1
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Reddy Kethireddy S, Contractor R, Islam H, Moulder T, Kalifa AR, Marin Meneses E, Barbosa Mendoza M, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol Spectr 2024; 12:e0189524. [PMID: 39436125 PMCID: PMC11619438 DOI: 10.1128/spectrum.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. Previous work found that the relationship between [ATP] and growth rate can account for the strength and occurrence of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. Using a combination of flux balance analysis and experimentation, we show that nucleotide synthesis can determine the relationship between [ATP] and growth and thus the strength of inoculum effect in an antibiotic class-dependent manner. If the [ATP]/growth rate is sufficiently high as determined by exogenously supplied nitrogenous bases, the inoculum effect does not occur. This is consistent for both Escherichia coli and Pseudomonas aeruginosa. Interestingly, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect, which may pave the way for intervention strategies to reduce the inoculum effect in the clinic. IMPORTANCE If a bacterial population can grow and reach a sufficiently high density, routine doses of antibiotics can be ineffective. This phenomenon, called the inoculum effect, has been observed for nearly all antibiotics and bacterial species. It has also been reported to result in antibiotic failure in the clinic. Understanding how to reduce the inoculum effect can make high-density infections easier to treat. Here, we show that purine and pyrimidine synthesis affect the strength of the inoculum effect; as the transcriptional activity of pyrimidine synthesis increases, the strength of the inoculum effect for aminoglycosides decreases. Conversely, as the transcriptional activity of purine synthesis increases, the strength of the inoculum effect for β-lactam antibiotics decreases. Our work highlights the importance of nucleotide synthesis in determining the strength of the inoculum effect, which may lead to the identification of new ways to treat high-density infections in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
2
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Kethireddy SR, Contractor R, Islam H, Moulder T, Kalifa AR, Meneses EM, Mendoza MB, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588696. [PMID: 38645041 PMCID: PMC11030397 DOI: 10.1101/2024.04.09.588696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. We previously found that growth productivity, which captures the relationship between [ATP] and growth, can account for the strength of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. We show that nucleotide synthesis can determine the relationship between [ATP] and growth, and thus the strength of inoculum effect in an antibiotic class-dependent manner. Specifically, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect and paves the way for intervention strategies to reduce the inoculum effect in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
- Department of Microbiology and Immunology, University of Rochester Medical Center; Rochester, NY 14627; USA
- Department of Biomedical Engineering, University of Rochester Medical Center; Rochester, NY 14627; USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| |
Collapse
|
3
|
Wang B, Grant RA, Laub MT. ppGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation. Mol Cell 2020; 80:29-42.e10. [PMID: 32857952 DOI: 10.1016/j.molcel.2020.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Wu H, Li Y, Ma Q, Li Q, Jia Z, Yang B, Xu Q, Fan X, Zhang C, Chen N, Xie X. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 2018; 49:248-256. [PMID: 30189293 DOI: 10.1016/j.ymben.2018.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 01/14/2023]
Abstract
Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.
Collapse
Affiliation(s)
- Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zifan Jia
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
6
|
Accumulation of Pyrimidine Intermediate Orotate Decreases Virulence Factor Production in Pseudomonas aeruginosa. Curr Microbiol 2015; 71:229-34. [DOI: 10.1007/s00284-015-0826-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
7
|
Hansen MR, Barr EW, Jensen KF, Willemoës M, Grubmeyer C, Winther JR. Catalytic site interactions in yeast OMP synthase. Arch Biochem Biophys 2013; 542:28-38. [PMID: 24262852 DOI: 10.1016/j.abb.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 11/15/2022]
Abstract
The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding.
Collapse
Affiliation(s)
- Michael Riis Hansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Eric W Barr
- Department of Biochemistry, Temple University School of Medicine, 3307 N Broad St., Philadelphia, PA 19140, USA
| | - Kaj Frank Jensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Charles Grubmeyer
- Department of Biochemistry, Temple University School of Medicine, 3307 N Broad St., Philadelphia, PA 19140, USA.
| | - Jakob R Winther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Effect of protein malnutrition on the metabolism and toxicity of cisplatin, 5-fluorouracil and mitomycin C in rat stomach. Food Chem Toxicol 2013; 56:467-82. [DOI: 10.1016/j.fct.2013.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/25/2012] [Accepted: 02/18/2013] [Indexed: 01/06/2023]
|
9
|
The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 2013; 195:2603-11. [PMID: 23543716 DOI: 10.1128/jb.00188-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) is an extensively studied multisubunit enzyme required for transcription of DNA into RNA, yet the δ subunit of RNAP remains an enigmatic protein whose physiological roles have not been fully elucidated. Here, we identify a novel, so far unrecognized function of δ from Bacillus subtilis. We demonstrate that δ affects the regulation of RNAP by the concentration of the initiating nucleoside triphosphate ([iNTP]), an important mechanism crucial for rapid changes in gene expression in response to environmental changes. Consequently, we demonstrate that δ is essential for cell survival when facing a competing strain in a changing environment. Hence, although δ is not essential per se, it is vital for the cell's ability to rapidly adapt and survive in nature. Finally, we show that two other proteins, GreA and YdeB, previously implicated to affect regulation of RNAP by [iNTP] in other organisms, do not have this function in B. subtilis.
Collapse
|
10
|
YAGO JM, SOLO CGARRIDODEL, GARCIA-MORENO M, VARON R, GARCIA-SEVILLA F, ARRIBAS E. A COMPARISON BETWEEN THE INITIAL RATE EXPRESSIONS OBTAINED UNDER STRICT CONDITIONS AND THE RAPID EQUILIBRIUM ASSUMPTION USING, AS EXAMPLE, A FOUR SUBSTRATE ENZYME REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The software WinStes, developed by our group, is used to derive the strict steady-state initial rate equation of the reaction mechanism of CTP:sn-glycerol-3-phosphate cytidylyltransferase [EC 2.7.7.39] from Bacillus subtilis. This enzyme catalyzes a reaction with two substrates and operates by a random ordered binding mechanism with two molecules of each substrate. The accuracy of the steady-state rate equation derived is checked by comparing the rate values it provides with those obtained from the simulated progress curves. To analyze the kinetics of this enzyme using the strict steady-state initial rate equation, several curves for different substrate concentrations and different rate constants are generated. A comparison of these curves with the curves obtained from the rapid equilibrium initial rate equation, with different substrate concentration values, serves to analyze how the strict steady-state rate equation values are closer to those of rapid equilibrium rate equations when rapid equilibrium conditions are fulfilled.
