1
|
Hu H, Xu J, Chen J, Tang C, Zhou T, Wang J, Kang Z. Influence of Flagella on Salmonella Enteritidis Sedimentation, Biofilm Formation, Disinfectant Resistance, and Interspecies Interactions. Foodborne Pathog Dis 2024. [PMID: 39513945 DOI: 10.1089/fpd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Flagella are essential for bacterial motility and biofilm formation by aiding bacterial attachment to surfaces. However, the impact of flagella on bacterial behavior, particularly biofilm formation, remains unclear. This study constructed two flagellar mutation strains of Salmonella Enteritidis (SE), namely, SE-ΔflhD and SE-ΔflgE, and confirmed the loss of flagellar structures and motility in these strains. The mutant strains exhibited growth comparable with the wild-type (WT) strain but had higher sedimentation rates. Biofilm biomass did not differ significantly between the WT and mutant strains, except for SE-ΔflgE at 3 d. SE-ΔflgE showed increased susceptibility to sodium hypochlorite compared to the WT. The co-sedimentation rate of flagella-deficient strains was lower than the WT, and the biomass of dual-species biofilm formed by Bacillus paramycoides B5 with SE-ΔflhD or SE-ΔflgE was significantly lower than with the WT. These findings emphasize the significance of SE flagella in biofilm formation and interspecies interactions, offering insights into targeted biofilm prevention and control measures.
Collapse
Affiliation(s)
- Huixue Hu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
- Jingjiang College, Jiangsu University, Zhenjiang, China
| | - Jingguo Xu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Tianhao Zhou
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jun Wang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Zhuangli Kang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Desai SK, Zhou Y, Dilawari R, Routh AL, Popov V, Kenney LJ. RpoS activates formation of Salmonella Typhi biofilms and drives persistence in the gall bladder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564249. [PMID: 37961640 PMCID: PMC10634867 DOI: 10.1101/2023.10.26.564249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The development of strategies for targeting the asymptomatic carriage of Salmonella Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of S. Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones. In long-term infections, S. Typhi adopts the biofilm lifestyle to persist in vivo and survive in the carrier state, ultimately leading to the spread of infections via the fecal-oral route of transmission. In the present work, we studied S. Typhi biofilms directly, applied targeted as well as genome-wide genetic approaches to uncover unique biofilm components that do not conform to the CsgD-dependent pathway established in S. Typhimurium. We undertook a genome-wide Tn5 mutation screen in H58, a clinically relevant multidrug resistance strain of S. Typhi, in gallstone-mimicking conditions. We generated New Generation Sequencing libraries based on the ClickSeq technology to identify the key regulators, IraP and RpoS, and the matrix components Sth fimbriae, Vi capsule and lipopolysaccharide. We discovered that the starvation sigma factor, RpoS, was required for the transcriptional activation of matrix-encoding genes in vitro, and for S. Typhi colonization in persistent infections in vivo, using a heterologous fish larval model. An rpoS null mutant failed to colonize the gall bladder in chronic zebrafish infections. Overall, our work uncovered a novel RpoS-driven, CsgD-independent paradigm for the formation of cholesterol-attached Typhi biofilms, and emphasized the role(s) of stress signaling pathways for adaptation in chronic infections. Our identification of the biofilm regulators in S. Typhi paves the way for the development of drugs against typhoid carriage, which will ultimately control the increased incidence of gall bladder cancer in typhoid carriers.
Collapse
Affiliation(s)
- Stuti K. Desai
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rahul Dilawari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Vsevolod Popov
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
3
|
Vilas Boas D, Castro J, Araújo D, Nóbrega FL, Keevil CW, Azevedo NF, Vieira MJ, Almeida C. The Role of Flagellum and Flagellum-Based Motility on Salmonella Enteritidis and Escherichia coli Biofilm Formation. Microorganisms 2024; 12:232. [PMID: 38399635 PMCID: PMC10893291 DOI: 10.3390/microorganisms12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria's fitness when a competing species is present.
Collapse
Affiliation(s)
- Diana Vilas Boas
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Joana Castro
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Daniela Araújo
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Franklin L. Nóbrega
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Charles W. Keevil
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Nuno F. Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Vieira
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Carina Almeida
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
5
|
The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2022; 10:e0020222. [PMID: 35678575 PMCID: PMC9241790 DOI: 10.1128/spectrum.00202-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The CRISPR-Cas mediated regulation of biofilm by Salmonella enterica serovar Typhimurium was investigated by deleting CRISPR-Cas components ΔcrisprI, ΔcrisprII, ΔΔcrisprI crisprII, and Δcas op. We determined that the system positively regulates surface biofilm while inhibiting pellicle biofilm formation. Results of real-time PCR suggest that the flagellar (fliC, flgK) and curli (csgA) genes were repressed in knockout strains, causing reduced surface biofilm. The mutants displayed altered pellicle biofilm architecture. They exhibited bacterial multilayers and a denser extracellular matrix with enhanced cellulose and less curli, ergo weaker pellicles than those of the wild type. The cellulose secretion was more in the knockout strains due to the upregulation of bcsC, which is necessary for cellulose export. We hypothesized that the secreted cellulose quickly integrates into the pellicle, leading to enhanced pellicular cellulose in the knockout strains. We determined that crp is upregulated in the knockout strains, thereby inhibiting the expression of csgD and, hence, also of csgA and bcsA. The conflicting upregulation of bcsC, the last gene of the bcsABZC operon, could be caused by independent regulation by the CRISPR-Cas system owing to a partial match between the CRISPR spacers and bcsC gene. The cAMP-regulated protein (CRP)-mediated regulation of the flagellar genes in the knockout strains was probably circumvented through the regulation of yddx governing the availability of the sigma factor σ28 that further regulates class 3 flagellar genes (fliC, fljB, and flgK). Additionally, the variations in the lipopolysaccharide (LPS) profile and expression of LPS-related genes (rfaC, rfbG, and rfbI) in knockout strains could also contribute to the altered pellicle architecture. Collectively, we establish that the CRISPR-Cas system differentially regulates the formation of surface-attached and pellicle biofilm. IMPORTANCE In addition to being implicated in bacterial immunity and genome editing, the CRISPR-Cas system has recently been demonstrated to regulate endogenous gene expression and biofilm formation. While the function of individual cas genes in controlling Salmonella biofilm has been explored, the regulatory role of CRISPR arrays in biofilm is less studied. Moreover, studies have focused on the effects of the CRISPR-Cas system on surface-associated biofilms, and comprehensive studies on the impact of the system on pellicle biofilm remain an unexplored niche. We demonstrate that the CRISPR array and cas genes modulate the expression of various biofilm genes in Salmonella, whereby surface and pellicle biofilm formation is distinctively regulated.
