1
|
Mohammadi E, Rahimian M, Panahi B. Bridging the gap: Phage manufacturing processes from laboratory to agri-food industry. Virus Res 2025; 353:199537. [PMID: 39880310 PMCID: PMC11833641 DOI: 10.1016/j.virusres.2025.199537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Interest in bacteriophages (phages) as sustainable biocontrol agents in the agri-food industry has increased because of growing worries about food safety and antimicrobial resistance (AMR). The phage manufacturing process is examined in this review, with particular attention paid to the crucial upstream and downstream processes needed for large-scale production. Achieving large phage yields requires upstream procedures, including fermentation and phage amplification. In the meantime, downstream procedures, including purification, endotoxin removal, and formulation, is essential for guaranteeing product quality and regulatory compliance. Despite advances in upstream and downstream process optimization of phage production processes, these methods are not effectively utilized in manufacturing processes. Additionally, the commercialization of phage products is hindered by fragmented rules and inconsistent regulations. Emerging technologies such as enhanced chromatography, continuous processing, and encapsulating techniques provide prospects for increased stability, efficiency, and scalability to fill these gaps. Furthermore, by facilitating real-time process optimization, predictive quality control (QC), and unique phage product creation, the integration of artificial intelligence (AI) and machine learning has the potential to transform the phage manufacturing industry completely. In order to provide consistent standards, encourage innovation, and bridge the gap between academic research and commercial applications, this review identifies gaps and highlights the necessity of cooperation between academia, industry, and regulatory agencies. To effectively utilize phages' potential to improve food safety, fight AMR, and promote sustainable agricultural practices, the agri-food industry must advance phage manufacturing techniques and harmonize regulatory frameworks.
Collapse
Affiliation(s)
- Elham Mohammadi
- NanoSciTec GmbH, Hermann Weinhauser str. 67, Munich 81867, Germany
| | - Mohammadreza Rahimian
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
2
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
3
|
Schüler MA, Riedel T, Overmann J, Daniel R, Poehlein A. Comparative genome analyses of clinical and non-clinical Clostridioides difficile strains. Front Microbiol 2024; 15:1404491. [PMID: 38993487 PMCID: PMC11238072 DOI: 10.3389/fmicb.2024.1404491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The pathogenic bacterium Clostridioides difficile is a worldwide health burden with increasing morbidity, mortality and antibiotic resistances. Therefore, extensive research efforts are made to unravel its virulence and dissemination. One crucial aspect for C. difficile is its mobilome, which for instance allows the spread of antibiotic resistance genes (ARG) or influence strain virulence. As a nosocomial pathogen, the majority of strains analyzed originated from clinical environments and infected individuals. Nevertheless, C. difficile can also be present in human intestines without disease development or occur in diverse environmental habitats such as puddle water and soil, from which several strains could already be isolated. We therefore performed comprehensive genome comparisons of closely related clinical and non-clinical strains to identify the effects of the clinical background. Analyses included the prediction of virulence factors, ARGs, mobile genetic elements (MGEs), and detailed examinations of the pan genome. Clinical-related trends were thereby observed. While no significant differences were identified in fundamental C. difficile virulence factors, the clinical strains carried more ARGs and MGEs, and possessed a larger accessory genome. Detailed inspection of accessory genes revealed higher abundance of genes with unknown function, transcription-associated, or recombination-related activity. Accessory genes of these functions were already highlighted in other studies in association with higher strain virulence. This specific trend might allow the strains to react more efficiently on changing environmental conditions in the human host such as emerging stress factors, and potentially increase strain survival, colonization, and strain virulence. These findings indicated an adaptation of the strains to the clinical environment. Further, implementation of the analysis results in pairwise genome comparisons revealed that the majority of these accessory genes were encoded on predicted MGEs, shedding further light on the mobile genome of C. difficile. We therefore encourage the inclusion of non-clinical strains in comparative analyses.
Collapse
Affiliation(s)
- Miriam A Schüler
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
4
|
Hussain H, Nubgan A, Rodríguez C, Imwattana K, Knight DR, Parthala V, Mullany P, Goh S. Removal of mobile genetic elements from the genome of Clostridioides difficile and the implications for the organism's biology. Front Microbiol 2024; 15:1416665. [PMID: 38966395 PMCID: PMC11222575 DOI: 10.3389/fmicb.2024.1416665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Clostridioides difficile is an emerging pathogen of One Health significance. Its highly variable genome contains mobile genetic elements (MGEs) such as transposons and prophages that influence its biology. Systematic deletion of each genetic element is required to determine their precise role in C. difficile biology and contribution to the wider mobilome. Here, Tn5397 (21 kb) and ϕ027 (56 kb) were deleted from C. difficile 630 and R20291, respectively, using allele replacement facilitated by CRISPR-Cas9. The 630 Tn5397 deletant transferred PaLoc at the same frequency (1 × 10-7) as 630 harboring Tn5397, indicating that Tn5397 alone did not mediate conjugative transfer of PaLoc. The R20291 ϕ027 deletant was sensitive to ϕ027 infection, and contained two unexpected features, a 2.7 kb remnant of the mutagenesis plasmid, and a putative catalase gene adjacent to the deleted prophage was also deleted. Growth kinetics of R20291 ϕ027 deletant was similar to wild type (WT) in rich medium but marginally reduced compared with WT in minimal medium. This work indicates the commonly used pMTL8000 plasmid series works well for CRISPR-Cas9-mediated gene deletion, resulting in the largest deleted locus (56.8 kb) described in C. difficile. Removal of MGEs was achieved by targeting conjugative/integrative regions to promote excision and permanent loss. The deletants created will be useful strains for investigating Tn5397 or ϕ027 prophage contribution to host virulence, fitness, and physiology, and a platform for other mutagenesis studies aimed at functional gene analysis without native transposon or phage interference in C. difficile 630 and R20291.
