1
|
Parada CM, Yan CCS, Hung CY, Tu IP, Hsu CP, Shih YL. Growth-dependent concentration gradient of the oscillating Min system in Escherichia coli. J Cell Biol 2025; 224:e202406107. [PMID: 39621132 PMCID: PMC11613459 DOI: 10.1083/jcb.202406107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 12/11/2024] Open
Abstract
Cell division in Escherichia coli is intricately regulated by the MinD and MinE proteins, which form oscillatory waves between cell poles. These waves manifest as concentration gradients that reduce MinC inhibition at the cell center, thereby influencing division site placement. This study explores the plasticity of the MinD gradients resulting from the interdependent interplay between molecular interactions and diffusion in the system. Through live cell imaging, we observed that as cells elongate, the gradient steepens, the midcell concentration decreases, and the oscillation period stabilizes. A one-dimensional model investigates kinetic rate constants representing various molecular interactions, effectively recapitulating our experimental findings. The model reveals the nonlinear dynamics of the system and a dynamic equilibrium among these constants, which underlie variable concentration gradients in growing cells. This study enhances quantitative understanding of MinD oscillations within the cellular environment. Furthermore, it emphasizes the fundamental role of concentration gradients in cellular processes.
Collapse
Affiliation(s)
| | | | - Cheng-Yu Hung
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Männik J, Kar P, Amarasinghe C, Amir A, Männik J. Determining the rate-limiting processes for cell division in Escherichia coli. Nat Commun 2024; 15:9948. [PMID: 39550358 PMCID: PMC11569214 DOI: 10.1038/s41467-024-54242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
A critical cell cycle checkpoint for most bacteria is the onset of constriction when the septal peptidoglycan synthesis starts. According to the current understanding, the arrival of FtsN to midcell triggers this checkpoint in Escherichia coli. Recent structural and in vitro data suggests that recruitment of FtsN to the Z-ring leads to a conformational switch in actin-like FtsA, which links FtsZ protofilaments to the cell membrane and acts as a hub for the late divisome proteins. Here, we investigate this putative pathway using in vivo measurements and stochastic cell cycle modeling at moderately fast growth rates. Quantitatively upregulating protein concentrations and determining the resulting division timings shows that FtsN and FtsA numbers are not rate-limiting for the division in E. coli. However, at higher overexpression levels, they affect divisions: FtsN by accelerating and FtsA by inhibiting them. At the same time, we find that the FtsZ numbers in the cell are one of the rate-limiting factors for cell divisions in E. coli. Altogether, these findings suggest that instead of FtsN, accumulation of FtsZ in the Z-ring is one of the main drivers of the onset of constriction in E. coli at faster growth rates.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Prathitha Kar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02134, USA
| | | | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Poddar SM, Chakraborty J, Gayathri P, Srinivasan R. Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723. Cytoskeleton (Hoboken) 2024. [PMID: 39230425 DOI: 10.1002/cm.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.
Collapse
Affiliation(s)
- Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | | | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
4
|
Pike A, Pietryski C, Deighan P, Kuehner J, Lau D, Seshan A, March PE. A simple, robust, broadly applicable insertion mutagenesis method to create random fluorescent protein: target protein fusions. G3 (BETHESDA, MD.) 2024; 14:jkae036. [PMID: 38366837 PMCID: PMC11075570 DOI: 10.1093/g3journal/jkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E. coli transformation with no further procedures. Plating at high colony density yields fluorescent colonies. Plasmids purified from fluorescent colonies contain random, in-frame fusion proteins into the target gene. The plate screen also results in expressed, stable proteins. A large library of chimeric proteins was produced, which was useful for downstream research. The effect of using different fluorescent proteins was investigated as well as the dependence of the linker sequence between the target and fluorescent protein open reading frames. The utility and simplicity of the method were demonstrated by the fact that it has been employed in an undergraduate biology laboratory class without failure over dozens of class sections. This suggests that the method will be useful in high-impact research at small liberal arts colleges with limited resources. However, in-frame fusion proteins were obtained from 8 different targets suggesting that the method is broadly applicable in any research setting.
Collapse
Affiliation(s)
- Andrew Pike
- Department of Biology, Oberlin College and Conservatory, 173 W. Lorain St, Oberlin, OH 44074, USA
| | - Cassandra Pietryski
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| | - Padraig Deighan
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| | - Jason Kuehner
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| | - Derek Lau
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| | - Anupama Seshan
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| | - Paul E March
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
5
|
Ithurbide S, de Silva RT, Brown HJ, Shinde V, Duggin IG. A vector system for single and tandem expression of cloned genes and multi-colour fluorescent tagging in Haloferax volcanii. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001461. [PMID: 38787390 PMCID: PMC11165654 DOI: 10.1099/mic.0.001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.
Collapse
Affiliation(s)
- Solenne Ithurbide
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Roshali T. de Silva
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hannah J. Brown
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vinaya Shinde
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Iain G. Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
6
|
Yan D, Xue J, Xiao J, Lyu Z, Yang X. Protocol for single-molecule labeling and tracking of bacterial cell division proteins. STAR Protoc 2024; 5:102766. [PMID: 38085639 PMCID: PMC10733747 DOI: 10.1016/j.xpro.2023.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present a protocol for labeling and tracking individual molecules, particularly cell division proteins in live bacterial cells. The protocol encompasses strain construction, single-molecule imaging, trajectory segmentation, and motion property analysis. The protocol enables the identification of distinctive motion states associated with different cell division proteins. Subsequent assessments of the dynamic behaviors of these proteins provide insights into their activities and interactions at the septum during cell division. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021),1 Lyu et al. (2022),2 and Mahone et al. (2024).3.