Collapse
Affiliation(s)
- J. M. YAGO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - C. GARRIDO-DEL SOLO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - M. GARCIA-MORENO
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - R. VARON
- Departamento de Química Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - F. GARCIA-SEVILLA
- Departamento de Ingenieria Electronica, Electrica Automatica y Comunicaciones, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, Spain
| | - E. ARRIBAS
- Departamento de Física Aplicada, Escuela Superior de Ingeniería, Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
11
|
Sojka L, Kouba T, Barvík I, Sanderová H, Maderová Z, Jonák J, Krásny L. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res 2011; 39:4598-611. [PMID: 21303765 PMCID: PMC3113569 DOI: 10.1093/nar/gkr032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In bacteria, rapid changes in gene expression can be achieved by affecting the activity of RNA polymerase with small molecule effectors during transcription initiation. An important small molecule effector is the initiating nucleoside triphosphate (iNTP). At some promoters, an increasing iNTP concentration stimulates promoter activity, while a decreasing concentration has the opposite effect. Ribosomal RNA (rRNA) promoters from Gram-positive Bacillus subtilis are regulated by the concentration of their iNTP. Yet, the sequences of these promoters do not emulate the sequence characteristics of [iNTP]-regulated rRNA promoters of Gram-negative Escherichia coli. Here, we identified the 3′-promoter region, corresponding to the transcription bubble, as key for B. subtilis rRNA promoter regulation via the concentration of the iNTP. Within this region, the conserved −5T (3 bp downstream from the −10 hexamer) is required for this regulation. Moreover, we identified a second class of [iNTP]-regulated promoters in B. subtilis where the sequence determinants are not limited to the transcription bubble region. Overall, it seems that various sequence combinations can result in promoter regulation by [iNTP] in B. subtilis. Finally, this study demonstrates how the same type of regulation can be achieved with strikingly different promoter sequences in phylogenetically distant species.
Collapse
Affiliation(s)
- Ludek Sojka
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The regulation of pyrimidine formation in the food spoilage agent Pseudomonas lundensis ATCC 49968 by pyrimidines was examined. In P. lundensis cells grown on glucose as a carbon source, the enzymes aspartate transcarbamoylase, dihydroorotase, and orotidine 5'-monophosphate decarboxylase were induced by orotic acid. Pyrimidine auxotrophs containing reduced transcarbamoylase or orotate phosphoribosyltransferase activity were isolated using chemical mutagenesis and selection procedures. Independent of carbon source, the maximum derepression of enzyme activity was observed for orotidine 5'-monophosphate decarboxylase after pyrimidine limitation of either auxotroph. In the glucose-grown cells of the transcarbamoylase mutant strain, orotic acid induced dihydroorotase and decarboxylase activities. Aspartate transcarbamoylase activity in succinate-grown P. lundensis cells was highly regulated by pyrophosphate as well as by pyrimidine and purine ribonucleotides. It was concluded that pyrimidine formation in P. lundensis was controlled both at the level of de novo pyrimidine biosynthetic enzyme synthesis and at the level of transcarbamoylase activity.
Collapse
Affiliation(s)
- Thomas P West
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
13
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
14
|
Krásný L, Tiserová H, Jonák J, Rejman D, Sanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol 2008; 69:42-54. [PMID: 18433449 DOI: 10.1111/j.1365-2958.2008.06256.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We identify here a pattern in the transcription start sites (+1A or +1G) of sigma(A)-dependent promoters of genes that are up-/downregulated in response to amino acid starvation (stringent response) in Bacillus subtilis. Upregulated promoters initiate mostly with ATP and downregulated promoters with GTP. These promoters appear to be sensitive to changes in initiating nucleoside triphosphate concentrations. During the stringent response in B. subtilis, when ATP and GTP levels change reciprocally, the identity of the +1 position (A or G) of these promoters is a factor important in their regulation. Mutations that change the identity of position +1 (A for G and vice versa) change the response of the promoter to amino acid starvation.
Collapse
Affiliation(s)
- Libor Krásný
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology ASCR, Vídenská 1083, Prague 142 20, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
Ralli P, Srivastava AC, O'Donovan G. Regulation of the pyrimidine biosynthetic pathway in apyrD knockout mutant ofPseudomonas aeruginosa. J Basic Microbiol 2007; 47:165-73. [PMID: 17440919 DOI: 10.1002/jobm.200610248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In research to date, regulation of the pyrimidine biosynthetic pathway at the level of gene expression has not been shown for wild type Pseudomonas aeruginosa. No repression was observed when uracil was added to the growth medium nor was any derepression seen when Pyr(-) auxotrophs were limited for pyrimidines. Here we show that the addition of uracil to Pseudomonas minimal medium influenced the synthesis of pyrimidine enzymes, while starvation of a pyrimidine knockout mutant (pyrD) elicited derepression of the pyrimidine enzymes. Moreover, the inclusion of orotate in the growth medium induced the synthesis of dihydroorotase in both wild type and mutant. These results suggest that the pyrimidine pathway in P. aeruginosa is regulated at the level of enzyme synthesis in a manner similar to a number of other Pseudomonas species.
Collapse
Affiliation(s)
- Pooja Ralli
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220, USA.
| | | | | |
Collapse
|
16
|
Santiago MF, West TP. Control of pyrimidine formation in Pseudomonas putida ATCC 17536. Can J Microbiol 2002; 48:1076-81. [PMID: 12619820 DOI: 10.1139/w02-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of de novo pyrimidine biosynthesis in Pseudomonas putida ATCC 17536 by pyrimidines was explored. The pathway enzyme activities were higher in glucose-grown cells than in succinate-grown cells, indicating catabolite repression by succinate. In P. putida cells grown on succinate as a carbon source, only aspartate transcarbamoylase activity was greatly diminished by uracil supplementation. When glucose was the carbon source, orotic acid supplementation significantly decreased orotate phosphoribosyltransferase and orotidine 5'-monophosphate (OMP) decarboxylase activities. Uracil auxotrophs, deficient for dihydroorotase activity or with reduced phosphoribosyltransferase activity, were isolated. After pyrimidine limitation of both auxotrophs, the greatest derepression of enzyme activity was observed for OMP decarboxylase independent of carbon source. Orotic acid induced both phosphoribosyltransferase and decarboxylase activities in glucose-grown cells of the dihydroorotase-deficient strain. Regulation at the transcriptional level of de novo pyrimidine biosynthetic enzyme synthesis in P. putida ATCC 17536 was observed, which contrasts with previous observations.
Collapse
Affiliation(s)
- Manuel F Santiago
- Olson Biochemistry Laboratories, Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
17
|
Abstract
AIMS To investigate the regulation of de novo pyrimidine biosynthesis in the polyhydroxyalkanoate-producing bacterium Pseudomonas oleovorans at the level of enzyme synthesis and at the level of aspartate transcarbamoylase activity. METHODS AND RESULTS The effect of pyrimidine supplementation on the pyrimidine biosynthetic pathway enzyme activities was analysed relative to carbon source. Two uracil auxotrophs of P. oleovorans were isolated that were deficient for aspartate transcarbamoylase or dihydroorotase activity. Pyrimidine limitation of these auxotrophs increased the de novo pathway activities to varying degrees depending on the pathway mutation and the carbon source utilized. At the level of aspartate transcarbamoylase activity, pyrophosphate and uridine ribonucleotides were found to be strongly inhibitory of the Ps. oleovorans enzyme. CONCLUSIONS Pyrimidine biosynthesis is regulated in Ps. oleovorans. Taxonomically, the regulation of the pyrimidine biosynthetic pathway appeared dissimilar from previously studied Pseudomonas species. SIGNIFICANCE AND IMPACT OF THE STUDY New insights regarding the regulation of nucleic acid metabolism are provided that could prove significant during the genetic manipulation of Ps. oleovorans to increase the synthesis of polyhydroxyalkanoates.