Collapse
Affiliation(s)
- Haitham Hussain
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Amer Nubgan
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Valerija Parthala
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter Mullany
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
5
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
6
|
Iwanicki A, Roskwitalska M, Frankowska N, Wultańska D, Kabała M, Pituch H, Obuchowski M, Hinc K. Insight into the Mechanism of Lysogeny Control of phiCDKH01 Bacteriophage Infecting Clinical Isolate of Clostridioides difficile. Int J Mol Sci 2024; 25:5662. [PMID: 38891850 PMCID: PMC11172241 DOI: 10.3390/ijms25115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Clostridioides difficile is a causative agent of antibiotic-associated diarrhea as well as pseudomembranous colitis. So far, all known bacteriophages infecting these bacteria are temperate, which means that instead of prompt lysis of host cells, they can integrate into the host genome or replicate episomally. While C. difficile phages are capable of spontaneous induction and entering the lytic pathway, very little is known about the regulation of their maintenance in the state of lysogeny. In this study, we investigated the properties of a putative major repressor of the recently characterized C. difficile phiCDKH01 bacteriophage. A candidate protein belongs to the XRE family and controls the transcription of genes encoding putative phage antirepressors, known to be involved in the regulation of lytic development. Hence, the putative major phage repressor is likely to be responsible for maintenance of the lysogeny.
Collapse
Affiliation(s)
- Adam Iwanicki
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Małgorzata Roskwitalska
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Natalia Frankowska
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
- Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-307 Gdańsk, Poland
| | - Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland; (D.W.); (H.P.)
| | - Monika Kabała
- Department of Medical Microbiology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland; (D.W.); (H.P.)
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| | - Krzysztof Hinc
- Division of Molecular Bacteriology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.I.); (M.R.); (N.F.); (M.O.)
| |
Collapse
|
7
|
Schüler MA, Daniel R, Poehlein A. Novel insights into phage biology of the pathogen Clostridioides difficile based on the active virome. Front Microbiol 2024; 15:1374708. [PMID: 38577680 PMCID: PMC10993401 DOI: 10.3389/fmicb.2024.1374708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
The global pathogen Clostridioides difficile is a well-studied organism, and researchers work on unraveling its fundamental virulence mechanisms and biology. Prophages have been demonstrated to influence C. difficile toxin expression and contribute to the distribution of advantageous genes. All these underline the importance of prophages in C. difficile virulence. Although several C. difficile prophages were sequenced and characterized, investigations on the entire active virome of a strain are still missing. Phages were mainly isolated after mitomycin C-induction, which does not resemble a natural stressor for C. difficile. We examined active prophages from different C. difficile strains after cultivation in the absence of mitomycin C by sequencing and characterization of particle-protected DNA. Phage particles were collected after standard cultivation, or after cultivation in the presence of the secondary bile salt deoxycholate (DCA). DCA is a natural stressor for C. difficile and a potential prophage-inducing agent. We also investigated differences in prophage activity between clinical and non-clinical C. difficile strains. Our experiments demonstrated that spontaneous prophage release is common in C. difficile and that DCA presence induces prophages. Fourteen different, active phages were identified by this experimental procedure. We could not identify a definitive connection between clinical background and phage activity. However, one phage exhibited distinctively higher activity upon DCA induction in the clinical strain than in the corresponding non-clinical strain, although the phage is identical in both strains. We recorded that enveloped DNA mapped to genome regions with characteristics of mobile genetic elements other than prophages. This pointed to mechanisms of DNA mobility that are not well-studied in C. difficile so far. We also detected phage-mediated lateral transduction of bacterial DNA, which is the first described case in C. difficile. This study significantly contributes to our knowledge of prophage activity in C. difficile and reveals novel aspects of C. difficile (phage) biology.
Collapse
Affiliation(s)
| | | | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Gong JJ, Huang IH, Su MSW, Xie SX, Liu WY, Huang CR, Hung YP, Wu SR, Tsai PJ, Ko WC, Chen JW. Phage transcriptional regulator X (PtrX)-mediated augmentation of toxin production and virulence in Clostridioides difficile strain R20291. Microbiol Res 2024; 280:127576. [PMID: 38183754 DOI: 10.1016/j.micres.2023.127576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, and spore-forming bacterial member of the human gut microbiome. The primary virulence factors of C. difficile are toxin A and toxin B. These toxins damage the cell cytoskeleton and cause various diseases, from diarrhea to severe pseudomembranous colitis. Evidence suggests that bacteriophages can regulate the expression of the pathogenicity locus (PaLoc) genes of C. difficile. We previously demonstrated that the genome of the C. difficile RT027 strain NCKUH-21 contains a prophage-like DNA sequence, which was found to be markedly similar to that of the φCD38-2 phage. In the present study, we investigated the mechanisms underlying the φNCKUH-21-mediated regulation of the pathogenicity and the PaLoc genes expression in the lysogenized C. difficile strain R20291. The carriage of φNCKUH-21 in R20291 cells substantially enhanced toxin production, bacterial motility, biofilm formation, and spore germination in vitro. Subsequent mouse studies revealed that the lysogenized R20291 strain caused a more severe infection than the wild-type strain. We screened three φNCKUH-21 genes encoding DNA-binding proteins to check their effects on PaLoc genes expression. The overexpression of NCKUH-21_03890, annotated as a transcriptional regulator (phage transcriptional regulator X, PtrX), considerably enhanced toxin production, biofilm formation, and bacterial motility of R20291. Transcriptome analysis further confirmed that the overexpression of ptrX led to the upregulation of the expression of toxin genes, flagellar genes, and csrA. In the ptrX-overexpressing R20291 strain, PtrX influenced the expression of flagellar genes and the sigma factor gene sigD, possibly through an increased flagellar phase ON configuration ratio.