Collapse
Affiliation(s)
- Di Yan
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinchan Xue
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Xinxing Yang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Wang H, Mi Q, Mao Y, Tan Y, Yang M, Liu W, Wang N, Tian X, Huang L. Streptothricin-F Inhibition of FtsZ Function: A Promising Approach for Controlling Pseudomonas syringae pv. actinidiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2624-2633. [PMID: 38277222 DOI: 10.1021/acs.jafc.3c08474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a significant pathogenic bacterium affecting the kiwifruit industry. This study investigated the target sites of streptothricin-F (ST-F), produced by Streptomyces lavendulae gCLA4. The inhibition of ST-F on Psa was examined by the microscopic structural differences of Psa before and after treatment with ST-F, as well as the interaction between ST-F and cell division-related proteins. The results revealed filamentation of Psa after ST-F treatment, and fluorescence microscopy showed that ST-F inhibited the formation of the Z-ring composed of FtsZ protein. In vitro experiments and molecular docking demonstrated that ST-F can bind to FtsZ with a binding energy of 0.4 μM and inhibit FtsZ's GTP-dependent polymerization reaction. In addition, ST-F does not exert inhibitory effects on cell division in Psa strains overexpressing ftsZ. In conclusion, FtsZ is one of the target sites for ST-F inhibition of Psa, highlighting its potential as a therapeutic target for controlling Psa-induced kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yiru Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yunxiao Tan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Nana Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Life Science, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Xiangrong Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Forestry, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| |
Collapse
|
8
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Rumyantseva NA, Golofeeva DM, Vedyaykin AD. SulA does not sequester FtsZ in Escherichia coli cells during the SOS response. Biochem Biophys Res Commun 2024; 691:149313. [PMID: 38035405 DOI: 10.1016/j.bbrc.2023.149313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In Escherichia coli, the SulA protein is synthesized during the SOS response to arrest cell division. Two possible models of SulA action were proposed: the sequestration and the capping. In current paper, to clarify which model better reflects the SulA effect on cell division upon the SOS response, the FtsZ/SulA ratio was estimated inside cells based on fusion of both FtsZ and SulA to fluorescent protein mNeonGreen. This allowed to quantify this ratio by fluorescence microscopy as well as western blotting; moreover, the effect of SulA on FtsZ distribution patterns in cells was analyzed based on fluorescence microscopy images. The SulA concentration in cells under the SOS response was shown to be several times (about 10) lower than that of FtsZ. The effect of SulA was unequal to corresponding decrease in FtsZ concentration. These results are supported by uneven FtsZ distribution in cells under the SOS response. Together the results of current work indicate that the division arrest by SulA protein in E. coli cells could not be explained by the sequestration model.
Collapse
Affiliation(s)
- Natalia A Rumyantseva
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint-Petersburg, Russia
| | - Daria M Golofeeva
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint-Petersburg, Russia
| | - Alexey D Vedyaykin
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint-Petersburg, Russia.
| |
Collapse
|
10
|
Mahata T, Molshanski-Mor S, Goren MG, Kohen-Manor M, Yosef I, Avram O, Salomon D, Qimron U. Inhibition of host cell division by T5 protein 008 (Hdi). Microbiol Spectr 2023; 11:e0169723. [PMID: 37888989 PMCID: PMC10714956 DOI: 10.1128/spectrum.01697-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE We have identified a novel phage-encoded inhibitor of the major cytoskeletal protein in bacterial division, FtsZ. The inhibition is shown to confer T5 bacteriophage with a growth advantage in dividing hosts. Our studies demonstrate a strategy in bacteriophages to maximize their progeny number by inhibiting escape of one of the daughter cells of an infected bacterium. They further emphasize that FtsZ is a natural target for bacterial growth inhibition.
Collapse
Affiliation(s)
- Tridib Mahata
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Molshanski-Mor
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran G. Goren
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Kohen-Manor
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Richter D, Lakis E, Piel J. Site-specific bioorthogonal protein labelling by tetrazine ligation using endogenous β-amino acid dienophiles. Nat Chem 2023; 15:1422-1430. [PMID: 37400596 PMCID: PMC10533398 DOI: 10.1038/s41557-023-01252-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/24/2023] [Indexed: 07/05/2023]
Abstract
The tetrazine ligation is an inverse electron-demand Diels-Alder reaction widely used for bioorthogonal modifications due to its versatility, site specificity and fast reaction kinetics. A major limitation has been the incorporation of dienophiles in biomolecules and organisms, which relies on externally added reagents. Available methods require the incorporation of tetrazine-reactive groups by enzyme-mediated ligations or unnatural amino acid incorporation. Here we report a tetrazine ligation strategy, termed TyrEx (tyramine excision) cycloaddition, permitting autonomous dienophile generation in bacteria. It utilizes a unique aminopyruvate unit introduced by post-translational protein splicing at a short tag. Tetrazine conjugation occurs rapidly with a rate constant of 0.625 (15) M-1 s-1 and was applied to produce a radiolabel chelator-modified Her2-binding Affibody and intracellular, fluorescently labelled cell division protein FtsZ. We anticipate the labelling strategy to be useful for intracellular studies of proteins, as a stable conjugation method for protein therapeutics, as well as other applications.
Collapse
Affiliation(s)
- Daniel Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Edgars Lakis
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Vashistha H, Jammal-Touma J, Singh K, Rabin Y, Salman H. Bacterial cell-size changes resulting from altering the relative expression of Min proteins. Nat Commun 2023; 14:5710. [PMID: 37714867 PMCID: PMC10504268 DOI: 10.1038/s41467-023-41487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point the ring formation initiates as early as before induction. These results highlight the contribution of Min proteins to cell size control, which may be partially responsible for the size fluctuations observed in bacterial populations, and may clarify how the size difference acquired during asymmetric cell division is offset.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kulveer Singh
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Rabin
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Westlund E, Bergenstråle A, Pokhrel A, Chan H, Skoglund U, Daley DO, Söderström B. Application of nanotags and nanobodies for live cell single-molecule imaging of the Z-ring in Escherichia coli. Curr Genet 2023; 69:153-163. [PMID: 37022498 PMCID: PMC10163087 DOI: 10.1007/s00294-023-01266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Understanding where proteins are localized in a bacterial cell is essential for understanding their function and regulation. This is particularly important for proteins that are involved in cell division, which localize at the division septum and assemble into highly regulated complexes. Current knowledge of these complexes has been greatly facilitated by super-resolution imaging using fluorescent protein fusions. Herein, we demonstrate with FtsZ that single-molecule PALM images can be obtained in-vivo using a genetically fused nanotag (ALFA), and a corresponding nanobody fused to mEos3.2. The methodology presented is applicable to other bacterial proteins.
Collapse
Affiliation(s)
- Emma Westlund
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Axel Bergenstråle
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Alaska Pokhrel
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
14
|
Construction and Characterization of Functional FtsA Sandwich Fusions for Studies of FtsA Localization and Dynamics during Escherichia coli Cell Division. J Bacteriol 2023; 205:e0037322. [PMID: 36622232 PMCID: PMC9879108 DOI: 10.1128/jb.00373-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
FtsA, a homolog of actin, is essential for cell division of Escherichia coli and is widely conserved among many bacteria. FtsA helps to tether polymers of the bacterial tubulin homolog FtsZ to the cytoplasmic membrane as part of the cytokinetic Z ring. GFP fusions to FtsA have illuminated FtsA's localization in live E. coli, but these fusions have not been fully functional and required the presence of the native FtsA. Here, we characterize "sandwich" fusions of E. coli FtsA to either mCherry or msfGFP that are functional for cell division and exhibit fluorescent rings at midcell that persist throughout constriction until cell separation. FtsA within the Z ring moved circumferentially like FtsZ, and FtsA outside the rings formed highly dynamic patches at the membrane. Notably, both FtsA-mCherrysw and FtsA-msfGFPsw acted as mild hypermorphs, as they were not toxic when overproduced, bypassed the essential cell division protein ZipA, and suppressed several thermosensitive fts alleles, although not as effectively as the prototypical hypermorph FtsA*. Overall, our results indicate that fluorescent FtsA sandwich fusions can be used as the sole FtsA in E. coli and thus should shed new light on FtsA dynamics during the cell division cycle in this model system. IMPORTANCE FtsA is a key conserved cell division protein, and E. coli is the most well studied model system for bacterial cell division. One obstacle to full understanding of this process is the lack of a fully functional fluorescent reporter for FtsA in vivo. Here, we describe a fluorescent fusion to E. coli FtsA that promotes efficient cell division in the absence of the native FtsA and can be used to monitor FtsA dynamics during cell division.