Collapse
Affiliation(s)
- L E Haugaard
- Olson Biochemistry Laboratories, Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
18
|
Krungkrai J, Wutipraditkul N, Prapunwattana P, Krungkrai SR, Rochanakij S. A nonradioactive high-performance liquid chromatographic microassay for uridine 5'-monophosphate synthase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase. Anal Biochem 2001; 299:162-8. [PMID: 11730338 DOI: 10.1006/abio.2001.5431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes.
Collapse
Affiliation(s)
- J Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Bangkok 10330, Thailand.
| | | | | | | | | |
Collapse
|
19
|
Sanker S, Campbell HA, Kent C. Negative cooperativity of substrate binding but not enzyme activity in wild-type and mutant forms of CTP:glycerol-3-phosphate cytidylyltransferase. J Biol Chem 2001; 276:37922-8. [PMID: 11487587 DOI: 10.1074/jbc.m107198200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:glycerol-3-phosphate cytidylyltransferase (GCT) catalyzes the synthesis of CDP-glycerol for teichoic acid biosynthesis in certain Gram-positive bacteria. This enzyme is a model for a cytidylyltransferase family that includes the enzymes that synthesize CDP-choline and CDP-ethanolamine for phosphatidylcholine and phosphatidylethanolamine biosynthesis. We have used quenching of intrinsic tryptophan fluorescence to measure binding affinities of substrates to the GCT from Bacillus subtilis. Binding of either CTP or glycerol-3-phosphate to GCT was biphasic, with two binding constants of about 0.1-0.3 and 20-40 microm for each substrate. The stoichiometry of binding was 2 molecules of substrate/enzyme dimer, so the two binding constants represented distinctly different affinities of the enzyme for the first and second molecule of each substrate. The biphasic nature of binding was observed with the wild-type GCT as well as with several mutants with altered Km or kcat values. This negative cooperativity of binding was also seen when a catalytically defective mutant was saturated with two molecules of CTP and then titrated with glycerol-3-phosphate. Despite the pronounced negative cooperativity of substrate binding, negative cooperativity of enzyme activity was not observed. These data support a mechanism in which catalysis occurs only when the enzyme is fully loaded with 2 molecules of each substrate/enzyme dimer.
Collapse
Affiliation(s)
- S Sanker
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
20
|
Krogan NJ, Zaharik ML, Neuhard J, Kelln RA. A combination of three mutations, dcd, pyrH, and cdd, establishes thymidine (Deoxyuridine) auxotrophy in thyA+ strains of Salmonella typhimurium. J Bacteriol 1998; 180:5891-5. [PMID: 9811646 PMCID: PMC107662 DOI: 10.1128/jb.180.22.5891-5895.1998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dum gene of Salmonella typhimurium was originally identified as a gene involved in dUMP synthesis (C. F. Beck et al., J. Bacteriol. 129:305-316, 1977). In the genetic background used in their selection, the joint acquisition of a dcd (dCTP deaminase) and a dum mutation established a condition of thymidine (deoxyuridine) auxotrophy. In this study, we show that dum is identical to pyrH, the gene encoding UMP kinase. The level of UMP kinase activity in the dum mutant was found to be only 30% of that observed for the dum+ strain. Thymidine prototrophy was restored to the original dum dcd mutant (KP1361) either by transduction using a pyrH+ donor or by complementation with either of two pyrH+-carrying plasmids. Thymidine auxotrophy could be reconstructed in the dum+ derivative (KP1389) by the introduction of a mutant pyrH allele. To define the minimal mutational complement necessary to produce thymidine auxotrophy in thyA+ strains, a dcd::Km null mutation was constructed. In the wild-type background, dcd::Km alone or in combination with a pyrH (dum) mutation did not result in a thymidine requirement. A third mutation, cdd (cytidine-deoxycytidine deaminase), was required together with the dcd and pyrH mutations to impart thymidine auxotrophy.
Collapse
Affiliation(s)
- N J Krogan
- Department of Chemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | | | | |
Collapse
|
21
|
Kholti A, Charlier D, Gigot D, Huysveld N, Roovers M, Glansdorff N. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 1998; 280:571-82. [PMID: 9677289 DOI: 10.1006/jmbi.1998.1910] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carAB operon of the enterics Escherichia coli K-12 and Salmonella typhimurium LT2, encoding the sole carbamoylphosphate synthetase (CPSase) of these organisms, is transcribed from two promoters in tandem, carP1 upstream and carP2 downstream, repressed respectively by pyrimidines and arginine. We present evidence that the pyrH gene product (the hexameric UMP-kinase) directly participates in the pyrimidine-specific control of carP1 activity. Indeed, we have isolated in E. coli a particular type of pyrH mutation (pyrH41) that retains a quasi-normal UMP-kinase activity, but yet is impaired in the pyrimidine-specific repression of the P1 promoter of the carAB operon of E. coli and of S. typhimurium. Moreover, the pyrimidine-dependent inhibition of in vivo Dam methylase modification of adenine -106 upstream of the carP1 promoter is altered in this pyrH mutant. The recessive pyrH41 allele bears a single C-G to A-T transversion that converts alanine 94 into glutamic acid (A94E). Although overexpression of pyrH41 results in UMP-kinase levels far above that of a wild-type strain, pyrimidine-specific repression of the carAB operon is not restored under these conditions. Similarly, overexpression of the UMP-CMP-kinase gene of Dictyostelium discoideum in the pyrH41 mutant does not restore pyrimidine-mediated control of carP1 promoter activity, in spite of the elevated UMP-kinase activity measured in such transformants. These results indicate that besides its catalytic function in the de novo pyrimidine biosynthesis, E. coli UMP-kinase fulfils an additional, but previously unrecognized role in the regulation of the carAB operon. UMP-kinase might function as the real sensor of the internal pyrimidine nucleotide pool and act in concert with the integration host factor (IHF) and aminopeptidase A (PepA alias CarP and XerB) in the elaboration of the complex nucleoprotein structure required for pyrimidine-specific repression of carP1 promoter activity.
Collapse
Affiliation(s)
- A Kholti
- Laboratoire de Microbiologie, Université Libre de Bruxelles, 1-av. E. Gryson, Brussels, B-1070, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Bayles DO, Fennington GJ, Hughes TA. Sequence and phylogenetic analysis of the Rhizobium leguminosarum biovar trifolii pyrE gene, overproduction, purification and characterization of orotate phosphoribosyltransferase. Gene X 1997; 195:329-36. [PMID: 9305779 DOI: 10.1016/s0378-1119(97)00192-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pyrE gene of Rhizobium leguminosarum biovar trifolii (Rl) was subcloned and its sequence is presented. The nucleotide sequence analysis suggests that this gene is not regulated by transcriptional attenuation as seen for the pyrE and pyrB genes of Escherichia coli (Ec) and Salmonella typhimurium. The Rl pyrE gene was subcloned into Ec AT2538 pyrE60 where the Rl pyrE gene product, orotate phosphoribosyltransferase (OPRTase), was overproduced. Using Ec AT2538 pyrE60 overproducing Rl OPRTase, the enzyme was purified to homogeneity utilizing ammonium sulfate fractionation and affinity chromatography with an orotate monophosphate agarose matrix. The electrophoretically pure OPRTase was characterized and found to be a 24.7 +/- 0.3-kDa protein with a K(m) of 27.6 micromol l(-1). The deduced amino acid sequence for OPRTase was compared with OPRTases from other organisms and found to be most similar to that of Bacillus subtilis (Bs). The Rl OPRTase exhibits 37% identity and 46% similarity to the Bs OPRTase.
