1
|
Shizukuishi S, Ogawa M, Kuroda E, Hamaguchi S, Sakuma C, Kakuta S, Tanida I, Uchiyama Y, Akeda Y, Ryo A, Ohnishi M. Pneumococcal sialidase promotes bacterial survival by fine-tuning of pneumolysin-mediated membrane disruption. Cell Rep 2024; 43:113962. [PMID: 38483905 DOI: 10.1016/j.celrep.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.
Collapse
Affiliation(s)
- Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Eisuke Kuroda
- Department of Transformative Infection Control Development Studies, Osaka University Graduate School of Medicine, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Shigeto Hamaguchi
- Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan; Department of Transformative Analysis for Human Specimen, Osaka University Graduate School of Medicine, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Chisato Sakuma
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan; Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Payen S, Roy D, Okura M, Segura M, Gottschalk M. Study of the Role of Lipoprotein Maturation Enzymes in the Pathogenesis of the Infection Caused by the Streptococcus suis Serotype 2 Sequence Type 25 North American Prototype Strain. Pathogens 2023; 12:1325. [PMID: 38003790 PMCID: PMC10675726 DOI: 10.3390/pathogens12111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Streptococcus suis serotype 2 is an important swine bacterial pathogen causing sudden death, septic shock, and meningitis. However, serotype 2 strains are phenotypically and genotypically heterogeneous and composed of a multitude of sequence types (STs) whose distributions greatly vary worldwide. It has been previously shown that the lipoprotein (LPP) maturation enzymes diacylglyceryl transferase (Lgt) and signal peptidase (Lsp) significantly modulate the inflammatory host response and play a differential role in virulence depending on the genetic background of the strain. Differently from Eurasian ST1/ST7 strains, the capsular polysaccharide of a North American S. suis serotype 2 ST25 representative strain only partially masks sub-capsular domains and bacterial wall components. Thus, our hypothesis is that since LPPs would be more surface exposed in ST25 strains than in their ST1 or ST7 counterparts, the maturation enzymes would play a more important role in the pathogenesis of the infection caused by the North American strain. Using isogenic Δlgt and Δlsp mutants derived from the wild-type ST25 strain, our studies suggest that these enzymes do not seem to play a role in the interaction between S. suis and epithelial and endothelial cells, regardless of the genetics background of the strain used. However, a role in the formation of biofilms (also independently of the STs) has been demonstrated. Moreover, the involvement of LPP dendritic cell activation in vitro seems to be somehow more pronounced with the ST25 strain. Finally, the Lgt enzyme seems to play a more important role in the virulence of the ST25 strain. Although some differences between STs could be observed, our original hypothesis that LPPs would be significantly more important in ST25 strains due to a better bacterial surface exposition could not be confirmed.
Collapse
Affiliation(s)
- Servane Payen
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - David Roy
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Masatoshi Okura
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima 891-0105, Japan;
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (M.S.)
| |
Collapse
|
3
|
Payen S, Rrodriguez JA, Segura M, Gottschalk M. Laminin-binding protein of Streptococcus suis serotype 2 influences zinc acquisition and cytokine responses. Vet Res 2023; 54:1. [PMID: 36604750 PMCID: PMC9817373 DOI: 10.1186/s13567-022-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.