Collapse
|
15
|
Porter KJ, Cao L, Osteryoung KW. Dynamics of the Synechococcus elongatus cytoskeletal GTPase FtsZ yields mechanistic and evolutionary insight into cyanobacterial and chloroplast FtsZs. J Biol Chem 2023; 299:102917. [PMID: 36657643 PMCID: PMC9975276 DOI: 10.1016/j.jbc.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The division of cyanobacteria and their chloroplast descendants is orchestrated by filamenting temperature-sensitive Z (FtsZ), a cytoskeletal GTPase that polymerizes into protofilaments that form a "Z ring" at the division site. The Z ring has both a scaffolding function for division-complex assembly and a GTPase-dependent contractile function that drives cell or organelle constriction. A single FtsZ performs these functions in bacteria, whereas in chloroplasts, they are performed by two copolymerizing FtsZs, called AtFtsZ2 and AtFtsZ1 in Arabidopsis thaliana, which promote protofilament stability and dynamics, respectively. To probe the differences between cyanobacterial and chloroplast FtsZs, we used light scattering to characterize the in vitro protofilament dynamics of FtsZ from the cyanobacterium Synechococcus elongatus PCC 7942 (SeFtsZ) and investigate how coassembly of AtFtsZ2 or AtFtsZ1 with SeFtsZ influences overall dynamics. SeFtsZ protofilaments assembled rapidly and began disassembling before GTP depletion, whereas AtFtsZ2 protofilaments were far more stable, persisting beyond GTP depletion. Coassembled SeFtsZ-AtFtsZ2 protofilaments began disassembling before GTP depletion, similar to SeFtsZ. In contrast, AtFtsZ1 did not alter disassembly onset when coassembled with SeFtsZ, but fluorescence recovery after photobleaching analysis showed it increased the turnover of SeFtsZ subunits from SeFtsZ-AtFtsZ1 protofilaments, mirroring its effect upon coassembly with AtFtsZ2. Comparisons of our findings with previous work revealed consistent differences between cyanobacterial and chloroplast FtsZ dynamics and suggest that the scaffolding and dynamics-promoting functions were partially separated during evolution of two chloroplast FtsZs from their cyanobacterial predecessor. They also suggest that chloroplasts may have evolved a mechanism distinct from that in cyanobacteria for promoting FtsZ protofilament dynamics.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
16
|
Wang D, Zhu L, Zhen X, Yang D, Li C, Chen Y, Wang H, Qu Y, Liu X, Yin Y, Gu H, Xu L, Wan C, Wang Y, Ouyang S, Shen X. A secreted effector with a dual role as a toxin and as a transcriptional factor. Nat Commun 2022; 13:7779. [PMID: 36522324 PMCID: PMC9755527 DOI: 10.1038/s41467-022-35522-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria have evolved multiple secretion systems for delivering effector proteins into the cytosol of neighboring cells, but the roles of many of these effectors remain unknown. Here, we show that Yersinia pseudotuberculosis secretes an effector, CccR, that can act both as a toxin and as a transcriptional factor. The effector is secreted by a type VI secretion system (T6SS) and can enter nearby cells of the same species and other species (such as Escherichia coli) via cell-cell contact and in a contact-independent manner. CccR contains an N-terminal FIC domain and a C-terminal DNA-binding domain. In Y. pseudotuberculosis cells, CccR inhibits its own expression by binding through its DNA-binding domain to the cccR promoter, and affects the expression of other genes through unclear mechanisms. In E. coli cells, the FIC domain of CccR AMPylates the cell division protein FtsZ, inducing cell filamentation and growth arrest. Thus, our results indicate that CccR has a dual role, modulating gene expression in neighboring cells of the same species, and inhibiting the growth of competitors.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Daoyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yating Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huannan Wang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanling Yin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanxing Wan
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat Commun 2022; 13:6098. [PMID: 36243816 PMCID: PMC9569390 DOI: 10.1038/s41467-022-33679-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Constructing a minimal machinery for autonomous self-division of synthetic cells is a major goal of bottom-up synthetic biology. One paradigm has been the E. coli divisome, with the MinCDE protein system guiding assembly and positioning of a presumably contractile ring based on FtsZ and its membrane adaptor FtsA. Here, we demonstrate the full in vitro reconstitution of this machinery consisting of five proteins within lipid vesicles, allowing to observe the following sequence of events in real time: 1) Assembly of an isotropic filamentous FtsZ network, 2) its condensation into a ring-like structure, along with pole-to-pole mode selection of Min oscillations resulting in equatorial positioning, and 3) onset of ring constriction, deforming the vesicles from spherical shape. Besides demonstrating these essential features, we highlight the importance of decisive experimental factors, such as macromolecular crowding. Our results provide an exceptional showcase of the emergence of cell division in a minimal system, and may represent a step towards developing a synthetic cell.
Collapse
|
18
|
Dhanoa GK, Kushnir I, Qimron U, Roper DI, Sagona AP. Investigating the effect of bacteriophages on bacterial FtsZ localisation. Front Cell Infect Microbiol 2022; 12:863712. [PMID: 35967845 PMCID: PMC9372555 DOI: 10.3389/fcimb.2022.863712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is one of the most common Gram-negative pathogens and is responsible for infection leading to neonatal meningitis and sepsis. The FtsZ protein is a bacterial tubulin homolog required for cell division in most species, including E. coli. Several agents that block cell division have been shown to mislocalise FtsZ, including the bacteriophage λ-encoded Kil peptide, resulting in defective cell division and a filamentous phenotype, making FtsZ an attractive target for antimicrobials. In this study, we have used an in vitro meningitis model system for studying the effect of bacteriophages on FtsZ using fluorescent E. coli EV36/FtsZ-mCherry and K12/FtsZ-mNeon strains. We show localisation of FtsZ to the bacterial cell midbody as a single ring during normal growth conditions, and mislocalisation of FtsZ producing filamentous multi-ringed bacterial cells upon addition of the known inhibitor Kil peptide. We also show that when bacteriophages K1F-GFP and T7-mCherry were applied to their respective host strains, these phages can inhibit FtsZ and block bacterial cell division leading to a filamentous multi-ringed phenotype, potentially delaying lysis and increasing progeny number. This occurs in the exponential growth phase, as actively dividing hosts are needed. We present that ZapA protein is needed for phage inhibition by showing a phenotype recovery with a ZapA mutant strain, and we show that FtsI protein is also mislocalised upon phage infection. Finally, we show that the T7 peptide gp0.4 is responsible for the inhibition of FtsZ in K12 strains by observing a phenotype recovery with a T7Δ0.4 mutant.
