1
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
2
|
Patlán-Vázquez AG, Ayala-García VM, Vallin C, Cortés J, Vásquez-Morales SG, Robleto EA, Nudler E, Pedraza-Reyes M. Dynamics of Mismatch and Alternative Excision-Dependent Repair in Replicating Bacillus subtilis DNA Examined Under Conditions of Neutral Selection. Front Microbiol 2022; 13:866089. [PMID: 35847079 PMCID: PMC9280176 DOI: 10.3389/fmicb.2022.866089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous DNA deamination is a potential source of transition mutations. In Bacillus subtilis, EndoV, a component of the alternative excision repair pathway (AER), counteracts the mutagenicity of base deamination-induced mispairs. Here, we report that the mismatch repair (MMR) system, MutSL, prevents the harmful effects of HNO2, a deaminating agent of Cytosine (C), Adenine (A), and Guanine (G). Using Maximum Depth Sequencing (MDS), which measures mutagenesis under conditions of neutral selection, in B. subtilis strains proficient or deficient in MutSL and/or EndoV, revealed asymmetric and heterogeneous patterns of mutations in both DNA template strands. While the lagging template strand showed a higher frequency of C → T substitutions; G → A mutations, occurred more frequently in the leading template strand in different genetic backgrounds. In summary, our results unveiled a role for MutSL in preventing the deleterious effects of base deamination and uncovered differential patterns of base deamination processing by the AER and MMR systems that are influenced by the sequence context and the replicating DNA strand.
Collapse
Affiliation(s)
- Adriana G. Patlán-Vázquez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | | | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jonathan Cortés
- Biological Research Center, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Suria G. Vásquez-Morales
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Evgeny Nudler
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Li X, Guo S, Cui Y, Zhang Z, Luo X, Angelova MT, Landweber LF, Wang Y, Wu TP. NT-seq: a chemical-based sequencing method for genomic methylome profiling. Genome Biol 2022; 23:122. [PMID: 35637459 PMCID: PMC9150344 DOI: 10.1186/s13059-022-02689-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
DNA methylation plays vital roles in both prokaryotes and eukaryotes. There are three forms of DNA methylation in prokaryotes: N6-methyladenine (6mA), N4-methylcytosine (4mC), and 5-methylcytosine (5mC). Although many sequencing methods have been developed to sequence specific types of methylation, few technologies can be used for efficiently mapping multiple types of methylation. Here, we present NT-seq for mapping all three types of methylation simultaneously. NT-seq reliably detects all known methylation motifs in two bacterial genomes and can be used for identifying de novo methylation motifs. NT-seq provides a simple and efficient solution for detecting multiple types of DNA methylation.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shiyuan Guo
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California Riverside, Riverside, CA, USA
| | - Yan Cui
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margarita T Angelova
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, USA
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, USA
| | - Yinsheng Wang
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California Riverside, Riverside, CA, USA.,Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Katerji M, Duerksen-Hughes PJ. DNA damage in cancer development: special implications in viral oncogenesis. Am J Cancer Res 2021; 11:3956-3979. [PMID: 34522461 PMCID: PMC8414375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 06/13/2023] Open
Abstract
DNA lesions arise from a combination of physiological/metabolic sources and exogenous environmental influences. When left unrepaired, these alterations accumulate in the cells and can give rise to mutations that change the function of important proteins (i.e. tumor suppressors, oncoproteins), or cause chromosomal rearrangements (i.e. gene fusions) that also result in the deregulation of key cellular molecules. Progressive acquisition of such genetic changes promotes uncontrolled cell proliferation and evasion of cell death, and hence plays a key role in carcinogenesis. Another less-studied consequence of DNA damage accumulating in the host genome is the integration of oncogenic DNA viruses such as Human papillomavirus, Merkel cell polyomavirus, and Hepatitis B virus. This critical step of viral-induced carcinogenesis is thought to be particularly facilitated by DNA breaks in both viral and