Collapse
|
6
|
Jahan F, Chinni SV, Samuggam S, Reddy LV, Solayappan M, Su Yin L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int J Mol Sci 2022; 23:6462. [PMID: 35742906 PMCID: PMC9223757 DOI: 10.3390/ijms23126462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Suresh V. Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
- Biochemistry Unit, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | | | - Maheswaran Solayappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong 08100, Kedah, Malaysia; (F.J.); (S.S.); (M.S.)
| |
Collapse
|
7
|
Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Shen Q, Zhang R. Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:64-72. [PMID: 34698535 DOI: 10.1094/mpmi-09-21-0234-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Probiotic Bacillus colonization of plant root surfaces has been reported to improve its beneficial effect. Chemotaxis, adhesion, aggregation, and biofilm formation are the four steps of root colonization by plant growth-promoting rhizobacteria (PGPRs). Compared with the other three well-studied processes, adhesion of PGPRs is less known. In this study, using mutant strains deleted for potential adhesin genes in PGPR strain Bacillus velezensis SQR9, adherence to both cucumber root surface and abiotic surface by those strains was evaluated. Results showed that deletion mutations ΔlytB, ΔV529_10500, ΔfliD, ΔyhaN, and ΔsacB reduced the adhesion to root surfaces, while, among them, only ΔfliD had significant defects in adhesion to abiotic surfaces (glass and polystyrene). In addition, B. velevzensis SQR9 mutants defective in adhesion to root surfaces showed a deficiency in rhizosphere colonization. Among the encoded proteins, FliD and YhaN played vital roles in root adhesion. This research systematically explored the potential adhesins in a well-studied PGPR strain and also indicated that adhesion progress was required for root colonization, which will help to enhance rhizosphere colonization and beneficial function of PGPRs in agricultural production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rong Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
8
|
Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens 2021; 10:1299. [PMID: 34684248 PMCID: PMC8537056 DOI: 10.3390/pathogens10101299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy.
Collapse
Affiliation(s)
- Neil Foster
- SRUC Aberdeen Campus, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK
| | - Ying Tang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Angelo Berchieri
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Via de Acesso Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil;
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| |
Collapse
|
9
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
10
|
Molecular Basis for the Activation of Human Innate Immune Response by the Flagellin Derived from Plant-Pathogenic Bacterium, Acidovorax avenae. Int J Mol Sci 2021; 22:ijms22136920. [PMID: 34203170 PMCID: PMC8268093 DOI: 10.3390/ijms22136920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1β, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.
Collapse
|
11
|
Valencia DY, Habila M, McClelland DJ, Degarege A, Madhivanan P, Krupp K. Infection-associated biofilms and statins: protocol for systematic review. BMJ Open 2021; 11:e046290. [PMID: 34035102 PMCID: PMC8154974 DOI: 10.1136/bmjopen-2020-046290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Owing to their propensity for being associated with infections, biofilms have become a focus in infectious disease research. There is evidence suggesting that statins, which are commonly used for prevention of cardiovascular disease, may prevent biofilm-associated infections, but this association has not been well-understood. METHODS AND ANALYSIS This systematic review protocol will include six database searches from their inception to 20 August 2020. A medical librarian will conduct the searches in PubMed, EMBASE, Web of Science, CINAHL, LILACS and CENTRAL, without any limits. Bibliographies of selected articles, previously published reviews and high-yield journals that publish on statins and/or biofilms will be searched to identify additional articles. The screening and data extraction will be conducted by two independent reviewers using DistillerSR. All included papers will also be evaluated for quality using Cochrane Risk of Bias Assessment tool, and we will examine for publication bias. If there are two or more studies with quantitative estimates that can be combined, we will conduct a meta-analysis after assessing for heterogeneity. We will report all findings according to the Preferred Reporting Items for Systematic reviews and Analyses-P framework. ETHICS AND DISSEMINATION There are conflicting results on the effect of statins on biofilm-associated infections. The rise of antibiotic resistance in medical settings warrants a deeper understanding of this association, especially if statins can be used as a novel antibiotic. The findings of this review will assess the association between statin use and biofilm-associated infection to inform future medical practice. No formal ethical review is required for this protocol. All findings will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020193985.
Collapse
Affiliation(s)
- Dora Yesenia Valencia
- Clinical Translational Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Magdiel Habila
- Epidemiology and Biostatistics, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - D Jean McClelland
- Health Sciences, The University of Arizona Health Science Library, Tucson, Arizona, USA
| | - Abraham Degarege
- Epidemiology, College of Public Health, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Purnima Madhivanan
- Health Promotion Sciences, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
- Public Health Research Institute of India, Mysore, Karnataka, India
| | - Karl Krupp
- Health Promotion Sciences, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
12
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
13
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
14
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
15
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
16
|
Wang F, Deng L, Huang F, Wang Z, Lu Q, Xu C. Flagellar Motility Is Critical for Salmonella enterica Serovar Typhimurium Biofilm Development. Front Microbiol 2020; 11:1695. [PMID: 33013719 PMCID: PMC7509047 DOI: 10.3389/fmicb.2020.01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) causes self-limiting gastroenteritis in humans and is not easily eradicated because it often attaches to suitable surfaces to form biofilms that have high resistance to disinfectants and antimicrobials. To develop an alternative strategy for the treatment of biofilms, it is necessary to further explore the effects of flagellar motility on the development process of Salmonella biofilms. Here, we constructed flagella mutants (ΔflgE and ΔfliC) to systematically study this process. By comparing them with wild-type strains, we found that these mutants lacking flagellar motility form fewer biofilms in the early stage, and the formed mature biofilms contain more cells and extracellular polymeric substances (EPS). In addition, fewer mutant cells adhered to glass plates compared with wild-type cells even after 6 h of incubation, suggesting that flagellar motility plays a significant role in preliminary cell-surface interactions. More importantly, the motility of wild-type strain was greatly decreased when they were treated with carbonyl cyanide m-chlorophenylhydrazone, which inhibited flagellar motility and reduced biofilm formation, as in the case of the ΔflgE mutant. Overall, these findings suggest that flagellar motility plays an important role in Salmonella biofilm initiation and maturation, which can help us to counteract the mechanisms involved in biofilm formation and to develop more rational control strategies.
