1
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
2
|
Abstract
Infections from Helicobacter pylori (Hp) are endangering Public Health safety worldwide, due to the associated high risk of developing severe diseases, such as peptic ulcer, gastric cancer, diabetes, and cardiovascular diseases. Current therapies are becoming less effective due to the rise of (multi)drug-resistant phenotypes and an urgent need for new antibacterial agents with innovative mechanisms of action is pressing. Among the most promising pharmacological targets, Carbonic Anhydrases (EC: 4.2.1.1) from Hp, namely HpαCA and HpβCA, emerged for their high druggability and crucial role in the survival of the pathogen in the host. Thereby, in the last decades, the two isoenzymes were isolated and characterized offering the opportunity to profile their kinetics and test different series of inhibitors.
Collapse
Affiliation(s)
| | | | - Simone Carradori
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | | |
Collapse
|
3
|
Supuran CT. Novel carbonic anhydrase inhibitors for the treatment of Helicobacter pylori infection. Expert Opin Investig Drugs 2024; 33:523-532. [PMID: 38517734 DOI: 10.1080/13543784.2024.2334714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Helicobacter pylori, the causative agent of peptic ulcer, gastritis, and gastric cancer encodes two carbonic anhydrases (CA, EC 4.2.1.1) belonging to the α- and β-class (HpCAα/β), which have been validated as antibacterial drug targets. Acetazolamide and ethoxzolamide were also clinically used for the management of peptic ulcer. AREAS COVERED Sulfonamides were the most investigated HpCAα/β compounds, with several low nanomolar inhibitors identified, some of which also crystallized as adducts with HpCAα, allowing for the rationalization of the structure-activity relationship. Few data are available for other classes of inhibitors, such as phenols, sulfamides, sulfamates, dithiocarbamates, arylboronic acids, some of which showed effective in vitro inhibition and for phenols, also inhibition of planktonic growth, biofilm formation, and outer membrane vesicles spawning. EXPERT OPINION Several recent drug design studies reported selenazoles incorporating seleno/telluro-ethers attached to benzenesulfonamides, hybrids incorporating the EGFR inhibitor erlotinib and benzenesulfonamides, showing KIs < 100 nM against HpCAα and MICs in the range of 8-16 µg/mL for the most active derivatives. Few drug design studies for non-sulfonamide inhibitors were performed to date, although inhibition of these enzymes may help the fight of multidrug resistance to classical antibiotics which emerged in the last decades also for this bacterium.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Zou Y, Yuan Y, Zhou Q, Yue Z, Liu J, Fan L, Xu H, Xin L. The Role of Methionine Restriction in Gastric Cancer: A Summary of Mechanisms and a Discussion on Tumor Heterogeneity. Biomolecules 2024; 14:161. [PMID: 38397398 PMCID: PMC10887009 DOI: 10.3390/biom14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is ranked as the fifth most prevalent cancer globally and has long been a topic of passionate discussion among numerous individuals. However, the incidence of gastric cancer in society has not decreased, but instead has shown a gradual increase in recent years. For more than a decade, the treatment effect of gastric cancer has not been significantly improved. This is attributed to the heterogeneity of cancer, which makes popular targeted therapies ineffective. Methionine is an essential amino acid, and many studies have shown that it is involved in the development of gastric cancer. Our study aimed to review the literature on methionine and gastric cancer, describing its mechanism of action to show that tumor heterogeneity in gastric cancer does not hinder the effectiveness of methionine-restricted therapies. This research also aimed to provide insight into the inhibition of gastric cancer through metabolic reprogramming with methionine-restricted therapies, thereby demonstrating their potential as adjuvant treatments for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang 330006, China; (Y.Z.); (Y.Y.); (Q.Z.); (Z.Y.); (J.L.); (L.F.); (H.X.)
| |
Collapse
|
5
|
Jacob TV, Doshi GM. A Mini-review on Helicobacter pylori with Gastric Cancer and Available Treatments. Endocr Metab Immune Disord Drug Targets 2024; 24:277-290. [PMID: 37622707 DOI: 10.2174/1871530323666230824161901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Helicobacter pylori (H. pylori) is the most thoroughly researched etiological component for stomach inflammation and malignancies. Even though there are conventional recommendations and treatment regimens for eradicating H. pylori, failure rates continue to climb. Antibiotic resistance contributes significantly to misdiagnoses, false positive results, and clinical failures, all of which raise the chance of infection recurrence. This review aims to explore the molecular mechanisms underlying drug resistance in H. pylori and discuss novel approaches for detecting genotypic resistance. Modulation of drug uptake/ efflux, biofilm, and coccoid development. Newer genome sequencing approaches capable of detecting H. pylori genotypic resistance are presented. Prolonged infection in the stomach causes major problems such as gastric cancer. The review discusses how H. pylori causes stomach cancer, recent biomarkers such as miRNAs, molecular pathways in the development of gastric cancer, and diagnostic methods and clinical trials for the disease. Efforts have been made to summarize the recent advancements made toward early diagnosis and novel therapeutic approaches for H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
6
|