host genomes. Therefore, the impact of DNA damage on carcinogenesis is magnified in the case of such oncoviruses via the additional effect of increasing integration frequency. In this review, we briefly present the various endogenous and exogenous factors that cause different types of DNA damage. Next, we discuss the contribution of these lesions in cancer development. Finally, we examine the amplified effect of DNA damage in viral-induced oncogenesis and summarize the limited data existing in the literature related to DNA damage-induced viral integration. To conclude, additional research is needed to assess the DNA damage pathways involved in the transition from viral infection to cancer. Discovering that a certain DNA damaging agent increases the likelihood of viral integration will enable the development of prophylactic and therapeutic strategies designed specifically to prevent such integration, with an ultimate goal of reducing or eliminating these viral-induced malignancies.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Basic Science, Loma Linda University School of Medicine Loma Linda, CA 92354, USA
| | | |
Collapse
|
5
|
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang WH. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair (Amst) 2020; 97:103028. [PMID: 33254084 DOI: 10.1016/j.dnarep.2020.103028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis. A protocol was developed to maintain the AP product in DNA without strand break then the cleavage of uracil was identified by the mass change from uracil substrate to AP product. From UDG kinetic analysis, for G:U substrate the Km is 50 nM, Vmax is 0.98 nM/s and Kcat = 9.31 s-1. The method was applied to uracil glycosylase inhibitor measurement with an IC50 value of 7.6 pM. Single-stranded and double-stranded DNAs with uracil at various positions of the substrates were also tested for UDG activity albeit with different efficiencies. The simple, rapid, quantifiable, scalable and versatile method has potential to be the reference method for monofunctional glycosylase measurement, and can also be used as a tool for glycosylase inhibitors screening.
Collapse
Affiliation(s)
- Hui-Lan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital and the Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Rong-Syuan Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Islam SM, Ibnat Z. New Insights into the Structure and Reactivity of Uracil Derivatives in Different Solvents-A Computational Study. ACS OMEGA 2020; 5:22449-22458. [PMID: 32923803 PMCID: PMC7482307 DOI: 10.1021/acsomega.0c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Ab initio calculations were carried out to understand the reactivity and stability of some uracil derivatives, cytosine, 1-methyl cytosine, and cytidine in solvents, water, dimethyl sulfoxide (DMSO), n-octanol, and chloroform. Geometries were fully optimized at MP2 and B3LYP using the 6-31+G(d,p) basis set by applying the Solvation Model on Density (SMD) in solvent systems. The syn conformer of cytidine (cytidine II) is the most stable conformer in the gas phase, while the anticonformer (cytidine IV) is most stable in all of the solvents. Solvation free energy and polarizability values in different solvents decrease in the order water > DMSO > n-octanol > chloroform, while dipole moment, first-order hyperpolarizability, and HOMO-LUMO energy gap values follow the order of polar protic solvent (water and n-octanol) > polar aprotic solvent (DMSO) > nonpolar solvent (chloroform). The solvation free energy, dipole moment, polarizability, and first-order hyperpolarizability values also follow the order of cytosine > 1-methyl cytosine > cytidine. To illustrate that the molecular properties correlate well with the reactivity of the molecules, ab initio calculations were carried out for the reaction of uracil derivatives with Br2 in the gas phase, water, DMSO, n-octanol, and chloroform. All ground and transition state geometries were fully optimized at B3LYP/6-31+G(d,p), and energies were also calculated at G3MP2 for cytosine and 1-methyl cytosine. For cytosine and 1-methyl cytosine, Gibbs energies of activation decrease with the polarity of the solvent that is chloroform > n-octanol > DMSO > water, while the Gibbs energies of activation for the reaction with cytidine decrease in the order of water > DMSO > n-octanol > chloroform. These results suggest that solvent polarity is very important for the stability and reactivity of uracil derivatives. Hydrogen bonding may also play an important role mainly for cytidine. Free energies of activation decrease with the size of the molecule, i.e., cytosine > 1-methyl cytosine > cytidine.
