1
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
3
|
Li LH, Wu CM, Chang CL, Huang HH, Wu CJ, Yang TC. σ P-NagA-L1/L2 Regulatory Circuit Involved in ΔompA299-356-Mediated Increase in β-Lactam Susceptibility in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0279722. [PMID: 36350132 PMCID: PMC9769791 DOI: 10.1128/spectrum.02797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
OmpA, the most abundant porin in Stenotrophomonas maltophilia KJ, exists as a two-domain structure with an N-terminal domain of β-barrel structure embedded in the outer membrane and a C-terminal domain collocated in the periplasm. KJΔOmpA299-356, an ompA mutant of S. maltophilia KJ with a truncated OmpA devoid of 299 to 356 amino acids (aa), was able to stably embed in the outer membrane. KJΔOmpA299-356 was more susceptible to β-lactams than wild-type KJ. We aimed to elucidate the mechanism underlying the ΔompA299-356-mediated increase in β-lactam susceptibility (abbreviated as "ΔOmpA299-356 phenotype"). KJΔOmpA299-356 displayed a lower ceftazidime (CAZ)-induced β-lactamase activity than KJ. Furthermore, KJ2, a L1/L2 β-lactamases-null mutant, and KJ2ΔOmpA299-356, a KJ2 mutant with truncated OmpA devoid of299 to 356 aa, had comparable β-lactam susceptibility. Both lines of evidence indicate that decreased β-lactamase activity contributes to the ΔOmpA299-356 phenotype. We analyzed the transcriptome results of KJ and KJΔOmpA299-356, focusing on PG homeostasis-associated genes. Among the 36 genes analyzed, the nagA gene was upregulated 4.65-fold in KJΔOmpA299-356. Deletion of the nagA gene from the chromosome of KJΔOmpA299-356 restored β-lactam susceptibility and CAZ-induced β-lactamase activity to wild-type levels, verifying that nagA-upregulation in KJΔOmpA299-356 contributes to the ΔOmpA299-356 phenotype. Furthermore, transcriptome analysis revealed that rpoE (Smlt3555) and rpoP (Smlt3514) were significantly upregulated in KJΔOmpA299-356. The deletion mutant construction, β-lactam susceptibility, and β-lactamase activity analysis demonstrated that σP, but not σE, was involved in the ΔOmpA299-356 phenotype. A real-time quantitative (qRT-PCR) assay confirmed that nagA is a member of the σP regulon. The involvement of the σP-NagA-L1/L2 regulatory circuit in the ΔOmpA299-356 phenotype was manifested. IMPORTANCE Porins of Gram-negative bacteria generally act as channels that allow the entry or extrusion of molecules. Moreover, the structural role of porins in stabilizing the outer membrane by interacting with peptidoglycan (PG) and the outer membrane has been proposed. The linkage between porin deficiency and antibiotic resistance increase has been reported widely, with a rationale for blocking antibiotic influx. In this study, a link between porin defects and β-lactam susceptibility increase was demonstrated. The underlying mechanism revealed that a novel σP-NagA-L1/L2 regulatory circuit is triggered due to the loss of the OmpA-PG interaction. This study extends the understanding on the porin defect and antibiotic susceptibility. Porin defects may cause opposite impacts on antibiotic susceptibility, which is dependent on the involvement of the defect. Blocking the porin channel role can increase antibiotic resistance; in contrast, the loss of porin structure role may increase antibiotic susceptibility.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hsin-Hui Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Mycobacterium tuberculosis DprE1 Inhibitor OPC-167832 Is Active against Mycobacterium abscessus In Vitro. Antimicrob Agents Chemother 2022; 66:e0123722. [PMID: 36350151 PMCID: PMC9765218 DOI: 10.1128/aac.01237-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The antituberculosis candidate OPC-167832, an inhibitor of DprE1, was active against Mycobacterium abscessus. Resistance mapped to M. abscessus dprE1, suggesting target retention. OPC-167832 was bactericidal and did not antagonize activity of clinical anti-M. abscessus antibiotics. Due to its moderate potency compared to that against Mycobacterium tuberculosis, the compound lacked efficacy in a mouse model and is thus not a repurposing candidate. These results identify OPC-167832-DprE1 as a lead-target couple for a M. abscessus-specific optimization program.