Collapse
Affiliation(s)
- Feiying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Fangfang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Qiujun Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Chenran Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
17
|
Wolfson EB, Elvidge J, Tahoun A, Gillespie T, Mantell J, McAteer SP, Rossez Y, Paxton E, Lane F, Shaw DJ, Gill AC, Stevens J, Verkade P, Blocker A, Mahajan A, Gally DL. The interaction of Escherichia coli O157 :H7 and Salmonella Typhimurium flagella with host cell membranes and cytoskeletal components. MICROBIOLOGY (READING, ENGLAND) 2020; 166:947-965. [PMID: 32886602 PMCID: PMC7660914 DOI: 10.1099/mic.0.000959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial flagella have many established roles beyond swimming motility. Despite clear evidence of flagella-dependent adherence, the specificity of the ligands and mechanisms of binding are still debated. In this study, the molecular basis of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium flagella binding to epithelial cell cultures was investigated. Flagella interactions with host cell surfaces were intimate and crossed cellular boundaries as demarcated by actin and membrane labelling. Scanning electron microscopy revealed flagella disappearing into cellular surfaces and transmission electron microscopy of S. Typhiumurium indicated host membrane deformation and disruption in proximity to flagella. Motor mutants of E. coli O157:H7 and S. Typhimurium caused reduced haemolysis compared to wild-type, indicating that membrane disruption was in part due to flagella rotation. Flagella from E. coli O157 (H7), EPEC O127 (H6) and S. Typhimurium (P1 and P2 flagella) were shown to bind to purified intracellular components of the actin cytoskeleton and directly increase in vitro actin polymerization rates. We propose that flagella interactions with host cell membranes and cytoskeletal components may help prime intimate attachment and invasion for E. coli O157:H7 and S. Typhimurium, respectively.
Collapse
Affiliation(s)
- Eliza B. Wolfson
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Johanna Elvidge
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Amin Tahoun
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafr el-Sheikh, Egypt
| | - Trudi Gillespie
- IMPACT Facility, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judith Mantell
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yannick Rossez
- Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Centre de recherche Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne Cedex, France
| | - Edith Paxton
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fiona Lane
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Darren J. Shaw
- Division of Clinical Sciences, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Andrew C. Gill
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jo Stevens
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Paul Verkade
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Ariel Blocker
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Arvind Mahajan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
18
|
Cazzola H, Lemaire L, Acket S, Prost E, Duma L, Erhardt M, Čechová P, Trouillas P, Mohareb F, Rossi C, Rossez Y. The Impact of Plasma Membrane Lipid Composition on Flagellum-Mediated Adhesion of Enterohemorrhagic Escherichia coli. mSphere 2020; 5:e00702-20. [PMID: 32938696 PMCID: PMC7494831 DOI: 10.1128/msphere.00702-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.
Collapse
Affiliation(s)
- Hélène Cazzola
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Laurine Lemaire
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Sébastien Acket
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Elise Prost
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Luminita Duma
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Marc Erhardt
- Institute for Biology-Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Čechová
- RCPTM, Palacký University Olomouc, Olomouc, Czech Republic
| | - Patrick Trouillas
- RCPTM, Palacký University Olomouc, Olomouc, Czech Republic
- INSERM U1248-IPPRITT, University of Limoges, Limoges, France
| | - Fady Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Claire Rossi
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Yannick Rossez
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| |
Collapse
|
19
|
Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun 2020; 11:2013. [PMID: 32332720 PMCID: PMC7181671 DOI: 10.1038/s41467-020-15738-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. Therefore, posttranslational methylation of flagellin facilitates adhesion of Salmonella Typhimurium to hydrophobic host cell surfaces, and contributes to efficient gut colonization and host infection. Flagellin proteins of Salmonella flagella are methylated. Here, the authors show that flagellin methylation facilitates adhesion of Salmonella to hydrophobic host-cell surfaces, and contributes to efficient gut colonization and host infection.
Collapse
|
20
|
Thakur S, Ray S, Jhunjhunwala S, Nandi D. Insights into coumarin-mediated inhibition of biofilm formation in Salmonella Typhimurium. BIOFOULING 2020; 36:479-491. [PMID: 32546074 DOI: 10.1080/08927014.2020.1773447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Coumarins have been shown to possess antimicrobial, anti-quorum sensing and anti-biofilm properties against a wide range of pathogenic bacteria. This study aimed to shed light on the effects of non-substituted coumarin on biofilm formation by the foodborne pathogen Salmonella Typhimurium. Additionally, its efficacy was tested in combination with another potent anti-biofilm agent, resveratrol. Coumarin inhibited biofilm formation for prolonged periods in millimolar concentrations with marginal effects on planktonic growth. It attenuated curli and cellulose production, likely by downregulating the transcript levels of major biofilm formation genes csgD, csgA and adrA. Coumarin further restricted motility in a dose-dependent manner. In addition, coumarin with resveratrol exhibited improved anti-biofilm properties compared with the individual compounds alone. Thus, coumarin alone or with resveratrol can be employed for inhibiting biofilms in food storage and processing units.
Collapse
Affiliation(s)
- Samriddhi Thakur
- Department of Undergraduate Studies, Indian Institute of Science, Bangalore, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siddharth Jhunjhunwala
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms 2020; 8:microorganisms8020253. [PMID: 32070067 DOI: 10.3390/microorganisms8020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica serovar Typhi causes 14.3 million acute cases of typhoid fever that are responsible for 136,000 deaths each year. Chronic infections occur in 3%-5% of those infected and S. Typhi persists primarily in the gallbladder by forming biofilms on cholesterol gallstones, but how these bacterial communities evade host immunity is not known. Salmonella biofilms produce several extracellular polymeric substances (EPSs) during chronic infection, which are hypothesized to prevent pathogen clearance either by protecting biofilm-associated bacteria from direct humoral attack or by modulating innate phagocyte interaction with biofilms. Using wild-type and EPS-deficient planktonic and biofilm Salmonella, the direct attack hypothesis was tested by challenging biofilms with human serum and antimicrobial peptides. Biofilms were found to be tolerant to these molecules, but these phenotypes were independent of the tested EPSs. By examining macrophage and neutrophil responses, new roles for biofilm-associated capsular polysaccharides and slime polysaccharides were identified. The S. Typhi Vi antigen was found to modulate innate immunity by reducing macrophage nitric oxide production and neutrophil reactive oxygen species (ROS) production. The slime polysaccharides colanic acid and cellulose were found to be immune-stimulating and represent a key difference between non-typhoidal serovars and typhoidal serovars, which do not express colanic acid. Furthermore, biofilm tolerance to the exogenously-supplied ROS intermediates hydrogen peroxide (H2O2) and hypochlorite (ClO) indicated an additional role of the capsular polysaccharides for both serovars in recalcitrance to H2O2 but not ClO, providing new understanding of the stalemate that arises during chronic infections and offering new directions for mechanistic and clinical studies.
