1
|
Monnens TQ, Roux B, Cunnac S, Charbit E, Carrère S, Lauber E, Jardinaud MF, Darrasse A, Arlat M, Szurek B, Pruvost O, Jacques MA, Gagnevin L, Koebnik R, Noël LD, Boulanger A. Comparative transcriptomics reveals a highly polymorphic Xanthomonas HrpG virulence regulon. BMC Genomics 2024; 25:777. [PMID: 39123115 PMCID: PMC11316434 DOI: 10.1186/s12864-024-10684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.
Collapse
Affiliation(s)
- Thomas Quiroz Monnens
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Brice Roux
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Sébastien Cunnac
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Erika Charbit
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Sébastien Carrère
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Emmanuelle Lauber
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Marie-Françoise Jardinaud
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Armelle Darrasse
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Matthieu Arlat
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Boris Szurek
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Marie-Agnès Jacques
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, F-97410, France
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, F-34398, France
| | - Ralf Koebnik
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurent D Noël
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| | - Alice Boulanger
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| |
Collapse
|
2
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Mitchell M, Thornton L, Riley MA. Identifying more targeted antimicrobials active against select bacterial phytopathogens. J Appl Microbiol 2022; 132:4388-4399. [PMID: 35301784 DOI: 10.1111/jam.15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS Phytopathogens are a global threat to the world's food supply. Use of broad-spectrum bactericides and antibiotics to limit or eliminate bacterial infections is becoming less effective as levels of resistance increase, while concurrently becoming less desirable from an ecological perspective due to their collateral damage to beneficial members of plant and soil microbiomes. Bacteria produce numerous antimicrobials in addition to antibiotics, such as bacteriocins with their relatively narrow activity spectra, and inhibitory metabolic by-products, such as organic acids. There is interest in developing these naturally occurring antimicrobials for use as alternatives or supplements to antibiotics. METHODS AND RESULTS In this study, we investigate the inhibitory potential of 217 plant associated bacterial isolates from 44 species including plant pathogens, plant growth promoting rhizobacteria, and plant commensals. Over half of the isolates were found to produce antimicrobial substances, of which 68% were active against phytopathogens. Even more intriguing, 98% of phytopathogenic strains were sensitive to the compounds produced specifically by plant growth promoting rhizobacteria. CONCLUSION These data argue that plant-associated bacteria produce a broad range of antimicrobial substances, and that the substances produced preferentially target phytopathogenic bacteria. SIGNIFICANCE AND IMPACT OF STUDY There is a need for novel antimicrobials for use in agriculture. The methods presented here reveal the potential for simple phenotypic screening methods to provide a broad range of potential drug candidates.
Collapse
Affiliation(s)
| | - Logan Thornton
- Department of Biology, University of Massachusetts Amherst
| | | |
Collapse
|
5
|
Osdaghi E, Jones JB, Sharma A, Goss EM, Abrahamian P, Newberry EA, Potnis N, Carvalho R, Choudhary M, Paret ML, Timilsina S, Vallad GE. A centenary for bacterial spot of tomato and pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:1500-1519. [PMID: 34472193 PMCID: PMC8578828 DOI: 10.1111/mpp.13125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
DISEASE SYMPTOMS Symptoms include water-soaked areas surrounded by chlorosis turning into necrotic spots on all aerial parts of plants. On tomato fruits, small, water-soaked, or slightly raised pale-green spots with greenish-white halos are formed, ultimately becoming dark brown and slightly sunken with a scabby or wart-like surface. HOST RANGE Main and economically important hosts include different types of tomatoes and peppers. Alternative solanaceous and nonsolanaceous hosts include Datura spp., Hyoscyamus spp., Lycium spp., Nicotiana rustica, Physalis spp., Solanum spp., Amaranthus lividus, Emilia fosbergii, Euphorbia heterophylla, Nicandra physaloides, Physalis pubescens, Sida glomerata, and Solanum americanum. TAXONOMIC STATUS OF THE PATHOGEN Domain, Bacteria; phylum, Proteobacteria; class, Gammaproteobacteria; order, Xanthomonadales; family, Xanthomonadaceae; genus, Xanthomonas; species, X. euvesicatoria, X. hortorum, X. vesicatoria. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Bacterium exitiosum, Bacterium vesicatorium, Phytomonas exitiosa, Phytomonas vesicatoria, Pseudomonas exitiosa, Pseudomonas gardneri, Pseudomonas vesicatoria, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. vesicatoria, Xanthomonas cynarae pv. gardneri, Xanthomonas gardneri, Xanthomonas perforans. MICROBIOLOGICAL PROPERTIES Colonies are gram-negative, oxidase-negative, and catalase-positive and have oxidative metabolism. Pale-yellow domed circular colonies of 1-2 mm in diameter grow on general culture media. DISTRIBUTION The bacteria are widespread in Africa, Brazil, Canada and the USA, Australia, eastern Europe, and south-east Asia. Occurrence in western Europe is restricted. PHYTOSANITARY CATEGORIZATION A2 no. 157, EU Annex designation II/A2. EPPO CODES XANTEU, XANTGA, XANTPF, XANTVE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jeffrey B. Jones
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Anuj Sharma
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Erica M. Goss
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Peter Abrahamian
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Eric A. Newberry
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Renato Carvalho
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Manoj Choudhary
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Mathews L. Paret
- Department of Plant PathologyNorth Florida Research and Education CenterUniversity of FloridaQuincyFloridaUSA
| | - Sujan Timilsina
- Plant Pathology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Gary E. Vallad
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| |
Collapse
|
6
|
Ciocarlan A, Lupascu L, Aricu A, Dragalin I, Ciocarlan N, Zinicovscaia I, Slanina V, Yushin N. Chemical Composition of the Essential Oil and Antimicrobial Properties of Crude Extract From Tanacetum Corymbosum (L.) Shi. Bip. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The GC-MS analysis of the essential oil from Tanacetum corymbosum revealed the presence of 38 compounds, including terpenes - germacrene D, (Z)-β-farnesene, g-elemene, β-caryophyllene, aliphatic - palmitic and linoleic fatty acids, fatty alcohol n-octadecanol, higher alkane n-heneicosane as the major constituents. The in vitro antimicrobial assessment of the ethanolic extract showed promising antibacterial/antifungal activities against five Gram-(+), Gram-(-) and phytopathogenic bacteria species and two fungi strains. The data obtained in this study may be useful both for researchers and for producers interested in new or less studied species of medicinal plants in healthcare and their biological activities.