Collapse
Affiliation(s)
- Servane Payen
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Jesús Aranda Rrodriguez
- grid.7080.f0000 0001 2296 0625Department de Genètica I Microbiologia, Universitat Autónoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Mariela Segura
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Marcelo Gottschalk
- grid.14848.310000 0001 2292 3357Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|
4
|
Kerdsin A, Takeuchi D, Akeda Y, Nakamura S, Gottschalk M, Oishi K. Genomic differences between sequence types 1 and 104 of Streptococcus suis Serotype 2. PeerJ 2022; 10:e14144. [PMID: 36221266 PMCID: PMC9548313 DOI: 10.7717/peerj.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that can cause invasive infections in humans who are in close contact with infected pigs or contaminated pork-derived products. S. suis serotype 2 sequence type (ST) 1 strains are mostly associated with meningitis, whereas ST104 strains are mostly recovered from sepsis cases in humans. No data are available for comparison of the ST1 and ST104 strains at the genomic level, particularly concerning virulence-associated genes. Thus, genomic comparison of both STs was performed in this study. Methods An ST1 isolate (ID26154) from the cerebrospinal fluid of a patient with meningitis and an ST104 isolate (ID24525) from the blood of a patient with sepsis were subjected to shotgun pyrosequencing using the 454 GS Junior System. Genomic comparison was conducted between the ST1 isolate and the ST104 isolate using the Artemis Comparison Tool (ACT) to identify the region of differences (RDs) between ST1 and ST104. Results Fifty-eight RDs were unique to the ST104 genome and were mainly involved in metabolism and cell functional activities, cell wall anchored proteins, bacteriophages and mobile genetic elements, ABC-type transporters, two-component signal transductions, and lantibiotic proteins. Some virulence genes mostly found in ST1 strains were also present in the ST104 genome. Whole-genome comparison is a powerful tool for identifying genomic region differences between different STs of S. suis serotype 2, leading to the identification of the molecular basis of virulence involved in the pathogenesis of the infection.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Dan Takeuchi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Division of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
5
|
Payen S, Roy D, Boa A, Okura M, Auger JP, Segura M, Gottschalk M. Role of Maturation of Lipoproteins in the Pathogenesis of the Infection Caused by Streptococcus suis Serotype 2. Microorganisms 2021; 9:microorganisms9112386. [PMID: 34835511 PMCID: PMC8621357 DOI: 10.3390/microorganisms9112386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen associated with multiple pathologies in piglets. Bacterial lipoproteins (LPPs) have been described as playing important roles in the pathogenesis of the infection of other Gram-positive bacteria as adhesins, pro-inflammatory cell activators and/or virulence factors. In the current study, we aimed to evaluate the role of the prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) enzymes, which are responsible for LPP maturation, on the pathogenesis of the infection caused by two different sequence types (STs) of S. suis serotype 2 strains (virulent ST1 and highly virulent ST7). Through the use of isogenic Δlgt, Δlsp and double Δlgt/Δlsp mutants, it was shown that lack of these enzymes did not influence S. suis adhesion/invasion to porcine respiratory epithelial cells. However, in the absence of the Lsp and/or Lgt, a significant reduction in the capacity of S. suis to activate phagocytic cells and induce pro-inflammatory mediators (in vitro and in vivo) was observed. In general, results obtained with the double mutant did not differ in comparison to single mutants, indicating lack of an additive effect. Finally, our data suggest that these enzymes play a differential role in virulence, depending on the genetic background of the strain and being more important for the highly virulent ST7 strain.
Collapse
Affiliation(s)
- Servane Payen
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Anaïs Boa
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 305-0856, Japan;
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.P.); (D.R.); (A.B.); (J.-P.A.); (M.S.)
- Correspondence:
| |
Collapse
|
6
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
7
|
Shi YZ, Yoshida T, Fujiwara A, Nishiki I. Characterization of lsa(D), a Novel Gene Responsible for Resistance to Lincosamides, Streptogramins A, and Pleuromutilins in Fish Pathogenic Lactococcus garvieae Serotype II. Microb Drug Resist 2021; 27:301-310. [PMID: 32706619 DOI: 10.1089/mdr.2020.0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: Fish pathogenic Lactococcus garvieae serotype II has been isolated from cultured fish species in Japan. This study aimed to investigate the molecular mechanisms of lincomycin (LCM)-resistant L. garvieae serotype II and assess the molecular basis for lincosamides-streptogramins A-pleuromutilins (LSAP)-resistant phenotype. Results: We identified a novel lsa(D)-encoded 497-aa ATP-binding cassette F (ABC-F) protein in the LSAP-resistant strains. Amino acid identities of 41.25-54.73% were obtained between the deduced amino acids from Lsa(D) and other Lsa-type ABC-F proteins. Furthermore, comparative analysis revealed that the allele of lsa(D) with single point mutation at 233 aa position (TGG → TAG; tryptophan→premature termination codon [PTC]) in LSAP-sensitive strains. The minimum inhibitory concentrations of antimicrobials against the lsa(D) complementary strain and lsa(D)-disrupted mutant confirmed that lsa(D) conferred the LSAP-resistant phenotype. The reverse transcription-polymerase chain reaction could not detect the noncoding region of lsa(D) allelic variant in the LSAP-sensitive strains. Additionally, the PTC (TAG) in LCM-sensitive strains was replaced by TGG, CAG, or TAT in the laboratory-induced revertant mutants. Conclusions: The novel lsa(D) conferred the LSAP-resistant phenotype in clinically LCM-resistant L. garvieae serotype II strains. However, the allele of lsa(D) gene containing the PTC was found in L. garvieae serotype II, resulting in the LSAP-susceptible phenotype.