Collapse
|
5
|
Nandy P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35594140 DOI: 10.1099/mic.0.001195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of adaptive microbial evolution in the laboratory can illuminate the genetic mechanisms of gaining fitness under a pre-defined set of selection factors. Laboratory evolution of bacteria under long-term starvation has gained importance in recent years because of its ability to uncover adaptive strategies that overcome prolonged nutrient limitation, a condition often encountered by natural microbes. In this evolutionary paradigm, bacteria are maintained in an energy-restricted environment in a growth phase called long-term stationary phase (LTSP). This phase is characterized by a stable, viable population size and highly dynamic genetic changes. Multiple independent iterations of LTSP evolution experiments have given rise to mutants that are slow-growing compared to the ancestor. Although the antagonistic regulation between rapid growth and the stress response is well-known in bacteria (especially Escherichia coli), the growth deficit of many LTSP-adapted mutants has not been explored in detail. In this review, I pinpoint the trade-off between growth and stress response as a dominant driver of evolutionary strategies under prolonged starvation. Focusing on mainly E. coli-based research, I discuss the various affectors and regulators of the competition between sigma factors to occupy their targets on the genome, and assess its effect on growth advantage in stationary phase (GASP). Finally, I comment on some crucial issues that hinder the progress of the field, including identification of novel metabolites in nutrient-depleted media, and the importance of using multidisciplinary research to resolve them.
Collapse
Affiliation(s)
- Pabitra Nandy
- National Centre for Biological Sciences (NCBS-TIFR), Bangalore, India.,Max Planck Institute for Evolutionary Biology, Plӧn, Germany
| |
Collapse
|
6
|
Lin Y, Alstrup M, Pang JKY, Maróti G, Er-Rafik M, Tourasse N, Økstad OA, Kovács ÁT. Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity. mSystems 2021; 6:e0086421. [PMID: 34636664 PMCID: PMC8510532 DOI: 10.1128/msystems.00864-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023] Open
Abstract
The Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that are vertebrate or invertebrate pathogens. Few isolates from the B. cereus group have however been demonstrated to benefit plant growth. Therefore, it is crucial to explore how bacterial development and pathogenesis evolve during plant colonization. Herein, we investigated Bacillus thuringiensis (Cry-) adaptation to the colonization of Arabidopsis thaliana roots and monitored changes in cellular differentiation in experimentally evolved isolates. Isolates from two populations displayed improved iterative ecesis on roots and increased virulence against insect larvae. Molecular dissection and recreation of a causative mutation revealed the importance of a nonsense mutation in the rho transcription terminator gene. Transcriptome analysis revealed how Rho impacts various B. thuringiensis genes involved in carbohydrate metabolism and virulence. Our work suggests that evolved multicellular aggregates have a fitness advantage over single cells when colonizing plants, creating a trade-off between swimming and multicellularity in evolved lineages, in addition to unrelated alterations in pathogenicity. IMPORTANCE Biologicals-based plant protection relies on the use of safe microbial strains. During application of biologicals to the rhizosphere, microbes adapt to the niche, including genetic mutations shaping the physiology of the cells. Here, the experimental evolution of Bacillus thuringiensis lacking the insecticide crystal toxins was examined on the plant root to reveal how adaptation shapes the differentiation of this bacterium. Interestingly, evolution of certain lineages led to increased hemolysis and insect larva pathogenesis in B. thuringiensis driven by transcriptional rewiring. Further, our detailed study reveals how inactivation of the transcription termination protein Rho promotes aggregation on the plant root in addition to altered differentiation and pathogenesis in B. thuringiensis.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Monica Alstrup
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Janet Ka Yan Pang
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mériem Er-Rafik
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Nicolas Tourasse
- Université Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | - Ole Andreas Økstad
- Centre for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Villa TG, Abril AG, Sánchez-Pérez A. Mastering the control of the Rho transcription factor for biotechnological applications. Appl Microbiol Biotechnol 2021; 105:4053-4071. [PMID: 33963893 DOI: 10.1007/s00253-021-11326-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
The present review represents an update on the fundamental role played by the Rho factor, which facilitates the process of Rho-dependent transcription termination in the prokaryotic world; it also provides a summary of relevant mutations in the Rho factor and the insights they provide into the functions carried out by this protein. Furthermore, a section is dedicated to the putative future use of Rho (the 'taming' of Rho) to facilitate biotechnological processes and adapt them to different technological contexts. Novel bacterial strains can be designed, containing mutations in the rho gene, that are better suited for different biotechnological applications. This process can obtain novel microbial strains that are adapted to lower temperatures of fermentation, shorter production times, exhibit better nutrient utilization, or display other traits that are beneficial in productive Biotechnology. Additional important issues reviewed here include epistasis, the design of TATA boxes, the role of small RNAs, and the manipulation of clathrin-mediated endocytosis, by some pathogenic bacteria, to invade eukaryotic cells. KEY POINTS: • It is postulated that controlling the action of the prokaryotic Rho factor could generate major biotechnological improvements, such as an increase in bacterial productivity or a reduction of the microbial-specific growth rate. • The review also evaluates the putative impact of epistatic mechanisms on Biotechnology, both as possible responsible for unexpected failures in gene cloning and more important for the genesis of new strains for biotechnological applications • The use of clathrin-coated vesicles by intracellular bacterial microorganisms is included too and proposed as a putative delivery mechanism, for drugs and vaccines.