Collapse
Affiliation(s)
- Gurneet K. Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Inbar Kushnir
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P. Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Antonia P. Sagona,
| |
Collapse
|
19
|
Recruitment of the TolA protein to cell constriction sites in Escherichia coli via three separate mechanisms, and a critical role for FtsWI activity in recruitment of both TolA and TolQ. J Bacteriol 2021; 204:e0046421. [PMID: 34748387 DOI: 10.1128/jb.00464-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli, the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.
Collapse
|
20
|
Sun J, Shi H, Huang KC. Hyperosmotic Shock Transiently Accelerates Constriction Rate in Escherichia coli. Front Microbiol 2021; 12:718600. [PMID: 34489908 PMCID: PMC8418109 DOI: 10.3389/fmicb.2021.718600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial cells in their natural environments encounter rapid and large changes in external osmolality. For instance, enteric bacteria such as Escherichia coli experience a rapid decrease when they exit from host intestines. Changes in osmolality alter the mechanical load on the cell envelope, and previous studies have shown that large osmotic shocks can slow down bacterial growth and impact cytoplasmic diffusion. However, it remains unclear how cells maintain envelope integrity and regulate envelope synthesis in response to osmotic shocks. In this study, we developed an agarose pad-based protocol to assay envelope stiffness by measuring population-averaged cell length before and after a hyperosmotic shock. Pad-based measurements exhibited an apparently larger length change compared with single-cell dynamics in a microfluidic device, which we found was quantitatively explained by a transient increase in division rate after the shock. Inhibiting cell division led to consistent measurements between agarose pad-based and microfluidic measurements. Directly after hyperosmotic shock, FtsZ concentration and Z-ring intensity increased, and the rate of septum constriction increased. These findings establish an agarose pad-based protocol for quantifying cell envelope stiffness, and demonstrate that mechanical perturbations can have profound effects on bacterial physiology.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
21
|
Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat Microbiol 2021; 6:594-605. [PMID: 33903747 PMCID: PMC7611241 DOI: 10.1038/s41564-021-00894-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.
Collapse
|
22
|
Barton B, Grinnell A, Morgenstein RM. Disruption of the MreB Elongasome Is Overcome by Mutations in the Tricarboxylic Acid Cycle. Front Microbiol 2021; 12:664281. [PMID: 33968001 PMCID: PMC8102728 DOI: 10.3389/fmicb.2021.664281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
The bacterial actin homolog, MreB, is highly conserved among rod-shaped bacteria and essential for growth under normal growth conditions. MreB directs the localization of cell wall synthesis and loss of MreB results in round cells and death. Using the MreB depolymerizing drug, A22, we show that changes to central metabolism through deletion of malate dehydrogenase from the tricarboxylic acid (TCA) cycle results in cells with an increased tolerance to A22. We hypothesize that deletion of malate dehydrogenase leads to the upregulation of gluconeogenesis resulting in an increase in cell wall precursors. Consistent with this idea, metabolite analysis revealed that malate dehydrogenase (mdh) deletion cells possess elevated levels of several glycolysis/gluconeogenesis compounds and the cell wall precursor, uridine diphosphate N-acetylglucosamine (UDP-NAG). In agreement with these results, the increased A22 resistance phenotype can be recapitulated through the addition of glucose to the media. Finally, we show that this increase in antibiotic tolerance is not specific to A22 but also applies to the cell wall-targeting antibiotic, mecillinam.
Collapse
Affiliation(s)
- Brody Barton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Addison Grinnell
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Randy M Morgenstein
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
23
|
Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments. Nat Commun 2021; 12:1975. [PMID: 33785742 PMCID: PMC8009875 DOI: 10.1038/s41467-021-22092-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
The steady-state size of bacterial cells correlates with nutrient-determined growth rate. Here, we explore how rod-shaped bacterial cells regulate their morphology during rapid environmental changes. We quantify cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation. We find that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V), which are conserved across genetic and chemical perturbations as well as across species and growth temperatures. A mathematical model with a single fitting parameter (the time delay between surface and volume synthesis) is quantitatively consistent with our SA/V experimental observations. The model supports that this time delay is due to differential expression of volume and surface-related genes, and that the first division after dilution occurs at a tightly controlled SA/V. Our minimal model thus provides insight into the connections between bacterial growth rate and cell shape in dynamic environments. Bacterial cells actively change their size and shape in response to external environments. Here, Shi et al. explore how cells regulate their morphology during rapid environmental changes, showing that the characteristic dynamics of surface area-to-volume ratio are conserved across genetic and chemical perturbations, as well as across species and growth temperatures.
Collapse
|
24
|
The Long Linker Region of Telomere-Binding Protein TRF2 Is Responsible for Interactions with Lamins. Int J Mol Sci 2021; 22:ijms22073293. [PMID: 33804854 PMCID: PMC8036907 DOI: 10.3390/ijms22073293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere-binding factor 2 (TRF2) is part of the shelterin protein complex found at chromosome ends. Lamin A/C interacts with TRF2 and influences telomere position. TRF2 has an intrinsically disordered region between the ordered dimerization and DNA-binding domains. This domain is referred to as the long linker region of TRF2, or udTRF2. We suggest that udTRF2 might be involved in the interaction between TRF2 and lamins. The recombinant protein corresponding to the udTRF2 region along with polyclonal antibodies against this region were used in co-immunoprecipitation with purified lamina and nuclear extracts. Co-immunoprecipitation followed by Western blots and mass spectrometry indicated that udTRF2 interacts with lamins, preferably lamins A/C. The interaction did not involve any lamin-associated proteins, was not dependent on the post-translation modification of lamins, nor did it require their higher-order assembly. Besides lamins, a number of other udTRF2-interacting proteins were identified by mass spectrometry, including several heterogeneous nuclear ribonucleoproteins (hnRNP A2/B1, hnRNPA1, hnRNP A3, hnRNP K, hnRNP L, hnRNP M), splicing factors (SFPQ, NONO, SRSF1, and others), helicases (DDX5, DHX9, and Eif4a3l1), topoisomerase I, and heat shock protein 71, amongst others. Some of the identified interactors are known to be involved in telomere biology; the roles of the others remain to be investigated. Thus, the long linker region of TRF2 (udTRF2) is a regulatory domain responsible for the association between TRF2 and lamins and is involved in interactions with other proteins.