Collapse
Affiliation(s)
- Jun-Jia Gong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Marcia Shu-Wei Su
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Si-Xuan Xie
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yong Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Rung Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Vitiello A, Sabbatucci M, Zovi A, Salzano A, Ponzo A, Boccellino M. Advances in Therapeutic Strategies for the Management of Clostridioides difficile Infection. J Clin Med 2024; 13:1331. [PMID: 38592194 PMCID: PMC10932341 DOI: 10.3390/jcm13051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The infection caused by Clostridioides difficile represents one of the bacterial infections with the greatest increase in incidence among nosocomial infections in recent years. C. difficile is a Gram-positive bacterium able to produce toxins and spores. In some cases, infection results in severe diarrhoea and fulminant colitis, which cause prolonged hospitalisation and can be fatal, with repercussions also in terms of health economics. C. difficile is the most common cause of antibiotic-associated diarrhoea in the healthcare setting. The problem of bacterial forms that are increasingly resistant to common antibiotic treatments is also reflected in C. difficile infection (CDI). One of the causes of CDI is intestinal dysmicrobialism induced by prolonged antibiotic therapy. Moreover, in recent years, the emergence of increasingly virulent strains resistant to antibiotic treatment has made the picture even more complex. Evidence on preventive treatments to avoid recurrence is unclear. Current guidelines indicate the following antibiotics for the treatment of CDI: metronidazole, vancomycin, and fidaxomycin. This short narrative review provides an overview of CDI, antibiotic resistance, and emerging treatments.
Collapse
Affiliation(s)
- Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Zovi
- Ministry of Health, Directorate General of Hygiene, Food Safety and Nutrition, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Antonio Salzano
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Annarita Ponzo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 81100 Naples, Italy
| |
Collapse
|
11
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
12
|
Muzyukina P, Shkaruta A, Guzman NM, Andreani J, Borges AL, Bondy-Denomy J, Maikova A, Semenova E, Severinov K, Soutourina O. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile. mSphere 2023; 8:e0040123. [PMID: 38009936 PMCID: PMC10732046 DOI: 10.1128/msphere.00401-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is the widespread anaerobic spore-forming bacterium that is a major cause of potentially lethal nosocomial infections associated with antibiotic therapy worldwide. Due to the increase in severe forms associated with a strong inflammatory response and higher recurrence rates, a current imperative is to develop synergistic and alternative treatments for C. difficile infections. In particular, phage therapy is regarded as a potential substitute for existing antimicrobial treatments. However, it faces challenges because C. difficile has highly active CRISPR-Cas immunity, which may be a specific adaptation to phage-rich and highly crowded gut environment. To overcome this defense, C. difficile phages must employ anti-CRISPR mechanisms. Here, we present the first anti-CRISPR protein that inhibits the CRISPR-Cas defense system in this pathogen. Our work offers insights into the interactions between C. difficile and its phages, paving the way for future CRISPR-based applications and development of effective phage therapy strategies combined with the engineering of virulent C. difficile infecting phages.
Collapse
Affiliation(s)
- Polina Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anton Shkaruta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Noemi M. Guzman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Adair L. Borges
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Anna Maikova
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Kurchatov National Research Center, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
13
|
Blau K, Gallert C. Prophage Carriage and Genetic Diversity within Environmental Isolates of Clostridioides difficile. Int J Mol Sci 2023; 25:2. [PMID: 38203173 PMCID: PMC10778935 DOI: 10.3390/ijms25010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.
Collapse
Affiliation(s)
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
14
|
Ito Y, Tanimoto K, Chiba N, Otsuka M, Ota M, Yoshida M, Hashimoto Y, Nomura T, Tomita H. Molecular epidemiological analyses of Clostridioides difficile isolates in a university hospital in Japan. Heliyon 2023; 9:e20167. [PMID: 37800060 PMCID: PMC10550568 DOI: 10.1016/j.heliyon.2023.e20167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Background We performed molecular epidemiological analyses of Clostridioides difficile isolates in a university hospital in Japan to reveal the risk of C. difficile infection. Methods Cultured isolates from 919 stool samples from 869 patients obtained from July 2015 to August 2016 were subjected to toxin gene detection, ribotyping, multilocus sequence typing, antimicrobial susceptibility testing, and quantitative real-time polymerase chain reaction testing for C. difficile toxin gene expression. Results Of the 919 stool samples from 869 patients, C. difficile was isolated from 153 samples (16.6%), of which 49 (32%) and 104 (68%) were from patients with and without C. difficile infection, respectively. Analyses showed genetic diversity, with ST8 and ST17 strains of healthcare-associated infections, some of which caused C. difficile infections. There was no significant difference in the transcription levels of C. difficile toxin genes between isolates from patients with and without C. difficile infection. Conclusions Major Japanese clonal strains, ST8 and ST17, have been in the hospital environment for a long time and cause healthcare-associated C. difficile infections. The C. difficile toxin genes were transcribed in the isolates from both patients with and without C. difficile infection but were no significant relationship with the development of C. difficile infection.
Collapse
Affiliation(s)
- Yukitaka Ito
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Naoko Chiba
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masanobu Otsuka
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Masato Ota
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Mieko Yoshida
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takahiro Nomura
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
15
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. Cell Rep 2023; 42:112861. [PMID: 37523264 PMCID: PMC10627504 DOI: 10.1016/j.celrep.2023.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Julian R Garneau
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jonathan K Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rosemary L Pope
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Dicks LMT. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023; 11:2161. [PMID: 37764005 PMCID: PMC10534356 DOI: 10.3390/microorganisms11092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with C. difficile infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%. Fidaxomicin, on the other hand, proved more effective than VAN and MNZ by preventing the initial transcription of RNA toxin genes. Alternative forms of treatment include quorum quenching (QQ) that blocks toxin synthesis, binding of small anion molecules such as tolevamer to toxins, monoclonal antibodies, such as bezlotoxumab and actoxumab, bacteriophage therapy, probiotics, and fecal microbial transplants (FMTs). This review summarizes factors that affect the colonization of C. difficile and the pathogenicity of toxins TcdA and TcdB. The different approaches experimented with in the destruction of C. difficile and treatment of CDI are evaluated.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
17
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Chandra H, Sorg JA, Hassett DJ, Sun X. Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Crit Rev Microbiol 2023; 49:334-349. [PMID: 35389761 PMCID: PMC11209739 DOI: 10.1080/1040841x.2022.2054307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