Urbaniak MM, Rudnicka K, Gościniak G, Chmiela M. Can Pyomelanin Produced by Pseudomonas aeruginosa Promote the Regeneration of Gastric Epithelial Cells and Enhance Helicobacter pylori Phagocytosis? Int J Mol Sci 2023; 24:13911. [PMID: 37762213 PMCID: PMC10530801 DOI: 10.3390/ijms241813911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common cause of chronic gastritis, peptic ulcers and gastric cancer. Successful colonization of the stomach by H. pylori is related to the complex interactions of these bacteria and its components with host cells. The growing antibiotic resistance of H. pylori and various mechanisms of evading the immune response have forced the search for new biologically active substances that exhibit antibacterial properties and limit the harmful effects of these bacteria on gastric epithelial cells and immune cells. In this study, the usefulness of pyomelanin (PyoM) produced by Pseudomonas aeruginosa for inhibiting the metabolic activity of H. pylori was evaluated using the resazurin reduction assay, as well as in vitro cell studies used to verify the cytoprotective, anti-apoptotic and pro-regenerative effects of PyoM in the H. pylori LPS environment. We have shown that both water-soluble (PyoMsol) and water-insoluble (PyoMinsol) PyoM exhibit similar antibacterial properties against selected reference and clinical strains of H. pylori. This study showed that PyoM at a 1 μg/mL concentration reduced H. pylori-driven apoptosis and reactive oxygen species (ROS) production in fibroblasts, monocytes or gastric epithelial cells. In addition, PyoM enhanced the phagocytosis of H. pylori. PyoMsol showed better pro-regenerative and immunomodulatory activities than PyoMinsol.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-368 Wrocław, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| |
Collapse
|
7
|
Wu S, Xu Y, Chen Z, Chen Y, Wei F, Xia C, Zhou Q, Li P, Gu Q. Lactiplantibacillus plantarum ZJ316 Reduces Helicobacter pylori Adhesion and Inflammation by Inhibiting the Expression of Adhesin and Urease Genes. Mol Nutr Food Res 2023; 67:e2300241. [PMID: 37485583 DOI: 10.1002/mnfr.202300241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Indexed: 07/25/2023]
Abstract
SCOPE The present study aims to investigate the anti-Helicobacter pylori (H. pylori) effects of Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) both in vitro and in vivo. METHODS AND RESULTS This study finds that L. plantarum ZJ316 effectively suppresses H. pylori adhesion in inhibition (Pre-ZJ316), competition (Co-ZJ316), and displacement (Post-ZJ316) assays, and Pre-ZJ316 displaying the most potent inhibitory effect with an impressive inhibition ratio of 70.14%. Upon anti-adhesion, L. plantarum ZJ316 significantly downregulates the expression of H. pylori virulence genes, including ureA, ureB, flaA, and sabA, with inhibition ratios of 46.83%, 24.02%, 21.42%, and 62.38% at 2 h, respectively. In addition, L. plantarum ZJ316 is observed to reduce the level of interleukin 8 (IL-8) and improve cell viability in infected AGS cells. Furthermore, in vivo studies show that supplementation with L. plantarum ZJ316 effectively hinders H. pylori colonization and significantly suppresses the infiltration of immune cells and IL-8 production with H. pylori infection, protecting host from inflammatory damage. CONCLUSION L. plantarum ZJ316 exhibits excellent adhesion inhibition on H. pylori, and may be used as a probiotic candidate in the prevention or adjuvant therapy of gastric disease caused by H. pylori.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
8
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
9
|
Fiorani M, Tohumcu E, Del Vecchio LE, Porcari S, Cammarota G, Gasbarrini A, Ianiro G. The Influence of Helicobacter pylori on Human Gastric and Gut Microbiota. Antibiotics (Basel) 2023; 12:765. [PMID: 37107126 PMCID: PMC10135037 DOI: 10.3390/antibiotics12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that is able to colonize the human stomach, whose high prevalence has a major impact on human health, due to its association with several gastric and extra-gastric disorders, including gastric cancer. The gastric microenvironment is deeply affected by H. pylori colonization, with consequent effects on the gastrointestinal microbiota, exerted via the regulation of various factors, including gastric acidity, host immune responses, antimicrobial peptides, and virulence factors. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Notably, therapy regimens integrated with probiotics have been shown to reduce the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. In light of the deep impact of gut microbiota alterations on human health, the present article aims to provide an overview of the complex interaction between H. pylori and the gastrointestinal microbiota, focusing also on the consequences of eradication therapies and the effects of probiotic supplementation.
Collapse
Affiliation(s)
- Marcello Fiorani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ege Tohumcu
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
12
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
13
|
Importance of Carbon to Nitrogen Ratio in Microbial Cement Production: Insights through Experiments and Genome-Scale Metabolic Modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Geng J, Wang Z, Wu Y, Yu L, Wang L, Dong Q, Liu C, Chi Z. Intrinsic specificity of plain ammonium citrate carbon dots for Helicobacter pylori: Interfacial mechanism, diagnostic translation and general revelation. Mater Today Bio 2022; 15:100282. [PMID: 35601896 PMCID: PMC9119834 DOI: 10.1016/j.mtbio.2022.100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023] Open
Abstract
The exploitation of carbon dots (CDs) is now flourishing; however, more effort is needed to overcome their lack of intrinsic specificity. Herein, instead of synthesizing novel CDs, we reinvestigated three reported CDs and discovered that plain ammonium citrate CDs (AC-CDs) exhibited surprising specificity for Helicobacter pylori. Notably, we showed that the interfacial mechanism behind this specificity was due to the affinity between the high abundant urea/ammonium transporters on H. pylori outer membrane and the surface-coordinated ammonium ions on AC-CDs. Further, we justified that ammonium sulfate-citric acid CDs also possessed H. pylori-specificity owing to their NH4+ doping. Thereby, we suggested that the incorporation of a molecule that could be actively transported by abundant membrane receptors into the precursors of CDs might serve as a basis for developing a plain CD with intrinsic specificity for H. pylori. Moreover, AC-CDs exhibited specificity towards live, dead, and multidrug-resistant H. pylori strains. Based on the specificity, we developed a microfluidics-assisted in vitro sensing approach for H. pylori, achieving a simplified, rapid and ultrasensitive detection with two procedures, shortened time within 45.0 min and a low actual limit of detection of 10.0 CFU mL−1. This work sheds light on the design of more H. pylori-specific or even bacteria-specific CDs and their realistic translation into clinical practice. Plain ammonium citrate CDs have intrinsic specificity for Helicobacter pylori. Affinity of outer-membrane urea receptors to NH4+ on CDs decides the specificity. The specific CDs coupling microfluidics confers a simplified detection of H. pylori. The mechanism and translation inspire the engineering of bacteria-specific CDs.