Collapse
|
7
|
Otten C, Seifert T, Hausner J, Büttner D. The Contribution of the Predicted Sorting Platform Component HrcQ to Type III Secretion in Xanthomonas campestris pv. vesicatoria Depends on an Internal Translation Start Site. Front Microbiol 2021; 12:752733. [PMID: 34721356 PMCID: PMC8553256 DOI: 10.3389/fmicb.2021.752733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.
Collapse
Affiliation(s)
- Christian Otten
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tanja Seifert
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Hausner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniela Büttner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
8
|
Chemical Composition and Assessment of Antimicrobial Activity of Lavender Essential Oil and Some By-Products. PLANTS 2021; 10:plants10091829. [PMID: 34579362 PMCID: PMC8470038 DOI: 10.3390/plants10091829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
The producers of essential oils from the Republic of Moldova care about the quality of their products and at the same time, try to capitalize on the waste from processing. The purpose of the present study was to analyze the chemical composition of lavender (Lavanda angustifolia L.) essential oil and some by-products derived from its production (residual water, residual herbs), as well as to assess their “in vitro” antimicrobial activity. The gas chromatography-mass spectrometry analysis of essential oils produced by seven industrial manufacturers led to the identification of 41 constituents that meant 96.80–99.79% of the total. The main constituents are monoterpenes (84.08–92.55%), followed by sesquiterpenes (3.30–13.45%), and some aliphatic compounds (1.42–3.90%). The high-performance liquid chromatography analysis allowed the quantification of known triterpenes, ursolic, and oleanolic acids, in freshly dried lavender plants and in the residual by-products after hydrodistillation of the essential oil. The lavender essential oil showed good antibacterial activity against Bacillus subtilis, Pseudomonas fluorescens, Xanthomonas campestris, Erwinia carotovora at 300 μg/mL concentration, and Erwinia amylovora, Candida utilis at 150 μg/mL concentration, respectively. Lavender plant material but also the residual water and ethanolic extracts from the solid waste residue showed high antimicrobial activity against Aspergillus niger, Alternaria alternata, Penicillium chrysogenum, Bacillus sp., and Pseudomonas aeroginosa strains, at 0.75–6.0 μg/mL, 0.08–0.125 μg/mL, and 0.05–4.0 μg/mL, respectively.
Collapse
|
9
|
H. D. Sagawa C, de A. B. Assis R, Zaini PA, Wilmarth PA, Phinney BS, Moreira LM, Dandekar AM. Proteome Analysis of Walnut Bacterial Blight Disease. Int J Mol Sci 2020; 21:E7453. [PMID: 33050347 PMCID: PMC7593943 DOI: 10.3390/ijms21207453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The interaction between the plant host, walnut (Juglans regia; Jr), and a deadly pathogen (Xanthomonas arboricola pv. juglandis 417; Xaj) can lead to walnut bacterial blight (WB), which depletes walnut productivity by degrading the nut quality. Here, we dissect this pathosystem using tandem mass tag quantitative proteomics. Walnut hull tissues inoculated with Xaj were compared to mock-inoculated tissues, and 3972 proteins were identified, of which 3296 are from Jr and 676 from Xaj. Proteins with differential abundance include oxidoreductases, proteases, and enzymes involved in energy metabolism and amino acid interconversion pathways. Defense responses and plant hormone biosynthesis were also increased. Xaj proteins detected in infected tissues demonstrate its ability to adapt to the host microenvironment, limiting iron availability, coping with copper toxicity, and maintaining energy and intermediary metabolism. Secreted proteases and extracellular secretion apparatus such as type IV pilus for twitching motility and type III secretion effectors indicate putative factors recognized by the host. Taken together, these results suggest intense degradation processes, oxidative stress, and general arrest of the biosynthetic metabolism in infected nuts. Our results provide insights into molecular mechanisms and highlight potential molecular tools for early detection and disease control strategies.
Collapse
Affiliation(s)
- Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| |
Collapse
|
10
|
Tondo ML, de Pedro-Jové R, Vandecaveye A, Piskulic L, Orellano EG, Valls M. KatE From the Bacterial Plant Pathogen Ralstonia solanacearum Is a Monofunctional Catalase Controlled by HrpG That Plays a Major Role in Bacterial Survival to Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2020; 11:1156. [PMID: 32849714 PMCID: PMC7412880 DOI: 10.3389/fpls.2020.01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 05/31/2023]
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt disease on a wide range of plant species. Besides the numerous bacterial activities required for host invasion, those involved in the adaptation to the plant environment are key for the success of infection. R. solanacearum ability to cope with the oxidative burst produced by the plant is likely one of the activities required to grow parasitically. Among the multiple reactive oxygen species (ROS)-scavenging enzymes predicted in the R. solanacearum GMI1000 genome, a single monofunctional catalase (KatE) and two KatG bifunctional catalases were identified. In this work, we show that these catalase activities are active in bacterial protein extracts and demonstrate by gene disruption and mutant complementation that the monofunctional catalase activity is encoded by katE. Different strategies were used to evaluate the role of KatE in bacterial physiology and during the infection process that causes bacterial wilt. We show that the activity of the enzyme is maximal during exponential growth in vitro and this growth-phase regulation occurs at the transcriptional level. Our studies also demonstrate that katE expression is transcriptionally activated by HrpG, a central regulator of R. solanacearum induced upon contact with the plant cells. In addition, we reveal that even though both KatE and KatG catalase activities are induced upon hydrogen peroxide treatment, KatE has a major effect on bacterial survival under oxidative stress conditions and especially in the adaptive response of R. solanacearum to this oxidant. The katE mutant strain also exhibited differences in the structural characteristics of the biofilms developed on an abiotic surface in comparison to wild-type cells, but not in the overall amount of biofilm production. The role of catalase KatE during the interaction with its host plant tomato is also studied, revealing that disruption of this gene has no effect on R. solanacearum virulence or bacterial growth in leave tissues, which suggests a minor role for this catalase in bacterial fitness in planta. Our work provides the first characterization of the R. solanacearum catalases and identifies KatE as a bona fide monofunctional catalase with an important role in bacterial protection against oxidative stress.