Collapse
Affiliation(s)
- Yin-Ze Shi
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Fisheries Research and Education Agency, Yokohama, Japan
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
8
|
Ramirez NA, Das A, Ton-That H. New Paradigms of Pilus Assembly Mechanisms in Gram-Positive Actinobacteria. Trends Microbiol 2020; 28:999-1009. [PMID: 32499101 DOI: 10.1016/j.tim.2020.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Adhesive pili in Gram-positive bacteria represent a variety of extracellular multiprotein polymers that mediate bacterial colonization of specific host tissues and associated pathogenesis. Pili are assembled in two distinct but coupled steps, an orderly crosslinking of pilin monomers and subsequent anchoring of the polymer to peptidoglycan, catalyzed by two transpeptidase enzymes - the pilus-specific sortase and the housekeeping sortase. Here, we review this biphasic assembly mechanism based on studies of two prototypical models, the heterotrimeric pili in Corynebacterium diphtheriae and the heterodimeric pili in Actinomyces oris, highlighting some newly emerged basic paradigms. The disparate mechanisms of protein ligation mediated by the pilus-specific sortase and the spatial positioning of adhesive pili on the cell surface modulated by the housekeeping sortase are among the notable highlights.
Collapse
Affiliation(s)
- Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA, USA; Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Shizukuishi S, Ogawa M, Matsunaga S, Tomokiyo M, Ikebe T, Fushinobu S, Ryo A, Ohnishi M. Streptococcus pneumoniae hijacks host autophagy by deploying CbpC as a decoy for Atg14 depletion. EMBO Rep 2020; 21:e49232. [PMID: 32239622 PMCID: PMC7202210 DOI: 10.15252/embr.201949232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023] Open
Abstract
Pneumococcal cell surface‐exposed choline‐binding proteins (CBPs) play pivotal roles in multiple infectious processes with pneumococci. Intracellular pneumococci can be recognized at multiple steps during bactericidal autophagy. However, whether CBPs are involved in pneumococci‐induced autophagic processes remains unknown. In this study, we demonstrate that CbpC from S. pneumoniae strain TIGR4 activates autophagy through an interaction with Atg14. However, S. pneumoniae also interferes with autophagy by deploying CbpC as a decoy to cause autophagic degradation of Atg14 through an interaction with p62/SQSTM1. Thus, S. pneumoniae suppresses the autophagic degradation of intracellular pneumococci and survives within cells. Domain analysis reveals that the coiled‐coil domain of Atg14 and residue Y83 of the dp3 domain in the N‐terminal region of CbpC are crucial for both the CbpC–Atg14 interaction and the subsequent autophagic degradation of Atg14. Although homology modeling indicates that CbpC orthologs have similar structures in the dp3 domain, autophagy induction through Atg14 binding is an intrinsic property of CbpC. Our data provide novel insights into the evolutionary hijacking of host‐defense systems by intracellular pneumococci.
Collapse
Affiliation(s)
- Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Mikado Tomokiyo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.,School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
Faulds-Pain A, Shaw HA, Terra VS, Kellner S, Brockmeier SL, Wren BW. The Streptococcos suis sortases SrtB and SrtF are essential for disease in pigs. MICROBIOLOGY-SGM 2018; 165:163-173. [PMID: 30543506 DOI: 10.1099/mic.0.000752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host-pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.
