different isolates. Moreover, resistance to lysozyme correlated with the ability to invade and replicate within BCEC, suggesting co-selection for surviving challenging environments as the abomasum.
Collapse
Affiliation(s)
- Adam M Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rosemarie Billenness
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jessica Warren
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Amy Glanvill
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - William Roden
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Emma Drinkall
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine, Hannover, Germany
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
40
|
Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, Vuddhakul V, Tansila N. Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes. FEMS Microbiol Lett 2020; 367:5870657. [PMID: 32658271 DOI: 10.1093/femsle/fnaa116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial communication system known as quorum sensing (QS) is a pivotal system for bacterial survival, adaptation and pathogenesis. Members in the multicellular community may synthesize or acquire a signaling molecule in order to elicit downstream cellular processes. Roles of indole and derivatives, a new class of quorum-sensing signal molecules, in various bacterial physiologies and virulence have been reported recently. Indole is normally found in mammal gastrointestinal tract as a metabolite of tryptophan metabolism by microbiota. Therefore, interspecies connection via indole signaling among commensal bacteria and enteric pathogens could be anticipated. Effects of indole exposure on the virulence of Listeria monocytogenes were investigated by phenotypic and molecular approaches. Results demonstrated that synthetic indole and indole-rich conditioned medium significantly diminished biofilm formation and related virulence of L. monocytogenes including motility, cell aggregation and exopolysaccharide production. Transcript levels of virulence-associated (pssE, dltA, flaA, fliI, motB, agrA and hly) and regulatory genes (codY, sigB, prfA and gmaR) were substantially downregulated in indole-treated cells. Only mogR gene encoding for a repressor of motility genes was upregulated after indole exposure. Our findings raise the possibility that L. monocytogenes may acquire indole signaling from gut microbiota for resource-effective adaptation upon transition to new environment.
Collapse
Affiliation(s)
- Paramaporn Rattanaphan
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pimonsri Mittraparp-Arthorn
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
41
|
Guerreiro DN, Arcari T, O'Byrne CP. The σ B-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front Microbiol 2020; 11:1505. [PMID: 32733414 PMCID: PMC7358398 DOI: 10.3389/fmicb.2020.01505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Talia Arcari
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
42
|
Churklam W, Aunpad R. Enzymatic characterization and structure-function relationship of two chitinases, LmChiA and LmChiB, from Listeria monocytogenes. Heliyon 2020; 6:e04252. [PMID: 32642582 PMCID: PMC7334433 DOI: 10.1016/j.heliyon.2020.e04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
|
43
|
Krypotou E, Scortti M, Grundström C, Oelker M, Luisi BF, Sauer-Eriksson AE, Vázquez-Boland J. Control of Bacterial Virulence through the Peptide Signature of the Habitat. Cell Rep 2020; 26:1815-1827.e5. [PMID: 30759392 PMCID: PMC6389498 DOI: 10.1016/j.celrep.2019.01.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
To optimize fitness, pathogens selectively activate their virulence program upon host entry. Here, we report that the facultative intracellular bacterium Listeria monocytogenes exploits exogenous oligopeptides, a ubiquitous organic N source, to sense the environment and control the activity of its virulence transcriptional activator, PrfA. Using a genetic screen in adsorbent-treated (PrfA-inducing) medium, we found that PrfA is functionally regulated by the balance between activating and inhibitory nutritional peptides scavenged via the Opp transport system. Activating peptides provide essential cysteine precursor for the PrfA-inducing cofactor glutathione (GSH). Non-cysteine-containing peptides cause promiscuous PrfA inhibition. Biophysical and co-crystallization studies reveal that peptides inhibit PrfA through steric blockade of the GSH binding site, a regulation mechanism directly linking bacterial virulence and metabolism. L. monocytogenes mutant analysis in macrophages and our functional data support a model in which changes in the balance of antagonistic Opp-imported oligopeptides promote PrfA induction intracellularly and PrfA repression outside the host. Listeria PrfA virulence regulation is controlled by antagonistic nutritional peptides Opp-imported peptides regulate PrfA upstream of the activating cofactor GSH PrfA is activated by peptides that provide essential cysteine for GSH biosynthesis Blockade of PrfA’s GSH binding site by peptides inhibits virulence gene activation
Collapse
Affiliation(s)
- Emilia Krypotou
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mariela Scortti
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Christin Grundström
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Melanie Oelker
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - José Vázquez-Boland