Collapse
Affiliation(s)
- Shahidul M. Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zahin Ibnat
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
El-Mansi M. Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli. FEMS Microbiol Lett 2019; 366:5556941. [DOI: 10.1093/femsle/fnz187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTFlux analysis is central to understanding cellular metabolism and successful manipulation of metabolic fluxes in microbial cell-factories. Isocitrate dehydrogenase (ICDH) deletion conferred contrasting effects on fluxes through substrate-level phosphorylation (SLP) reactions. While significantly increasing flux through pyruvate kinase, it diminishes flux through succinyl CoA synthetase and upregulates phosphotransacetylase (PTA) and acetate kinase (AK). In addition to acetate, the ICDH-less strain excretes pyruvate, citrate and isocitrate. While efflux to acetate excretion by the Escherichia coli parental strain and its ICDH-less derivative is a reflection of high throughput of glycolytic intermediates, excretion of pyruvate is a reflection of high throughput via pyruvate kinase. On the other hand, citrate and isocitrate excretion is a reflection of truncating the Krebs cycle at the level of ICDH. Furthermore, another striking finding is the inability of the ICDH-less cultures to utilize acetate as a source of carbon despite the availability of an adequate supply of extracellular glutamate (for biosynthesis) and elevated levels of AK and PTA (for acetate uptake). This striking observation is now explicable in the light of the newly proposed hypothesis that the expression of the ace operon enzymes is controlled in response to a minimum threshold signal (ATP), which could not be achieved in the ICDH-less strain.
Collapse
Affiliation(s)
- Mansi El-Mansi
- Elizade University, Ilara Mokin, Ondo State, Nigeria
- University of Africa (UAT), Bayelsa State, Nigeria
| |
Collapse
|
8
|
Labet V, Grand A, Morell C, Cadet J, Eriksson LA. Mechanism of nitric oxide induced deamination of cytosine. Phys Chem Chem Phys 2009; 11:2379-86. [DOI: 10.1039/b818669c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Smith SS, Schwarz RE. Gastric DNA damage through tobacco chewing: in vitro mechanistic studies of DNA nitrite attack. Cancer Lett 2005; 235:221-8. [PMID: 15946796 DOI: 10.1016/j.canlet.2005.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 11/20/2022]
Abstract
Smokeless chewing tobacco or snuff has been linked to carcinogenic effects in upper aerodigestive organs. The presence of nitrite within the tobacco product is suspected to foster carcinogenic DNA mechanisms at lower pH. We studied the impact of sodium nitrite on DNA damage at single-strand conformers or hairpin loops, known to be present at fragile sites that have been shown to cause methyltransferase stalling and that can lead to chromosomal breakage. At a pH of 4.2, two base-damage products could be demonstrated at significant levels (1-5% of total nucleotides), with greater sensitivity to hairpin loops compared to a control Watson-Crick duplex. Pyrimidine-rich strands (CCG, CTG) were more reactive than purine-rich strands (CAG, CGG). The data support a mechanism for allele-specific predisposition to DNA damage. This mechanism may be of significance in gastric cancer initiation due to chewing tobacco.