Collapse
|
15
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
16
|
Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infect Immun 2021; 89:IAI.00597-20. [PMID: 33526561 DOI: 10.1128/iai.00597-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Collapse
|
17
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Săsăran MO, Meliț LE, Dobru ED. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22031406. [PMID: 33573346 PMCID: PMC7866828 DOI: 10.3390/ijms22031406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) remains the most-researched etiological factor for gastric inflammation and malignancies. Its evolution towards gastric complications is dependent upon host immune response. Toll-like receptors (TLRs) recognize surface and molecular patterns of the bacterium, especially the lipopolysaccharide (LPS), and act upon pathways, which will finally lead to activation of the nuclear factor-kappa B (NF-kB), a transcription factor that stimulates release of inflammatory cytokines. MicroRNAs (MiRNAs) finely modulate TLR signaling, but their expression is also modulated by activation of NF-kB-dependent pathways. This review aims to focus upon several of the most researched miRNAs on this subject, with known implications in host immune responses caused by H. pylori, including let-7 family, miRNA-155, miRNA-146, miRNA-125, miRNA-21, and miRNA-221. TLR-LPS interactions and their afferent pathways are regulated by these miRNAs, which can be considered as a bridge, which connects gastric inflammation to pre-neoplastic and malignant lesions. Therefore, they could serve as potential non-invasive biomarkers, capable of discriminating H. pylori infection, as well as its associated complications. Given that data on this matter is limited in children, as well as for as significant number of miRNAs, future research has yet to clarify the exact involvement of these entities in the progression of H. pylori-associated gastric conditions.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics III, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technol-ogy of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-742-984744
| | - Ecaterina Daniela Dobru
- Department of Internal Medicine VII, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
19
|
Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. Int J Mol Sci 2020; 21:ijms21176451. [PMID: 32899442 PMCID: PMC7503565 DOI: 10.3390/ijms21176451] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a class one carcinogen which causes chronic atrophic gastritis, gastric intestinal metaplasia, dysplasia and adenocarcinoma. The mechanisms by which H. pylori interacts with other risk and protective factors, particularly vitamin C in gastric carcinogenesis are complex. Gastric carcinogenesis includes metabolic, environmental, epigenetic, genomic, infective, inflammatory and oncogenic pathways. The molecular classification of gastric cancer subtypes has revolutionized the understanding of gastric carcinogenesis. This includes the tumour microenvironment, germline mutations, and the role of Helicobacter pylori bacteria, Epstein Barr virus and epigenetics in somatic mutations. There is evidence that ascorbic acid, phytochemicals and endogenous antioxidant systems can modify the risk of gastric cancer. Gastric juice ascorbate levels depend on dietary intake of ascorbic acid but can also be decreased by H. pylori infection, H. pylori CagA secretion, tobacco smoking, achlorhydria and chronic atrophic gastritis. Ascorbic acid may be protective against gastric cancer by its antioxidant effect in gastric cytoprotection, regenerating active vitamin E and glutathione, inhibiting endogenous N-nitrosation, reducing toxic effects of ingested nitrosodimethylamines and heterocyclic amines, and preventing H. pylori infection. The effectiveness of such cytoprotection is related to H. pylori strain virulence, particularly CagA expression. The role of vitamin C in epigenetic reprogramming in gastric cancer is still evolving. Other factors in conjunction with vitamin C also play a role in gastric carcinogenesis. Eradication of H. pylori may lead to recovery of vitamin C secretion by gastric epithelium and enable regression of premalignant gastric lesions, thereby interrupting the Correa cascade of gastric carcinogenesis.
Collapse
|
20
|
Kornspan D, Zahavi T, Salmon-Divon M. The Acidic Stress Response of the Intracellular Pathogen Brucella melitensis: New Insights from a Comparative, Genome-Wide Transcriptome Analysis. Genes (Basel) 2020; 11:genes11091016. [PMID: 32872264 PMCID: PMC7563570 DOI: 10.3390/genes11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
- Correspondence: ; Tel.: +972-3-968-1745
| | - Tamar Zahavi
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
21
|
Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK. Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils. Front Microbiol 2018; 9:1982. [PMID: 30210468 PMCID: PMC6119699 DOI: 10.3389/fmicb.2018.01982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems, sodium/proton antiporters, and two copies of proton-translocating F1F0-type ATP synthase genes were identified, which might participate in the key pH homeostasis mechanisms in KS32. In addition, the V-type ATP synthase and urea assimilation genes might be used for pH homeostasis in KS41. Genes involved in the modification of membranes by incorporation of cyclopropane fatty acids and hopanoid lipids might be used for reducing proton influx into cells. The two methanotroph genomes possess genes for elaborate heavy metal efflux pumping systems, possibly owing to increased heavy metal toxicity in acidic conditions. Phylogenies of key genes involved in acid adaptation, methane oxidation, and antiviral defense in KS41 were incongruent with that of 16S rRNA. Thus, the detailed analysis of the genome sequences provides new insights into the ecology of methanotrophs responding to soil acidification.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Woon-Jong Yu
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju City, South Korea
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Man-Young Jung
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
22
|
Noncatalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol 2018; 200:JB.00124-18. [PMID: 29866802 DOI: 10.1128/jb.00124-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.