Collapse
Affiliation(s)
- Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
O’Connor NJ, Bordoy AE, Chatterjee A. Engineering Transcriptional Interference through RNA Polymerase Processivity Control. ACS Synth Biol 2021; 10:737-748. [PMID: 33710852 DOI: 10.1021/acssynbio.0c00534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antisense transcription is widespread in all kingdoms of life and has been shown to influence gene expression through transcriptional interference (TI), a phenomenon in which one transcriptional process negatively influences another in cis. The processivity, or uninterrupted transcription, of an RNA polymerase (RNAP) is closely tied to levels of antisense transcription in bacterial genomes, but its influence on TI, while likely important, is not well-characterized. Here, we show that TI can be tuned through processivity control via three distinct antitermination strategies: the antibiotic bicyclomycin, phage protein Psu, and ribosome-RNAP coupling. We apply these methods toward TI and tune ribosome-RNAP coupling to produce 38-fold transcription-level gene repression due to both RNAP collisions and antisense RNA interference. We then couple protein roadblock and TI to design minimal genetic NAND and NOR logic gates. Together, these results show the importance of processivity control for strong TI and demonstrate TI's potential for synthetic biology.
Collapse
Affiliation(s)
- Nolan J. O’Connor
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Antoni E. Bordoy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
9
|
Nagy-Staron A, Tomasek K, Caruso Carter C, Sonnleitner E, Kavčič B, Paixão T, Guet CC. Local genetic context shapes the function of a gene regulatory network. eLife 2021; 10:e65993. [PMID: 33683203 PMCID: PMC7968929 DOI: 10.7554/elife.65993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.
Collapse
Affiliation(s)
- Anna Nagy-Staron
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Elisabeth Sonnleitner
- Department of MicrobiologyImmunobiology and Genetics, Max F. Perutz Laboratories, Center Of Molecular Biology, University of ViennaViennaAustria
| | - Bor Kavčič
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Tiago Paixão
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
10
|
Patel V, Wu Q, Chandrangsu P, Helmann JD. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis. PLoS Genet 2018; 14:e1007689. [PMID: 30248093 PMCID: PMC6171935 DOI: 10.1371/journal.pgen.1007689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/04/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The Bacillus subtilis GlmR (formerly YvcK) protein is essential for growth on gluconeogenic carbon sources. Mutants lacking GlmR display a variety of phenotypes suggestive of impaired cell wall synthesis including antibiotic sensitivity, aberrant cell morphology and lysis. To define the role of GlmR, we selected suppressor mutations that ameliorate the sensitivity of a glmR null mutant to the beta-lactam antibiotic cefuroxime or restore growth on gluconeogenic carbon sources. Several of the resulting suppressors increase the expression of the GlmS and GlmM proteins that catalyze the first two committed steps in the diversion of carbon from central carbon metabolism into peptidoglycan biosynthesis. Chemical complementation studies indicate that the absence of GlmR can be overcome by provision of cells with N-acetylglucosamine (GlcNAc), even under conditions where GlcNAc cannot re-enter central metabolism and serve as a carbon source for growth. Our results indicate that GlmR facilitates the diversion of carbon from the central metabolite fructose-6-phosphate, which is limiting in cells growing on gluconeogenic carbon sources, into peptidoglycan biosynthesis. Our data suggest that GlmR stimulates GlmS activity, and we propose that this activation is antagonized by the known GlmR ligand and peptidoglycan intermediate UDP-GlcNAc. Thus, GlmR presides over a new mechanism for the regulation of carbon partitioning between central metabolism and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Vaidehi Patel
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - Qun Wu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Pete Chandrangsu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Linzner KA, Kent AG, Martiny AC. Evolutionary Pathway Determines the Stoichiometric Response of Escherichia coli Adapted to High Temperature. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2017.00173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018; 13:241-262. [PMID: 29319341 DOI: 10.2217/fmb-2017-0172] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.