Collapse
Affiliation(s)
- Steven S Smith
- Department of Tumor Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
10
|
Nakano T, Asagoshi K, Terato H, Suzuki T, Ide H. Assessment of the genotoxic potential of nitric oxide-induced guanine lesions by in vitro reactions with Escherichia coli DNA polymerase I. Mutagenesis 2005; 20:209-16. [PMID: 15843389 DOI: 10.1093/mutage/gei027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that carcinogenesis associated with chronic inflammation involves DNA damage by nitric oxide (NO) and other reactive species secreted from macrophages and neutrophils. The guanine moiety of DNA reacts with NO, yielding two major deamination products: xanthine (Xan) and oxanine (Oxa). Oxa reacts further with polyamines and DNA binding proteins to form cross-link adducts. In the present study, we characterized the structure of the cross-link adducts of Oxa with spermine (Oxa-Sp). Spectrometric analysis of Oxa-Sp adducts showed that they are ring-opened adducts of Oxa covalently bonded to the terminal amino (major product) and internal imino (minor product) groups of spermine. To assess genotoxic potential, Xan, Oxa, Oxa-Sp and an abasic (AP) site were site specifically incorporated into oligonucleotide templates. These lesions differentially blocked in vitro DNA synthesis catalyzed by DNA polymerase I Klenow fragment (Pol I Kf). The relative efficiency of translesion synthesis was G (1) > Oxa (0.19) > Xan (0.12) > AP (0.088) > Oxa-Sp (0.035). Primer extension assays with a single nucleotide and Pol I Kf revealed that non-mutagenic dCMP was inserted most efficiently opposite Xan and Oxa, with the extent of primer elongation being 65% for Xan and 68% for Oxa. However, mutagenic nucleotides were also inserted. The extent of primer elongation for Xan was 16% with dTMP and 14% with dGMP, whereas that for Oxa was 49% with dTMP. For Oxa-Sp, mutagenic dAMP (13%) was preferentially inserted. Accordingly, when generated in vivo, Xan and Oxa would constitute moderate blocks to DNA synthesis and primarily elicit G:C to A:T transitions when bypassed, whereas Oxa-Sp would strongly block DNA synthesis and elicit G:C to T:A transversions.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|
11
|
Nakano T, Katafuchi A, Shimizu R, Terato H, Suzuki T, Tauchi H, Makino K, Skorvaga M, Van Houten B, Ide H. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res 2005; 33:2181-91. [PMID: 15831791 PMCID: PMC1079971 DOI: 10.1093/nar/gki513] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Toshinori Suzuki
- Department of Biological Pharmacy, School of Pharmacy, Shujitsu University1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroshi Tauchi
- Department of Environmental Sciences, Faculty of Science, Ibaraki UniversityMito, Ibaraki 310-8512, Japan
| | - Keisuke Makino
- Institute of Advanced Energy, Kyoto UniversityGokasho, Uji 611-0011, Japan
| | - Milan Skorvaga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of HealthResearch Triangle Park, NC 27709, USA
| | - Hiroshi Ide
- To whom correspondence should be addressed. Tel: +81 82 424 7457; Fax: +81 82 424 7457;
| |
Collapse
|
12
|
Nakano T, Terato H, Asagoshi K, Masaoka A, Mukuta M, Ohyama Y, Suzuki T, Makino K, Ide H. DNA-protein cross-link formation mediated by oxanine. A novel genotoxic mechanism of nitric oxide-induced DNA damage. J Biol Chem 2003; 278:25264-72. [PMID: 12719419 DOI: 10.1074/jbc.m212847200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammation is a risk factor for many human cancers, and nitric oxide (NO) produced in inflamed tissues has been proposed to cause DNA damage via nitrosation or oxidation of base moieties. Thus, NO-induced DNA damage could be relevant to carcinogenesis associated with chronic inflammation. In this report, we report a novel genotoxic mechanism of NO that involves DNA-protein cross-links (DPCs) induced by oxanine (Oxa), a major NO-induced guanine lesion. When a duplex DNA containing Oxa at the site-specific position was incubated with DNA-binding proteins such as histone, high mobility group (HMG) protein, and DNA glycosylases, DPCs were formed between Oxa and protein. The rate of DPC formation with DNA glycosylases was approximately two orders of magnitude higher than that with histone and HMG protein. Analysis of the reactivity of individual amino acids to Oxa suggested that DPC formation occurred between Oxa and side chains of lysine or arginine in the protein. A HeLa cell extract also gave rise to two major DPCs when incubated with DNA-containing Oxa. These results reveal a dual aspect of Oxa as causal damage of DPC formation and as a suicide substrate of DNA repair enzymes, both of which could pose a threat to the genetic and structural integrity of DNA, hence potentially leading to carcinogenesis.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Munson GP, Lam DL, Outten FW, O'Halloran TV. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 2000; 182:5864-71. [PMID: 11004187 PMCID: PMC94710 DOI: 10.1128/jb.182.20.5864-5871.2000] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters.