Collapse
Affiliation(s)
- Alexandra Faulds-Pain
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Helen Alexandra Shaw
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,‡Present address: National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, EN6 3QG, UK
| | - Vanessa Sofia Terra
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Steven Kellner
- 2USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa 50010, USA
| | - Susan L Brockmeier
- 2USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, Ames, Iowa 50010, USA
| | - Brendan W Wren
- 1Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
11
|
Dumesnil A, Auger JP, Roy D, Vötsch D, Willenborg M, Valentin-Weigand P, Park PW, Grenier D, Fittipaldi N, Harel J, Gottschalk M. Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Vet Res 2018; 49:109. [PMID: 30373658 PMCID: PMC6206940 DOI: 10.1186/s13567-018-0606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a swine pathogen and zoonotic agent responsible for meningitis and septic shock. Although several putative virulence factors have been described, the initial steps of the S. suis pathogenesis remain poorly understood. While controversial results have been reported for a S. suis serotype 2 zinc metalloprotease (Zmp) regarding its IgA protease activity, recent phylogenetic analyses suggested that this protein is homologous to the ZmpC of Streptococcus pneumoniae, which is not an IgA protease. Based on the previously described functions of metalloproteases (including IgA protease and ZmpC), different experiments were carried out to study the activities of that of S. suis serotype 2. First, results showed that S. suis, as well as the recombinant Zmp, were unable to cleave human IgA1, confirming lack of IgA protease activity. Similarly, S. suis was unable to cleave P-selectin glycoprotein ligand-1 and to activate matrix metalloprotease 9, at least under the conditions tested. However, S. suis was able to partially cleave mucin 16 and syndecan-1 ectodomains. Experiments carried out with an isogenic Δzmp mutant showed that the Zmp protein was partially involved in such activities. The absence of a functional Zmp protein did not affect the ability of S. suis to adhere to porcine bronchial epithelial cells in vitro, or to colonize the upper respiratory tract of pigs in vivo. Taken together, our results show that S. suis serotype 2 Zmp is not a critical virulence factor and highlight the importance of independently confirming results on S. suis virulence by different teams.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pyong Woo Park
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Josée Harel
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
12
|
Auger JP, Meekhanon N, Okura M, Osaki M, Gottschalk M, Sekizaki T, Takamatsu D. Streptococcus suis Serotype 2 Capsule In Vivo. Emerg Infect Dis 2018; 22:1793-6. [PMID: 27648583 PMCID: PMC5038428 DOI: 10.3201/eid2210.151640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many Streptococcus suis isolates from porcine endocarditis in slaughterhouses have lost their capsule and are considered avirulent. However, we retrieved capsule- and virulence-recovered S. suis after in vivo passages of a nonencapsulated strain in mice, suggesting that nonencapsulated S. suis are still potentially hazardous for persons in the swine industry.
Collapse
|
13
|
Callegan MC, Parkunan SM, Randall CB, Coburn PS, Miller FC, LaGrow AL, Astley RA, Land C, Oh SY, Schneewind O. The role of pili in Bacillus cereus intraocular infection. Exp Eye Res 2017; 159:69-76. [PMID: 28336259 PMCID: PMC5492386 DOI: 10.1016/j.exer.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection.
Collapse
Affiliation(s)
- Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA,Dean A. McGee Eye Institute, Oklahoma City Oklahoma USA,Corresponding author: DMEI PA-418, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA. Phone: (405) 271-3674, Fax: (405) 271-8128,
| | - Salai Madhumathi Parkunan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - C. Blake Randall
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 950 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Roger A. Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - So-Young Oh
- Department of Microbiology, University of Chicago, 920 East 58
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58
| |
Collapse
|
14
|
Ferrando ML, Willemse N, Zaccaria E, Pannekoek Y, van der Ende A, Schultsz C. Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium. PLoS One 2017; 12:e0175639. [PMID: 28407026 PMCID: PMC5391093 DOI: 10.1371/journal.pone.0175639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen, causing meningitis and septicemia. We previously demonstrated that the gastrointestinal tract (GIT) is an entry site for zoonotic S. suis infection. Here we studied the contribution of Streptococcal adhesin Protein (SadP) to host-pathogen interaction at GIT level. Methods SadP expression in presence of Intestinal Epithelial Cells (IEC) was compared with expression of other virulence factors by measuring transcript levels using quantitative Real Time PCR (qRT-PCR). SadP variants were identified by phylogenetic analysis of complete DNA sequences. The interaction of SadP knockout and complementation mutants with IEC was tested in vitro. Results Expression of sadP was significantly increased in presence of IEC. Sequence analysis of 116 invasive strains revealed five SadP sequence variants, correlating with genotype. SadP1, present in zoonotic isolates of clonal complex 1, contributed to binding to both human and porcine IEC and translocation across human IEC. Antibodies against the globotriaosylceramide Gb3/CD77 receptor significantly inhibited adhesion to human IEC. Conclusion SadP is involved in the host-pathogen interaction in the GIT. Differences between SadP variants may determine different affinities to the Gb3/CD77 host-receptor, contributing to variation in adhesion capacity to host IEC and thus to S. suis zoonotic potential.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Niels Willemse
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Constance Schultsz
- Department of Medical Microbiology, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health-Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Okura M, Nozawa T, Watanabe T, Murase K, Nakagawa I, Takamatsu D, Osaki M, Sekizaki T, Gottschalk M, Hamada S, Maruyama F. A Locus Encoding Variable Defense Systems against Invading DNA Identified in Streptococcus suis. Genome Biol Evol 2017; 9:1000-1012. [PMID: 28379509 PMCID: PMC5398294 DOI: 10.1093/gbe/evx062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis, an important zoonotic pathogen, is known to have an open pan-genome and to develop a competent state. In S. suis, limited genetic lineages are suggested to be associated with zoonosis. However, little is known about the evolution of diversified lineages and their respective phenotypic or ecological characteristics. In this study, we performed comparative genome analyses of S. suis, with a focus on the competence genes, mobile genetic elements, and genetic elements related to various defense systems against exogenous DNAs (defense elements) that are associated with gene gain/loss/exchange mediated by horizontal DNA movements and their restrictions. Our genome analyses revealed a conserved competence-inducing peptide type (pherotype) of the competence system and large-scale genome rearrangements in certain clusters based on the genome phylogeny of 58 S. suis strains. Moreover, the profiles of the defense elements were similar or identical to each other among the strains belonging to the same genomic clusters. Our findings suggest that these genetic characteristics of each cluster might exert specific effects on the phenotypic or ecological differences between the clusters. We also found certain loci that shift several types of defense elements in S. suis. Of note, one of these loci is a previously unrecognized variable region in bacteria, at which strains of distinct clusters code for different and various defense elements. This locus might represent a novel defense mechanism that has evolved through an arms race between bacteria and invading DNAs, mediated by mobile genetic elements and genetic competence.