Collapse
|
23
|
Measurement of Internal pH in Helicobacter pylori by Using Green Fluorescent Protein Fluorimetry. J Bacteriol 2018; 200:JB.00178-18. [PMID: 29735759 DOI: 10.1128/jb.00178-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is an organism known to colonize the normal human stomach. Previous studies have shown that the bacterium does this by elevating its periplasmic pH via the hydrolysis of urea. However, the value of the periplasmic pH was calculated indirectly from the proton motive force equation. To measure the periplasmic pH directly in H. pylori, we fused enhanced green fluorescent protein (EGFP) to the predicted twin-arginine signal peptides of HydA and KapA from H. pylori and TorA from Escherichia coli The fusion proteins were expressed in the H. pylori genome under the control of the cagA promoter. Confocal microscopic and cell fractionation/immunoblotting analyses detected TorA-EGFP in the periplasm and KapA-EGFP in both the periplasm and cytoplasm, while the mature form of HydA-EGFP was seen at low levels in the periplasm, with major cytoplasmic retention of the precursor form. With H. pylori expressing TorA-EGFP, we established a system to directly measure periplasmic pH based on the pH-sensitive fluorimetry of EGFP. These measurements demonstrated that the addition of 5 mM urea has little effect on the periplasmic pH at a medium pH higher than pH 6.5 but rapidly increases the periplasmic pH to pH 6.1 at an acidic medium pH (pH 5.0), corresponding to the opening of the proton-gated channel, UreI, and confirming the basis of gastric colonization. Measurements of the periplasmic pH in an HP0244 (FlgS)-deficient mutant of H. pylori expressing TorA-EGFP revealed a significant loss of the urea-dependent increase in the periplasmic pH at an acidic medium pH, providing additional evidence that FlgS is responsible for recruitment of urease to the inner membrane in association with UreI.IMPORTANCEHelicobacter pylori has been identified as the major cause of chronic superficial gastritis and peptic ulcer disease. In addition, persistent infection with H. pylori, which, if untreated, lasts for the lifetime of an infected individual, predisposes one to gastric malignancies, such as adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A unique feature of the neutralophilic bacterium H. pylori is its ability to survive in the extremely acidic environment of the stomach through its acid acclimation mechanism. The presented results on measurements of periplasmic pH in H. pylori based on fluorimetry of fully active green fluorescent protein fusion proteins exported with the twin-arginine translocase system provide a reliable and rapid tool for the investigation of acid acclimation in H. pylori.
Collapse
|
24
|
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 2018; 86:IAI.00626-17. [PMID: 29229727 DOI: 10.1128/iai.00626-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating H. pylori gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of H. pylori grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of sabA, hopA, and hopQ are increased under high-salt conditions, whereas transcript levels of fecA2 and fecA3 are decreased under high-salt conditions. Transcription of sabA, hopA, hopQ, and fecA3 is derepressed in an arsS mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of H. pylori transcriptional alterations that occur in response to high-salt environmental conditions.
Collapse
|
25
|
Tepeš B, Malfertheiner P, Labenz J, Aygen S. Modified Helicobacter test using a new test meal and a 13C-urea breath test in Helicobacter pylori positive and negative dyspepsia patients on proton pump inhibitors. World J Gastroenterol 2017; 23:5954-5961. [PMID: 28932087 PMCID: PMC5583580 DOI: 10.3748/wjg.v23.i32.5954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the sensitivity and specificity of the 13C-urea breath test (UBT) in patients taking proton pump inhibitors (PPIs), using a new test meal Refex.
METHODS One hundred and fourteen consecutive patients with dyspepsia, 53 Helicobacter pylori (H. pylori) positive, 49 H. pylori negative, were included in the study. The patients were then given esomeprazole 40 mg for 29 consecutive days, and the 13C-UBT with the new test meal was performed the next morning.
RESULTS The sensitivity of the 13C-UBT with a cut off 2.5‰ was 92.45% (95%CI: 81.79%-97.91%) by per-protocol (PP) analysis and 78.13% (95%CI: 66.03%-87.49%) by intention-to-treat (ITT) analysis. The specificity of the 13C-UBT test was 96.00% in the ITT population (95%CI: 86.29%-99.51%) and 97.96% in the PP population (95%CI: 89.15%-99.95%).
CONCLUSION The new test meal based 13C-UBT is highly accurate in patients on PPIs and can be used in those unable to stop their PPI treatment.
Collapse
Affiliation(s)
- Bojan Tepeš
- AM DC Rogaška, Prvomajska 29 A, 3250 Rogaška Slatina, Slovenia
| | - Peter Malfertheiner
- Universitätsklinikum Magdeburg A. ö. R Klinik für Gastroenterologie, Hepatologie und Infektiologie, 39120 Magdeburg, Germany
| | - Joachim Labenz
- Department of Internal Medicine and Gastroenterology, Diakonie Klinikum, Jung-Stilling Hospital, 57074 Siegen, Germany
| | - Sitke Aygen
- Institut für Biomedizinische Analytik und NMR-Imaging GmbH (INFAI), Gottfried-Hagen-Str. 6062, 51105 Köln, Germany
| |
Collapse
|
26
|
Vollan HS, Tannæs T, Caugant DA, Vriend G, Bukholm G. Outer membrane phospholipase A's roles in Helicobacter pylori acid adaptation. Gut Pathog 2017; 9:36. [PMID: 28616083 PMCID: PMC5469174 DOI: 10.1186/s13099-017-0184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023] Open
Abstract
Background The pH of the human gastric mucosa varies around 2.5 so that only bacteria with strong acidic stress tolerance can colonize it. The ulcer causing Helicobacter pylori thrives in the gastric mucosa. We analyse the roles of the key outer membrane protein OMPLA in its roles in acid tolerance. Results The homology model of Helicobacter pylori outer membrane phospholipase A (OMPLA) reveals a twelve stranded β-barrel with a pore that allows molecules to pass with a diameter up to 4 Å. Structure based multiple sequence alignments revealed the functional roles of many amino acids, and led to the suggestion that OMPLA has multiple functions. Besides its role as phospholipase it lets urea enter and ammonium exit the periplasm. Combined with an extensive literature study, our work leads to a comprehensive model for H. pylori’s acid tolerance. This model is based on the conversion of urea into ammonium, and it includes multiple roles for OMPLA and involves two hitherto little studied membrane channels in the OMPLA operon. Conclusion The three-dimensional model of OMPLA predicts a transmembrane pore that can aid H. pylori’s acid tolerance through urea influx and ammonium efflux. After urea passes through OMPLA into the periplasm, it passes through the pH-gated inner membrane channel UreI into the cytoplasm where urease hydrolyses it into NH3 and CO2. Most of the NH3 becomes NH4+ that is likely to need an inner membrane channel to reach the periplasm. Two genes that are co-regulated with OMPLA in gastric Helicobacter operons could aid this transport. The NH4+ that might leave the cell through the OMPLA pore has been implicated in H. pylor’s pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0184-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilde S Vollan
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, PO box 28, 1478 Lørenskog, Norway.,Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway
| | - Tone Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, PO box 28, 1478 Lørenskog, Norway
| | - Dominique A Caugant
- Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway.,Department of Community Medicine and Global Health, Faculty of Medicine, University of Oslo, P.O. Box 1130, Blindern, 0318 Oslo, Norway
| | - Gert Vriend
- CMBI, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Geir Bukholm
- Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway.,Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| |
Collapse
|
27
|
Tsikas D, Hanff E, Brunner G. Helicobacter pylori, Its Urease and Carbonic Anhydrases, and Macrophage Nitric Oxide Synthase. Trends Microbiol 2017; 25:601-602. [PMID: 28579469 DOI: 10.1016/j.tim.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany.