- Microbial Pathogenesis Group, Infection Medicine, Edinburgh Medical School (Biomedical Sciences) and The Roslin Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
44
|
Phylogenetic Analysis and Antibiotics Resistance of Listeria Monocytogenes Contaminating Chicken Meat in Surabaya, Indonesia. Vet Med Int 2020; 2020:9761812. [PMID: 32190283 PMCID: PMC7068146 DOI: 10.1155/2020/9761812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to identify the phylogenetic analysis and antibiotic resistance of Listeria monocytogenes contaminating chicken meat in Surabaya. 60 chicken meat samples were collected from supermarkets, mobile vendors, and traditional markets in Surabaya. A selective medium is used for isolation and identification of Listeria monocytogenes by chopping 25 grams of the chicken meat and to put it into the sterilized Erlenmeyer flasks. Some methods were used for the identification procedures, such as biochemical and morphological tests, antibiotic resistance test, PCR, and sequencing; also a phylogenetic analysis was conducted by a neighbor-joining analysis using Genetix Mac ver 8.0 with hlyA genes of Listeria monocytogenes recorded in GenBank, such as Lineage I (KC808543), Lineage II (AY229462, AY229346, AY229499, and AY229404), Lineage III (KJ504139, HQ686043, KJ504116, and DQ988349), and Lineage IV (EU840690, EF030606). The result shows that the prevalence of L. monocytogenes in Surabaya contaminating the chicken meat samples from the supermarkets was 10% (2/20), from the mobile vendors was 0/20 (0%), and from the traditional markets was 5% (1/20). It was seen from the band at 456 bp fragment. Furthermore, three isolates found in Surabaya were included in the new lineages which were resistant to old-generation antibiotics such as sulfamethonazole-trimetophrim (SXT) and amoxyllin sulbactam (MAS), but they were still sensitive to new-generation antibiotics such as cefotaxime (CTX) and meropenem (MEM).
Collapse
|
45
|
Zhang Y, Liu H, Gu D, Lu X, Zhou X, Xia X. Transcriptomic analysis of PhoR reveals its role in regulation of swarming motility and T3SS expression in Vibrio parahaemolyticus. Microbiol Res 2020; 235:126448. [PMID: 32114363 DOI: 10.1016/j.micres.2020.126448] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 01/14/2023]
Abstract
Vibrio parahaemolyticus is a common foodborne pathogen in seafood and represents a major threat to human health worldwide. In this study, we identified that PhoR, a histidine kinase, is involved in the regulation of swarming and flagella assembly. RNA sequencing analysis showed that 1122 genes were differentially expressed in PhoR mutant, including 394 upregulated and 728 downregulated genes. KEGG enrichment and heatmap analysis demonstrated that the bacterial secretion system, flagella assembly and chemotaxis pathways were significantly downregulated in PhoR mutant, while the microbial metabolism in diverse environments and carbon metabolism pathways were upregulated in PhoR mutant. qRT-PCR further confirmed that genes responsible for the type III secretion system (T3SS), swarming and the thermostable direct hemolysin were positively regulated by PhoR. Phosphorylation assays suggested that PhoR was highly activated in BHI medium compared to LB medium. Taken together, these data suggested that activated PhoR contributes to the expression of swarming motility and secretion system genes in Vibrio parahaemolyticus.
Collapse
Affiliation(s)
- Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA
| | - Huanhuan Liu
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xingxu Lu
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269-3089, USA.
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034 China.
| |
Collapse
|
46
|
Tripathi P, Singh LK, Kumari S, Hakiem OR, Batra JK. ClpB is an essential stress regulator of Mycobacterium tuberculosis and endows survival advantage to dormant bacilli. Int J Med Microbiol 2020; 310:151402. [PMID: 32014406 DOI: 10.1016/j.ijmm.2020.151402] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/03/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to tolerate multiple host derived stresses, resist eradication and persist within the infected individuals is central to the pathogenicity of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Mycobacterial survival is contingent upon sensing environmental perturbations and initiating a fitting response to counter them. Therefore, understanding of molecular mechanisms underlying stress tolerance and sensing in Mtb is critical for devising strategies for TB control. Our study aims to delineate the role of ClpB, a heat shock protein of Hsp100 family, in the general stress response and persistence mechanisms of Mtb. We demonstrate that Mtb requires ClpB to survive under stressful conditions. Additionally, we show that ClpB is necessary for the bacteria to persist in latency-like conditions such as prolonged hypoxia and nutrient-starvation. The disruption of ClpB results in aberrant cellular morphology, impaired biofilm formation and reduced infectivity of Mtb ex vivo. Our study also reports an alternative role of ClpB as a chaperokine which elicits inflammatory response in host. We conclude that ClpB is essential for Mtb to survive within macrophages, and plays a crucial part in the maintenance of dormant Mtb bacilli in latent state. The absence of ClpB in human genome makes it an attractive choice as drug target for TB.