Clostridioides difficile (CD), a nosocomial gut pathogen, produces two major exotoxins, TcdA and TcdB, which disrupt the gut epithelial barrier and induce inflammatory/immune responses, leading to symptoms ranging from mild diarrhoea to pseudomembranous colitis and potentially to death. The expression of toxins is regulated by various transcription factors (TFs) which are induced in response to CD physiological life stages, nutritional availability, and host environment. This review summarises our current understanding on the regulation of toxin expression by TFs that interconnect with pathways of flagellar synthesis, quorum sensing, motility, biofilm formation, sporulation, and phase variation. The pleiotropic roles of some key TFs suggest that toxin production is tightly linked to other cellular processes of the CD physiology.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Environmental and Earth Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Royer ALM, Umansky AA, Allen MM, Garneau JR, Ospina-Bedoya M, Kirk JA, Govoni G, Fagan RP, Soutourina O, Fortier LC. Clostridioides difficile S-Layer Protein A (SlpA) Serves as a General Phage Receptor. Microbiol Spectr 2023; 11:e0389422. [PMID: 36790200 PMCID: PMC10100898 DOI: 10.1128/spectrum.03894-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Therapeutic bacteriophages (phages) are being considered as alternatives in the fight against Clostridioides difficile infections. To be efficient, phages should have a wide host range, buthe lack of knowledge about the cell receptor used by C. difficile phages hampers the rational design of phage cocktails. Recent reports suggested that the C. difficile surface layer protein A (SlpA) is an important phage receptor, but available data are still limited. Here, using the epidemic R20291 strain and its FM2.5 mutant derivative lacking a functional S-layer, we show that the absence of SlpA renders cells completely resistant to infection by ϕCD38-2, ϕCD111, and ϕCD146, which normally infect the parental strain. Complementation with 12 different S-layer cassette types (SLCTs) expressed from a plasmid revealed that SLCT-6 also allowed infection by ϕCD111 and SLCT-11 enabled infection by ϕCD38-2 and ϕCD146. Of note, the expression of SLCT-1, -6, -8, -9, -10, or -12 conferred susceptibility to infection by 5 myophages that normally do not infect the R20291 strain. Also, deletion of the D2 domain within the low-molecular-weight fragment of SlpA was found to abolish infection by ϕCD38-2 and ϕCD146 but not ϕCD111. Altogether, our data suggest that many phages use SlpA as their receptor and, most importantly, that both siphophages and myophages target SlpA despite major differences in their tail structures. Our study therefore represents an important step in understanding the interactions between C. difficile and its phages. IMPORTANCE Phage therapy represents an interesting alternative to treat Clostridioides difficile infections because, contrary to antibiotics, most phages are highly species specific, thereby sparing the beneficial gut microbes that protect from infection. However, currently available phages against C. difficile have a narrow host range and target members from only one or a few PCR ribotypes. Without a clear comprehension of the factors that define host specificity, and in particular the host receptor recognized by phages, it is hard to develop therapeutic cocktails in a rational manner. In our study, we provide clear and unambiguous experimental evidence that SlpA is a common receptor used by many siphophages and myophages. Although work is still needed to define how a particular phage receptor-binding protein binds to a specific SLCT, the identification of SlpA as a common receptor is a major keystone that will facilitate the rational design of therapeutic phage cocktails against clinically important strains.
Collapse
Affiliation(s)
- Alexia L. M. Royer
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Andrew A. Umansky
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina-Bedoya
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Joseph A. Kirk
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Robert P. Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
20
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523823. [PMID: 36711955 PMCID: PMC9882218 DOI: 10.1101/2023.01.12.523823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rosemary L. Pope
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
23
|
Fujimoto K, Uematsu S. Phage therapy for Clostridioides difficile infection. Front Immunol 2022; 13:1057892. [PMID: 36389774 PMCID: PMC9650352 DOI: 10.3389/fimmu.2022.1057892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 08/10/2023] Open
Abstract
Clostridioides difficile is endemic in the intestinal tract of healthy people. However, it is responsible for many healthcare-associated infections, such as nosocomial diarrhea following antibiotic treatment. Importantly, there have been cases of unsuccessful treatment and relapse related to the emergence of highly virulent strains of C. difficile and resistance to antimicrobial agents. Fecal microbiota transplantation (FMT) is considered an effective therapy for recurrent C. difficile infection. However, its safety is of concern because deaths caused by antibiotic-resistant bacterial infections after FMT were reported. Therefore, the development of effective C. difficile-specific treatments is urgently needed. In this review, we summarize the importance of phage therapy against C. difficile, and describe a novel next-generation phage therapy developed using metagenomic data.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
RecT Affects Prophage Lifestyle and Host Core Cellular Processes in Pseudomonas aeruginosa. Appl Environ Microbiol 2022; 88:e0106822. [PMID: 36073944 PMCID: PMC9499030 DOI: 10.1128/aem.01068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a ΔrecT mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of pg40, which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. IMPORTANCE Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.
Collapse
|
25
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
26
|
Durand BARN, Yahiaoui Martinez A, Baud D, François P, Lavigne JP, Dunyach-Remy C. Comparative genomics analysis of two Helcococcus kunzii strains co-isolated with Staphylococcus aureus from diabetic foot ulcers. Genomics 2022; 114:110365. [PMID: 35413435 DOI: 10.1016/j.ygeno.2022.110365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023]
Abstract
Helcococcus kunzii is a commensal Gram-positive bacterial species recovered from the human skin microbiota and considered as an opportunistic pathogen. Although little is known about its clinical significance, its increased abundance has been reported in infected wounds, particularly in foot ulcers in persons with diabetes. This species is usually detected in mixed cultures from human specimens and frequently isolated with Staphylococcus aureus. Modulation of staphylococci virulence by H. kunzii has been shown in an infection model of Caenorhabditis elegans. The aim of this study was to compare the genomes of two H. kunzii strains isolated from foot ulcers -isolate H13 and H10 showing high or low impact on S. aureus virulence, respectively- and the H. kunzii ATCC51366 strain. Whole genome analyses revealed some differences between the two strains: length (2.06 Mb (H13) and 2.05 Mb (H10) bp), GC content (29.3% (H13) and 29.5% (H10)) and gene content (1,884 (H13) and 1,786 (H10) predicted genes). The core-proteome phylogenies within the genus characterised H. kunzii H13 and H10 as genetically similar to their ancestor. The main differences between the strains were mainly in sugar-associated transporters and various hypothetical proteins. Five targets were identified as potentially involved in S. aureus virulence modulation in both genomes: the two-component iron export system and three autoinducer-like proteins. Moreover, H13 strain harbours a prophage inserted in 1,261,110-1,295,549 (attL-attR), which is absent in H10 strain. The prophage PhiCD38_2 was previously reported for its ability to modulate secretion profile, reinforcing the autoinducer-like hypothesis. In the future, transcriptomics or metaproteomics approaches could be performed to better characterize the H13 strain and possibly identify the underlying mechanism for S. aureus virulence modulation.