Collapse
Affiliation(s)
- D O Bayles
- Illinois State University, Department of Biological Sciences, Normal, USA
| | | | | |
Collapse
|
23
|
Li K, West TP. Effect of the carbon source succinate on pyrimidine synthesis inBurkholderia cepacia. J Basic Microbiol 1997. [DOI: 10.1002/jobm.3620370311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Tolbert TJ, Williamson JR. Preparation of Specifically Deuterated RNA for NMR Studies Using a Combination of Chemical and Enzymatic Synthesis. J Am Chem Soc 1996. [DOI: 10.1021/ja961274i] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas J. Tolbert
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James R. Williamson
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
25
|
Becker J, Brendel M. Molecular cloning and characterization of the pyrB gene of Lactobacillus leichmannii encoding aspartate transcarbamylase. Biochimie 1996; 78:3-13. [PMID: 8725005 DOI: 10.1016/0300-9084(96)81323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Lactobacillus leichmannii pyrB gene, encoding pyrimidine biosynthetic enzyme aspartate transcarbamylase (ATCase), was cloned from a partial genomic library lying on a 1468 bp Sa/I/BstXI fragment. The predicted polypeptide sequence extending over 351 amino acid residues (M(r) 39 855 Da) was compared to those of various other organisms revealing clear identities towards them and important conservative stretches, implying that these proteins are closely related. Transcriptional initiation was mapped by primer extension and occurred 54 bp upstream of the pyrB open reading frame (ORF). Northern blot analysis indicates that the pyrB gene is transcribed as a single mRNA and not together with the following overlapping pyrC gene as a bicistronic mRNA. At high copy number the pyrB gene of L leichmannii seems to be lethal for its E coli host; inserted in a low copy vector it complements the uracil auxotrophy of an E coli pyrB mutant which shows distinct ATCase activity in the cell extract. With an excess of uracil in the growth medium the gene is apparently repressed and no ATCase activity can be measured.
Collapse
Affiliation(s)
- J Becker
- Institut für Mikrobiologie, JW Goethe-Universität, Frankfurt/Main, Germany
| | | |
Collapse
|
26
|
Abstract
Two uracil auxotrophs of the phytopathogen Burkolderia cepacia ATCC 25416, which is known to be involved in food spoilage, were isolated by a combination of ethylmethane sulphonate and D-cycloserine counterselection. One mutant exhibited depressed orotate phosphoribosyltransferase activity while the other mutant lacked orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of either auxotroph elevated aspartate transcarbamoylase and dihydroorotase activities by at least 1:5-fold indicating that these pathway enzymes may be repressible by a uracil-related compound in B. cepacia. Overall, regulation of de novo pyrimidine synthesis in the uracil auxotrophs of B. cepacia ATCC 25416 was observed.
Collapse
Affiliation(s)
- K Li
- Olson Biochemistry Laboratories, Department of Chemistry and Biochemistry, South Dakota State University, Brookings, USA
| | | |
Collapse
|
27
|
Abstract
Pyrimidine synthesis in the food spoilage agent Burkholderia cepacia ATCC 25416 was investigated. The five de novo pathway enzymes of pyrimidine biosynthesis were found to be active in B. cepacia ATCC 25416 and growth of this strain on uracil had an effect on the de novo enzyme activities. The in vitro regulation of aspartate transcarbamoylase activity in B. cepacia ATCC 25416 was studies and its activity was inhibited by PP(i), ATP, GTP, CTP and UTP. The enzymes cytidine deaminase, uridine phosphorylase and cytosine deaminase were found to be active in the salvage of pyrimidines in ATCC 25416. Overall, de novo pyrimidine synthesis in B. cepacia ATCC 25416 was regulated at the level of enzyme activity and its pyrimidine salvage enzymes differed from those found in B. cepacia ATCC 17759.
Collapse
Affiliation(s)
- K Li
- Olson Biochemistry Laboratories, Department of Chemistry and Biochemistry, South Dakota State University, Brookings, USA
| | | |
Collapse
|
28
|
Aström SU, Byström AS. Rit1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination. Cell 1994; 79:535-46. [PMID: 7954819 DOI: 10.1016/0092-8674(94)90262-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using a genetic screen in yeast aimed at identifying cellular factors involved in initiator and elongator methionine tRNA discrimination in the translational process, we have identified a mutation that abolish the requirement for elongator methionine tRNA. The gene affected, which we call the ribosylation of the initiator tRNA gene or RIT1, encodes a 2'-O-ribosyl phosphate transferase. This enzyme modifies exclusively the initiator tRNA in position 64 using 5'-phosphoribosyl-1'-pyrophosphate as the modification donor. As the initiator tRNA participates both in the initiation and elongation of translation in a rit1 strain, we conclude that the 2'-O-ribosyl phosphate modification discriminates the initiator tRNAs from the elongator tRNAs during protein synthesis. The modification enzyme was shown to recognize the stem-loop IV region that is unique in eukaryotic cytoplasmic initiator tRNAs.
Collapse
Affiliation(s)
- S U Aström
- Department of Microbiology, University of Umeå, Sweden
| | | |
Collapse
|
29
|
Jensen KF. The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 1993; 175:3401-7. [PMID: 8501045 PMCID: PMC204738 DOI: 10.1128/jb.175.11.3401-3407.1993] [Citation(s) in RCA: 376] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The widely used and closely related Escherichia coli "wild types" W3110 and MG1655, as well as their common ancestor W1485, starve for pyrimidine in minimal medium because of a suboptimal content of orotate phosphoribosyltransferase, which is encoded by the pyrE gene. This conclusion was based on the findings that (i) the strains grew 10 to 15% more slowly in pyrimidine-free medium than in medium containing uracil; (ii) their levels of aspartate transcarbamylase were highly derepressed, as is characteristic for pyrimidine starvation conditions; and (iii) their levels of orotate phosphoribosyltransferase were low. After introduction of a plasmid carrying the rph-pyrE operon from strain HfrH, the growth rates were no longer stimulated by uracil and the levels of aspartate transcarbamylase were low and similar to the levels observed for other strains of E. coli K-12, E. coli B, and Salmonella typhimurium. To identify the mutation responsible for these phenotypes, the rph-pyrE operon of W3110 was cloned in pBR322 from Kohara bacteriophage lambda 2A6. DNA sequencing revealed that a GC base pair was missing near the end of the rph gene of W3110. This one-base-pair deletion results in a frame shift of translation over the last 15 codons and reduces the size of the rph gene product by 10 amino acid residues relative to the size of RNase PH of other E. coli strains, as confirmed by analysis of protein synthesis in minicells. The truncated protein lacks RNase PH activity, and the premature translation stop in the rph cistron explains the low levels of orotate phosphoribosyltransferase in W3110, since close coupling between transcription and translation is needed to support optimal levels of transcription past the intercistronic pyrE attenuator.