Collapse
Affiliation(s)
- Prajna Tripathi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lalit K Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sujata Kumari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Owais R Hakiem
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
47
|
La Pietra L, Hudel M, Pillich H, Abu Mraheil M, Berisha B, Aden S, Hodnik V, Lochnit G, Rafiq A, Perniss A, Anderluh G, Chakraborty T. Phosphocholine Antagonizes Listeriolysin O-Induced Host Cell Responses of Listeria monocytogenes. J Infect Dis 2020; 222:1505-1516. [DOI: 10.1093/infdis/jiaa022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Bacterial toxins disrupt plasma membrane integrity with multitudinous effects on host cells. The secreted pore-forming toxin listeriolysin O (LLO) of the intracellular pathogen Listeria monocytogenes promotes egress of the bacteria from vacuolar compartments into the host cytosol often without overt destruction of the infected cell. Intracellular LLO activity is tightly controlled by host factors including compartmental pH, redox, proteolytic, and proteostatic factors, and inhibited by cholesterol.
Methods
Combining infection studies of L. monocytogenes wild type and isogenic mutants together with biochemical studies with purified phospholipases, we investigate the effect of their enzymatic activities on LLO.
Results
Here, we show that phosphocholine (ChoP), a reaction product of the phosphatidylcholine-specific phospholipase C (PC-PLC) of L. monocytogenes, is a potent inhibitor of intra- and extracellular LLO activities. Binding of ChoP to LLO is redox-independent and leads to the inhibition of LLO-dependent induction of calcium flux, mitochondrial damage, and apoptosis. ChoP also inhibits the hemolytic activities of the related cholesterol-dependent cytolysins (CDC), pneumolysin and streptolysin.
Conclusions
Our study uncovers a strategy used by L. monocytogenes to modulate cytotoxic LLO activity through the enzymatic activity of its PC-PLC. This mechanism appears to be widespread and also used by other CDC pore-forming toxin-producing bacteria.
Collapse
Affiliation(s)
- Luigi La Pietra
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Helena Pillich
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Besim Berisha
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Amir Rafiq
- Institute of Anatomy and Cell Biology, Cardiopulmonary Institute, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Alexander Perniss
- Institute of Anatomy and Cell Biology, Cardiopulmonary Institute, German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Research, Partner site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
48
|
Cortes BW, Naditz AL, Anast JM, Schmitz-Esser S. Transcriptome Sequencing of Listeria monocytogenes Reveals Major Gene Expression Changes in Response to Lactic Acid Stress Exposure but a Less Pronounced Response to Oxidative Stress. Front Microbiol 2020; 10:3110. [PMID: 32038553 PMCID: PMC6985202 DOI: 10.3389/fmicb.2019.03110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is a well-characterized pathogen that represents a major threat to food safety. In this study, we examine the chromosomal and plasmid transcriptomes of two different L. monocytogenes strains, 6179 [belonging to sequence type (ST) 121] and R479a (ST8), in response to 30 min exposure to oxidative (0.01% hydrogen peroxide) and acid (1% lactic acid, pH 3.4) stress. The exposure to oxidative stress resulted in 102 and 9 differentially expressed (DE) genes in the chromosomal transcriptomes of 6179 and R479a, respectively. In contrast, 2280 and 2151 DE genes were observed in the respective chromosomal transcriptomes of 6179 and R479a in response to lactic acid stress. During lactic acid stress, we observed upregulation of numerous genes known to be involved in the L. monocytogenes stress response, including multiple members of the σB regulon, many of which have not been functionally characterized. Among these genes, homologs of lmo2230 were highly upregulated in both strains. Most notably, the σB-dependent non-coding RNA Rli47 was by far the most highly expressed gene in both 6179 and R479a, accounting for an average of 28 and 38% of all mapped reads in the respective chromosomal transcriptomes. In response to oxidative stress, one DE gene was identified in the 6179 plasmid transcriptome, and no DE genes were observed in the transcriptome of the R479a plasmid. However, lactic acid exposure resulted in upregulation of the stress response gene clpL, among others, on the 6179 plasmid. In R479a, a number of uncharacterized plasmid genes were upregulated, indicating a potential role in stress response. Furthermore, an average of 65% of all mapped transcriptome reads for the R479a plasmid following acid stress were mapped to an intergenic region bearing similarity to riboswitches involved in transition metal resistance. The results of this study support the conclusion that members of the σB regulon, particularly lmo2230 and the non-coding RNA Rli47, play an integral role in the response of L. monocytogenes to acid stress. Furthermore, we report the first global transcriptome sequencing analysis of L. monocytogenes plasmid gene expression and identify a putative, plasmid-encoded riboswitch with potential involvement in response to acid exposure.