Collapse
Affiliation(s)
- María Laura Tondo
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Agustina Vandecaveye
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G. Orellano
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
12
|
Guo W, Gao J, Wang HJ, Su RY, Sun CY, Gao SH, Liu JZ, Chen GY. Phosphoglycerate Kinase Is Involved in Carbohydrate Utilization, Extracellular Polysaccharide Biosynthesis, and Cell Motility of Xanthomonas axonopodis pv. glycines Independent of Clp. Front Microbiol 2020; 11:91. [PMID: 32117121 PMCID: PMC7018688 DOI: 10.3389/fmicb.2020.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/15/2020] [Indexed: 12/04/2022] Open
Abstract
Phosphoglycerate kinase (Pgk), catalyzing the reversible conversions between glycerate-1.3-2P and glycerate-3P, plays an important role in carbohydrate metabolism. Here, we show that a Pgk-deficient mutant (NΔpgk) of Xanthomonas axonopodis pv. glycines (Xag) could grow in medium with glucose, galactose, fructose, mannose, or sucrose, as the sole carbon source, suggesting that Xag may employ Entner-Doudoroff (ED) and pentose phosphate pathway (PPP), but not glycolysis, to catabolize glucose. NΔpgk could not utilize pyruvate, suggesting that Pgk might be essential for gluconeogenesis. Mutation in pgk led to a reduction of extracellular polysaccharide (EPS) biosynthesis, cell motility, and intracellular ATP. As a result, the virulence of NΔpgk was significantly compromised in soybean. NΔpgk could be fully complemented by the wild-type pgk, but not by clp (encoding Crp-like protein). qRT-PCR analyses demonstrated that pgk is regulated by the HrpG/HrpX cascade, but not by Clp. These results suggest that Pgk is involved in carbohydrate utilization, EPS biosynthesis, and cell motility of Xag independent of Clp.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Gao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hong-Jie Wang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ru-Yi Su
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chu-Yun Sun
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Si-Han Gao
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Gong-You Chen
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Yuan X, Zeng Q, Xu J, Severin GB, Zhou X, Waters CM, Sundin GW, Ibekwe AM, Liu F, Yang CH. Tricarboxylic Acid (TCA) Cycle Enzymes and Intermediates Modulate Intracellular Cyclic di-GMP Levels and the Production of Plant Cell Wall-Degrading Enzymes in Soft Rot Pathogen Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:296-307. [PMID: 31851880 PMCID: PMC9354473 DOI: 10.1094/mpmi-07-19-0203-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dickeya dadantii is a plant-pathogenic bacterium that causes soft-rot in a wide range of plants. Although we have previously demonstrated that cyclic bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial secondary messenger, plays a central role in virulence regulation in D. dadantii, the upstream signals that modulate c-di-GMP remain enigmatic. Using a genome-wide transposon mutagenesis approach of a Δhfq mutant strain that has high c-di-GMP and reduced motility, we uncovered transposon mutants that recovered the c-di-GMP-mediated repression on swimming motility. A number of these mutants harbored transposon insertions in genes encoding tricarboxylic acid (TCA) cycle enzymes. Two of these TCA transposon mutants were studied further by generating chromosomal deletions of the fumA gene (encoding fumarase) and the sdhCDAB operon (encoding succinate dehydrogenase). Disruption of the TCA cycle in these deletion mutants resulted in reduced intracellular c-di-GMP and enhanced production of pectate lyases (Pels), a major plant cell wall-degrading enzyme (PCWDE) known to be transcriptionally repressed by c-di-GMP. Consistent with this result, addition of TCA cycle intermediates such as citrate also resulted in increased c-di-GMP levels and decreased production of Pels. Additionally, we found that a diguanylate cyclase GcpA was solely responsible for the observed citrate-mediated modulation of c-di-GMP. Finally, we demonstrated that addition of citrate induced not only an overproduction of GcpA protein but also a concomitant repression of the c-di-GMP-degrading phosphodiesterase EGcpB which, together, resulted in an increase in the intracellular concentration of c-di-GMP. In summary, our report demonstrates that bacterial respiration and respiration metabolites serve as signals for the regulation of c-di-GMP signaling.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, U.S.A
| | - Jingsheng Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Geoffrey B. Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Xiang Zhou
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | | | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University
| | - Abasiofiok M. Ibekwe
- Agricultural Research Service-US Salinity Laboratory, United States Department of Agriculture, Riverside, CA 92507, U.S.A
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|
14
|
Chew SY, Chee WJY, Than LTL. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J Biomed Sci 2019; 26:52. [PMID: 31301737 PMCID: PMC6626413 DOI: 10.1186/s12929-019-0546-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Carbon utilization and metabolism are fundamental to every living organism for cellular growth. For intracellular human fungal pathogens such as Candida glabrata, an effective metabolic adaptation strategy is often required for survival and pathogenesis. As one of the host defence strategies to combat invading pathogens, phagocytes such as macrophages constantly impose restrictions on pathogens' access to their preferred carbon source, glucose. Surprisingly, it has been reported that engulfed C. glabrata are able to survive in this harsh microenvironment, further suggesting alternative carbon metabolism as a potential strategy for this opportunistic fungal pathogen to persist in the host. MAIN TEXT In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle. CONCLUSION Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.