Collapse
Affiliation(s)
- John Osei Sekyere
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Jonathan Asante
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
13
|
González-González A, Hug SM, Rodríguez-Verdugo A, Patel JS, Gaut BS. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression. Mol Biol Evol 2017; 34:2839-2855. [PMID: 28961910 PMCID: PMC5815632 DOI: 10.1093/molbev/msx216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Shaun M. Hug
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| | - Alejandra Rodríguez-Verdugo
- Department of Environmental Systems Sciences, ETH Zürich, Zürich,
Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf,
Switzerland
| | | | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| |
Collapse
|
14
|
Bidnenko E, Bidnenko V. Transcription termination factor Rho and microbial phenotypic heterogeneity. Curr Genet 2017; 64:541-546. [PMID: 29094196 DOI: 10.1007/s00294-017-0775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.
Collapse
Affiliation(s)
- Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS One 2016; 11:e0149541. [PMID: 26890675 PMCID: PMC4758708 DOI: 10.1371/journal.pone.0149541] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/02/2016] [Indexed: 01/28/2023] Open
Abstract
Fifth-generation cephalosporins, ceftobiprole and ceftaroline, are promising drugs for treatment of bacterial infections from methicillin-resistant Staphylococcus aureus (MRSA). These antibiotics are able to bind native PBP2a, the penicillin-binding protein encoded by the mecA resistance determinant that mediates broad class resistance to nearly all other beta-lactam antibiotics, at clinically achievable concentrations. Mechanisms of resistance to ceftaroline based on mecA mutations have been previously described. Here we compare the genomes of 11 total parent-daughter strains of Staphylococcus aureus for which specific selection by serial passaging with ceftaroline or ceftobiprole was used to identify novel non-mecA mechanisms of resistance. All 5 ceftaroline-resistant strains, derived from 5 different parental strains, contained mutations directly upstream of the pbp4 gene (coding for the PBP4 protein), including four with the same thymidine insertion located 377 nucleotides upstream of the promoter site. In 4 of 5 independent ceftaroline-driven selections, we also isolated mutations to the same residue (Asn138) in PBP4. In addition, mutations in additional candidate genes such as ClpX endopeptidase, PP2C protein phosphatase and transcription terminator Rho, previously undescribed in the context of resistance to ceftaroline or ceftobiprole, were detected in multiple selections. These genomic findings suggest that non-mecA mechanisms, while yet to be encountered in the clinical setting, may also be important in mediating resistance to 5th-generation cephalosporins.
Collapse
Affiliation(s)
- Alexander L. Greninger
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| | - Som S. Chatterjee
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Liana C. Chan
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Stephanie M. Hamilton
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Henry F. Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, San Francisco, California, United States of America
| | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, United States of America
| |
Collapse
|
16
|
Liu B, Kearns DB, Bechhofer DH. Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3' ends. Nucleic Acids Res 2016; 44:3364-72. [PMID: 26857544 PMCID: PMC4838369 DOI: 10.1093/nar/gkw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
Timely turnover of RNA is an important element in the control of bacterial gene expression, but relatively few specific targets of RNA turnover regulation are known. Deletion of the Bacillus subtilis pnpA gene, encoding the major 3' exonuclease turnover enzyme, polynucleotide phosphorylase (PNPase), was shown previously to cause a motility defect correlated with a reduced level of the 32-gene fla/che flagellar biosynthesis operon transcript.fla/che operon transcript abundance has been shown to be inhibited by an excess of the small regulatory protein, SlrA, and here we find that slrA mRNA accumulated in the pnpA-deletion mutant. Mutation of slrA was epistatic to mutation of pnpA for the motility-related phenotype. Further, Rho-dependent termination was required for PNPase turnover of slrA mRNA. When the slrA gene was provided with a Rho-independent transcription terminator, gene regulation was no longer PNPase-dependent. Thus we show that the slrA transcript is a direct target of PNPase and that regulation of RNA turnover is a major determinant of motility gene expression. The interplay of specific transcription termination and mRNA decay mechanisms suggests selection for fine-tuning of gene expression.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pharmacology and Systems Therapeutics, Box 1603, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Box 1603, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|