| | - Erik Hanff
- Centre of Pharmacology and Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Gorig Brunner
- Centre of Pharmacology and Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach. PLoS Pathog 2017; 13:e1006118. [PMID: 28103315 PMCID: PMC5245789 DOI: 10.1371/journal.ppat.1006118] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori’s ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria’s response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD’s colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium. Helicobacter pylori is a bacterium that chronically infects the stomachs of 50% of humans, and infection can lead to serious diseases like peptic ulcers and stomach cancer. To survive, H. pylori rapidly senses acid and swims away to the protective mucus layer covering the stomach surface. The bacteria also burrow deep into the glands of the stomach through their narrow fissures and channels, and live in close contact with the cells lining the stomach. We report here that two H. pylori chemoreceptors, TlpA and TlpD, are the dominant acid sensors enabling H. pylori to discern and respond to minute changes in acid levels. H. pylori mutants lacking both TlpA and TlpD are unable to sense acid and are severely impaired in their survival in the murine stomach. By treating animals with omeprazole, a drug that blocks acid production, we restored the ability of the acid-sensor mutant to survive in the stomach. In addition, we found that blocking stomach acid production extended the range, distribution, and density of H. pylori living deep in the gastric glands. Our study provides new insights into H. pylori’s acid sensing machinery and how manipulation of acid gradients controls H. pylori’s localization and survival in the stomach.
Collapse
|
29
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
30
|
Marcus EA, Sachs G, Wen Y, Scott DR. Phosphorylation-dependent and Phosphorylation-independent Regulation of Helicobacter pylori Acid Acclimation by the ArsRS Two-component System. Helicobacter 2016; 21:69-81. [PMID: 25997502 PMCID: PMC4655181 DOI: 10.1111/hel.12235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pH-sensitive Helicobacter pylori ArsRS two-component system (TCS) aids survival of this neutralophile in the gastric environment by directly sensing and responding to environmental acidity. ArsS is required for acid-induced trafficking of urease and its accessory proteins to the inner membrane, allowing rapid, urea-dependent cytoplasmic and periplasmic buffering. Expression of ArsR, but not its phosphorylation, is essential for bacterial viability. The aim of this study was to characterize the roles of ArsS and ArsR in the response of H. pylori to acid. MATERIALS AND METHODS Wild-type H. pylori and an arsR(D52N) phosphorylation-deficient strain were incubated at acidic or neutral pH. Gene and protein expression, survival, membrane trafficking of urease proteins, urease activity, and internal pH were studied. RESULTS Phosphorylation of ArsR is not required for acid survival. ArsS-driven trafficking of urease proteins to the membrane in acid, required for recovery of internal pH, is independent of ArsR phosphorylation. ArsR phosphorylation increases expression of the urease gene cluster, and the loss of negative feedback in a phosphorylation-deficient mutant leads to an increase in total urease activity. CONCLUSIONS ArsRS has a dual function in acid acclimation: regulation of urease trafficking to UreI at the cytoplasmic membrane, driven by ArsS, and regulation of urease gene cluster expression, driven by phosphorylation of ArsR. ArsS and ArsR work through phosphorylation-dependent and phosphorylation-independent regulatory mechanisms to impact acid acclimation and allow gastric colonization. Furthering understanding of the intricacies of acid acclimation will impact the future development of targeted, nonantibiotic treatment regimens.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- Department of Medicine, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - Yi Wen
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| |
Collapse
|
31
|
Marcus EA, Sachs G, Scott DR. Colloidal bismuth subcitrate impedes proton entry into Helicobacter pylori and increases the efficacy of growth-dependent antibiotics. Aliment Pharmacol Ther 2015; 42:922-33. [PMID: 26238858 PMCID: PMC4558396 DOI: 10.1111/apt.13346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Successful eradication of Helicobacter pylori is becoming more difficult, mainly due to emerging antibiotic resistance. Treatment regimens containing bismuth have increased efficacy, but the mechanism is unknown. Helicobacter pylori is a neutralophile adapted to survive the acidic gastric environment via acid acclimation, but demonstrates more robust growth at neutral pH. Many antibiotics used to treat H. pylori rely on bacterial growth. AIM To investigate the mechanism of increased efficacy of bismuth-containing H. pylori treatment regimens. METHODS RNAseq and qPCR, urease activity in permeabilised and intact bacteria, internal pH and membrane potential were measured with and without colloidal bismuth subcitrate (CBS). Bacterial survival was assessed with CBS and/or ampicillin. RESULTS Genes involved with metabolism and growth were upregulated in the presence of CBS at acidic pH. Urease activity of permeabilised H. pylori at pH 7.4 and 4.5 decreased in the presence of CBS, but intact urease activity decreased only at acidic pH. The fall in cytoplasmic pH with external acidification was diminished by CBS. The increase in membrane potential in response to urea addition at acidic medium pH was unaffected by CBS. The impact of CBS and ampicillin on H. pylori survival was greater than either agent alone. CONCLUSIONS Bismuth is not acting directly on urease or the urea channel. Colloidal bismuth subcitrate impedes proton entry into the bacteria, leading to a decrease in the expected fall in cytoplasmic pH. With cytoplasmic pH remaining within range for increased metabolic activity of a neutralophile, the efficacy of growth-dependent antibiotics is augmented.