Collapse
Affiliation(s)
- G P Munson
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Nitric oxide is an important bioregulatory molecule with a range of physiological functions. Nitric oxide can also react with oxygen species to produce a range of reactive nitrogen oxides that can damage DNA and lead to mutations of the DNA base sequence. The mutagenicity of a variety of reactive nitrogen oxide species and related DNA damaging agents in the supF assay are reviewed here, in the context of recent reports that relate to the nature of the DNA lesions responsible for the induced mutations. Mutations induced by nitric oxide in the supF assay are compared to those induced by N(2)O(3), nitrous acid, peroxynitrite and different reactive oxygen species. The effect of replication of the damaged pSP189 plasmid in human cells or Escherichia coli cells is also considered.
Collapse
Affiliation(s)
- M N Routledge
- Department of Biological Sciences, De Montfort University, The Hawthorn Building, The Gateway, LE1 9BH, Leicester, UK.
| |
Collapse
|
15
|
Affiliation(s)
- S Tamir
- Division of Toxicology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | |
Collapse
|
16
|
Routledge MN, Mirsky FJ, Wink DA, Keefer LK, Dipple A. Nitrite-induced mutations in a forward mutation assay: influence of nitrite concentration and pH. Mutat Res 1994; 322:341-6. [PMID: 7523928 DOI: 10.1016/0165-1218(94)90110-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mutagenicity of sodium nitrite at three pHs (7.4, 6.4 and 5.4) has been investigated by treating a shuttle vector plasmid in vitro and assaying for mutations within the supF target gene following replication of the damaged plasmid in human Ad293 cells. Mutation frequency increased with increasing nitrite concentration and decreasing pH. Among treatments from which a significant number of mutants could be collected, the most commonly induced mutations were GC-->AT transitions (44-56% of total mutations), followed by GC-->TA transversions (24-30%). The types of mutations induced at different nitrite concentrations and different pH's were similar, though some differences in their distribution throughout the supF gene were noted. These results provide information on the types of mutations that may be produced following the processing of nitrite-induced DNA damage in human cells.
Collapse
Affiliation(s)
- M N Routledge
- Chemistry of Carcinogenesis Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702
| | | | | | | | | |
Collapse
|
17
|
Hartman Z, Henrikson EN, Hartman PE, Cebula TA. Molecular models that may account for nitrous acid mutagenesis in organisms containing double-stranded DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 24:168-175. [PMID: 7957120 DOI: 10.1002/em.2850240305] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nitrous acid (NA) is often presumed to cause base substitutions in organisms with double-stranded DNA as a direct consequence of oxidative deamination of adenine and of cytosine residues. Here we summarize evidence indicating that other mechanisms are involved in the case of NA-induced G/C-->A/T transition mutations. We present several models for pathways of NA mutagenesis that may account for our experimental results and overlapping data noted in the literature. One model proposes that the base substitution mutations observed are due to DNA alkylation damage mediated via nitrosation of polyamines and/or other ubiquitous cellular molecules. Other models assume that predisposing lesions, such as G-to-G cross-links, are first formed. The cross-links are pictured as leading to perturbations in DNA structure that allow subsequent opportunity for NA-induced deaminations of cytosine residues in their immediate vicinity. The deaminations preferentially result in G/C-->A/T transition mutations at sites highly dependent on adjoining base sequence context (i.e., in NA "mutational hotspots"). A final model proposes that NA-induced G/C-->A/T transition mutations arise mainly from oxidative deamination of guanosine residues and not from deamination of cytosine residues in duplex DNA.