Collapse
|
25
|
Overproduction of a Dominant Mutant of the Conserved Era GTPase Inhibits Cell Division in Escherichia coli. J Bacteriol 2020; 202:JB.00342-20. [PMID: 32817092 DOI: 10.1128/jb.00342-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Cell growth and division are coordinated, ensuring homeostasis under any given growth condition, with division occurring as cell mass doubles. The signals and controlling circuit(s) between growth and division are not well understood; however, it is known in Escherichia coli that the essential GTPase Era, which is growth rate regulated, coordinates the two functions and may be a checkpoint regulator of both. We have isolated a mutant of Era that separates its effect on growth and division. When overproduced, the mutant protein Era647 is dominant to wild-type Era and blocks division, causing cells to filament. Multicopy suppressors that prevent the filamentation phenotype of Era647 either increase the expression of FtsZ or decrease the expression of the Era647 protein. Excess Era647 induces complete delocalization of Z rings, providing an explanation for why Era647 induces filamentation, but this effect is probably not due to direct interaction between Era647 and FtsZ. The hypermorphic ftsZ* allele at the native locus can suppress the effects of Era647 overproduction, indicating that extra FtsZ is not required for the suppression, but another hypermorphic allele that accelerates cell division through periplasmic signaling, ftsL*, cannot. Together, these results suggest that Era647 blocks cell division by destabilizing the Z ring.IMPORTANCE All cells need to coordinate their growth and division, and small GTPases that are conserved throughout life play a key role in this regulation. One of these, Era, provides an essential function in the assembly of the 30S ribosomal subunit in Escherichia coli, but its role in regulating E. coli cell division is much less well understood. Here, we characterize a novel dominant negative mutant of Era (Era647) that uncouples these two activities when overproduced; it inhibits cell division by disrupting assembly of the Z ring, without significantly affecting ribosome production. The unique properties of this mutant should help to elucidate how Era regulates cell division and coordinates this process with ribosome biogenesis.
Collapse
|
26
|
Montecinos-Franjola F, Bauer BL, Mears JA, Ramachandran R. GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci Rep 2020; 10:14777. [PMID: 32901052 PMCID: PMC7479153 DOI: 10.1038/s41598-020-71655-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Green fluorescent protein (GFP)-tagging is the prevalent strategy to monitor protein dynamics in living cells. However, the consequences of appending the bulky GFP moiety to the protein of interest are rarely investigated. Here, using a powerful combination of quantitative fluorescence spectroscopic and imaging techniques, we have examined the oligomerization dynamics of the GFP-tagged mitochondrial fission GTPase dynamin-related protein 1 (Drp1) both in vitro and in vivo. We find that GFP-tagged Drp1 exhibits impaired oligomerization equilibria in solution that corresponds to a greatly diminished cooperative GTPase activity in comparison to native Drp1. Consequently, GFP-tagged Drp1 constitutes aberrantly stable, GTP-resistant supramolecular assemblies both in vitro and in vivo, neither of which reflects a more dynamic native Drp1 oligomerization state. Indeed, GFP-tagged Drp1 is detected more frequently per unit length over mitochondria in Drp1-null mouse embryonic fibroblasts (MEFs) compared to wild-type (wt) MEFs, indicating that the drastically reduced GTP turnover restricts oligomer disassembly from the mitochondrial surface relative to mixed oligomers comprising native and GFP-tagged Drp1. Yet, GFP-tagged Drp1 retains the capacity to mediate membrane constriction in vitro and mitochondrial division in vivo. These findings suggest that instead of robust assembly-disassembly dynamics, persistent Drp1 higher-order oligomerization over membranes is sufficient for mitochondrial fission.
Collapse
Affiliation(s)
- Felipe Montecinos-Franjola
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
27
|
Khare S, Hsin J, Sorto NA, Nepomuceno GM, Shaw JT, Shi H, Huang KC. FtsZ-Independent Mechanism of Division Inhibition by the Small Molecule PC190723 in Escherichia coli. ACTA ACUST UNITED AC 2020; 3:e1900021. [PMID: 32648693 DOI: 10.1002/adbi.201900021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Indexed: 11/12/2022]
Abstract
While cell division is a critical process in cellular proliferation, very few antibiotics have been identified that target the bacterial cell-division machinery. Recent studies have shown that the small molecule PC190723 inhibits cell division in several Gram-positive bacteria, with a hypothesized mechanism of action involving direct targeting of the tubulin homolog FtsZ, which is essential for division in virtually all bacterial species. Here, it is shown that PC190723 also inhibits cell division in the Gram-negative bacterium Escherichia coli if the outer membrane permeability barrier is compromised genetically or chemically. The results show that the equivalent FtsZ mutations conferring PC190723 resistance in Staphylococcus aureus do not protect E. coli against PC190723, and that suppressors of PC190723 sensitivity in E. coli, which do not generically decrease outer membrane permeability, do not map to FtsZ or other division proteins. These suppressors display a wide range of morphological and growth phenotypes, and one exhibits a death phenotype in the stationary phase similar to that of a mutant with disrupted lipid homeostasis. Finally, a complementing FtsZ-msfGFP fusion is used to show that PC190723 does not affect the Z-ring structure. Taken together, the findings suggest that PC190723 inhibits growth and division in E. coli without targeting FtsZ. This study highlights the importance of utilizing a combination of genetic, chemical, and single-cell approaches to dissect the mechanisms of action of new antibiotics, which are not necessarily conserved across bacterial species.
Collapse
Affiliation(s)
- Somya Khare
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jen Hsin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nohemy A Sorto
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | | | - Jared T Shaw
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
28
|
A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan. Cell Rep 2020; 31:107813. [DOI: 10.1016/j.celrep.2020.107813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
|
29
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
30
|
Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S, Jacobs-Wagner C. Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria. Cell 2020; 177:1632-1648.e20. [PMID: 31150626 DOI: 10.1016/j.cell.2019.05.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023]
Abstract
The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.