Collapse
Affiliation(s)
- Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi Nozawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Makoto Osaki
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Shigeyuki Hamada
- Research Institute for Microbial Diseases, Thailand-Japan Collaboration Center for Emerging and Re-emerging Infections, Osaka University, Suita-Osaka, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
16
|
Siegel SD, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Curr Opin Microbiol 2016; 34:31-37. [PMID: 27497053 PMCID: PMC5164837 DOI: 10.1016/j.mib.2016.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.
Collapse
Affiliation(s)
- Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Liu
- Department of Pathology & Laboratory Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
17
|
Tohya M, Watanabe T, Maruyama F, Arai S, Ota A, Athey TBT, Fittipaldi N, Nakagawa I, Sekizaki T. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones. PLoS One 2016; 11:e0159558. [PMID: 27433935 PMCID: PMC4951133 DOI: 10.1371/journal.pone.0159558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.
Collapse
Affiliation(s)
- Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (TS); (FM)
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ota
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | | | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TS); (FM)
| |
Collapse
|
18
|
Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial. Pathogens 2016; 5:pathogens5030047. [PMID: 27399785 PMCID: PMC5039427 DOI: 10.3390/pathogens5030047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.
Collapse
|
19
|
Athey TBT, Teatero S, Takamatsu D, Wasserscheid J, Dewar K, Gottschalk M, Fittipaldi N. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One 2016; 11:e0150908. [PMID: 26954687 PMCID: PMC4783015 DOI: 10.1371/journal.pone.0150908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.
Collapse
Affiliation(s)
| | | | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- The United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Jessica Wasserscheid
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
20
|
Complex Population Structure and Virulence Differences among Serotype 2 Streptococcus suis Strains Belonging to Sequence Type 28. PLoS One 2015; 10:e0137760. [PMID: 26375680 PMCID: PMC4574206 DOI: 10.1371/journal.pone.0137760] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.
Collapse
|
21
|
Lazzarin M, Cozzi R, Malito E, Martinelli M, D'Onofrio M, Maione D, Margarit I, Rinaudo CD. Noncanonical sortase‐mediated assembly of pilus type 2b in group B
Streptococcus. FASEB J 2015. [DOI: 10.1096/fj.15-272500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Roberta Cozzi
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | - Enrico Malito
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | | | - Mariapina D'Onofrio
- Nuclear Magnetic Resonance LaboratoryDepartment of BiotechnologyUniversity of VeronaVeronaItaly
| | - Domenico Maione
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | | | | |
Collapse
|
22
|
Roy D, Auger JP, Segura M, Fittipaldi N, Takamatsu D, Okura M, Gottschalk M. Role of the capsular polysaccharide as a virulence factor for Streptococcus suis serotype 14. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:141-146. [PMID: 25852230 PMCID: PMC4365706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/10/2014] [Indexed: 06/04/2023]
Abstract
Streptococcus suis is an important swine pathogen and a zoonotic agent causing meningitis and septicemia. Although serotype 2 is the most virulent type, serotype 14 is emerging, and understanding of its pathogenesis is limited. To study the role of the capsular polysaccharide (CPS) of serotype 14 as a virulence factor, we constructed knockout mutants devoid of either cps14B, a highly conserved regulatory gene, or neu14C, a gene coding for uridine diphospho-N-acetylglucosamine 2-epimerase, which is involved in sialic acid synthesis. The mutants showed total loss of the CPS with coagglutination assays and electron microscopy. Phagocytosis assays showed high susceptibility of mutant Δcps14B. An in vivo murine model was used to demonstrate attenuated virulence of this non-encapsulated mutant. Despite the difference in the CPS composition of different serotypes, this study has demonstrated for the first time that the CPS of a serotype other than 2 is also an important antiphagocytic factor and a critical virulence factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo Gottschalk
- Address all correspondence to Dr. Marcelo Gottschalk; telephone: (450) 773-8521, ext. 8374; fax: (450) 778-8108; e-mail:
| |
Collapse
|
23
|
Lakkitjaroen N, Takamatsu D, Okura M, Sato M, Osaki M, Sekizaki T. Capsule loss or death: The position of mutations among capsule genes sways the destiny ofStreptococcus suis. FEMS Microbiol Lett 2014; 354:46-54. [DOI: 10.1111/1574-6968.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nattakan Lakkitjaroen
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu Japan
| | - Masatoshi Okura
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Masumi Sato
- Epidemiological Information Section; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Makoto Osaki
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
24
|
Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development. Proc Natl Acad Sci U S A 2014; 111:3835-40. [PMID: 24567409 DOI: 10.1073/pnas.1321417111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.