Collapse
Affiliation(s)
- Shu Yih Chew
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wallace Jeng Yang Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Hausner J, Jordan M, Otten C, Marillonnet S, Büttner D. Modular Cloning of the Type III Secretion Gene Cluster from the Plant-Pathogenic Bacterium Xanthomonas euvesicatoria. ACS Synth Biol 2019; 8:532-547. [PMID: 30694661 DOI: 10.1021/acssynbio.8b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type III secretion (T3S) systems are essential pathogenicity factors of most Gram-negative bacteria and translocate effector proteins into plant or animal cells. T3S systems can, therefore, be used as tools for protein delivery into eukaryotic cells, for instance after transfer of the T3S gene cluster into nonpathogenic recipient strains. Here, we report the modular cloning of the T3S gene cluster from the plant-pathogenic bacterium Xanthomonas euvesicatoria. The resulting multigene construct encoded a functional T3S system and delivered effector proteins into plant cells. The modular design of the T3S gene cluster allowed the efficient replacement and rearrangement of single genes or operons and the insertion of reporter genes for functional studies. In the present study, we used the modular T3S system to analyze the assembly of a fluorescent fusion of the predicted cytoplasmic ring protein HrcQ. Our studies demonstrate the use of the modular T3S gene cluster for functional analyses and mutant approaches in X. euvesicatoria. A potential application of the modular T3S system as protein delivery tool is discussed.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | - Michael Jordan
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | - Christian Otten
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| | | | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Saale, Germany
| |
Collapse
|
16
|
Klonowska A, Melkonian R, Miché L, Tisseyre P, Moulin L. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history. BMC Genomics 2018; 19:105. [PMID: 29378510 PMCID: PMC5789663 DOI: 10.1186/s12864-018-4487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.
Collapse
Affiliation(s)
| | - Rémy Melkonian
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France
| | - Lucie Miché
- IRD, UMR LSTM, Campus de Baillarguet, Montpellier, France.,Present address: Aix Marseille University, University of Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Lionel Moulin
- IRD, Cirad, University of Montpellier, IPME, Montpellier, France.
| |
Collapse
|
17
|
Lv C, Wang P, Wang W, Su R, Ge Y, Zhu Y, Zhu G. Two isocitrate dehydrogenases from a plant pathogen Xanthomonas campestris pv. campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence. J Basic Microbiol 2016; 56:975-85. [PMID: 27282849 DOI: 10.1002/jobm.201500648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylate (TCA) cycle, which may play an important role in the virulence of pathogenic bacteria. Here, two structurally different IDHs from a plant pathogen Xanthomonas campestris pv. campestris 8004 (XccIDH1 and XccIDH2) were characterized in detail. The recombinant XccIDH1 forms homodimer in solution, while the recombinant XccIDH2 is a typical monomer. Phylogenetic analysis showed that XccIDH1 belongs to the type I IDH subfamily and XccIDH2 groups into the monomeric IDH clade. Kinetic characterization demonstrated that XccIDH1's specificity towards NAD(+) was 110-fold greater than NADP(+) , while XccIDH2's specificity towards NADP(+) was 353-fold greater than NAD(+) . The putative coenzyme discriminating amino acids (Asp268, Ile269 and Ala275 for XccIDH1, and Lys589, His590 and Arg601 for XccIDH2) were studied by site-directed mutagenesis. The coenzyme specificities of the two mutants, mXccIDH1 and mXccIDH2, were completely reversed from NAD(+) to NADP(+) , and NADP(+) to NAD(+) , respectively. Furthermore, Ser80 of XccIDH1, and Lys256 and Tyr421 of XccIDH2, were the determinants for the substrate binding. The detailed biochemical properties, such as optimal pH and temperature, thermostability, and metal ion effects, of XccIDH1 and XccIDH2 were further investigated. The possibility of taking the two IDHs into consideration as the targets for drug development to control the plant diseases caused by Xcc 8004 were described and discussed thoroughly.
Collapse
Affiliation(s)
- Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Wencai Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Ruirui Su
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Yadong Ge
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Youming Zhu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Stomatological Hospital, Anhui Medical University, China.
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China.
| |
Collapse
|
18
|
Chatnaparat T, Prathuangwong S, Lindow SE. Global Pattern of Gene Expression of Xanthomonas axonopodis pv. glycines Within Soybean Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:508-22. [PMID: 27003800 DOI: 10.1094/mpmi-01-16-0007-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To better understand the behavior of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean within its host, its global transcriptome within soybean leaves was compared with that in a minimal medium in vitro, using deep sequencing of mRNA. Of 5,062 genes predicted from a draft genome of X. axonopodis pv. glycines, 534 were up-regulated in the plant, while 289 were down-regulated. Genes encoding YapH, a cell-surface adhesin, as well as several others encoding cell-surface proteins, were down-regulated in soybean. Many genes encoding the type III secretion system and effector proteins, cell wall-degrading enzymes and phosphate transporter proteins were strongly expressed at early stages of infection. Several genes encoding RND multidrug efflux pumps were induced in planta and by isoflavonoids in vitro and were required for full virulence of X. axonopodis pv. glycines, as well as resistance to soybean phytoalexins. Genes encoding consumption of malonate, a compound abundant in soybean, were induced in planta and by malonate in vitro. Disruption of the malonate decarboxylase operon blocked growth in minimal media with malonate as the sole carbon source but did not significantly alter growth in soybean, apparently because genes for sucrose and fructose uptake were also induced in planta. Many genes involved in phosphate metabolism and uptake were induced in planta. While disruption of genes encoding high-affinity phosphate transport did not alter growth in media varying in phosphate concentration, the mutants were severely attenuated for growth in soybean. This global transcriptional profiling has provided insight into both the intercellular environment of this soybean pathogen and traits used by X. axonopodis pv. glycines to promote disease.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- 1 Department of Plant Pathology, Kasetsart University, Thailand
- 2 Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand; and
| | - Sutruedee Prathuangwong
- 1 Department of Plant Pathology, Kasetsart University, Thailand
- 2 Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand; and
| | - Steven E Lindow
- 3 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
19
|
Barel V, Chalupowicz L, Barash I, Sharabani G, Reuven M, Dror O, Burdman S, Manulis-Sasson S. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system. MOLECULAR PLANT PATHOLOGY 2015; 16:710-23. [PMID: 25530086 PMCID: PMC6638389 DOI: 10.1111/mpp.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium.