Collapse
|
22
|
López-Yglesias AH, Lu CC, Zhao X, Chou T, VandenBos T, Strong RK, Smith KD. FliC's Hypervariable D3 Domain Is Required for Robust Anti-Flagellin Primary Antibody Responses. Immunohorizons 2019; 3:422-432. [PMID: 31488506 PMCID: PMC11650696 DOI: 10.4049/immunohorizons.1800061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
Bacterial flagellin is a well-known agonist of the innate immune system that induces proinflammatory responses through the TLR5 and Naip5/6 recognition pathways. Several clinical trials investigating flagellin fusion proteins have demonstrated promising results for inducing protective immunity toward influenza virus, which has been largely attributed to flagellin's ability to activate TLR5. Our laboratory previously demonstrated that the Salmonella enterica serovar Typhimurium flagellin protein, FliC, induces Ab responses in mice through a third pathway that is independent of TLR5, Casp1/11, and MyD88. In this study, we further define the structural features of FliC that contribute to this unknown third pathway. By destroying the Naip5/6 and TLR5 recognition sites, we demonstrate that neither were required for the TLR5-, inflammasome- and MyD88-independent Ab responses toward FliC. In contrast, deletion of FliC's D3 or D0/D1 domains eliminated primary anti-flagellin Ab responses. For optimal primary and secondary anti-flagellin Ab responses we show that TLR5, inflammasome recognition, and the D3 domain of FliC are essential for flagellin's robust immunogenicity. Our data demonstrate that the D3 domain of FliC influences immunogenicity independent of the known innate recognition sites in the D0/D1 domains to augment Ab production. Our results suggest full-length FliC is critical for optimal immunogenicity and Ab responses in flagellin-based vaccines.
Collapse
Affiliation(s)
| | - Chun-Chi Lu
- Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Xiaodan Zhao
- Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Tiffany Chou
- Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Tim VandenBos
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kelly D Smith
- Department of Pathology, University of Washington, Seattle, WA 98195; and
| |
Collapse
|
23
|
Pathoadaptive Alteration of Salmonella Biofilm Formation in Response to the Gallbladder Environment. J Bacteriol 2019; 201:JB.00774-18. [PMID: 30962351 DOI: 10.1128/jb.00774-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 02/02/2023] Open
Abstract
Typhoid fever, a human-specific disease, is primarily caused by the pathogen Salmonella enterica serovar Typhi. It is estimated that 3 to 5% of people infected with typhoid fever become chronic carriers. Studies have demonstrated that a mechanism of chronic carriage involves biofilm formation on gallstone surfaces. In the course of a previous study using a chronic carriage mouse model, a Salmonella enterica serovar Typhimurium isolate was recovered from a mouse gallstone that exhibited a 2-fold increase in biofilm formation over the wild type. In order to identify the gene(s) responsible for the phenotype, the genomic sequences of this isolate and others were determined and compared. These sequences identified single nucleotide polymorphisms (SNPs) in 14 genes. Mutations in the most promising candidates, envZ and rcsB, were created, but neither showed increased biofilm-forming ability separately or in combination. The hyperbiofilm isolate did, however, present variations in cellular appendages observable using different techniques and a preferential binding to cholesterol. The isolate was also examined for systemic virulence and the ability to colonize the gallbladder/gallstones in a mouse model of chronic infection, demonstrating a systemic virulence defect and decreased gallbladder/gallstone colonization. Finally, to determine if the appearance of hyperbiofilm isolates could be replicated in vitro and if this was a common event, wild-type Salmonella spp. were grown long term in vitro under gallbladder-mimicking conditions, resulting in a high proportion of isolates that replicated the hyperbiofilm phenotype of the original isolate. Thus, Salmonella spp. acquire random mutations under the gallbladder/gallbladder-simulating conditions that may aid persistence but negatively affect systemic virulence.IMPORTANCE Chronic carriers are the main reservoirs for the spread of typhoid fever in regions of endemicity. Salmonella Typhi forms biofilms on gallstones in order to persist. A strain with enhanced biofilm-forming ability was recovered after a nine-month chronic-carriage mouse study. After sequencing this strain and recreating some of the mutations, we could not duplicate the phenotype. The isolate did show a difference in flagella, a preference to bind to cholesterol, and a systemic virulence defect. Finally, gallbladder conditions were simulated in vitro After 60 days, there was a 4.5-fold increase in hyperbiofilm isolates when a gallstone was present. These results indicate that Salmonella spp. can undergo genetic changes that improve persistence in gallbladder albeit at the cost of decreased virulence.
Collapse
|
24
|
Ariafar MN, Iğci N, Akçelik M, Akçelik N. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch Microbiol 2019; 201:1233-1248. [PMID: 31197408 DOI: 10.1007/s00203-019-01681-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
This study aims to describe the content of polymeric matrix components under different incubation temperatures and pH levels. Optimal biofilm production of 15 S. Virchow isolates occurred following the incubation in LB-NaCl for 72 h, at pH 6.6 and 20 °C. The expression of csgA, csgD, adrA and bcsA genes at 20 °C, 25 °C and 30 °C in S. Virchow DMC18 was analyzed, and it was discovered that the maximum production of cellulose and curli fimbriae occurred at 20 °C. The physical characteristics of pellicle structure of S. Virchow DMC18 was determined as rigid at 20 °C, while becoming fragile at higher temperatures. FTIR analyses confirmed the obtained molecular findings. The intensities of the 16 different peaks originating from carbohydrate, protein, and nucleic acid in the spectra of biofilm samples significantly diminished (p < 0.05) with the increasing temperature. The highest intensities of lipids and carbohydrates were observed at 20 °C indicating the changes in cell surface properties.