Collapse
Affiliation(s)
- K F Jensen
- Institute of Biological Chemistry, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Andersen JT, Poulsen P, Jensen KF. Attenuation in the rph-pyrE operon of Escherichia coli and processing of the dicistronic mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:381-90. [PMID: 1375912 DOI: 10.1111/j.1432-1033.1992.tb16938.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have substituted on a plasmid the native promoter of the Escherichia coli rph-pyrE operon with an inducible transcription-initiation signal. The plasmid was used to study the mRNA chains derived from the operon at different intracellular concentrations of UTP and as a function of time following induction of transcription. The results showed that dicistronic rph-pyrE mRNA was formed when the UTP pool was low, and that a monocistronic rph mRNa was the major transcription product in high-UTP pools, thus supporting an UTP-controlled attenuation mechanism for regulation of pyrE gene expression. However, the dicistronic rph-pyrE transcript was rapidly processed into two monocistronic mRNA units, and a cleavage site was mapped near the attenuator in the intercistronic region, close to the site where transcription was terminated in high-UTP pools. Furthermore, the major 3' end of the pyrE mRNA was mapped near a palindromic structure of similarity to the family of repetitive extragenic palindromic sequences, 35 nucleotide residues after stop codon of the pryE gene.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Molecular Sequence Data
- Operon
- Orotate Phosphoribosyltransferase/biosynthesis
- Orotate Phosphoribosyltransferase/genetics
- Plasmids
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- J T Andersen
- Institute of Biological Chemistry B, University of Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Wilson HR, Archer CD, Liu JK, Turnbough CL. Translational control of pyrC expression mediated by nucleotide-sensitive selection of transcriptional start sites in Escherichia coli. J Bacteriol 1992; 174:514-24. [PMID: 1345912 PMCID: PMC205745 DOI: 10.1128/jb.174.2.514-524.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the pyrC gene, which encodes the pyrimidine biosynthetic enzyme dihydroorotase, is negatively regulated by pyrimidine availability in Escherichia coli. To define the mechanism of this regulation, an essential regulatory region between the pyrC promoter and the initial codons of the pyrC structural gene was identified. Mutational analysis of this regulatory region showed that the formation of a hairpin at the 5' end of the pyrC transcript, which overlaps the pyrC ribosome binding site, is required for repression of pyrC expression. Formation of the hairpin appears to be controlled by nucleotide-sensitive selection of the site of pyrC transcriptional initiation. When the CTP level is high, the major pyrC transcript is initiated with this nucleotide at a position seven bases downstream of the pyrC -10 region. This transcript is capable of forming a stable hairpin at its 5' end. When the CTP level is low and the GTP level is high, conditions found in cells limited for pyrimidines, the major pyrC transcript is initiated with GTP at a position two bases further downstream. This shorter transcript appears to be unable to form a stable hairpin at its 5' end. These results suggest a model for regulation in which the longer pyrC transcripts are synthesized predominantly under conditions of pyrimidine excess and form the regulatory hairpin, which blocks pyrC translational initiation. In contrast, the shorter pyrC transcripts are synthesized primarily under conditions of pyrimidine limitation, and they are readily translated, resulting in a high level of dihydroorotase synthesis. The data also indicate that a low level of pyrimidine-mediated regulation may occur at the level of transcriptional initiation.
Collapse
Affiliation(s)
- H R Wilson
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
32
|
Sørensen KI, Neuhard J. Dual transcriptional initiation sites from the pyrC promoter control expression of the gene in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:249-56. [PMID: 1706467 DOI: 10.1007/bf00269856] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of the Salmonella typhimurium pyrC gene encoding dihydroorotase is negatively regulated by CTP and stimulated by GTP. This regulation does not occur at the level of transcription initiation but appears to involve translation attenuation of the transcripts. Alterations of specific bases in a region of hyphenated dyad symmetry located in the leader established that base pairing in the 5' terminal region of the pyrC leader transcript is required for normal regulation of dihydroorotase synthesis. Primer extension experiments on RNA from mutant strains that permit manipulation of the CTP and GTP pools showed that pyrC transcription may start at either a cytosine or a guanine residue, 2 bp apart. The ratio between G-starts and C-starts appeared to be determined by the intracellular [GTP]/[CTP] pool ratio. The larger transcript, starting with a C, is able to form a stable hairpin in the 5' end, sequestering part of the ribosome binding site in the stem. The leader of the shorter transcript, however, cannot form this secondary structure. Thus, translational initiation will occur unhindered only from the shorter transcript.
Collapse
Affiliation(s)
- K I Sørensen
- Enzyme Division, University Institute of Biological Chemistry B, Copenhagen K, Denmark
| | | |
Collapse
|
33
|
Andersen JT, Jensen KF, Poulsen P. Role of transcription pausing in the control of the pyrE attenuator in Escherichia coli. Mol Microbiol 1991; 5:327-33. [PMID: 1710313 DOI: 10.1111/j.1365-2958.1991.tb02113.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of the Escherichia coli pyrE gene is regulated by transcription attenuation in the intercistronic orfE-pyrE region and modulated by the distance between the transcribing RNA polymerase and the leading ribosome as a function of the supply of UTP and GTP. In this communication we show that pyrE expression is hyper-repressed in vivo following addition of uracil in strains carrying the nusAcs10 mutation. This phenotype, previously seen in rpsL1204 strains whose ribosomes are pseudodependent on streptomycin and work at suboptimal elongation rate, indicates that RNA polymerase escapes from the ribosomes in the pyrE attenuator region in the nusA mutant. In vitro transcription studies revealed that the build-up of the full-length attenuated orfE transcript occurred more slowly in the presence of the NusA protein than in its absence. Moreover, the NusA protein enhanced several transcription pauses through the orfE gene. These effects were more pronounced when low concentrations of either UTP or GTP were used than at low concentrations of either CTP or ATP. The results indicate that the NusA protein is required for proper regulation of pyrE gene expression and is involved, together with the NTP pools, in maintaining the coupling between transcription and translation in the pyrE attenuator region by inhibiting RNA chain elongation.
Collapse
Affiliation(s)
- J T Andersen
- Enzyme Division, University of Copenhagen, Denmark
| | | | | |
Collapse
|
34
|
Frick MM, Neuhard J, Kelln RA. Cloning, nucleotide sequence and regulation of the Salmonella typhimurium pyrD gene encoding dihydroorotate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:573-8. [PMID: 2269282 DOI: 10.1111/j.1432-1033.1990.tb15654.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Salmonella typhimurium pyrD gene encoding dihydroorotate dehydrogenase was cloned and sequenced. In total, a sequence of 1286 nucleotide pairs was determined wherein a single open-reading-frame of 1011 bp, encoding a polypeptide of 336 amino acids having 95% similarity with the Escherichia coli pyrD gene product, was identified. A region of hyphenated-dyad symmetry exists within the leader region affording the potential for the formation of a stable secondary structure in the 5' end of the transcript. Mutations from several regulatory mutants were located within the region of dyad symmetry which would impart changes in the transcript within the putative secondary structure, implicating the secondary structure in regulation. Primer extension analysis revealed multiple transcriptional start sites located six to nine nucleotides downstream from the Pribnow box, with the primary initiation site differing in repressing and derepressing growth conditions. The results are discussed in terms of a translational attenuation model for regulation of pyrD expression.