Collapse
Affiliation(s)
- Victoria Barel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 61390, Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Shulamit Manulis-Sasson
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
20
|
Guo W, Zou LF, Cai LL, Chen GY. Glucose-6-phosphate dehydrogenase is required for extracellular polysaccharide production, cell motility and the full virulence of Xanthomonas oryzae pv. oryzicola. Microb Pathog 2014; 78:87-94. [PMID: 25450881 DOI: 10.1016/j.micpath.2014.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/11/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) catalyzes conversion of glucose 6-phosphate into gluconate 6-phosphate for Entner-Doudoroff (ED) and pentose phosphate pathways in living organisms. However, it is unclear whether the Zwf-coding gene is involved in pathogenesis of phytopathogenic bacterium. In this report, we found that deletion mutation in zwf of Xanthomonas oryzae pv. oryzicola (Xoc), led the pathogen unable to effectively utilize glucose, sucrose, fructose, mannose and galactose for growth. The transcript level of zwf was strongly induced by glucose, sucrose, fructose, mannose and galactose than that by the NY medium (non sugar). The deletion mutagenesis in zwf also altered the transcript level of key genes, such as rpfF, rpfG and clp, in diffusible signal factor (DSF)-signaling network. In addition, the deletion mutation in zwf impaired bacterial virulence and growth capability in rice leaves, reduced bacterial cell motility and extracellular polysaccharide (EPS) production. The lost properties mentioned above in the zwf deletion mutant were completely restored to the wild-type level by the presence of zwf in trans. All these results suggest that zwf is required for the full virulence of Xoc in rice leaves by involving carbohydrate metabolisms that impact bacterial DSF-signaling network.
Collapse
Affiliation(s)
- Wei Guo
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry & Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Fang Zou
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Lu Cai
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gong-You Chen
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Hausner J, Hartmann N, Lorenz C, Büttner D. The periplasmic HrpB1 protein from Xanthomonas spp. binds to peptidoglycan and to components of the type III secretion system. Appl Environ Microbiol 2013; 79:6312-24. [PMID: 23934485 PMCID: PMC3811196 DOI: 10.1128/aem.01226-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
22
|
Lozano MJ, Salas ME, Giusti MDLA, Martini MC, López JL, Salto I, Del Papa MF, Pistorio M, Lagares A. Novel tnpR-based transposable promoter traps suitable for RIVET studies in different gram-negative bacteria. J Microbiol Methods 2013; 93:9-11. [PMID: 23384825 DOI: 10.1016/j.mimet.2013.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
The preparation of plasmid-borne RIVET libraries can be troublesome when high genomic coverages are needed. We present here the construction and functional validation of a new set of miniTn5 promoter traps to generate tnpR-based RIVET libraries. The ability to generate tnpR transcriptional fusions by transposition will significantly facilitate the setup of RIVET studies in those bacteria where Tn5 transposition is operative.
Collapse
Affiliation(s)
- Mauricio J Lozano
- IBBM-Instituto de Biotecnología y Biología Molecular, CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,Calles 47 y 115 (1900), La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Varivarn K, Champa LA, Silby MW, Robleto EA. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol 2013; 13:92. [PMID: 23622502 PMCID: PMC3646685 DOI: 10.1186/1471-2180-13-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens is a common inhabitant of soil and the rhizosphere environment. In addition to potential applications in biocontrol and bioremediation, P. fluorescens is of interest as a model for studying bacterial survival and fitness in soil. A previous study using in vivo expression technology (IVET) identified 22 genes in P. fluorescens Pf0-1 which are up-regulated during growth in Massachusetts loam soil, a subset of which are important for fitness in soil. Despite this and other information on adaptation to soil, downstream applications such as biocontrol or bioremediation in diverse soils remain underdeveloped. We undertook an IVET screen to identify Pf0-1 genes induced during growth in arid Nevada desert soil, to expand our understanding of growth in soil environments, and examine whether Pf0-1 uses general or soil type-specific mechanisms for success in soil environments. RESULTS Twenty six genes were identified. Consistent with previous studies, these genes cluster in metabolism, information storage/processing, regulation, and 'hypothetical', but there was no overlap with Pf0-1 genes induced during growth in loam soil. Mutation of both a putative glutamine synthetase gene (Pfl01_2143) and a gene predicted to specify a component of a type VI secretion system (Pfl01_5595) resulted in a decline in arid soil persistence. When examined in sterile loam soil, mutation of Pfl01_5595 had no discernible impact. In contrast, the Pfl01_2143 mutant was not impaired in persistence in sterile soil, but showed a significant reduction in competitive fitness. CONCLUSIONS These data support the conclusion that numerous genes are specifically important for survival and fitness in natural environments, and will only be identified using in vivo approaches. Furthermore, we suggest that a subset of soil-induced genes is generally important in different soils, while others may contribute to success in specific types of soil. The importance of glutamine synthetase highlights a critical role for nitrogen metabolism in soil fitness. The implication of Type 6 secretion underscores the importance of microbial interactions in natural environments. Understanding the general and soil-specific genes will greatly improve the persistence of designed biocontrol and bioremediation strains within the target environment.