Collapse
|
25
|
Contribution of individual Ebp Pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS One 2013; 8:e68813. [PMID: 23874774 PMCID: PMC3708956 DOI: 10.1371/journal.pone.0068813] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 11/25/2022] Open
Abstract
The endocarditis and biofilm-associated pilus (Ebp) operon is a component of the core genome of Enterococcus faecalis that has been shown to be important for biofilm formation, adherence to host fibrinogen, collagen and platelets, and in experimental endocarditis and urinary tract infection models. Here, we created single and double deletion mutants of the pilus subunits and sortases; next, by combining western blotting, immunoelectron microscopy, and using ebpR in trans to increase pilus production, we identified EbpA as the tip pilin and EbpB as anchor at the pilus base, the latter attached to cell wall by the housekeeping sortase, SrtA. We also confirmed EbpC and Bps as the major pilin and pilin-specific sortase, respectively, both required for pilus polymerization. Interestingly, pilus length was increased and the number of pili decreased by deleting ebpA, while control overexpression of ebpA in trans restored wild-type levels, suggesting a dual role for EbpA in both initiation and termination of pilus polymerization. We next investigated the contribution of each pilin subunit to biofilm formation and UTI. Significant reduction in biofilm formation was observed with deletion of ebpA or ebpC (P<0.001) while ebpB was found to be dispensable; a similar result was seen in kidney CFUs in experimental UTI (ΔebpA, ΔebpC, P≤0.0093; ΔebpB, non-significant, each vs. OG1RF). Hence, our data provide important structural and functional information about these ubiquitous E. faecalis pili and, based on their demonstrated importance in biofilm and infection, suggest EbpA and EbpC as potential targets for antibody-based therapeutic approaches.
Collapse
|
26
|
Identification of mutations involved in the requirement of potassium for growth of typical Melissococcus plutonius strains. Appl Environ Microbiol 2013; 79:3882-6. [PMID: 23584776 DOI: 10.1128/aem.00598-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melissococcus plutonius is a fastidious honeybee pathogen, and the addition of KH(2)PO(4) to culture medium is required for its growth. Using genome sequences and a newly developed vector, we showed that mutations in genes encoding Na(+)/H(+) antiporter and cation-transporting ATPase are involved in the potassium requirement for growth.