Collapse
Affiliation(s)
- M M Frick
- Department of Chemistry, University of Regina, Canada
| | | | | |
Collapse
|
35
|
Abstract
Pyrimidine biosynthesis was investigated in Pseudomonas cepacia ATCC 17759. The presence of the de novo pyrimidine biosynthetic pathway enzyme activities was confirmed in this strain. Following transposon mutagenesis of the wild-type cells, a mutant strain deficient for orotidine 5'-monophosphate decarboxylase activity (pyrF) was isolated. Uracil, cytosine or uridine supported the growth of this mutant. Uracil addition to minimal medium cultures of the wild-type strain diminished the levels of the de novo pyrimidine biosynthetic enzyme activities, while pyrimidine limitation of the mutant cells increased those de novo enzyme activities measured. It was concluded that regulation of pyrimidine biosynthesis at the level of enzyme synthesis in P. cepacia was present. Aspartate transcarbamoylase activity was found to be regulated in the wild-type cells. Its activity was shown to be controlled in vitro by inorganic pyrophosphate, adenosine 5'-triphosphate and uridine 5'-phosphate.
Collapse
Affiliation(s)
- T P West
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg 39406
| | | |
Collapse
|
36
|
Paull TT, Fleming JE. Upregulation ofE. coli 38kDa proteins induced by glutaraldehyde and formaldehyde. Curr Microbiol 1990. [DOI: 10.1007/bf02091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Theisen M, Neuhard J. Translational coupling in the pyrF operon of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:345-52. [PMID: 2274035 DOI: 10.1007/bf00633839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pyrF gene, encoding the sixth enzyme of pyrimidine biosynthesis in Salmonella typhirmurium, appears to be the first gene of an operon. The second gene, orfF, encodes a 11.5 kDa polypeptide of unknown function. To study the regulation of orfF expression directly, transcriptional and translational fusions of orfF to galK and lacZ, respectively, were constructed and the level of expression of the reporter genes was determined under different growth conditions. The results obtained show that the synthesis of OrfF and orotidine 5'-phosphate decarboxylase is coordinately controlled by pyrimidines, and that this control occurs at the level of transcription. The orfF translational start codon overlaps the pyrF translational stop codon, suggesting that the two genes are translationally coupled. This was investigated by studying how frameshift mutations, which cause premature termination of pyrF translation at different points, affect orfF expression. All mutations reduced orfF expression markedly without interfering with transcription of the gene. Thus, expression of pyrF and orfF are translationally coupled. Inspection of the nucleotide sequence of the pyrF/orfF junction region suggests that formation of secondary structures on the naked mRNA may explain the low level of orfF expression in the absence of translation of the pyrF terminal region.
Collapse
Affiliation(s)
- M Theisen
- Enzyme Division, University Institute of Biological Chemistry B, Copenhagen, Denmark
| | | |
Collapse
|
38
|
Abstract
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.
Collapse
Affiliation(s)
- K Y Choi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
39
|
Wilson HR, Turnbough CL. Role of the purine repressor in the regulation of pyrimidine gene expression in Escherichia coli K-12. J Bacteriol 1990; 172:3208-13. [PMID: 1971621 PMCID: PMC209126 DOI: 10.1128/jb.172.6.3208-3213.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pyrC and pyrD genes of Escherichia coli K-12 encode the pyrimidine biosynthetic enzymes dihydroorotase and dihydroorotate dehydrogenase, respectively. A highly conserved sequence in the promoter regions of these two genes is similar to the pur operator, which is the binding site for the purine repressor (PurR). In this study, we examined the role of PurR in the regulation of pyrC and pyrD expression. Our results show that pyrC and pyrD expression was repressed approximately twofold in cells grown in the presence of adenine [corrected] through a mechanism requiring PurR. A mutation, designated pyrCp926, which alters a 6-base-pair region within the conserved sequence in the pyrC promoter eliminated PurR-mediated repression of pyrC expression. This result indicates that PurR binds to the pyrC (and presumably to the pyrD) conserved sequence and inhibits transcriptional initiation. We also demonstrated that the pyrCp926 mutation had no effect on pyrimidine-mediated regulation of pyrC expression, indicating that pyrimidine and purine effectors act through independent mechanisms to control the expression of the pyrC and pyrD genes.
Collapse
Affiliation(s)
- H R Wilson
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
40
|
O'Donovan GA, Herlick S, Beck DE, Dutta PK. UTP/CTP ratio, an important regulatory parameter for ATCase expression. Arch Microbiol 1989; 153:19-25. [PMID: 2692533 DOI: 10.1007/bf00277535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intracellular nucleotides of Salmonella typhimurium were separated and quantified by high performance liquid chromatography (HPLC). Wild type and specially constructed strains of S. typhimurium, in which uridine and cytidine nucleotides could be manipulated independently, were used in this study. By varying growth conditions it was possible to create different concentrations of uridine and cytidine nucleotides in the cell. The specific activity of ATCase was determined for each condition. Generally, a direct correlation was found: at high nucleotide (UTP) concentrations, maximal repression of ATCase was usually seen; at low nucleotide (UTP) concentrations ATCase was derepressed. However, it was the ratio of the concentrations of UTP-to-CTP rather than either the concentration of UTP or CTP alone that best determined the extent of ATCase expression. This applied to all conditions in the present work as well as to all conditions in work hitherto reported by others. The ratio of UTP/CTP is proposed as a key regulatory parameter for pyr enzyme expression.
Collapse
Affiliation(s)
- G A O'Donovan
- Department of Biological Sciences, University of North Texas, Denton 76203
| | | | | | | |
Collapse
|
41
|
Lu CD, Kilstrup M, Neuhard J, Abdelal A. Pyrimidine regulation of tandem promoters for carAB in Salmonella typhimurium. J Bacteriol 1989; 171:5436-42. [PMID: 2676976 PMCID: PMC210381 DOI: 10.1128/jb.171.10.5436-5442.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The carAB operon of Salmonella typhimurium encodes the two subunits of the enzyme carbamoylphosphate synthetase. Transcription of the operon is initiated at tandem promoters that are subject to control by pyrimidines and arginine. Pyrimidine regulation was examined by quantitative primer extension experiments under conditions in which densitometric measurements of the transcripts were linear with the amount of RNA. RNA was obtained from mutant strains that permit manipulations of pyrimidine nucleotide pools. The data showed that a uridine nucleotide repressed the upstream promoter (Pl), whereas arginine repressed the downstream promoter (P2). Exogenous cytidine, which increased the intracellular CTP pool in certain mutant strains, did not affect either promoter. However, CTP limitation resulted in derepression of the pyrimidine-specific promoter as well as the downstream arginine-specific promoter. The effect of pyrimidines on P2 was confirmed in a carA::lacZ transcriptional fusion in which the activity of the pyrimidine-specific promoter was abolished. Primer extension experiments with an argR::Tn10 derivative showed that repression of Pl by uridine nucleotides did not require a functional arginine repressor and that repression of P2 by arginine did not interfere with elongation of transcripts initiated at the upstream Pl promoter.