Collapse
Affiliation(s)
- Katila Varivarn
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | | | | |
Collapse
|
24
|
Kroupitski Y, Brandl MT, Pinto R, Belausov E, Tamir-Ariel D, Burdman S, Sela Saldinger S. Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vivo expression technology. PHYTOPATHOLOGY 2013; 103:362-72. [PMID: 23506363 DOI: 10.1094/phyto-10-12-0254-fi] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recurrent outbreaks of enteric illness linked to lettuce and a lack of efficacious strategies to decontaminate produce underscores the need for a better understanding of the molecular interactions of foodborne pathogens with plants. This study aimed at identifying Salmonella enterica genes involved in the persistence of this organism on post-harvest lettuce during cold storage using recombinase-based in vivo expression technology (RIVET). In total, 37 potentially induced loci were identified in four distinct screenings. Knockout mutations in eight upregulated genes revealed that four of them have a role in persistence of the pathogen in this system. These genes included stfC, bcsA, misL, and yidR, encoding a fimbrial outer membrane usher, a cellulose synthase catalytic subunit, an adhesin of the autotransporter family expressed from the Salmonella pathogenicity island-3, and a putative ATP/GTP-binding protein, respectively. bcsA, misL, and yidR but not stfC mutants were impaired also in attachment and biofilm formation, suggesting that these functions are required for survival of S. enterica on post-harvest lettuce. This is the first report that MisL, which has a role in Salmonella binding to fibronectin in animal hosts, is involved also in adhesion to plant tissue. Hence, our study uncovered a new plant attachment factor in Salmonella and demonstrates that RIVET is an effective approach for investigating human pathogen-plant interactions in a post-harvest leafy vegetable.
Collapse
Affiliation(s)
- Y Kroupitski
- Department of Food Quality & safety, Institute for Postharvest and Food Sciences, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
Collapse
Affiliation(s)
- Julia A Vorholt
- Institute of Microbiology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Wolfgang-Pauli-Strasse 10, HCI F429, 8093 Zurich, Switzerland.
| |
Collapse
|
26
|
Lorenz C, Hausner J, Büttner D. HrcQ provides a docking site for early and late type III secretion substrates from Xanthomonas. PLoS One 2012; 7:e51063. [PMID: 23226460 PMCID: PMC3511370 DOI: 10.1371/journal.pone.0051063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Pathogenicity of many Gram-negative bacteria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into eukaryotic cells. The membrane-spanning secretion apparatus is associated with a cytoplasmic ATPase complex and a predicted cytoplasmic (C) ring structure which is proposed to provide a substrate docking platform for secreted proteins. In this study, we show that the putative C ring component HrcQ from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for bacterial pathogenicity and T3S. Fractionation studies revealed that HrcQ localizes to the cytoplasm and associates with the bacterial membranes under T3S-permissive conditions. HrcQ binds to the cytoplasmic T3S-ATPase HrcN, its predicted regulator HrcL and the cytoplasmic domains of the inner membrane proteins HrcV and HrcU. Furthermore, we observed an interaction between HrcQ and secreted proteins including early and late T3S substrates. HrcQ might therefore act as a general substrate acceptor site of the T3S system and is presumably part of a larger protein complex. Interestingly, the N-terminal export signal of the T3S substrate AvrBs3 is dispensable for the interaction with HrcQ, suggesting that binding of AvrBs3 to HrcQ occurs after its initial targeting to the T3S system.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Hausner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Gurtler JB, Smelser AM, Niemira BA, Jin TZ, Yan X, Geveke DJ. Inactivation of Salmonella enterica on tomato stem scars by antimicrobial solutions and vacuum perfusion. Int J Food Microbiol 2012; 159:84-92. [DOI: 10.1016/j.ijfoodmicro.2012.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
|
28
|
Tamir-Ariel D, Rosenberg T, Navon N, Burdman S. A secreted lipolytic enzyme from Xanthomonas campestris pv. vesicatoria is expressed in planta and contributes to its virulence. MOLECULAR PLANT PATHOLOGY 2012; 13:556-67. [PMID: 22176521 PMCID: PMC6638646 DOI: 10.1111/j.1364-3703.2011.00771.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A recombinase-based in vivo expression technology (RIVET) approach with Xanthomonas campestris pv. vesicatoria (Xcv) revealed that lipA, annotated as putative secreted lipase, is expressed during the interaction between this pathogen and tomato. Here, the tnpR and uidA reporter genes were used to show that lipA is strongly induced in XVM2 minimal medium and during the early stages of tomato infection by Xcv. A mutant strain impaired in lipA was generated by insertional mutagenesis. This mutant grew in a similar manner to the wild-type in rich medium, but its growth was significantly compromised in a medium containing olive oil as a single carbon source. The lipolytic activity of the extracellular fraction of the lipA mutant was reduced significantly relative to that of the wild-type strain, thus confirming that lipA indeed encodes a functional secreted enzyme with lipolytic activity. A plasmid carrying a wild-type copy of lipA complemented the lipA mutant for extracellular lipolytic activity. Dip inoculation experiments with tomato lines Hawaii 7998 (H7998) and Micro Tom showed that the lipA mutant grew to a lesser extent than the wild-type in tomato leaves. Following leaf syringe infiltrations, the mutant strain induced disease symptoms that were less severe than those induced by the wild-type strain, supporting a significant role of lipA in the pathogenicity of Xcv.
Collapse
Affiliation(s)
- Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
29
|
Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 2012; 78:5672-81. [PMID: 22685129 DOI: 10.1128/aem.07997-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99(A) and localizes to the host cell membrane for α-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing α-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in α-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of α-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports α-ketoglutaric acid when the pathogen infects rice.
Collapse
|
30
|
Kirchberg J, Büttner D, Thiemer B, Sawers RG. Aconitase B is required for optimal growth of Xanthomonas campestris pv. vesicatoria in pepper plants. PLoS One 2012; 7:e34941. [PMID: 22493725 PMCID: PMC3321045 DOI: 10.1371/journal.pone.0034941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/11/2012] [Indexed: 11/23/2022] Open
Abstract
The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress.
Collapse
Affiliation(s)
- Janine Kirchberg
- Department of Microbiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
31
|
Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Guo W, Zou LF, Li YR, Cui YP, Ji ZY, Cai LL, Zou HS, Hutchins WC, Yang CH, Chen GY. Fructose-bisphophate aldolase exhibits functional roles between carbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola. PLoS One 2012; 7:e31855. [PMID: 22384086 PMCID: PMC3285194 DOI: 10.1371/journal.pone.0031855] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 01/17/2012] [Indexed: 02/01/2023] Open
Abstract
Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education of China, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Identification of Avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl Environ Microbiol 2012; 78:3343-51. [PMID: 22344666 DOI: 10.1128/aem.07677-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions.