Collapse
Affiliation(s)
- Benjamin A R N Durand
- Bacterial Virulence and Chronic Infections, INSERM U1047, University of Montpellier, Department of Microbiology and Hospital Hygiene, University Hospital Nîmes, 30908 Nîmes, France
| | - Alex Yahiaoui Martinez
- Department of Microbiology and Hospital Hygiene, University Hospital Nîmes, University of Montpellier, 30029 Nîmes, France
| | - Damien Baud
- Department of Infectious Diseases, Genomic Research Laboratory, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Patrice François
- Department of Infectious Diseases, Genomic Research Laboratory, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, University of Montpellier, Department of Microbiology and Hospital Hygiene, University Hospital Nîmes, 30908 Nîmes, France.
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, University of Montpellier, Department of Microbiology and Hospital Hygiene, University Hospital Nîmes, 30908 Nîmes, France
| |
Collapse
|
27
|
Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, Nuadthaisong J, Phetruen T, Fagan RP, Chanarat S. Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiol Spectr 2022; 10:e0236121. [PMID: 35377223 PMCID: PMC9045149 DOI: 10.1128/spectrum.02361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirayu Nuadthaisong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Robert P. Fagan
- School of Biosciences, Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Redding LE, Tu V, Abbas A, Alvarez M, Zackular JP, Gu C, Bushman FD, Kelly DJ, Barnhart D, Lee JJ, Bittinger KL. Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations. Anaerobe 2022; 74:102539. [PMID: 35217150 PMCID: PMC9359814 DOI: 10.1016/j.anaerobe.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Objectives: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. Methods: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. Results: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine Conclusions: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern.
Collapse
Affiliation(s)
- L E Redding
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA.
| | - V Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - A Abbas
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Alvarez
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Gu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D J Kelly
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - D Barnhart
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - J J Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - K L Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| |
Collapse
|
29
|
Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol 2022; 65:95-100. [PMID: 34781095 PMCID: PMC8792210 DOI: 10.1016/j.mib.2021.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Clostridioides difficile produces toxins TcdA and TcdB during infection. Since the severity of the illness is directly correlated with the level of toxins produced, researchers have long been interested in the regulation mechanisms of toxin production. The advent of new genetics and mutagenesis technologies in C. difficile has allowed a slew of new investigations in the last decade, which considerably improved our understanding of this crucial regulatory network. The current body of work shows that the toxin regulatory network overlaps with the regulatory networks of sporulation, motility, and key metabolic pathways. This implies that toxin production is a complicated process initiated by bacteria in response to numerous host factors during infection. We summarize the existing knowledge about the toxin gene regulatory network here.
Collapse
|
30
|
Nale JY, Al-Tayawi TS, Heaphy S, Clokie MRJ. Impact of Phage CDHS-1 on the Transcription, Physiology and Pathogenicity of a Clostridioides difficile Ribotype 027 Strain, R20291. Viruses 2021; 13:v13112262. [PMID: 34835068 PMCID: PMC8619979 DOI: 10.3390/v13112262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.
Collapse
|
31
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
32
|
Piligrimova EG, Kazantseva OA, Kazantsev AN, Nikulin NA, Skorynina AV, Koposova ON, Shadrin AM. Putative plasmid prophages of Bacillus cereus sensu lato may hold the key to undiscovered phage diversity. Sci Rep 2021; 11:7611. [PMID: 33828147 PMCID: PMC8026635 DOI: 10.1038/s41598-021-87111-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteriophages are bacterial viruses and the most abundant biological entities on Earth. Temperate bacteriophages can form prophages stably maintained in the host population: they either integrate into the host genome or replicate as plasmids in the host cytoplasm. As shown, tailed temperate bacteriophages may form circular plasmid prophages in many bacterial species of the taxa Firmicutes, Gammaproteobacteria and Spirochaetes. The actual number of such prophages is thought to be underestimated for two main reasons: first, in bacterial whole genome-sequencing assemblies, they are difficult to distinguish from actual plasmids; second, there is an absence of experimental studies which are vital to confirm their existence. In Firmicutes, such prophages appear to be especially numerous. In the present study, we identified 23 genomes from species of the Bacillus cereus group that were deposited in GenBank as plasmids and may belong to plasmid prophages with little or no homology to known viruses. We consider these putative prophages worth experimental assays since it will broaden our knowledge of phage diversity and suggest that more attention be paid to such molecules in all bacterial sequencing projects as this will help in identifying previously unknown phages.
Collapse
Affiliation(s)
- Emma G Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| | - Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey N Kazantsev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Pushchino Radio Astronomy Observatory, Pushchino, 142290, Russia
| | - Nikita A Nikulin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Anna V Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Olga N Koposova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| |
Collapse
|
33
|
Kulecka M, Waker E, Ambrozkiewicz F, Paziewska A, Skubisz K, Cybula P, Targoński Ł, Mikula M, Walewski J, Ostrowski J. Higher genome variability within metabolism genes associates with recurrent Clostridium difficile infection. BMC Microbiol 2021; 21:36. [PMID: 33509087 PMCID: PMC7842062 DOI: 10.1186/s12866-021-02090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clostridium difficile (C. difficile) is a major source of healthcare-associated infection with a high risk of recurrence, attributable to many factors such as usage of antibiotics, older age and immunocompromised status of the patients. C. difficile has also a highly diverse genome, which may contribute to its high virulence. Herein we examined whether the genome conservation, measured as non-synonymous to synonymous mutations ratio (dN/dS) in core genes, presence of single genes, plasmids and prophages increased the risk of reinfection in a subset of 134 C. difficile isolates from our previous study in a singly hemato-oncology ward. METHODS C. difficile isolates were subjected to whole-genome sequencing (WGS) on Ion Torrent PGM sequencer. Genomes were assembled with MIRA5 and annotated with prokka and VRprofile. Logistic regression was used to asses the relationship between single gene presence and the odds of infection recurrence. DN/dS ratios were computed with codeml. Functional annotation was conducted with eggNOG-Mapper. RESULTS We have found that the presence of certain genes, associated with carbon metabolism and oxidative phosphorylation, increased the odds of infection recurrence. More core genes were under positive selective pressure in recurrent disease isolates - they were mostly associated with the metabolism of aminoacids. Finally, prophage elements were more prevalent in single infection isolates and plasmids did not influence the odds of recurrence. CONCLUSIONS Our findings suggest higher genetic plasticity in isolates causing recurrent infection, associated mainly with metabolism. On the other hand, the presence of prophages seems to reduce the isolates' virulence.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland
| | - Edyta Waker
- Department of Clinical Microbiology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland
| | - Karolina Skubisz
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland
| | - Patrycja Cybula
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland
| | - Łukasz Targoński
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland.