Collapse
Affiliation(s)
- C D Lu
- Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta 30303
| | | | | | | |
Collapse
|
42
|
Andersen L, Kilstrup M, Neuhard J. Pyrimidine, purine and nitrogen control of cytosine deaminase synthesis in Escherichia coli K 12. Involvement of the glnLG and purR genes in the regulation of codA expression. Arch Microbiol 1989; 152:115-8. [PMID: 2673119 DOI: 10.1007/bf00456087] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytosine deaminase, encoded by the codA gene in Escherichia coli catalyzes the deamination of cytosine to uracil and ammonia. Regulation of codA expression was studied by determining the level of cytosine deaminase in E. coli K12 grown in various defined media. Addition of either pyrimidine or purine nucleobases to the growth medium caused repressed enzyme levels, whereas growth on a poor nitrogen source such as proline resulted in derepression of cytosine deaminase synthesis. Derepression of codA expression was induced by starvation for either uracil or cytosine nucleotides. Nitrogen control was found to be mediated by the glnLG gene products, and purine repression required a functional purR gene product. Studies with strains harbouring multiple mutations affecting both pyrimidine, purine and nitrogen control revealed that the overall regulation of cytosine deaminase synthesis by the different metabolites is cumulative.
Collapse
Affiliation(s)
- L Andersen
- University of Copenhagen, Institute of Biological Chemistry B, Denmark
| | | | | |
Collapse
|
43
|
Liu CG, Turnbough CL. Multiple control mechanisms for pyrimidine-mediated regulation of pyrBI operon expression in Escherichia coli K-12. J Bacteriol 1989; 171:3337-42. [PMID: 2656651 PMCID: PMC210055 DOI: 10.1128/jb.171.6.3337-3342.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of the pyrBI operon of Escherichia coli K-12, which encodes the subunits of the pyrimidine biosynthetic enzyme aspartate transcarbamylase, is negatively regulated over a several-hundredfold range by pyrimidine availability. This regulation occurs, at least in large part, through a UTP-sensitive attenuation control mechanism in which transcriptional termination at the pyrBI attenuator, a rho-independent transcriptional terminator located immediately upstream of the pyrB structural gene, is regulated by the relative rates of transcription and translation within the pyrBI leader region. There is suggestive evidence that an additional, attenuator-independent control mechanism also contributes to this regulation. To measure the level of regulation that occurs through the attenuation and attenuator-independent control mechanisms, we constructed a mutant strain in which a 9-base-pair deletion was introduced into the attenuator of the chromosomal pyrBI operon. This deletion, which removes the run of thymidine residues at the end of the attenuator, completely abolishes rho-independent transcriptional termination activity. When the mutant strain was grown under conditions of pyrimidine excess, the level of operon expression was 51-fold greater than that of an isogenic pyrBI+ strain. Under conditions of pyrimidine limitation, operon expression was increased an additional 6.5-fold in the mutant. These results demonstrate that the attenuation control mechanism is primarily responsible for pyrimidine-mediated regulation but that there is a significant contribution by an attenuator-independent control mechanism.
Collapse
Affiliation(s)
- C G Liu
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
44
|
Poulsen P, Andersen JT, Jensen KF. Molecular and mutational analysis of three genes preceding pyrE on the Escherichia coli chromosome. Mol Microbiol 1989; 3:393-404. [PMID: 2664418 DOI: 10.1111/j.1365-2958.1989.tb00184.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleotide sequence of two kilobase pairs (kb) 5' to the orfE-pyrE operon has been determined. The sequence revealed two open reading frames, orfX and orfY, consisting of 286 and 274 codons, respectively, and having a transcriptional orientation opposite that of the orfE-pyrE operon. Analysis of transcription initiations showed that the promoters of orfE and orfX constitute a pair of divergent promoters with overlapping -35 regions and that orfY is transcribed from an independent promoter. Translational analysis indicated that the orfs are expressed in Escherichia coli. The orfE, orfX, and orfY genes were inactivated on the bacterial chromosome by deletion-insertion mutagenesis using a kanamycin resistance cassette. The mutants were all viable. However, the orfE deletion caused a dramatic reduction in the level of pyrE expression and a partial pyrimidine requirement, because this mutation prevented transcription of pyrE. the orfE protein seemed without significance for pyr-gene expression in E. coli, and the mutations in orfX and orfY were without detectable phenotypes.
Collapse
Affiliation(s)
- P Poulsen
- University Institute of Biological Chemistry B, Copenhagen K, Denmark
| | | | | |
Collapse
|
45
|
Roovers M, Charlier D, Feller A, Gigot D, Holemans F, Lissens W, Piérard A, Glansdorff N. carP, a novel gene regulating the transcription of the carbamoylphosphate synthetase operon of Escherichia coli. J Mol Biol 1988; 204:857-65. [PMID: 3065518 DOI: 10.1016/0022-2836(88)90046-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The carAB operon, encoding carbamoylphosphate synthetase (CPSase; EC 6.3.5.5) is transcribed from two tandem promoters. The upstream promoter (P1) is controlled by pyrimidines and the downstream promoter (P2) is controlled by arginine. We have isolated a new type of constitutive mutation (carP) that specifically affects the control of the pyrimidine-sensitive promoter but does not appear to influence other genes of the pyrimidine pathway. The carP mutation acts in trans and is dominant, which suggests that the carP product is an activator of car transcription. The downstream promoter P2, which is repressed by arginine, overlaps two operator modules characteristic of the arginine regulon. We have isolated two operator-constitutive mutations that specifically affect P2; both map in the upstream ARG box at a strongly conserved position.
Collapse
Affiliation(s)
- M Roovers
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kilstrup M, Lu CD, Abdelal A, Neuhard J. Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:421-9. [PMID: 2843375 DOI: 10.1111/j.1432-1033.1988.tb14299.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The carAB operon of Salmonella typhimurium encoding carbamoyl-phosphate synthetase (CPSase) has been cloned, and the nucleotide sequence of the first gene of the operon, carA, together with 760 base pairs of the 5'-flanking region was determined. The product of the carA gene is the small subunit of CPSase. It catalyzes the transfer of the amide group from glutamine to an NH3-site on the heavy subunit. Primer extension and S1 nuclease mapping of in vivo carAB transcripts revealed that transcription is similar to that of Escherichia coli [Piette, J. et al. (1984) Proc. Natl Acad. Sci. USA 81, 4134-4138] in its initiation at two promoters, P1 and P2, controlled by pyrimidines and arginine, respectively. The arginine control is mediated through binding to the arginine repressor (argR). The involvement of titratable regulatory elements is indicated by the escape from both arginine and pyrimidine control, when the operon is present in multicopies on a plasmid. Measurements of CPSase levels in mutants which allows independent manipulation of the intracellular uracil and cytosine nucleotide pools show, that both uracil and cytosine nucleotides are required for full repression and that limitation of either nucleotide results in derepression of CPSase synthesis. Deletion analyses indicate that regions upstream of the P1 promoter are required for normal expression from this promoter but not from P2.