Collapse
|
27
|
Gottschalk M, Lacouture S, Bonifait L, Roy D, Fittipaldi N, Grenier D. Characterization of Streptococcus suis isolates recovered between 2008 and 2011 from diseased pigs in Québec, Canada. Vet Microbiol 2012. [PMID: 23177911 DOI: 10.1016/j.vetmic.2012.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study we report the distribution of different serotypes of Streptococcus suis among strains isolated from diseased pigs in Québec, Canada, recovered between 2008 and 2011. Serotype 2 strains were further studied for the presence of the following virulence markers: suilysin (sly), muramidase-released protein (MRP), extracellular protein factor (epf) and the pilus encoded by the srtF cluster. Of 1004 field strains collected, 986 were confirmed to be S. suis by either the species-specific PCR targeting the gdh gene or by 16S rRNA gene sequencing analysis. Results showed that, although widely used, the species-specific PCR test can sometimes be misleading and fail to correctly identify some S. suis isolates. Serotypes 2, 3, 1/2, 4, 8 and 22 together represented 51% of S. suis strains (64.5% of typable strains). Results confirmed the relatively low prevalence of serotype 2 in North America, when compared to European and Asian countries. The vast majority of serotype 2 field strains (96%) belong to either the MRP(+), srtF pilus(+), epf(-), sly(-) (52%) or the MRP(-), srtF pilus(-), epf(-), sly(-) phenotypes (44%). Most non-typable strains (89%) presented high surface hydrophobicity, suggesting that these are poorly or non-encapsulated. Electron microscopy studies confirmed the lack of capsular polysaccharide in selected non-typable high hydrophobic strains. The role and pathogenesis of the infection caused by these strains remain to be elucidated.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St.-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St.-Hyacinthe, Québec, J2S 2M2, Canada
| | - Laetitia Bonifait
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - David Roy
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St.-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, 81 Resources Road, Toronto, Ontario, M9P 3T1, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, G1V 0A6, Canada
| |
Collapse
|
28
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
29
|
Fittipaldi N, Xu J, Lacouture S, Tharavichitkul P, Osaki M, Sekizaki T, Takamatsu D, Gottschalk M. Lineage and virulence of Streptococcus suis serotype 2 isolates from North America. Emerg Infect Dis 2012; 17:2239-44. [PMID: 22172538 PMCID: PMC3311171 DOI: 10.3201/eid1712.110609] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Two sequence types predominate and have lower virulence than other types. We performed multilocus sequence typing of 64 North American Streptococcus suis serotype 2 porcine isolates. Strains were sequence type (ST) 28 (51%), ST25 (44%), and ST1 (5%). We identified nonrandom associations between STs and expression of the virulence markers suilysin (SLY), muramidase-relased protein (MRP), and extracellular factor (EF). Expression of pili encoded by the srtF and srtG pilus clusters was also nonrandomly associated with STs. ST1 strains were SLY+ EF+ MRP+ srtF pilus+ srtG pilus−. ST25 strains were SLY− EF− MRP− srtF pilus− srtG pilus+, and most ST28 strains were SLY− MRP+ EF− srtF pilus+ srtG pilus+. ST28 isolates proved essentially nonvirulent in a mouse infection model; ST25 strains showed moderate virulence and ST1 isolates were highly virulent. ST1 is responsible for a high proportion of S. suis disease in humans worldwide. Its presence in North America indicates that potential zoonotic S. suis outbreaks in this continent cannot be disregarded.
Collapse
|
30
|
Lecours MP, Fittipaldi N, Takamatsu D, Okura M, Segura M, Goyette-Desjardins G, Van Calsteren MR, Gottschalk M. Sialylation of Streptococcus suis serotype 2 is essential for capsule expression but is not responsible for the main capsular epitope. Microbes Infect 2012; 14:941-50. [PMID: 22521569 DOI: 10.1016/j.micinf.2012.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/24/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
The capsular polysaccharide is a critical virulence factor of the swine and zoonotic pathogen Streptococcus suis serotype 2. The capsule of this bacterium is composed of five different sugars, including terminal sialic acid. To evaluate the role of sialic acid in the pathogenesis of the infection, the neuC gene, encoding for an enzyme essential for sialic acid biosynthesis, was inactivated in a highly virulent S. suis serotype 2 strain. Using transmission electron microscopy, it was shown that inactivation of neuC resulted in loss of expression of the whole capsule. Compared to the parent strain, the ΔneuC mutant strain was more phagocytosed by macrophages and was also severely impaired in virulence in a mouse infection model. Both native and desialylated S. suis serotype 2 purified capsular polysaccharides were recognized by a polyclonal anti-whole cell S. suis serotype 2 serum and a monospecific polyclonal anti-capsule serotype 2 serum. In contrast, only the native capsular polysaccharide was recognized by a monoclonal antibody specific for the sialic acid moiety of the serotype 2 capsule. Together, our results infer that sialylation of S. suis serotype 2 may be essential for capsule expression, but that this sugar is not the main epitope of this serotype.
Collapse
Affiliation(s)
- Marie-Pier Lecours
- Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function.