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781, Warsaw, Poland.
| |
Collapse
|
34
|
Does over a century of aerobic phage work provide a solid framework for the study of phages in the gut? Anaerobe 2021; 68:102319. [PMID: 33465423 DOI: 10.1016/j.anaerobe.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate. In this review, we primarily discuss the phages infecting three well-studied anaerobes in the gut: Bifidobacterium, Clostridia and Bacteroides, with a particular focus on the challenges in isolating and characterizing these phages. We contrast the lessons learned from these to other anaerobic work on phages infecting facultative anaerobes of the gut: Enterococcus and Lactobacillus. Phages from the gut do appear to adhere to the lessons learned from aerobic work, but the additional challenges of working on them has required ingenious new approaches to enable their study. This, in turn, has uncovered remarkable biology likely underpinning phage-host relationships in many stable environments.
Collapse
|
35
|
Orellana CA, Zaragoza NE, Licona-Cassani C, Palfreyman RW, Cowie N, Moonen G, Moutafis G, Power J, Nielsen LK, Marcellin E. Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani. ACTA ACUST UNITED AC 2020; 47:1059-1073. [DOI: 10.1007/s10295-020-02330-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Abstract
Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a “fermentation map”, which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.
Collapse
Affiliation(s)
- Camila A Orellana
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.7870.8 0000 0001 2157 0406 Department of Chemical and Bioprocess Engineering, School of Engineering Pontificia Universidad Católica de Chile Santiago Chile
| | - Nicolas E Zaragoza
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
| | - Cuauhtemoc Licona-Cassani
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.419886.a 0000 0001 2203 4701 Centro de Biotecnología FEMSA Tecnológico de Monterrey Nuevo León Mexico
| | - Robin W Palfreyman
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
| | - Nicholas Cowie
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
| | - Glenn Moonen
- Zoetis. 45 Poplar Road 3052 Parkville VIC Australia
| | | | - John Power
- Zoetis. 45 Poplar Road 3052 Parkville VIC Australia
| | - Lars K Nielsen
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
- grid.5170.3 0000 0001 2181 8870 The Novo Nordisk Foundation Centre for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
| |
Collapse
|
36
|
Peltier J, Hamiot A, Garneau JR, Boudry P, Maikova A, Hajnsdorf E, Fortier LC, Dupuy B, Soutourina O. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile. Commun Biol 2020; 3:718. [PMID: 33247281 PMCID: PMC7699646 DOI: 10.1038/s42003-020-01448-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widespread on mobile genetic elements and in bacterial chromosomes. In type I TA, synthesis of the toxin protein is prevented by the transcription of an antitoxin RNA. The first type I TA were recently identified in the human enteropathogen Clostridioides difficile. Here we report the characterization of five additional type I TA within phiCD630-1 (CD0977.1-RCd11, CD0904.1-RCd13 and CD0956.3-RCd14) and phiCD630-2 (CD2889-RCd12 and CD2907.2-RCd15) prophages of C. difficile strain 630. Toxin genes encode 34 to 47 amino acid peptides and their ectopic expression in C. difficile induces growth arrest that is neutralized by antitoxin RNA co-expression. We show that type I TA located within the phiCD630-1 prophage contribute to its stability and heritability. We have made use of a type I TA toxin gene to generate an efficient mutagenesis tool for this bacterium that allowed investigation of the role of these widespread TA in prophage maintenance.
Collapse
Affiliation(s)
- Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France
- UMR UMET, INRA, CNRS, Univ. Lille 1, 59650, Villeneuve d'Ascq, France
| | - Julian R Garneau
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Pierre Boudry
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette Cedex, France
| | - Anna Maikova
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Eliane Hajnsdorf
- Institut de Biologie Physico-Chimique, UMR8261, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Louis-Charles Fortier
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Olga Soutourina
- Laboratoire Pathogenèse des Bactéries Anaérobies, CNRS-2001, Institut Pasteur, Université de Paris, 75015, Paris, France.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
37
|
Mondal SI, Draper LA, Ross RP, Hill C. Bacteriophage endolysins as a potential weapon to combat Clostridioides difficile infection. Gut Microbes 2020; 12:1813533. [PMID: 32985336 PMCID: PMC7524323 DOI: 10.1080/19490976.2020.1813533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridioides difficile is the leading cause of health-care-associated infection throughout the developed world and contributes significantly to patient morbidity and mortality. Typically, antibiotics are used for the primary treatment of C. difficile infections (CDIs), but they are not universally effective for all ribotypes and can result in antibiotic resistance and recurrent infection, while also disrupting the microbiota. Novel targeted therapeutics are urgently needed to combat CDI. Bacteriophage-derived endolysins are required to disrupt the bacterial cell wall of their target bacteria and are possible alternatives to antibiotics. These lytic proteins could potentially replace or augment antibiotics in CDI treatment. We discuss candidate therapeutic lysins derived from phages/prophages of C. difficile and their potential as antimicrobials against CDI. Additionally, we review the antibacterial potential of some recently identified homologues of C. difficile endolysins. Finally, the challenges of endolysins are considered with respect to the development of novel lysin-based therapies.