Collapse
Affiliation(s)
| | - Nasit Iğci
- Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Mustafa Akçelik
- Biology Department, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
25
|
MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet 2019; 15:e1008233. [PMID: 31233504 PMCID: PMC6611641 DOI: 10.1371/journal.pgen.1008233] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.
Collapse
Affiliation(s)
- Keith D. MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Guangdong, China
| | - Patrick Musicha
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Melissa B. Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Dakoda J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| | - Nicholas A. Feasey
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK., Canada
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK., Canada
| |
Collapse
|
26
|
Kolenda R, Ugorski M, Grzymajlo K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front Microbiol 2019; 10:1017. [PMID: 31139165 PMCID: PMC6527747 DOI: 10.3389/fmicb.2019.01017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.
Collapse
Affiliation(s)
- Rafal Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
27
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
28
|
A Family of Small Intrinsically Disordered Proteins Involved in Flagellum-Dependent Motility in Salmonella enterica. J Bacteriol 2018; 201:JB.00415-18. [PMID: 30373755 DOI: 10.1128/jb.00415-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023] Open
Abstract
By screening a collection of Salmonella mutants deleted for genes encoding small proteins of ≤60 amino acids, we identified three paralogous small genes (ymdF, STM14_1829, and yciG) required for wild-type flagellum-dependent swimming and swarming motility. The ymdF, STM14_1829, and yciG genes encode small proteins of 55, 60, and 60 amino acid residues, respectively. A bioinformatics analysis predicted that these small proteins are intrinsically disordered proteins, and circular dichroism analysis of purified recombinant proteins confirmed that all three proteins are unstructured in solution. A mutant deleted for STM14_1829 showed the most severe motility defect, indicating that among the three paralogs, STM14_1829 is a key protein required for wild-type motility. We determined that relative to the wild type, the expression of the flagellin protein FliC is lower in the ΔSTM14_1829 mutant due to the downregulation of the flhDC operon encoding the FlhDC master regulator. By comparing the gene expression profiles between the wild-type and ΔSTM14_1829 strains via RNA sequencing, we found that the gene encoding the response regulator PhoP is upregulated in the ΔSTM14_1829 mutant, suggesting the indirect repression of the flhDC operon by the activated PhoP. Homologs of STM14_1829 are conserved in a wide range of bacteria, including Escherichia coli and Pseudomonas aeruginosa We showed that the inactivation of STM14_1829 homologs in E. coli and P. aeruginosa also alters motility, suggesting that this family of small intrinsically disordered proteins may play a role in the cellular pathway(s) that affects motility.IMPORTANCE This study reports the identification of a novel family of small intrinsically disordered proteins that are conserved in a wide range of flagellated and nonflagellated bacteria. Although this study identifies the role of these small proteins in the scope of flagellum-dependent motility in Salmonella, they likely play larger roles in a more conserved cellular pathway(s) that indirectly affects flagellum expression in the case of motile bacteria. Small intrinsically disordered proteins have not been well characterized in prokaryotes, and the results of our study provide a basis for their detailed functional characterization.
Collapse
|
29
|
Nickerson KP, Faherty CS. Bile Salt-induced Biofilm Formation in Enteric Pathogens: Techniques for Identification and Quantification. J Vis Exp 2018. [PMID: 29781989 DOI: 10.3791/57322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biofilm formation is a dynamic, multistage process that occurs in bacteria under harsh environmental conditions or times of stress. For enteric pathogens, a significant stress response is induced during gastrointestinal transit and upon bile exposure, a normal component of human digestion. To overcome the bactericidal effects of bile, many enteric pathogens form a biofilm hypothesized to permit survival when transiting through the small intestine. Here we present methodologies to define biofilm formation through solid-phase adherence assays as well as extracellular polymeric substance (EPS) matrix detection and visualization. Furthermore, biofilm dispersion assessment is presented to mimic the analysis of events triggering release of bacteria during the infection process. Crystal violet staining is used to detect adherent bacteria in a high-throughput 96-well plate adherence assay. EPS production assessment is determined by two assays, namely microscopy staining of the EPS matrix and semi-quantitative analysis with a fluorescently-conjugated polysaccharide binding lectin. Finally, biofilm dispersion is measured through colony counts and plating. Positive data from multiple assays support the characterization of biofilms and can be utilized to identify bile salt-induced biofilm formation in other bacterial strains.
Collapse
Affiliation(s)
- Kourtney P Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School
| | - Christina S Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School;
| |
Collapse
|
30
|
Chandra K, Garai P, Chatterjee J, Chakravortty D. Peptide transporter YjiY influences the expression of the virulence gene mgtC to regulate biofilm formation in Salmonella. FEMS Microbiol Lett 2017; 364:4590042. [PMID: 29112725 DOI: 10.1093/femsle/fnx236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/02/2017] [Indexed: 09/19/2023] Open
Abstract
Formation of a biofilm is one of the coping strategies of Salmonella against antimicrobial environmental stresses including nutrient starvation. However, the channeling of the starvation cue towards biofilm formation is not well understood. Our study shows that a carbon starvation gene, yjiY, coding for a peptide transporter, influences the expression of a virulence-associated gene mgtC in Salmonella to regulate biofilm formation. We demonstrate here that the mutant strain ΔyjiY is unable to form a biofilm due to the increased expression of mgtC. The upregulation of mgtC in the ΔyjiY strain correlates with the downregulation of the biofilm master regulator gene, csgD, and reduced levels of ATP. Our work further indicates that a yjiY-encoded peptide transporter may regulate the expression of mgtC by transporting proline peptides.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jayanta Chatterjee
- Department of Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Center for Biosystem Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
31
|
Azriel S, Goren A, Shomer I, Aviv G, Rahav G, Gal-Mor O. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence 2017; 8:1791-1807. [PMID: 28922626 DOI: 10.1080/21505594.2017.1380766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A are human-restricted pathogens and the leading causative agents of enteric fever. The Typhi colonization factor (Tcf) is a chaperone-usher fimbria, thought to play a role in the host-specificity of typhoidal serovars. Here we show that the tcf cluster (tcfABCD tinR tioA) is present in at least 25 non-typhoidal Salmonella (NTS) serovars and demonstrate its native expression in clinically-important serovars including Schwarzengrund, 9,12:l,v:-, Choleraesuis, Bredeney, Heidelberg, Montevideo, Virchow and Infantis. Although the genetic organization of the tcf cluster is well conserved, the N-terminal half of the fimbrial adhesin, TcfD is highly diverse, suggesting different binding properties of distinct tcfD variants. Comparison of tcfA expression in typhoidal and NTS serovars demonstrated unexpected differences in its expression profiles, with the highest transcription levels in S. Typhi, S. Choleraesuis and S. Infantis. In the latter, tcf is induced in rich broth and under microaerobic conditions, characterizing the intestines of warm blooded animals. Furthermore, Tcf is negatively regulated by the ancestral leucine-responsive transcriptional regulator (Lrp). Using the colitis mouse model, we demonstrate that during mice infection tcfA is expressed at higher levels by S. Infantis than S. Schwarzengrund or S. Heidelberg. Moreover, while Tcf is dispensable for S. Schwarzengrund and S. Heidelberg mouse colonization, Tcf is involved in cecum and colon colonization by S. Infantis. Taken together, our results establish that Tcf is broadly encoded by multiple NTS serovars, but presents variable expression profiles and contributes differently to their virulence.