Collapse
Affiliation(s)
| | - George Sachs
- Department of Physiology, Los Angeles, CA,Department of Medicine, DGSOM at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, Los Angeles, CA,VA GLAHS, Los Angeles, CA,Corresponding author, David R. Scott, UCLA/VA GLAHS, 11301 Wilshire Blvd, Bldg. 113 Rm. 324, Los Angeles, CA 90073, (310) 478-3711 x42046,
| |
Collapse
|
32
|
Li H. Review of Research on Routes of Helicobacter pylori Infection. INFECTION INTERNATIONAL 2015. [DOI: 10.1515/ii-2017-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn recent years, many scholars conducted in-depth research onHelicobacter pyloriand identified it as an important pathogen of chronic gastritis and peptic ulcer.H. pylorialso causes also and contributes to precancerous lesions (atrophic gastritis and intestinal metaplasia) and is closely related to occurrence and development of gastric adenocarcinoma and gastric mucosa-associated lymphoma. This study summarizes biological characteristics, epidemic status, and infection route ofH. pyloriand reviews research on roles of natural environments, especially drinking water, during infection.
Collapse
|
33
|
Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat Commun 2014; 4:2900. [PMID: 24305683 PMCID: PMC3863980 DOI: 10.1038/ncomms3900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients. Helicobacter pylori survives in the acidic environment of the stomach by taking up urea and converting it to ammonia and carbon dioxide, which buffer the bacterial periplasm. Using molecular dynamics simulations, McNulty et al. provide insight into the mechanism of urea uptake through the H. pylori urea transporter.
Collapse
|
34
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
35
|
Abstract
The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4 (+). This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg(2+) at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium.
Collapse
|
36
|
Wu H, Nakano T, Matsuzaki Y, Ooi Y, Kohno T, Ishihara S, Sano K. A new type of intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol 2014; 47:224-32. [PMID: 24420644 DOI: 10.1007/s00795-013-0068-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation systems (ibNoTSs) for CagA and urease. Both systems are UreI-dependent and urea-independent, and activated by extrabacterial acid. The activation occurs/appears within 15 min after exposure to extrabacterial acid stimulation. Although it has been clarified that VacA is secreted via the type-V secretion machinery, it remains unclear how this toxin is transported toward the machinery. To clarify the intrabacterial nanotransportation system for H. pylori VacA, immunoelectron microscopic analysis was performed in this study. VacA shifted to the periphery of the bacterial cytoplasm at 30 min after the extracellular pH change, whereas CagA and urease did so within 15 min. Studies using an ureI-deletion mutant revealed that unlike CagA and urease transport, VacA transport was not UreI-dependent. VacA secretion was accelerated without an increase in the production of VacA 30 min after the exposure to extrabacterial acid. These findings indicated that H. pylori possesses a novel type of ibNoTS for VacA, which is different from that for CagA or urease, in response time and dependency of UreI.
Collapse
Affiliation(s)
- Hong Wu
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan,
| | | | | | | | | | | | | |
Collapse
|
37
|
Marcus EA, Vagin O, Tokhtaeva E, Sachs G, Scott DR. Helicobacter pylori impedes acid-induced tightening of gastric epithelial junctions. Am J Physiol Gastrointest Liver Physiol 2013; 305:G731-9. [PMID: 23989011 PMCID: PMC3840231 DOI: 10.1152/ajpgi.00209.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric infection by Helicobacter pylori is the most common cause of ulcer disease and gastric cancer. The mechanism of progression from gastritis and inflammation to ulcers and cancer in a fraction of those infected is not definitively known. Significant acidity is unique to the gastric environment and is required for ulcer development. The interplay between gastric acidity and H. pylori pathogenesis is important in progression to advanced disease. The aim of this study was to characterize the impact of acid on gastric epithelial integrity and cytokine release and how H. pylori infection alters these responses. Human gastric epithelial (HGE-20) cells were grown on porous inserts, and survival, barrier function, and cytokine release were studied at various apical pH levels in the presence and absence of H. pylori. With apical acidity, gastric epithelial cells demonstrate increased barrier function, as evidenced by increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. This effect is reduced in the presence of wild-type, but not urease knockout, H. pylori. The epithelial inflammatory response is also modulated by acidity and H. pylori infection. Without H. pylori, epithelial IL-8 release decreases in acid, while IL-6 release increases. In the presence of H. pylori, acidic pH diminishes the magnitude of the previously reported increase in IL-8 and IL-6 release. H. pylori interferes with the gastric epithelial response to acid, contributing to altered barrier function and inflammatory response. H. pylori diminishes acid-induced tightening of cell junctions in a urease-dependent manner, suggesting that local pH elevation promotes barrier compromise and progression to mucosal damage.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- 1Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga Vagin
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Elmira Tokhtaeva
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - George Sachs
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,3Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; and ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - David R. Scott
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
38
|
Abstract
BACKGROUND Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G, and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. MATERIALS AND METHODS A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison with wildtype. RESULTS Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation was similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supraphysiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. CONCLUSIONS ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential nonantibiotic target for H. pylori eradication.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA,Corresponding author: VA GLAHS, 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, Phone: 310-478-3711 x42046, Fax: 310-312-9478,
| |
Collapse
|
39
|
Kuhns LG, Mahawar M, Sharp JS, Benoit S, Maier RJ. Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation. Biochem J 2013; 450:141-8. [PMID: 23181726 PMCID: PMC3935233 DOI: 10.1042/bj20121434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions.