Collapse
Affiliation(s)
- Shakhinur Islam Mondal
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Lorraine A. Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,CONTACT Colin Hill APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Hernández S, Vives MJ. Phages in Anaerobic Systems. Viruses 2020; 12:E1091. [PMID: 32993161 PMCID: PMC7599459 DOI: 10.3390/v12101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of phages in 1915, these viruses have been studied mostly in aerobic systems, or without considering the availability of oxygen as a variable that may affect the interaction between the virus and its host. However, with such great abundance of anaerobic environments on the planet, the effect that a lack of oxygen can have on the phage-bacteria relationship is an important consideration. There are few studies on obligate anaerobes that investigate the role of anoxia in causing infection. In the case of facultative anaerobes, it is a well-known fact that their shifting from an aerobic environment to an anaerobic one involves metabolic changes in the bacteria. As the phage infection process depends on the metabolic state of the host bacteria, these changes are also expected to affect the phage infection cycle. This review summarizes the available information on phages active on facultative and obligate anaerobes and discusses how anaerobiosis can be an important parameter in phage infection, especially among facultative anaerobes.
Collapse
Affiliation(s)
- Santiago Hernández
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Martha J. Vives
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
- School of Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
39
|
Jachowicz E, Pobiega M, Różańska A, Wójkowska-Mach J. Growing consumption of antibiotics and epidemiology of Clostridioides difficile infections in Poland: A need to develop new solutions. Acta Microbiol Immunol Hung 2020; 67:79-86. [PMID: 31813263 DOI: 10.1556/030.66.2019.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
Clostridioides (formerly Clostridium) difficile infections (CDIs) are becoming more common and more serious. C. difficile is the etiologic agent of antibiotic-associated diarrhea, pseudomembranous enterocolitis, and toxic megacolon while CDIs recur in 7.9% of patients. About 42.9 CDI cases/10,000 patient-days are diagnosed each day in Europe, whereas in Poland 5.6 CDI cases/10,000 patient-days are reported; however, the median for European countries is 2.9 CDI cases/10,000 patient-days. Epidemiology of CDIs has changed in recent years and risk of developing the disease has doubled in the past decade that is largely determined by use of antibiotics. Studies show that rate of antibiotic consumption in the non-hospital sector in Poland is much higher than the European average (27 vs. 21.8 DDD/1,000 patient-days), and this value has increased in recent years. Antibiotic consumption has also increased in the hospital sector, especially in the intensive care units - 1,520 DDD/1,000 patient-days (ranging from 620 to 3,960 DDD/1,000 patient-days) - and was significantly higher than in Germany 1,305 (ranging from 463 to 2,216 DDD/1,000 patient-days) or in Sweden 1,147 (ranging from 605 to 2,134 DDD/1,000 patient-days). The recent rise in CDI incidence has prompted a search for alternative treatments. Great hope is placed in probiotics, bacteriocins, monoclonal antibodies, bacteriophages, and developing new vaccines.
Collapse
Affiliation(s)
- Estera Jachowicz
- 1 Department of Microbiology, Faculty of Medicine, Jagiellonian University Collegium Medicum, Kraków, Poland
- 2 Biophage Pharma SA, Kraków, Poland
| | | | - Anna Różańska
- 1 Department of Microbiology, Faculty of Medicine, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Jadwiga Wójkowska-Mach
- 1 Department of Microbiology, Faculty of Medicine, Jagiellonian University Collegium Medicum, Kraków, Poland
| |
Collapse
|
40
|
Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078. mSystems 2020; 5:5/3/e00017-20. [PMID: 32371470 PMCID: PMC7205517 DOI: 10.1128/msystems.00017-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
C. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile. Insights into the interaction between phages and their bacterial hosts are crucial for the development of phage therapy. However, only one study has investigated global gene expression of Clostridioides (formerly Clostridium) difficile carrying prophage, and transcriptional reprogramming during lytic infection has not been studied. Here, we presented the isolation, propagation, and characterization of a newly discovered 35,109-bp phage, JD032, and investigated the global transcriptomes of both JD032 and C. difficile ribotype 078 (RT078) strain TW11 during JD032 infection. Transcriptome sequencing (RNA-seq) revealed the progressive replacement of bacterial host mRNA with phage transcripts. The expressed genes of JD032 were clustered into early, middle, and late temporal categories that were functionally similar. Specifically, a gene (JD032_orf016) involved in the lysis-lysogeny decision was identified as an early expression gene. Only 17.7% (668/3,781) of the host genes were differentially expressed, and more genes were downregulated than upregulated. The expression of genes involved in host macromolecular synthesis (DNA/RNA/proteins) was altered by JD032 at the level of transcription. In particular, the expression of the ropA operon was downregulated. Most noteworthy is that the gene expression of some antiphage systems, including CRISPR-Cas, restriction-modification, and toxin-antitoxin systems, was suppressed by JD032 during infection. In addition, bacterial sporulation, adhesion, and virulence factor genes were significantly downregulated. This study provides the first description of the interaction between anaerobic spore-forming bacteria and phages during lytic infection and highlights new aspects of C. difficile phage-host interactions. IMPORTANCEC. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile.
Collapse
|
41
|
Giau VV, Lee H, An SSA, Hulme J. Recent advances in the treatment of C. difficile using biotherapeutic agents. Infect Drug Resist 2019; 12:1597-1615. [PMID: 31354309 PMCID: PMC6579870 DOI: 10.2147/idr.s207572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile (C. difficile) is rapidly becoming one of the most prevalent health care–associated bacterial infections in the developed world. The emergence of new, more virulent strains has led to greater morbidity and resistance to standard therapies. The bacterium is readily transmitted between people where it can asymptomatically colonize the gut environment, and clinical manifestations ranging from frequent watery diarrhea to toxic megacolon can arise depending on the age of the individual or their state of gut dysbiosis. Several inexpensive approaches are shown to be effective against virulent C. difficile in research settings such as probiotics, fecal microbiota transfer and immunotherapies. This review aims to highlight the current advantages and limitations of the aforementioned approaches with an emphasis on recent studies.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
42
|
Soutourina O. Type I Toxin-Antitoxin Systems in Clostridia. Toxins (Basel) 2019; 11:toxins11050253. [PMID: 31064056 PMCID: PMC6563280 DOI: 10.3390/toxins11050253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Type I toxin-antitoxin (TA) modules are abundant in both bacterial plasmids and chromosomes and usually encode a small hydrophobic toxic protein and an antisense RNA acting as an antitoxin. The RNA antitoxin neutralizes toxin mRNA by inhibiting its translation and/or promoting its degradation. This review summarizes our current knowledge of the type I TA modules identified in Clostridia species focusing on the recent findings in the human pathogen Clostridium difficile. More than ten functional type I TA modules have been identified in the genome of this emerging enteropathogen that could potentially contribute to its fitness and success inside the host. Despite the absence of sequence homology, the comparison of these newly identified type I TA modules with previously studied systems in other Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, revealed some important common traits. These include the conservation of characteristic sequence features for small hydrophobic toxic proteins, the localization of several type I TA within prophage or prophage-like regions and strong connections with stress response. Potential functions in the stabilization of genome regions, adaptations to stress conditions and interactions with CRISPR-Cas defence system, as well as promising applications of TA for genome-editing and antimicrobial developments are discussed.