Collapse
|
34
|
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. THE PLANT CELL 2011; 23:4507-25. [PMID: 22180624 PMCID: PMC3269880 DOI: 10.1105/tpc.111.088732] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/06/2011] [Accepted: 11/29/2011] [Indexed: 05/18/2023]
Abstract
Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in α-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.
Collapse
Affiliation(s)
- Maxim Itkin
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Alkan
- Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Laura Masini
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoko Iijima
- Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Koh Aoki
- Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Ric de Vos
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Dov Prusky
- Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jules Beekwilder
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Address correspondence to
| |
Collapse
|
35
|
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. THE PLANT CELL 2011. [PMID: 22180624 DOI: 10.1105/tpc.111.08873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in α-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.
Collapse
Affiliation(s)
- Maxim Itkin
- Department of Plant Sciences, Weizman Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Flores-Cruz Z, Allen C. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl Environ Microbiol 2011; 77:6426-32. [PMID: 21803891 PMCID: PMC3187169 DOI: 10.1128/aem.05813-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/21/2011] [Indexed: 01/10/2023] Open
Abstract
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.
Collapse
Affiliation(s)
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin 53706
| |
Collapse
|
37
|
Tamir-Ariel D, Rosenberg T, Burdman S. The Xanthomonas campestris pv. vesicatoria citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system. MOLECULAR PLANT PATHOLOGY 2011; 12:57-71. [PMID: 21118349 PMCID: PMC6640381 DOI: 10.1111/j.1364-3703.2010.00652.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease of tomato and pepper. Previously, we have reported the adaptation of a recombinase- or resolvase-based in vivo expression technology (RIVET) approach to identify Xcv genes that are specifically induced during its interaction with tomato. Analysis of some of these genes revealed that a citH (citrate transporter) homologous gene contributes to Xcv virulence on tomato. Here, we demonstrate that the citH product indeed facilitates citrate uptake by showing the following: citH is specifically needed for Xcv growth in citrate, but not in other carbon sources; the citH promoter is specifically induced by citrate; and the concentration of citrate from tomato leaf apoplast is considerably reduced following growth of the wild-type and a citH-complemented strain, but not the citH mutant. We also show that, in the Xcv-tomato interaction, the promoter activity of the citH gene is induced as early as 2.5h after Xcv is syringe infiltrated into tomato leaves, and continues to be active for at least 96h after inoculation. We identified an operon containing a two-component regulatory system homologous to tctD/tctE influencing citH expression in Xcv, as well as its heterologous expression in Escherichia coli. The expression of hrp genes does not seem to be affected in the citH mutant, and this mutant cannot be complemented for growth in planta when co-inoculated with the wild-type strain, indicating that citrate uptake in the apoplast is important for the virulence of Xcv.
Collapse
Affiliation(s)
- Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
38
|
The yctCBA operon of Yersinia ruckeri, involved in in vivo citrate uptake, is not required for virulence. Appl Environ Microbiol 2010; 77:1107-10. [PMID: 21131526 DOI: 10.1128/aem.01808-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A three-gene operon, named yctCBA (Yersinia citrate transporter), induced by citrate and repressed by glucose was identified from a previously selected in vivo-induced (ivi) clone in the fish pathogen Yersinia ruckeri. Interestingly, despite being an ivi clone, the drastic growth reduction of the yctC mutant in the presence of citrate, and the relatively high content of this compound in rainbow trout serum, the operon was not required for virulence.
Collapse
|
39
|
Noel JT, Arrach N, Alagely A, McClelland M, Teplitski M. Specific responses of Salmonella enterica to tomato varieties and fruit ripeness identified by in vivo expression technology. PLoS One 2010; 5:e12406. [PMID: 20824208 PMCID: PMC2930847 DOI: 10.1371/journal.pone.0012406] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes. CONCLUSIONS/SIGNIFICANCE This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit.
Collapse
Affiliation(s)
- Jason T. Noel
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Nabil Arrach
- Vaccine Research Institute of San Diego, La Jolla, California, United States of America
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ali Alagely
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Michael McClelland
- Vaccine Research Institute of San Diego, La Jolla, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
40
|
Soto-Suárez M, Bernal D, González C, Szurek B, Guyot R, Tohme J, Verdier V. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol 2010; 10:170. [PMID: 20540733 PMCID: PMC2893596 DOI: 10.1186/1471-2180-10-170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 06/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc). RESULTS Changes in gene expression of the African Xoo strain MAI1 in the susceptible rice cultivar Nipponbare were profiled, using an SSH Xoo DNA microarray. Microarray hybridization was performed comparing bacteria recovered from plant tissues at 1, 3, and 6 days after inoculation (dai) with bacteria grown in vitro. A total of 710 bacterial genes were found to be differentially expressed, with 407 up-regulated and 303 down-regulated. Expression profiling indicated that less than 20% of the 710 bacterial transcripts were induced in the first 24 h after inoculation, whereas 63% were differentially expressed at 6 dai. The 710 differentially expressed genes were one-end sequenced. 535 sequences were obtained from which 147 non-redundant sequences were identified. Differentially expressed genes were related to metabolism, secretion and transport, pathogen adherence to plant tissues, plant cell-wall degradation, IS elements, and virulence. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. The Xoo MAI1 non-redundant set of sequences was compared against several X. oryzae genomes, revealing a specific group of genes that was present only in MAI1. Numerous IS elements were also found to be differentially expressed. Quantitative real-time PCR confirmed 86% of the identified profile on a set of 14 genes selected according to the microarray analysis. CONCLUSIONS This is the first report to compare the expression of Xoo genes in planta across different time points during infection. This work shows that as-yet-unidentified and potentially new virulence factors are appearing in an emerging African pathogen. It also confirms that African Xoo strains do differ from their Asian counterparts, even at the transcriptional level.