Collapse
Affiliation(s)
- Lisa G. Kuhns
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Manish Mahawar
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, U.S.A
| | - Stéphane Benoit
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
40
|
Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 2012; 493:255-8. [PMID: 23222544 PMCID: PMC3974264 DOI: 10.1038/nature11684] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Half the world's population is chronically infected with Helicobacter pylori1, causing gastritis, ulcers and increased incidence of gastric adenocarcinoma2. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach3. The channel is closed at neutral pH and opens at acidic pH to allow rapid urea access to cytoplasmic urease4. Urease produces NH3 and CO2 that neutralize entering protons and thus buffer the periplasm to pH ∼6.1 even in gastric juice at pH <2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a novel fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp153 in the cytoplasmic constriction site to Ala or Phe reduces the selectivity for urea compared to thiourea, suggesting that solute interaction with Trp153 contributes specificity. The novel hexameric channel structure described here provides a new paradigm for permeation of urea and other small amide solutes in prokaryotes and archaea.
Collapse
|
41
|
Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry 2012; 51:7816-32. [PMID: 22970729 DOI: 10.1021/bi300981m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
42
|
Hallinger DR, Romero-Gallo J, Peek RM, Forsyth MH. Polymorphisms of the acid sensing histidine kinase gene arsS in Helicobacter pylori populations from anatomically distinct gastric sites. Microb Pathog 2012; 53:227-33. [PMID: 22940419 DOI: 10.1016/j.micpath.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 12/24/2022]
Abstract
Phase variation is frequently utilized by bacterial species to affect gene expression such that phenotypic variants are maintained within populations, ensuring survival as environmental or host conditions change. Unusual among Helicobacter pylori phase variable or contingency genes is arsS, encoding a sensory histidine kinase involved in the acid acclimation of the organism. The presence of a 3' homopolymeric cytosine tract of variable length in arsS among Helicobacter pylori strains allows for the expression of various functional ArsS isoforms, differing in carboxy-terminal protein domains. In this study, we analyzed this 3'arsS region via amplified fragment length polymorphism (AFLP) and sequencing analyses for H. pylori populations from 3 different gastric sites of 12 patients. Our data indicate the presence of multiple arsS alleles within each population of H. pylori derived from the gastric antrum, cardia, or corpus of these patients. We also show that H. pylori, derived from the same anatomical site and patient, are predicted to express multiple ArsS isoforms in each population investigated. Furthermore, we identify a polymorphic deletion within arsS that generates another alternate ArsS C-terminal end. These findings suggest that four C-terminal variations of ArsS adds to the complexity of the ArsRS acid adaptation mechanism as a whole and may influence the ability of H. pylori to persist in the gastric niche for decades.
Collapse
Affiliation(s)
- Daniel R Hallinger
- Department of Biology, The College of William and Mary, Integrated Science Center 3051, Williamsburg, VA 23185, USA
| | | | | | | |
Collapse
|
43
|
Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol 2012; 194:5545-51. [PMID: 22865848 DOI: 10.1128/jb.01263-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori survives and grows at low pHs via acid acclimation mechanisms that enable periplasmic pH homeostasis. Important components include a cytoplasmic urease; a pH-gated urea channel, UreI; and periplasmic α-carbonic anhydrase. To allow the rapid adjustment of periplasmic pH, acid acclimation components are recruited to the inner membrane in acid. The ArsRS two-component system, in an acid-responsive manner, controls the transcription of the urease gene cluster and α-carbonic anhydrase. The aim of this study is to determine the role of ArsS in protein trafficking as a component of acid acclimation. H. pylori wild-type and ΔarsS bacteria were incubated at acidic and neutral pHs. Intact bacteria, purified membranes, and total protein were analyzed by Western blotting and urease activity measurements. The total urease activity level was decreased in the ΔarsS strain, but the acid activation of UreI was unaffected. A 30-min acid exposure increased the level and activity of urease proteins at the membrane in the wild type but not in the ΔarsS strain. The urease levels and activity of the ΔarsS strain after a 90-min acid exposure were similar to those of the wild type. ArsS, in addition to its role in urease gene transcription, is also involved in the recruitment of urease proteins to the inner membrane to augment acid acclimation during acute acid exposure. Urease membrane recruitment following prolonged acid exposure in the absence of ArsS was similar to that of the wild type, suggesting a compensatory mechanism, possibly regulated by FlgS, underscoring the importance of urease membrane recruitment and activation in periplasmic pH homeostasis.