Collapse
Affiliation(s)
- Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
43
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. Adv Virus Res 2019; 103:1-31. [PMID: 30635074 DOI: 10.1016/bs.aivir.2018.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing.
Collapse
Affiliation(s)
| | | | - Zafrin Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Fortier LC. Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species. Front Microbiol 2018; 9:2033. [PMID: 30233520 PMCID: PMC6127314 DOI: 10.3389/fmicb.2018.02033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) are bacterial viruses that parasitize bacteria. They are highly prevalent in nature, with an estimated 1031 viral particles in the whole biosphere, and they outnumber bacteria by at least 10-fold. Hence, phages represent important drivers of bacterial evolution, although our knowledge of the role played by phages in the mammalian gut is still embryonic. Several pathogens owe their virulence to the integrated phages (prophages) they harbor, which encode diverse virulence factors such as toxins. Clostridioides (Clostridium) difficile is an important opportunistic pathogen and several phages infecting this species have been described over the last decade. However, their exact contribution to the biology and virulence of this pathogen remains elusive. Current data have shown that C. difficile phages can alter virulence-associated phenotypes, in particular toxin production, by interfering with bacterial regulatory circuits through crosstalk with phage proteins for example. One phage has also been found to encode a complete binary toxin locus. Multiple regulatory genes have also been identified in phage genomes, suggesting that their impact on the host can be complex and often subtle. In this minireview, the current state of knowledge, major findings, and pending questions regarding C. difficile phages will be presented. In addition, with the apparent role played by phages in the success of fecal microbiota transplantation and the perspective of phage therapy for treatment of recurrent C. difficile infection, it has become even more crucial to understand what C. difficile phages do in the gut, how they impact their host, and how they influence the epidemiology and evolution of this clinically important pathogen.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
46
|
Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, Smits WK. Mechanistic Insights in the Success of Fecal Microbiota Transplants for the Treatment of Clostridium difficile Infections. Front Microbiol 2018; 9:1242. [PMID: 29946308 PMCID: PMC6005852 DOI: 10.3389/fmicb.2018.01242] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Fecal microbiota transplantation has proven to be an effective treatment for infections with the gram-positive enteropathogen Clostridium difficile. Despite its effectiveness, the exact mechanisms that underlie its success are largely unclear. In this review, we highlight the pleiotropic effectors that are transferred during fecal microbiota transfer and relate this to the C. difficile lifecycle. In doing so, we show that it is likely that multiple factors contribute to the elimination of symptoms of C. difficile infections after fecal microbiota transplantation.
Collapse
Affiliation(s)
- Amoe Baktash
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elisabeth M Terveer
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bastian V H Hornung
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Corver
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Clinical Microbiology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden, Netherlands.,Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
47
|
Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep 2018; 8:5091. [PMID: 29572482 PMCID: PMC5865146 DOI: 10.1038/s41598-018-23418-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage therapeutic development will clearly benefit from understanding the fundamental dynamics of in vivo phage-bacteria interactions. Such information can inform animal and human trials, and much can be ascertained from human cell-line work. We have developed a human cell-based system using Clostridium difficile, a pernicious hospital pathogen with limited treatment options, and the phage phiCDHS1 that effectively kills this bacterium in liquid culture. The human colon tumorigenic cell line HT-29 was used because it simulates the colon environment where C. difficile infection occurs. Studies on the dynamics of phage-bacteria interactions revealed novel facets of phage biology, showing that phage can reduce C. difficile numbers more effectively in the presence of HT-29 cells than in vitro. Both planktonic and adhered Clostridial cell numbers were successfully reduced. We hypothesise and demonstrate that this observation is due to strong phage adsorption to the HT-29 cells, which likely promotes phage-bacteria interactions. The data also showed that the phage phiCDHS1 was not toxic to HT-29 cells, and phage-mediated bacterial lysis did not cause toxin release and cytotoxic effects. The use of human cell lines to understand phage-bacterial dynamics offers valuable insights into phage biology in vivo, and can provide informative data for human trials.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - Ananthi Ramachandran
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Anisha M Thanki
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Fatima B I Vukusic
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Martha R J Clokie
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
48
|
Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile. Plasmid 2018; 96-97:25-38. [DOI: 10.1016/j.plasmid.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|
49
|
Smits WK, Weese JS, Roberts AP, Harmanus C, Hornung B. A helicase-containing module defines a family of pCD630-like plasmids in Clostridium difficile. Anaerobe 2018; 49:78-84. [DOI: 10.1016/j.anaerobe.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
50
|
Ramírez-Vargas G, Goh S, Rodríguez C. The Novel Phages phiCD5763 and phiCD2955 Represent Two Groups of Big Plasmidial Siphoviridae Phages of Clostridium difficile. Front Microbiol 2018; 9:26. [PMID: 29403466 PMCID: PMC5786514 DOI: 10.3389/fmicb.2018.00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022] Open
Abstract
Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32–57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile. Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAPCR1/RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAPCR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131–136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.
Collapse
Affiliation(s)
- Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Shan Goh
- Pathobiology and Population Studies, Royal Veterinary College, Hatfield, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|