Collapse
Affiliation(s)
- William T Gray
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yingjie Xiang
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sangjin Kim
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Dissecting the Functional Contributions of the Intrinsically Disordered C-terminal Tail of Bacillus subtilis FtsZ. J Mol Biol 2020; 432:3205-3221. [PMID: 32198113 DOI: 10.1016/j.jmb.2020.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023]
Abstract
FtsZ is a bacterial GTPase that is central to the spatial and temporal control of cell division. It is a filament-forming enzyme that encompasses a well-folded core domain and a disordered C-terminal tail (CTT). The CTT is essential for ensuring proper assembly of the cytokinetic ring, and its deletion leads to mis-localization of FtsZ, aberrant assembly, and cell death. In this work, we dissect the contributions of modules within the disordered CTT to assembly and enzymatic activity of Bacillus subtilis FtsZ (Bs-FtsZ). The CTT features a hypervariable C-terminal linker (CTL) and a conserved C-terminal peptide (CTP). Our in vitro studies show that the CTL weakens the driving forces for forming single-stranded active polymers and suppresses lateral associations of these polymers, whereas the CTP promotes the formation of alternative assemblies. Accordingly, in full-length Bs-FtsZ, the CTL acts as a spacer that spatially separates the CTP sticker from the core, thus ensuring filament formation through core-driven polymerization and lateral associations through CTP-mediated interactions. We also find that the CTL weakens GTP binding while enhancing the catalytic rate, whereas the CTP has opposite effects. The joint contributions of the CTL and CTP make Bs-FtsZ, an enzyme that is only half as efficient as a truncated version that lacks the CTT. Overall, our data suggest that the CTT acts as an auto-regulator of Bs-FtsZ assembly and as an auto-inhibitor of enzymatic activity. Based on our results, we propose hypotheses regarding the hypervariability of CTLs and compare FtsZs to other bacterial proteins with tethered IDRs.
Collapse
|
32
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Quantitative analysis of Lactobacillus delbrueckii subsp. bulgaricus cell division and death using fluorescent dye tracking. J Microbiol Methods 2020; 169:105832. [DOI: 10.1016/j.mimet.2020.105832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
|
33
|
Transient Membrane-Linked FtsZ Assemblies Precede Z-Ring Formation in Escherichia coli. Curr Biol 2020; 30:499-508.e6. [PMID: 31978334 DOI: 10.1016/j.cub.2019.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
During the early stages of cytokinesis, FtsZ protofilaments form a ring-like structure, the Z-ring, in most bacterial species. This cytoskeletal scaffold recruits downstream proteins essential for septal cell wall synthesis. Despite progress in understanding the dynamic nature of the Z-ring and its role in coordinating septal cell wall synthesis, the early stages of protofilament formation and subsequent assembly into the Z-ring are still not understood. Here we investigate a sequence of assembly steps that lead to the formation of the Z-ring in Escherichia coli using high temporal and spatial resolution imaging. Our data show that formation of the Z-ring is preceded by transient membrane-linked FtsZ assemblies. These assemblies form after attachment of short cytosolic protofilaments, which we estimate to be less than 20 monomers long, to the membrane. The attachments occur at random locations along the length of the cell. The filaments treadmill and show periods of rapid growth and shrinkage. Their dynamic properties imply that protofilaments are bundled in these assemblies. Furthermore, we establish that the size of assemblies is sensitively controlled by the availability of FtsZ molecules and by the presence of ZapA proteins. The latter has been implicated in cross-linking the protofilaments. The likely function of these dynamic FtsZ assemblies is to sample the cell surface for the proper location for the Z-ring.
Collapse
|
34
|
Si F, Le Treut G, Sauls JT, Vadia S, Levin PA, Jun S. Mechanistic Origin of Cell-Size Control and Homeostasis in Bacteria. Curr Biol 2019; 29:1760-1770.e7. [PMID: 31104932 DOI: 10.1016/j.cub.2019.04.062] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Evolutionarily divergent bacteria share a common phenomenological strategy for cell-size homeostasis under steady-state conditions. In the presence of inherent physiological stochasticity, cells following this "adder" principle gradually return to their steady-state size by adding a constant volume between birth and division, regardless of their size at birth. However, the mechanism of the adder has been unknown despite intense efforts. In this work, we show that the adder is a direct consequence of two general processes in biology: (1) threshold-accumulation of initiators and precursors required for cell division to a respective fixed number-and (2) balanced biosynthesis-maintenance of their production proportional to volume growth. This mechanism is naturally robust to static growth inhibition but also allows us to "reprogram" cell-size homeostasis in a quantitatively predictive manner in both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. By generating dynamic oscillations in the concentration of the division protein FtsZ, we were able to oscillate cell size at division and systematically break the adder. In contrast, periodic induction of replication initiator protein DnaA caused oscillations in cell size at initiation but did not alter division size or the adder. Finally, we were able to restore the adder phenotype in slow-growing E. coli, the only known steady-state growth condition wherein E. coli significantly deviates from the adder, by repressing active degradation of division proteins. Together, these results show that cell division and replication initiation are independently controlled at the gene-expression level and that division processes exclusively drive cell-size homeostasis in bacteria. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Fangwei Si
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guillaume Le Treut
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - John T Sauls
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen Vadia
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Suckjoon Jun
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Osawa M, Erickson HP. L form bacteria growth in low-osmolality medium. MICROBIOLOGY-SGM 2019; 165:842-851. [PMID: 30958258 DOI: 10.1099/mic.0.000799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
L form bacteria do not have a cell wall and are thought to require medium of high osmolality for survival and growth. In this study we tested whether L forms can adapt to growth in lower osmolality medium. We first tested the Escherichia coli L form NC-7, generated in 1987 by Onoda following heavy mutagenesis. We started with growth in osmoprotective medium (~ 764 mOsm kg-1) and diluted it stepwise into medium of lower osmolality. At each step the cells were given up to 10 days to adapt and begin growing, during which they apparently acquired multiple new mutations. We eventually obtained a strain that could grow in LB containing only 34 mM NaCl, 137 mOsm kg-1 total. NC-7 showed a variety of morphologies including spherical, angular and cylindrical cells. Some cells extruded a bud that appeared to be the outer membrane enclosing an enlarged periplasm. Additional evidence for an outer membrane was sensitivity of the cells to the compound CHIR-090, which blocks the LPS pathway, and to EDTA which chelates Mg that may stabilize and rigidify the LPS in the outer membrane. We suggest that the mechanical rigidity of the outer membrane enables the angular shapes and provides some resistance to turgor in the low-osmolality media. Interestingly, cells that had an elongated shape underwent division shortly after addition of EDTA, suggesting that reducing the rigidity of the outer membrane under some turgor pressure induces division before lysis occurs. We then tested a well-characterized L form from Bacillus subtilis. L form strain LR-2L grew well with sucrose at 1246 and 791 mOsm kg-1. It survived when diluted directly into 440 mOsm kg-1 but grew poorly, achieving only 1/10 to 1/5 the density. The B. subtilis L form apparently adapted to this direct dilution by rapidly reducing cytoplasmic osmolality.