Collapse
Affiliation(s)
- Shalhevet Azriel
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Alina Goren
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Inna Shomer
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Gili Aviv
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Galia Rahav
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Ohad Gal-Mor
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|
32
|
Ammendola S, D'Amico Y, Chirullo B, Drumo R, Ciavardelli D, Pasquali P, Battistoni A. Zinc is required to ensure the expression of flagella and the ability to form biofilms in Salmonella enterica sv Typhimurium. Metallomics 2017; 8:1131-1140. [PMID: 27730246 DOI: 10.1039/c6mt00108d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc is known to play a central role in bacterial physiology and pathogenesis. Here, we report that the accumulation of FliC, the structural subunit of Salmonella phase 1 flagella, is sharply reduced in a znuABC Salmonella enterica sv. Typhimurium strain grown in zinc-poor media. Consequently, this mutant strain lacks motility, unless it grows in zinc-replete environments. This phenotype is the consequence of a general downregulation of all the genes involved in the biosynthesis of flagella, suggesting that zinc is the cofactor of proteins involved in the initiation of the transcriptional regulatory cascade leading to flagella assembly. Competition experiments in mice demonstrated that aflagellated (fliBfljC) and znuABC strains are outcompeted by the wild type strain in the gastrointestinal tract. The fliBfljC strain overgrows a fliCfljBznuABC mutant strain, but the difference in gut colonization between these two strains is less striking than that between the wild type and the znuABC strains, suggesting that the downregulation of flagella contributes to the loss of virulence of Salmonella znuABC. The absence of either flagella or ZnuABC also impairs the ability of S. Typhimurium to produce biofilms. Zinc suppresses this defect in the znuABC mutant but not in the aflagellated strains, highlighting the role of flagella in biofilm organization. We have also observed an increased production of the quorum sensing signal AI-2 in the znuABC strain sensing zinc deprivation, that may further contribute to the reduced ability to form biofilms. On the whole, our study reveals novel roles of zinc in Salmonella motility and intercellular communication.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Ylenia D'Amico
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Barbara Chirullo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Rosanna Drumo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Battistoni
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy. and Interuniversity Consortium, National Institute Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
33
|
RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proc Natl Acad Sci U S A 2017; 114:6824-6829. [PMID: 28611217 DOI: 10.1073/pnas.1620772114] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of Salmonella enterica serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of cspC and cspE fully attenuates Salmonella in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.
Collapse
|
34
|
Horstmann JA, Zschieschang E, Truschel T, de Diego J, Lunelli M, Rohde M, May T, Strowig T, Stradal T, Kolbe M, Erhardt M. Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation. Cell Microbiol 2017; 19. [PMID: 28295924 DOI: 10.1111/cmi.12739] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near-surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC-flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC-expressing bacteria outcompeted FljB-expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.
Collapse
Affiliation(s)
- Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Erik Zschieschang
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Juana de Diego
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michele Lunelli
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Till Strowig
- Junior Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Kolbe
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,MIN-Faculty University Hamburg, Hamburg, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
35
|
Salmonella enterica Serovar Kentucky Flagella Are Required for Broiler Skin Adhesion and Caco-2 Cell Invasion. Appl Environ Microbiol 2016; 83:AEM.02115-16. [PMID: 27793824 DOI: 10.1128/aem.02115-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one of the main factors that contribute to bacterial attachment to broiler skin. However, the precise role of flagella and the mechanism of attachment are unknown. There are two different flagellar subunits (fliC and fljB) expressed alternatively in Salmonella enterica serovars using phase variation. Here, by making deletions in genes encoding flagellar structural subunits (flgK, fliC, and fljB), and flagellar motor (motA), we were able to differentiate the role of flagella and their rotary motion in the colonization of broiler skin and cellular attachment. Utilizing a broiler skin assay, we demonstrated that the presence of FliC is necessary for attachment to broiler skin. Expression of the alternative flagellar subunit FljB enables Salmonella motility, but this subunit is unable to mediate tight attachment. Deletion of the flgK gene prevents proper flagellar assembly, making Salmonella significantly less adherent to broiler skin than the wild type. S Kentucky with deletions in all three structural genes, fliC, fljB, and flgK, as well as a flagellar motor mutant (motA), exhibited less adhesion and invasion of Caco-2 cells, while an fljB mutant was as adherent and invasive as the wild-type strain. IMPORTANCE In this work, we answered clearly the role of flagella in S Kentucky attachment to the chicken skin and Caco-2 cells. We demonstrated that the presence of FliC is necessary for attachment to broiler skin. Expression of the alternative flagellar subunit FljB enables Salmonella motility, but this subunit is unable to mediate strong attachment. Deletion of the flgK gene prevents proper flagellar assembly, making Salmonella significantly less adherent to broiler skin than the wild type. S Kentucky with deletions in all three structural genes, fliC, fljB, and flgK, as well as a flagellar motor mutant (motA), exhibited less adhesion and invasion of Caco-2 cells, while an fljB mutant was as adherent and invasive as the wild-type strain. We expect these results will contribute to the understanding of the mechanisms of Salmonella attachment to food products.