Collapse
Affiliation(s)
- Mauricio Soto-Suárez
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Institut de Recherche pour le Développement, 911 Avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Bachmann H, de Wilt L, Kleerebezem M, van Hylckama Vlieg JET. Time-resolved genetic responses of Lactococcus lactis to a dairy environment. Environ Microbiol 2010; 12:1260-70. [PMID: 20192965 DOI: 10.1111/j.1462-2920.2010.02168.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.
Collapse
|
42
|
Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. MICROBIOLOGY-SGM 2009; 155:3166-3175. [PMID: 19684068 DOI: 10.1099/mic.0.030858-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C(2) compounds by bypassing the CO(2)-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.
Collapse
Affiliation(s)
- M F Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - J A Ramírez-Trujillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
43
|
Flores-Cruz Z, Allen C. Ralstonia solanacearum encounters an oxidative environment during tomato infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:773-82. [PMID: 19522559 DOI: 10.1094/mpmi-22-7-0773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum genes that are induced during tomato infection suggested that this pathogen encounters reactive oxygen species (ROS) during bacterial wilt pathogenesis. The genomes of R. solanacearum contain multiple redundant ROS-scavenging enzymes, indirect evidence that this pathogen experiences intense oxidative stress during its life cycle. Over 9% of the bacterium's plant-induced genes were also upregulated by hydrogen peroxide in culture, suggesting that oxidative stress may be linked to life in the plant host. Tomato leaves infected by R. solanacearum contained hydrogen peroxide, and concentrations of this ROS increased as pathogen populations increased. Mutagenesis of a plant-induced predicted peroxidase gene, bcp, resulted in an R. solanacearum strain with reduced ability to detoxify ROS in culture. The bcp mutant caused slightly delayed bacterial wilt disease onset in tomato. Moreover, its virulence was significantly reduced on tobacco plants engineered to overproduce hydrogen peroxide, demonstrating that Bcp is necessary for detoxification of plant-derived hydrogen peroxide and providing evidence that host ROS can limit the success of this pathogen. These results reveal that R. solanacearum is exposed to ROS during pathogenesis and that it has evolved a redundant and efficient oxidative stress response to adapt to the host environment and cause disease.
Collapse
Affiliation(s)
- Zomary Flores-Cruz
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Dudley EG. In VivoExpression Technology and Signature-Tagged Mutagenesis Screens for Identifying Mechanisms of Survival of Zoonotic Foodborne Pathogens. Foodborne Pathog Dis 2008; 5:473-85. [DOI: 10.1089/fpd.2008.0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Edward G. Dudley
- Department of Food Science, Penn State University, University Park, Pennsylvania
| |
Collapse
|
45
|
Seo YS, Sriariyanun M, Wang L, Pfeiff J, Phetsom J, Lin Y, Jung KH, Chou HH, Bogdanove A, Ronald P. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiol 2008; 8:99. [PMID: 18564427 PMCID: PMC2474671 DOI: 10.1186/1471-2180-8-99] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/18/2008] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are bacterial pathogens of the worldwide staple and grass model, rice. Xoo and Xoc are closely related but Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and Xoc colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on hrp genes for type III secretion to infect their host. We constructed a 50-70 mer oligonucleotide microarray based on available genome data for Xoo and Xoc and compared gene expression in Xoo strains PXO99A and Xoc strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce hrp genes in Xoo strain T7174. RESULTS Three biological replicates of the microarray experiment to compare global gene expression in representative strains of Xoo and Xoc grown in PSB vs. XOM2 were carried out. The non-specific error rate and the correlation coefficients across biological replicates and among duplicate spots revealed that the microarray data were robust. 247 genes of Xoo and 39 genes of Xoc were differentially expressed in the two media with a false discovery rate of 5% and with a minimum fold-change of 1.75. Semi-quantitative-RT-PCR assays confirmed differential expression of each of 16 genes each for Xoo and Xoc selected for validation. The differentially expressed genes represent 17 functional categories. CONCLUSION We describe here the construction and validation of a two-genome microarray for the two pathovars of X. oryzae. Microarray analysis revealed that using representative strains, a greater number of Xoo genes than Xoc genes are differentially expressed in XOM2 relative to PSB, and that these include hrp genes and other genes important in interactions with rice. An exception was the rax genes, which are required for production of the host resistance elicitor AvrXa21, and which were expressed constitutively in both pathovars.
Collapse
Affiliation(s)
- Young-Su Seo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Malinee Sriariyanun
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Li Wang
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Janice Pfeiff
- ArrayCore Facility, School of Veterinary Medicine, Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Ye Lin
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Ki-Hong Jung
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Hui Hsien Chou
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Adam Bogdanove
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
46
|
Urbany C, Neuhaus HE. Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:547-554. [PMID: 18393614 DOI: 10.1094/mpmi-21-5-0547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To analyze whether metabolite import into Pectobacterium atrosepticum cells affects bacterial virulence, we investigated the function of a carrier which exhibits significant structural homology to characterized carboxylic-acid transport proteins. The corresponding gene, ECA3984, previously annotated as coding for a Na(+)/sulphate carrier, in fact encodes a highly specific citrate transporter (Cit1) which is energized by the proton-motive force. Expression of the cit1 gene is stimulated by the presence of citrate in the growth medium and is substantial during growth of P. atrosepticum on potato tuber tissue. Infection of tuber tissue with P. atrosepticum leads to reduced citrate levels. P. atrosepticum insertion mutants, lacking the functional Cit1 protein, did not grow in medium containing citrate as the sole carbon source, showed a substantially reduced ability to macerate potato tuber tissue, and did not provoke reduced citrate levels in the plant tissue upon infection. We propose that citrate uptake into P. atrosepticum is critical for full bacterial virulence.
Collapse
Affiliation(s)
- Claude Urbany
- Pflanzenphysiologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
47
|
Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:269-82. [PMID: 18184070 DOI: 10.1094/mpmi-21-2-0269] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.
Collapse
Affiliation(s)
- Arantza Rico
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | |
Collapse
|