Collapse
Affiliation(s)
- Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
37
|
Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA. J Bacteriol 2019; 201:JB.00579-18. [PMID: 30478085 DOI: 10.1128/jb.00579-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
The initiation of Escherichia coli cell division requires three proteins, FtsZ, FtsA, and ZipA, which assemble in a dynamic ring-like structure at midcell. Along with the transmembrane protein ZipA, the actin-like FtsA helps to tether treadmilling polymers of tubulin-like FtsZ to the membrane. In addition to forming homo-oligomers, FtsA and ZipA interact directly with the C-terminal conserved domain of FtsZ. Gain-of-function mutants of FtsA are deficient in forming oligomers and can bypass the need for ZipA, suggesting that ZipA may normally function to disrupt FtsA oligomers, although no direct interaction between FtsA and ZipA has been reported. Here, we use in vivo cross-linking to show that FtsA and ZipA indeed interact directly. We identify the exposed surface of FtsA helix 7, which also participates in binding to ATP through its internal surface, as a key interface needed for the interaction with ZipA. This interaction suggests that FtsZ's membrane tethers may regulate each other's activities.IMPORTANCE To divide, most bacteria first construct a protein machine at the plane of division and then recruit the machinery that will synthesize the division septum. In Escherichia coli, this first stage involves the assembly of FtsZ polymers at midcell, which directly bind to membrane-associated proteins FtsA and ZipA to form a discontinuous ring structure. Although FtsZ directly binds both FtsA and ZipA, it is unclear why FtsZ requires two separate membrane tethers. Here, we uncover a new direct interaction between the tethers, which involves a helix within FtsA that is adjacent to its ATP binding pocket. Our findings imply that in addition to their known roles as FtsZ membrane anchors, FtsA and ZipA may regulate each other's structure and function.
Collapse
|
38
|
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, Kelly KA, Filip SK, Goo YA, Eng JK, Allaire M, Veesler D, Wiggins PA, Peterson SB, Mougous JD. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 2018; 175:1380-1392.e14. [PMID: 30343895 PMCID: PMC6239978 DOI: 10.1016/j.cell.2018.09.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dustin E Bosch
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Shuo Huang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine A Kelly
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Jimmy K Eng
- Proteomics Resource, University of Washington, Seattle, WA 98195, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Veesler
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul A Wiggins
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Physics, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Sekar K, Rusconi R, Sauls JT, Fuhrer T, Noor E, Nguyen J, Fernandez VI, Buffing MF, Berney M, Jun S, Stocker R, Sauer U. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol Syst Biol 2018; 14:e8623. [PMID: 30397005 PMCID: PMC6217170 DOI: 10.15252/msb.20188623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
In natural environments, microbes are typically non-dividing and gauge when nutrients permit division. Current models are phenomenological and specific to nutrient-rich, exponentially growing cells, thus cannot predict the first division under limiting nutrient availability. To assess this regime, we supplied starving Escherichia coli with glucose pulses at increasing frequencies. Real-time metabolomics and microfluidic single-cell microscopy revealed unexpected, rapid protein, and nucleic acid synthesis already from minuscule glucose pulses in non-dividing cells. Additionally, the lag time to first division shortened as pulsing frequency increased. We pinpointed division timing and dependence on nutrient frequency to the changing abundance of the division protein FtsZ. A dynamic, mechanistic model quantitatively relates lag time to FtsZ synthesis from nutrient pulses and FtsZ protease-dependent degradation. Lag time changed in model-congruent manners, when we experimentally modulated the synthesis or degradation of FtsZ. Thus, limiting abundance of FtsZ can quantitatively predict timing of the first cell division.
Collapse
Affiliation(s)
- Karthik Sekar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Roberto Rusconi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - John T Sauls
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tobias Fuhrer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Elad Noor
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jen Nguyen
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Marieke F Buffing
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Suckjoon Jun
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Section of Molecular Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, USA
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Männik J, Walker BE, Männik J. Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth conditions. Mol Microbiol 2018; 110:1030-1044. [PMID: 30230648 DOI: 10.1111/mmi.14135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
FtsZ is the key regulator of bacterial cell division. It initiates division by forming a dynamic ring-like structure, the Z-ring, at the mid-cell. What triggers the formation of the Z-ring during the cell cycle is poorly understood. In Escherichia coli, the common view is that FtsZ concentration is constant throughout its doubling time and therefore regulation of assembly is controlled by some yet-to-be-identified protein-protein interactions. Using a newly developed functional, fluorescent FtsZ reporter, we performed a quantitative analysis of the FtsZ concentration throughout the cell cycle under slow growth conditions. In contrast to the common expectation, we show that FtsZ concentrations vary in a cell cycle-dependent manner, and that upregulation of FtsZ synthesis correlates with the formation of the Z-ring. The first half of the cell cycle shows an approximately fourfold upregulation of FtsZ synthesis, followed by its rapid degradation by ClpXP protease in the last 10% of the cell cycle. The initiation of rapid degradation coincides with the dissociation of FtsZ from the septum. Altogether, our data suggest that the Z-ring formation in slow growth conditions in E. coli is partially controlled by a regulatory sequence wherein upregulation of an essential cell cycle factor is followed by its degradation.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Bryant E Walker
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
41
|
Söderström B, Badrutdinov A, Chan H, Skoglund U. Cell shape-independent FtsZ dynamics in synthetically remodeled bacterial cells. Nat Commun 2018; 9:4323. [PMID: 30337533 PMCID: PMC6193997 DOI: 10.1038/s41467-018-06887-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/26/2022] Open
Abstract
FtsZ is the main regulator of bacterial cell division. It has been implicated in acting as a scaffolding protein for other division proteins, a force generator during constriction, and more recently, as an active regulator of septal cell wall production. FtsZ assembles into a heterogeneous structure coined the Z-ring due to its resemblance to a ring confined by the midcell geometry. Here, to establish a framework for examining geometrical influences on proper Z-ring assembly and dynamics, we sculpted Escherichia coli cells into unnatural shapes using division- and cell wall-specific inhibitors in a micro-fabrication scheme. This approach allowed us to examine FtsZ behavior in engineered Z-squares and Z-hearts. We use stimulated emission depletion (STED) nanoscopy to show that FtsZ clusters in sculpted cells maintain the same dimensions as their wild-type counterparts. Based on our results, we propose that the underlying membrane geometry is not a deciding factor for FtsZ cluster maintenance and dynamics in vivo. The FtsZ protein assembles into a structure known as ‘Z-ring’ at midcell for bacterial cell division. Here, Söderström et al. show that Z-ring assembly and dynamics in E. coli cells with unnatural shapes, such as squares and hearts, are generally similar to those observed in cells with normal shape.