Collapse
Affiliation(s)
- Bienvenido W Cortes
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Annabel L Naditz
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Justin M Anast
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
49
|
Abstract
The pathogenic potential of Listeria monocytogenes relies on the production of an arsenal of virulence determinants that have been extensively characterized, including surface and secreted proteins of the internalin family. We have previously shown that the Listeria secreted internalin InlC interacts with IκB kinase α to interfere with the host immune response (E. Gouin, M. Adib-Conquy, D. Balestrino, M.-A. Nahori, et al., Proc Natl Acad Sci USA, 107:17333–17338, 2010, https://doi.org/10.1073/pnas.1007765107). In the present work, we report that InlC is monoubiquitinated on K224 upon infection of cells and provide evidence that ubiquitinated InlC interacts with and stabilizes the alarmin S100A9, which is a critical regulator of the immune response and inflammatory processes. Additionally, we show that ubiquitination of InlC causes an increase in reactive oxygen species production by neutrophils in mice and restricts Listeria infection. These findings are the first to identify a posttranscriptional modification of an internalin contributing to host defense. Listeria monocytogenes is a pathogenic bacterium causing potentially fatal foodborne infections in humans and animals. While the mechanisms used by Listeria to manipulate its host have been thoroughly characterized, how the host controls bacterial virulence factors remains to be extensively deciphered. Here, we found that the secreted Listeria virulence protein InlC is monoubiquitinated by the host cell machinery on K224, restricting infection. We show that the ubiquitinated form of InlC interacts with the intracellular alarmin S100A9, resulting in its stabilization and in increased reactive oxygen species production by neutrophils in infected mice. Collectively, our results suggest that posttranslational modification of InlC exacerbates the host response upon Listeria infection.
Collapse
|
50
|
Boonmee A, Oliver HF, Chaturongakul S. Listeria monocytogenes σ A Is Sufficient to Survive Gallbladder Bile Exposure. Front Microbiol 2019; 10:2070. [PMID: 31551995 PMCID: PMC6737072 DOI: 10.3389/fmicb.2019.02070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a foodborne Gram-positive bacterium causing listeriosis in both animals and humans. It can persist and grow in various environments including conditions countered during saprophytic or intra-host lifestyles. Sigma (σ) subunit of RNA polymerase is a transcriptional factor responsible for guiding the core RNA polymerase and initiating gene expression under normal growth or physiological changes. In L. monocytogenes, there is one housekeeping sigma factor, σA, and four alternative sigma factors σB, σC, σH, and σL. Generally, σA directs expression of genes required for normal growth while alternative σ factors alter gene expression in response to specific conditions (e.g., stress). In this study, we aimed to determine the exclusive role of σA in L. monocytogenes by comparing a wild type strain with its isogenic mutant lacking genes encoding all alternative sigma factors (i.e., sigB, sigC, sigH, and sigL). We further investigated their survival abilities in 6% porcine bile (pH 8.2) mimicking gallbladder bile and their transcriptomics profiles in rich medium (i.e., BHI) and 1% porcine bile. Surprisingly, the results showed that survival abilities of wild type and ΔsigBΔsigCΔsigHΔsigL (or ΔsigBCHL) quadruple mutant strains in 6% bile were similar suggesting a compensatory role for σA. RNA-seq results revealed that bile stimulon of L. monocytogenes wild type contained 66 genes (43 and 23 genes were up- and down-regulated, respectively); however, only 29 genes (five up- and 24 down-regulated by bile) were differentially expressed in ΔsigBCHL. We have shown that bile exposure mediates increased transcription levels of dlt and ilv operons and decreased transcription levels of prfA and heat shock genes in wild type. Furthermore, we identified σA-dependent bile inducible genes that are involved in phosphotransferase systems, chaperones, and transporter systems; these genes appear to contribute to L. monocytogenes cellular homeostasis. As a result, σA seemingly plays a compensatory role in the absence of alternative sigma factors under bile exposure. Our data support that the bile stimulon is prone to facilitate resistance to bile prior to initiated infection.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Haley F. Oliver
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|