Collapse
|
44
|
Ameri Shah Reza M, Mousavi Gargari SL, Rasooli I, Jalali Nadoushan M, Ebrahimizadeh W. Inhibition of H. pylori colonization and prevention of gastritis in murine model. World J Microbiol Biotechnol 2012; 28:2513-9. [PMID: 22806157 DOI: 10.1007/s11274-012-1059-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/14/2012] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori is a Gram-negative spiral bacterium that colonizes human gastric mucosa causing infection. In this study aiming at inhibition of H. pylori infection we made an attempt to evaluate immunogenicity of the total (UreC) and C-terminal (UreCc) fragments of H. pylori urease. Total UreC and its C-terminal fragment were expressed in E. coli. Recombinant proteins were analyzed by SDS-PAGE and western blot and then purified by Ni-NTA affinity chromatography. Female C57BL6/j mice were immunized with the purified proteins (UreC and UreCc). Antibody titers from isolated sera were measured by ELISA. Immunized mice were then challenged by oral gavage with live H. pylori Sydney strain SS1. Total of 109 CFU were inoculated into stomach of immunized and unimmunized healthy mice three times each at one day interval. Eight weeks after the last inoculation, the blood sample was collected and the serum antibody titer was estimated by ELISA. Stomach tissues from control and experimental animal groups were studied histopathologically. UreC and UreCc yielded recombinant proteins of 61 and 31 kDa respectively. ELIZA confirmed establishment of immunity and the antibodies produced thereby efficiently recognized H. pylori and inhibited its colonization in vivo. Pathological analysis did not reveal established infection in immunized mice challenged with H. pylori. The results support the idea that UreC and UreCc specific antibodies contribute to protection against H. pylori infections.
Collapse
|
45
|
Abstract
Helicobacter pylori infects half of the world's population and plays a causal role in ulcer disease and gastric cancer. This pathogenic neutralophile uniquely colonizes the acidic gastric milieu through the process of acid acclimation. Acid acclimation is the ability of the organism to maintain periplasmic pH near neutrality in an acidic environment to prevent a fall in cytoplasmic pH in order to maintain viability and growth in acid. Recently, due to an increase in antibiotic resistance, the rate of H. pylori eradication has fallen below 80% generating renewed interest in novel eradication regimens and targets. In this article, we review the gastric biology of H. pylori and acid acclimation, various detection procedures, antibiotic resistance and the role that gastric acidity plays in the susceptibility of the organism to antibiotics currently in use and propose several novel drug targets that would promote eradication in the absence of antibiotics.
Collapse
|
46
|
Witkowska D, Rowinska-Zyrek M, Valensin G, Kozlowski H. Specific poly-histidyl and poly-cysteil protein sites involved in Ni2+ homeostasis in Helicobacter pylori. Impact of Bi3+ ions on Ni2+ binding to proteins. Structural and thermodynamic aspects. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Gray LR, Gu SX, Quick M, Khademi S. Transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori. Biochemistry 2011; 50:8656-63. [PMID: 21877689 DOI: 10.1021/bi200887a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helicobacter pylori's unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure-function relationship of this channel, we developed conditions for the high-yield expression and purification of stable recombinant HpUreI. Detergent-solubilized HpUreI forms a homotrimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay, whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH-sensitive and saturable with a half-saturation concentration (or K(0.5)) of ~163 mM. The extent of binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (~150 mM) was not significantly pH-dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, diffusion of water through HpUreI is pH-dependent with low water permeability at neutral pH.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241, United States
| | | | | | | |
Collapse
|
48
|
Park SA, Ko A, Lee NG. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol 2011; 11:96. [PMID: 21569333 PMCID: PMC3110553 DOI: 10.1186/1471-2180-11-96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/11/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Helicobacter pylori (Hp), a human pathogen that is associated with gastritis, peptic ulcer, and gastric cancer, has been considered a microaerophile, but there is no general consensus about its specific O2 requirements. A clear understanding of Hp physiology is needed to elucidate the pathogenic mechanism(s) of Hp infection. RESULTS We cultured Hp under a range of O2 levels with or without 10% CO2 and evaluated growth profiles, morphology, intracellular pH, and energy metabolism. We found that, in the presence of 10% CO2, the normal atmospheric level of O2 inhibited Hp growth at low density but stimulated growth at a higher density. Field emission scanning electron microscopy and fluorescence microscopy of Hp cells cultured under 20% O2 tension revealed live spiral-shaped bacteria with outer membrane vesicles on a rugged cell surface, which became smooth during the stationary phase. Fermentation products including acetate, lactate, and succinate were detected in cell culture media grown under microaerobic conditions, but not under the aerobic condition. CO2 deprivation for less than 24 h did not markedly change cytoplasmic or periplasmic pH, suggesting that cellular pH homeostasis alone cannot account for the capnophilic nature of Hp. Further, CO2 deprivation significantly increased intracellular levels of ppGpp and ATP but significantly decreased cellular mRNA levels, suggesting induction of the stringent response. CONCLUSIONS We conclude, unlike previous reports, that H. pylori may be a capnophilic aerobe whose growth is promoted by atmospheric oxygen levels in the presence of 10% CO2. Our data also suggest that buffering of intracellular pH alone cannot account for the CO2 requirement of H. pylori and that CO2 deprivation initiates the stringent response in H. pylori. Our findings may provide new insight into the physiology of this fastidious human pathogen.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Ara Ko
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| | - Na Gyong Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea
| |
Collapse
|
49
|
Abstract
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH homeostasis. These insights may help us to target certain pathogens more accurately and to harness the capacities of environmental bacteria more efficiently.
Collapse
Affiliation(s)
- Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA; Tel. 212-241-7280; Fax. 212-996-7214
| | - George Sachs
- Departments of Physiology and Medicine, David Geffen School of Medicine at UCLA, 405 Hilgard Ave., Los Angeles, California 90024, USA Tel. 310-268-3923, Fax 310-312-9478
| | - Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel, Tel. 972 2 6585094, Fax 972 2 658947
| |
Collapse
|
50
|
Perry J, Koteva K, Wright G. Receptor domains of two-component signal transduction systems. MOLECULAR BIOSYSTEMS 2011; 7:1388-98. [PMID: 21347487 DOI: 10.1039/c0mb00329h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.
Collapse
Affiliation(s)
- Julie Perry
- MG DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main St W, Hamilton, Ontario, Canada
| | | | | |
Collapse
|