Collapse
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan.
| | - Alexander Badrutdinov
- Mechanical Engineering and Microfabrication Support Section, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| | - Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495, Okinawa, Japan
| |
Collapse
|
42
|
Schoenemann KM, Krupka M, Rowlett VW, Distelhorst SL, Hu B, Margolin W. Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling. Mol Microbiol 2018; 109:676-693. [PMID: 29995995 DOI: 10.1111/mmi.14069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2018] [Indexed: 01/19/2023]
Abstract
Escherichia coli requires FtsZ, FtsA and ZipA proteins for early stages of cell division, the latter two tethering FtsZ polymers to the cytoplasmic membrane. Hypermorphic mutants of FtsA such as FtsA* (R286W) map to the FtsA self-interaction interface and can bypass the need for ZipA. Purified FtsA forms closed minirings on lipid monolayers that antagonize bundling of FtsZ protofilaments, whereas FtsA* forms smaller oligomeric arcs that enable bundling. Here, we examined three additional FtsA*-like mutant proteins for their ability to form oligomers on lipid monolayers and bundle FtsZ. Surprisingly, all three formed distinct structures ranging from mostly arcs (T249M), a mixture of minirings, arcs and straight filaments (Y139D) or short straight double filaments (G50E). All three could form filament sheets at higher concentrations with added ATP. Despite forming these diverse structures, all three mutant proteins acted like FtsA* to enable FtsZ protofilament bundling on lipid monolayers. Synthesis of the FtsA*-like proteins in vivo suppressed the toxic effects of a bundling-defective FtsZ, exacerbated effects of a hyper-bundled FtsZ, and rescued some thermosensitive cell division alleles. Together, the data suggest that conversion of FtsA minirings into any type of non-miniring oligomer can promote progression of cytokinesis through FtsZ bundling and other mechanisms.
Collapse
Affiliation(s)
- Kara M Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Steven L Distelhorst
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| |
Collapse
|
43
|
Jorgenson MA, Young KD. YtfB, an OapA Domain-Containing Protein, Is a New Cell Division Protein in Escherichia coli. J Bacteriol 2018; 200:e00046-18. [PMID: 29686141 PMCID: PMC5996693 DOI: 10.1128/jb.00046-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli, an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases.IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
44
|
Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. mBio 2018; 9:mBio.01008-18. [PMID: 29921670 PMCID: PMC6016244 DOI: 10.1128/mbio.01008-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZipA is an essential cell division protein in Escherichia coli. Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo. Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro. Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro. In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
Collapse
|
45
|
Guan F, Yu J, Yu J, Liu Y, Li Y, Feng XH, Huang KC, Chang Z, Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. eLife 2018; 7:35578. [PMID: 29889022 PMCID: PMC6050046 DOI: 10.7554/elife.35578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.
Collapse
Affiliation(s)
- Fenghui Guan
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Jiayu Yu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Yu
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Yang Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying Li
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Zengyi Chang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Ye
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| |
Collapse
|
46
|
Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 2018; 554:528-532. [PMID: 29443967 PMCID: PMC5823765 DOI: 10.1038/nature25506] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
47
|
TerBush AD, MacCready JS, Chen C, Ducat DC, Osteryoung KW. Conserved Dynamics of Chloroplast Cytoskeletal FtsZ Proteins Across Photosynthetic Lineages. PLANT PHYSIOLOGY 2018; 176:295-306. [PMID: 28814573 PMCID: PMC5761766 DOI: 10.1104/pp.17.00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 05/08/2023]
Abstract
The cytoskeletal Filamenting temperature-sensitive Z (FtsZ) ring is critical for cell division in bacteria and chloroplast division in photosynthetic eukaryotes. While bacterial FtsZ rings are composed of a single FtsZ, except in the basal glaucophytes, chloroplast division involves two heteropolymer-forming FtsZ isoforms: FtsZ1 and FtsZ2 in the green lineage and FtsZA and FtsZB in red algae. FtsZ1 and FtsZB probably arose by duplication of the more ancestral FtsZ2 and FtsZA, respectively. We expressed fluorescent fusions of FtsZ from diverse photosynthetic organisms in a heterologous system to compare their intrinsic assembly and dynamic properties. FtsZ2 and FtsZA filaments were morphologically distinct from FtsZ1 and FtsZB filaments. When coexpressed, FtsZ pairs from plants and algae colocalized, consistent with heteropolymerization. Fluorescence recovery after photobleaching experiments demonstrated that subunit exchange was greater from FtsZ1 and FtsZB filaments than from FtsZ2 and FtsZA filaments and that FtsZ1 and FtsZB increased turnover of FtsZ2 and FtsZA, respectively, from heteropolymers. GTPase activity was essential only for turnover of FtsZ2 and FtsZA filaments. Cyanobacterial and glaucophyte FtsZ properties mostly resembled those of FtsZ2 and FtsZA, though the glaucophyte protein exhibited some hybrid features. Our results demonstrate that the more ancestral FtsZ2 and FtsZA have retained functional attributes of their common FtsZ ancestor, while eukaryotic-specific FtsZ1 and FtsZB acquired new but similar dynamic properties, possibly through convergent evolution. Our findings suggest that the evolution of a second FtsZ that could copolymerize with the more ancestral form to enhance FtsZ-ring dynamics may have been essential for plastid evolution in the green and red photosynthetic lineages.
Collapse
Affiliation(s)
- Allan D TerBush
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824
| | - Joshua S MacCready
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Microbiology and Molecular Genetics Graduate Program, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Daniel C Ducat
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
48
|
Söderström B, Chan H, Shilling PJ, Skoglund U, Daley DO. Spatial separation of FtsZ and FtsN during cell division. Mol Microbiol 2017; 107:387-401. [DOI: 10.1111/mmi.13888] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Helena Chan
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Patrick J. Shilling
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| | - Ulf Skoglund
- Structural Cellular Biology Unit; Okinawa Institute of Science and Technology; Okinawa 904-0495 Japan
| | - Daniel O. Daley
- Department of Biochemistry and Biophysics; Stockholm University; Stockholm 106 91 Sweden
| |
Collapse
|
49
|
Abstract
An innovative approach to harness cellular dimensions reveals fundamental links between cell size and other cellular processes in the bacterium Escherichia coli.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock AR 72205, USA.
| |
Collapse
|
50
|
Gardner KAJA, Osawa M, Erickson HP. Whole genome re-sequencing to identify suppressor mutations of mutant and foreign Escherichia coli FtsZ. PLoS One 2017; 12:e0176643. [PMID: 28445510 PMCID: PMC5405962 DOI: 10.1371/journal.pone.0176643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/13/2017] [Indexed: 01/07/2023] Open
Abstract
FtsZ is an essential protein for bacterial cell division, where it forms the cytoskeletal scaffold and may generate the constriction force. We have found previously that some mutant and foreign FtsZ that do not complement an ftsZ null can function for cell division in E. coli upon acquisition of a suppressor mutation somewhere in the genome. We have now identified, via whole genome re-sequencing, single nucleotide polymorphisms in 11 different suppressor strains. Most of the mutations are in genes of various metabolic pathways, which may modulate cell division indirectly. Mutations in three genes, ispA, accD and nlpI, may be more directly involved in cell division. In addition to the genomic suppressor mutations, we identified intragenic suppressors of three FtsZ point mutants (R174A, E250K and L272V).
Collapse
Affiliation(s)
- Kiani A. J. Arkus Gardner
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Masaki Osawa
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|