Collapse
Affiliation(s)
- M Kilstrup
- University of Copenhagen, Institute of Biological Chemistry B, Denmark
| | | | | | | |
Collapse
|
47
|
Jensen KF. Hyper-regulation of pyr gene expression in Escherichia coli cells with slow ribosomes. Evidence for RNA polymerase pausing in vivo? EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:587-93. [PMID: 3044790 DOI: 10.1111/j.1432-1033.1988.tb14232.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UTP-modulated attenuation of transcription is involved in regulating the synthesis of pyrimidine nucleotides in Escherichia coli. Thus, expression of two genes, pyrBI and pyrE, was shown to be under this type of control. The genes encode the two subunits of aspartate transcarbamylase and orotate phosphoribosyltransferase respectively. The levels of these enzymes are inversely correlated with the intracellular concentration of UTP. Modulation of attenuation seems to be a consequence of the effect of UTP concentration on the mRNA chain growth rate. Reducing the UTP pool retards RNA polymerase movement. Mechanistically this will couple the ribosomes translating a leader peptide gene more tightly to the elongating RNA polymerase. The ribosomes will then be more prone to prevent the folding of the mRNA chains into terminating hairpin structures when RNA polymerase is at the attenuator and has to decide whether transcription should terminate or continue into the structural genes. This paper described a study of pyrBI and pyrE gene regulation in cells where the ribosomes move slowly as a result of mutation in rpsL. It appears that expression of the two genes is hyper-regulated by the UTP pool in this type of cells. Furthermore, the attenuator model can only account for the results if it is assumed that UTP-concentration-dependent pausing of transcription occurs in vivo in the two pyr gene leaders such that RNA polymerase waits for the coupled ribosomes before transcribing into the attenuator regions.
Collapse
Affiliation(s)
- K F Jensen
- University Institute of Biological Chemistry B, Copenhagen, Denmark
| |
Collapse
|
48
|
Kelln RA, Neuhard J. Regulation of pyrC expression in Salmonella typhimurium: identification of a regulatory region. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:287-94. [PMID: 2900460 DOI: 10.1007/bf00334698] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Deletion analysis of a plasmid carrying the entire pyrC gene of Salmonella typhimurium served to localize the regulatory region within a 120 base pair DNA fragment comprising the promoter-leader region and the first 10 codons of pyrC. A region of dyad symmetry is present in the leader DNA and may result in the formation of a stable hairpin in the transcript with part of the Shine-Dalgarno sequence included in the stem. Four independently-isolated regulatory mutants, overexpressing pyrC, were found to have point mutations within the symmetry region and, significantly, the mutations occurred in sequences pertaining to either side of the stem of the putative hairpin of the transcript. All four mutations would decrease the stability of the hairpin, suggesting that pyrC expression is controlled at the level of translation. Additional evidence for translational control was provided by the finding that synthesis of galactokinase mediated from a pyrC-galK transcriptional fusion is not regulated by pyrimidines. The importance of the symmetry region in the leader was further emphasized by showing that pyrC expression is strongly affected when this region is deleted, inverted, or structured as a tandem duplication.
Collapse
Affiliation(s)
- R A Kelln
- Department of Chemistry, University of Regina, Saskatchewan, Canada
| | | |
Collapse
|
49
|
Jacquet M, Guilbaud R, Garreau H. Sequence analysis of the DdPYR5-6 gene coding for UMP synthase in Dictyostelium discoideum and comparison with orotate phosphoribosyl transferases and OMP decarboxylases. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:441-5. [PMID: 2835631 DOI: 10.1007/bf00425698] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A Dictyostelium discoideum DNA fragment that complements the ura3 and the ura5 mutants of Saccharomyces cerevisiae has been sequenced. It contains an open reading frame of 478 codons capable of encoding a polypeptide of molecular weight 52475. This gene, named DdPYR5-6, encodes a bifunctional protein composed of the orotate phosphoribosyl transferase (OPRTase) and the orotidine-5'-phosphate decarboxylase (OMPdecase) domains described for UMP synthase in mammals. The existence of separate domains for the two activities was suspected because deletion of the N-terminal coding segment of the gene eliminated the ura5 but not the ura3 complementing activity. We have now confirmed that the two parts of the open reading frame share homology with known OPRTase and OMPdecase sequences. Several blocks of sequence are conserved among OPRTase from bacteria, fungi and slime mold and one of them corresponds to the consensus sequence for phosphoribosylbinding sites. The OMPdecase domain shows extensive similarity with the yeast and Neurospora crassa enzymes, suggesting that they have evolved from an ancestral gene which was fused to the OPRTase gene in D. discoideum. It is less related to the bacterial enzyme but all these sequences present conserved blocks of homology which could identify the active site. The codon usage is strongly biased in a manner similar to that found for other D. discoideum genes. The flanking DNA contains homopolymers of A and T and alternating sequences that are characteristic of the gene organization in D. discoideum.
Collapse
Affiliation(s)
- M Jacquet
- Laboratoires de Biologie Expérimentale, Université de Paris-Sud, Orsay, France
| | | | | |
Collapse
|
50
|
Michaels G, Kelln RA, Nargang FE. Cloning, nucleotide sequence and expression of the pyrBI operon of Salmonella typhimurium LT2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:55-61. [PMID: 3036524 DOI: 10.1111/j.1432-1033.1987.tb13483.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pyrB-pyrI region of the Salmonella typhimurium LT2 chromosome has been cloned and sequenced. The two genes were found to constitute an operon, with pyrI being the distal gene and separated from pyrB by a 15-bp intercistronic region. Sequence analysis revealed the presence of two potential promoters; transcription initiated from the promoter proximal to pyrB would produce a transcript which could direct the synthesis of a 33-amino-acid leader peptide. The leader sequence possesses the requisite features of a rho-independent transcriptional terminator (attenuator) which is positioned 22 bp upstream from the pyrB structural gene. A regulatory mutation imparting a 30-fold elevated expression of pyrBI was identified as a two-base-pair deletion in the track of A X T base pairs located on the 3' side of the region of dyad symmetry of the attenuator. The leader sequence also has an additional region of dyad symmetry (putative transcriptional pause site) located 33 nucleotides upstream from the start of the proposed attenuator. The intervening sequence between the putative pause site and the indicated attenuator is characterized by encoding a high content of uracil residues in the transcript. Construction and analysis of transcriptional and translational fusions provided evidence that the leader region has the necessary features to mediate polypeptide synthesis in vivo, the removal of the region corresponding to the pause site and attenuator results in constitutive expression and the more distant potential promoter does not appear to facilitate significant transcriptional activity. Strong homology exists with the pyrBI operon from Escherichia coli K-12 but notable differences are observed.
Collapse
|