Collapse
|
36
|
Abstract
Strains of Klebsiella pneumoniae are frequently opportunistic pathogens implicated in urinary tract and catheter-associated urinary-tract infections of hospitalized patients and compromised individuals. Infections are particularly difficult to treat since most clinical isolates exhibit resistance to several antibiotics leading to treatment failure and the possibility of systemic dissemination. Infections of medical devices such as urinary catheters is a major site of K. pneumoniae infections and has been suggested to involve the formation of biofilms on these surfaces. Over the last decade there has been an increase in research activity designed to investigate the pathogenesis of K. pneumoniae in the urinary tract. These investigations have begun to define the bacterial factors that contribute to growth and biofilm formation. Several virulence factors have been demonstrated to mediate K. pneumoniae infectivity and include, but are most likely not limited to, adherence factors, capsule production, lipopolysaccharide presence, and siderophore activity. The development of both in vitro and in vivo models of infection will lead to further elucidation of the molecular pathogenesis of K. pneumoniae. As for most opportunistic infections, the role of host factors as well as bacterial traits are crucial in determining the outcome of infections. In addition, multidrug-resistant strains of these bacteria have become a serious problem in the treatment of Klebsiella infections and novel strategies to prevent and inhibit bacterial growth need to be developed. Overall, the frequency, significance, and morbidity associated with K. pneumoniae urinary tract infections have increased over many years. The emergence of these bacteria as sources of antibiotic resistance and pathogens of the urinary tract present a challenging problem for the clinician in terms of management and treatment of individuals.
Collapse
|
37
|
Suriyanarayanan T, Periasamy S, Lin MH, Ishihama Y, Swarup S. Flagellin FliC Phosphorylation Affects Type 2 Protease Secretion and Biofilm Dispersal in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0164155. [PMID: 27701473 PMCID: PMC5049796 DOI: 10.1371/journal.pone.0164155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation has a major role in controlling the life-cycle and infection stages of bacteria. Proteome-wide occurrence of S/T/Y phosphorylation has been reported for many prokaryotic systems. Previously, we reported the phosphoproteome of Pseudomonas aeruginosa and Pseudomonas putida. In this study, we show the role of S/T phosphorylation of one motility protein, FliC, in regulating multiple surface-associated phenomena of P. aeruginosa PAO1. This is the first report of occurrence of phosphorylation in the flagellar protein, flagellin FliC in its highly conserved N-terminal NDO domain across several Gram negative bacteria. This phosphorylation is likely a well-regulated phenomenon as it is growth phase dependent in planktonic cells. The absence of phosphorylation in the conserved T27 and S28 residues of FliC, interestingly, did not affect swimming motility, but affected the secretome of type 2 secretion system (T2SS) and biofilm formation of PAO1. FliC phosphomutants had increased levels and activities of type 2 secretome proteins. The secretion efficiency of T2SS machinery is associated with flagellin phosphorylation. FliC phosphomutants also formed reduced biofilms at 24 h under static conditions and had delayed biofilm dispersal under dynamic flow conditions, respectively. The levels of type 2 secretome and biofilm formation under static conditions had an inverse correlation. Hence, increase in type 2 secretome levels was accompanied by reduced biofilm formation in the FliC phosphomutants. As T2SS is involved in nutrient acquisition and biofilm dispersal during survival and spread of P. aeruginosa, we propose that FliC phosphorylation has a role in ecological adaptation of this opportunistic environmental pathogen. Altogether, we found a system of phosphorylation that affects key surface related processes such as proteases secretion by T2SS, biofilm formation and dispersal.
Collapse
Affiliation(s)
- Tanujaa Suriyanarayanan
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Microbiology Lab, Faculty of Dentistry, National University of Singapore, Singapore, Sinagpore
| | - Saravanan Periasamy
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Miao-Hsia Lin
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sanjay Swarup
- Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
38
|
Gunn JS, Bakaletz LO, Wozniak DJ. What's on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention. J Biol Chem 2016; 291:12538-12546. [PMID: 27129225 DOI: 10.1074/jbc.r115.707547] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biofilms are organized multicellular communities encased in an extracellular polymeric substance (EPS). Biofilm-resident bacteria resist immunity and antimicrobials. The EPS provides structural stability and presents a barrier; however, a complete understanding of how EPS structure relates to biological function is lacking. This review focuses on the EPS of three Gram-negative pathogens: Pseudomonas aeruginosa, nontypeable Haemophilus influenzae, and Salmonella enterica serovar Typhi/Typhimurium. Although EPS proteins and polysaccharides are diverse, common constituents include extracellular DNA, DNABII (DNA binding and bending) proteins, pili, flagella, and outer membrane vesicles. The EPS biochemistry promotes recalcitrance and informs the design of therapies to reduce or eliminate biofilm burden.
Collapse
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Lauren O Bakaletz
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; Departments of Pediatrics and Otolaryngology, The Research Institute at Nationwide Children's Hospital and Ohio State University, Columbus, Ohio 43210
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210; Center for Microbial Interface Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; Department of Microbiology, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
39
|
FabR regulates Salmonella biofilm formation via its direct target FabB. BMC Genomics 2016; 17:253. [PMID: 27004424 PMCID: PMC4804515 DOI: 10.1186/s12864-016-2387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/08/2016] [Indexed: 12/02/2022] Open
Abstract
Background Biofilm formation is an important survival strategy of Salmonella in all environments. By mutant screening, we showed a knock-out mutant of fabR, encoding a repressor of unsaturated fatty acid biosynthesis (UFA), to have impaired biofilm formation. In order to unravel how this regulator impinges on Salmonella biofilm formation, we aimed at elucidating the S. Typhimurium FabR regulon. Hereto, we applied a combinatorial high-throughput approach, combining ChIP-chip with transcriptomics. Results All the previously identified E. coli FabR transcriptional target genes (fabA, fabB and yqfA) were shown to be direct S. Typhimurium FabR targets as well. As we found a fabB overexpressing strain to partly mimic the biofilm defect of the fabR mutant, the effect of FabR on biofilms can be attributed at least partly to FabB, which plays a key role in UFA biosynthesis. Additionally, ChIP-chip identified a number of novel direct FabR targets (the intergenic regions between hpaR/hpaG and ddg/ydfZ) and yet putative direct targets (i.a. genes involved in tRNA metabolism, ribosome synthesis and translation). Next to UFA biosynthesis, a number of these direct targets and other indirect targets identified by transcriptomics (e.g. ribosomal genes, ompA, ompC, ompX, osmB, osmC, sseI), could possibly contribute to the effect of FabR on biofilm formation. Conclusion Overall, our results point at the importance of FabR and UFA biosynthesis in Salmonella biofilm formation and their role as potential targets for biofilm inhibitory strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2387-x) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization. Infect Immun 2015; 84:375-84. [PMID: 26553464 DOI: 10.1128/iai.01135-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide. Salmonella pathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that in S. Typhimurium, dksA is induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates the Salmonella pathogenicity island 1 and motility-chemotaxis genes and is necessary for S. Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable for S. Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found that dksA is spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infection in vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulence S. Typhimurium programs and therefore is a key virulence regulator of Salmonella.