Collapse
Affiliation(s)
- Thomas Spirig
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
32
|
Lakkitjaroen N, Takamatsu D, Okura M, Sato M, Osaki M, Sekizaki T. Loss of capsule among Streptococcus suis isolates from porcine endocarditis and its biological significance. J Med Microbiol 2011; 60:1669-1676. [DOI: 10.1099/jmm.0.034686-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nattakan Lakkitjaroen
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Daisuke Takamatsu
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
- Research Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Masatoshi Okura
- Research Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Masumi Sato
- Epidemiological Information Section, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Makoto Osaki
- Research Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Nakata M, Kimura KR, Sumitomo T, Wada S, Sugauchi A, Oiki E, Higashino M, Kreikemeyer B, Podbielski A, Okahashi N, Hamada S, Isoda R, Terao Y, Kawabata S. Assembly mechanism of FCT region type 1 pili in serotype M6 Streptococcus pyogenes. J Biol Chem 2011; 286:37566-77. [PMID: 21880740 DOI: 10.1074/jbc.m111.239780] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human pathogen Streptococcus pyogenes produces diverse pili depending on the serotype. We investigated the assembly mechanism of FCT type 1 pili in a serotype M6 strain. The pili were found to be assembled from two precursor proteins, the backbone protein T6 and ancillary protein FctX, and anchored to the cell wall in a manner that requires both a housekeeping sortase enzyme (SrtA) and pilus-associated sortase enzyme (SrtB). SrtB is primarily required for efficient formation of the T6 and FctX complex and subsequent polymerization of T6, whereas proper anchoring of the pili to the cell wall is mainly mediated by SrtA. Because motifs essential for polymerization of pilus backbone proteins in other Gram-positive bacteria are not present in T6, we sought to identify the functional residues involved in this process. Our results showed that T6 encompasses the novel VAKS pilin motif conserved in streptococcal T6 homologues and that the lysine residue (Lys-175) within the motif and cell wall sorting signal of T6 are prerequisites for isopeptide linkage of T6 molecules. Because Lys-175 and the cell wall sorting signal of FctX are indispensable for substantial incorporation of FctX into the T6 pilus shaft, FctX is suggested to be located at the pilus tip, which was also implied by immunogold electron microscopy findings. Thus, the elaborate assembly of FCT type 1 pili is potentially organized by sortase-mediated cross-linking between sorting signals and the amino group of Lys-175 positioned in the VAKS motif of T6, thereby displaying T6 and FctX in a temporospatial manner.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, Cisar JO, Das A, Narayana SVL, Ton-That H. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. Mol Microbiol 2011; 81:1205-20. [PMID: 21696465 DOI: 10.1111/j.1365-2958.2011.07745.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.
Collapse
Affiliation(s)
- Arunima Mishra
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dual function of a tip fimbrillin of Actinomyces in fimbrial assembly and receptor binding. J Bacteriol 2011; 193:3197-206. [PMID: 21531799 DOI: 10.1128/jb.00173-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of Actinomyces oris with salivary proline-rich proteins (PRPs), which serve as fimbrial receptors, involves type 1 fimbriae. Encoded by the gene locus fimQ-fimP-srtC1, the type 1 fimbria is comprised of the fimbrial shaft FimP and the tip fimbrillin FimQ. Fimbrial polymerization requires the fimbria-specific sortase SrtC1, which catalyzes covalent linkage of fimbrial subunits. Using genetics, biochemical methods, and electron microscopy, we provide evidence that the tip fimbrillin, FimQ, is involved in fimbrial assembly and interaction with PRPs. Specifically, while deletion of fimP completely abolished the type 1 fimbrial structures, surface display of monomeric FimQ was not affected by this mutation. Surprisingly, deletion of fimQ significantly reduced surface assembly of the type 1 fimbriae. This defect was rescued by recombinant FimQ ectopically expressed from a plasmid. In agreement with the role of type 1 fimbriae in binding to PRPs, aggregation of A. oris with PRP-coated beads was abrogated in cells lacking srtC1 or fimP. This aggregation defect of the ΔfimP mutant was mainly due to significant reduction of FimQ on the bacterial surface, as the aggregation was not observed in a strain lacking fimQ. Increasing expression of FimQ in the ΔfimP mutant enhanced aggregation, while overexpression of FimP in the ΔfimQ mutant did not. Furthermore, recombinant FimQ, not FimP, bound surface-associated PRPs in a dose-dependent manner. Thus, not only does FimQ function as the major adhesin of the type 1 fimbriae, it also plays an important role in fimbrial assembly.
Collapse
|
36
|
Takamatsu D. [Diversity and virulence factors of Streptococcus suis ]. Nihon Saikingaku Zasshi 2011; 66:7-21. [PMID: 21498962 DOI: 10.3412/jsb.66.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| |
Collapse
|