Collapse
|
41
|
Type III Secretion System Translocon Component EseB Forms Filaments on and Mediates Autoaggregation of and Biofilm Formation by Edwardsiella tarda. Appl Environ Microbiol 2015; 81:6078-87. [PMID: 26116669 DOI: 10.1128/aem.01254-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface of E. tarda and is required for biofilm formation by E. tarda in Dulbecco's modified Eagle's medium (DMEM). Biofilm formation by E. tarda in DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody to E. tarda cultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody to E. tarda cultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.
Collapse
|
42
|
Friedlander RS, Vogel N, Aizenberg J. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6137-44. [PMID: 25945399 DOI: 10.1021/acs.langmuir.5b00815] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the interfacial activity of bacteria is of critical importance due to the huge economic and public health implications associated with surface fouling and biofilm formation. The complexity of the process and difficulties of predicting microbial adhesion to novel materials demand study of the properties of specific bacterial surface features and their potential contribution to surface attachment. Here, we examine flagella, cell appendages primarily studied for their cell motility function, to elucidate their potential role in the surface adhesion of Escherichia coli-a model organism and potential pathogen. We use self-assembled monolayers (SAMs) of thiol-bearing molecules on gold films to generate surfaces of varying hydrophobicity, and measure adhesion of purified flagella using quartz crystal microbalance. We show that flagella adhere more extensively and bind more tightly to hydrophobic SAMs than to hydrophilic ones, and we propose a two-step vs a single-step adhesion mechanism that accounts for the observed dissipation and frequency changes for the two types of surfaces, respectively. Subsequently, study of the adhesion of wild-type and flagella knockout cells confirms that flagella improve adhesion to hydrophobic substrates, whereas cells lacking flagella do not show preferred affinity to hydrophobic substrates. Together, these properties bring about an interesting ability of cells with flagella to stabilize emulsions of aqueous culture and dodecane, not observed for cells lacking flagella. This work contributes to our overall understanding of nonspecific bacterial adhesion and confirms that flagella, beyond motility, may play an important role in surface adhesion.
Collapse
Affiliation(s)
- Ronn S Friedlander
- †Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
43
|
Samsel A, Seneff S. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies. Surg Neurol Int 2015; 6:45. [PMID: 25883837 PMCID: PMC4392553 DOI: 10.4103/2152-7806.153876] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup(®)-Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup(®), has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer's disease (AD), depression, anxiety syndrome, Parkinson's disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer's. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases.
Collapse
Affiliation(s)
- Anthony Samsel
- Research Scientist and Consultant, Deerfield, NH 03037, USA
| | - Stephanie Seneff
- Spoken Language Systems Group, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139, USA
| |
Collapse
|
44
|
Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them. Int J Mol Sci 2015; 16:2626-40. [PMID: 25625516 PMCID: PMC4346855 DOI: 10.3390/ijms16022626] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/25/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022] Open
Abstract
The ability of bacterial species to colonize and infect host organisms is critically dependent upon their capacity to adhere to cellular surfaces of the host. Adherence to cell surfaces is known to be essential for the activation and delivery of certain virulence factors, but can also directly affect host cell signaling to aid bacterial spread and survival. In this review we will discuss the recent advances in the field of bacterial adhesion, how we are beginning to unravel the effects adhesins have on host cell signaling, and how these changes aid the bacteria in terms of their survival and evasion of immune responses. Finally, we will highlight how the exploitation of bacterial adhesins may provide new therapeutic avenues for the treatment of a wide range of bacterial infections.
Collapse
|
45
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
46
|
Yaron S, Römling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 2014; 7:496-516. [PMID: 25351039 PMCID: PMC4265070 DOI: 10.1111/1751-7915.12186] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.
Collapse
Affiliation(s)
- Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of TechnologyHaifa, 32000, Israel
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
47
|
Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics. Antimicrob Agents Chemother 2014; 59:76-84. [PMID: 25313216 DOI: 10.1128/aac.03407-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.
Collapse
|
48
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
49
|
Anwar N, Rouf SF, Römling U, Rhen M. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. PLoS One 2014; 9:e106095. [PMID: 25153529 PMCID: PMC4143323 DOI: 10.1371/journal.pone.0106095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Robijns SCA, Roberfroid S, Van Puyvelde S, De Pauw B, Uceda Santamaría E, De Weerdt A, De Coster D, Hermans K, De Keersmaecker SCJ, Vanderleyden J, Steenackers HPL. A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors. BIOFOULING 2014; 30:605-625. [PMID: 24735176 DOI: 10.1080/08927014.2014.907401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Salmonella, an important foodborne pathogen, forms biofilms in many different environments. The composition of these biofilms differs depending on the growth conditions, and their development is highly coordinated in time. To develop efficient treatments, it is therefore essential that biofilm formation and its inhibition be understood in different environments and in a time-dependent manner. Many currently used techniques, such as transcriptomics or proteomics, are still expensive and thus limited in their application. Therefore, a GFP-promoter fusion library with 79 important Salmonella biofilm genes was developed (covering among other things matrix production, fimbriae and flagella synthesis, and c-di-GMP regulation). This library is a fast, inexpensive, and easy-to-use tool, and can therefore be conducted in different experimental setups in a time-dependent manner. In this paper, four possible applications are highlighted to illustrate and validate the use of this reporter fusion library.
Collapse
Affiliation(s)
- S C A Robijns
- a Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics , KU Leuven , Leuven , Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|