Collapse
Affiliation(s)
- Z Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685
| | | | | | | |
Collapse
|
18
|
Méjean V, Devedjian JC, Rives I, Alloing G, Claverys JP. Uracil-DNA glycosylase affects mismatch repair efficiency in transformation and bisulfite-induced mutagenesis in Streptococcus pneumoniae. Nucleic Acids Res 1991; 19:5525-31. [PMID: 1945830 PMCID: PMC328952 DOI: 10.1093/nar/19.20.5525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.
Collapse
Affiliation(s)
- V Méjean
- Centre de Recherche de Biochimie et de Génétique Cellulaires du CNRS, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
19
|
Ivanov EL, Kovaltzova SV, Korolev VG. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion. Mutat Res 1989; 213:105-115. [PMID: 2668746 DOI: 10.1016/0027-5107(89)90141-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.
Collapse
Affiliation(s)
- E L Ivanov
- B.P. Konstantinov Leningrad Institute of Nuclear Physics, Academy of Sciences, Gatchina, U.S.S.R
| | | | | |
Collapse
|
20
|
Abstract
T7 phage was exposed to 56 mM nitrous acid at pH 4.6 causing a 90% decrease in survival for each 10 min duration of exposure. The survival of phage made by encapsulating nitrous acid treated DNA into empty phage heads was nearly the same as the survival of phage exposed to nitrous acid in vivo. In contrast to previous reports, growth of SOS-induced wild-type E.coli showed no increase in survival. The survival of nitrous acid treated phage was not lowered when grown on E.coli strains deficient in DNA polymerase I, exonuclease III, and the uvrA component of the nucleotide excision-repair endonuclease. Therefore, these enzymes are not vital for repair of nitrous acid induced damage in bacteriophage T7.
Collapse
|
21
|
Matsumura M, Kataoka S, Aiba S. Single amino acid replacements affecting the thermostability of kanamycin nucleotidyltransferase. MOLECULAR & GENERAL GENETICS : MGG 1986; 204:355-8. [PMID: 3020373 DOI: 10.1007/bf00425522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amino acid residues of the carboxyl-terminal region of kanamycin nucleotidyltransferase were modified using segment-directed mutagenesis. Six different mutant enzymes with single amino acid replacements were selected out of 59 clones by DNA sequence analyses. The mutant enzymes were purified and it was found that the thermostability of one mutant enzyme was identical to the wild type, whereas the other five were less thermostable at varying degrees. The data suggested that changes in the enzyme thermostability depend not only on the position but also on the species of amino acid residue replaced.
Collapse
|
22
|
|
23
|
|
24
|
Abstract
Mutants of Escherichia coli K-12 deficient in both exonuclease III (the product of the xth gene) and deoxyuridine triphosphatase (the dut gene product) are inviable at high temperatures and undergo filamentation when grown at such temperatures. In dut mutants, the dUTP pool is known to be greatly enhanced, resulting in an increased substitution of uracil for thymine in DNA during replication. The subsequent removal of uracil from the DNA by uracil-DNA glycosylase produces apyrimidinic sites, at which exonuclease III is known to have an endonucleolytic activity. The lethality of dut xth mutants, therefore, indicates that exonuclease III is important for this base-excision pathway and suggests that unrepaired apyrimidinic sites are lethal. Two confirmatory findings were as follows. (i) dut xth mutants were viable if they also had a mutation in the uracil-DNA glycosylase (ung) gene; such mutants should not remove uracil from DNA and should not, therefore, generate apyrimidinic sites. (ii) In the majority of the temperature-resistant revertants isolated, viability had been restored by a mutation in the dCTP deaminase (dcd) gene; such mutations should decrease dUTP production and hence uracil misincorporation. The results indicate that, in dut mutants, exonuclease III is essential for the repair of uracil-containing DNA and of apyrimidinic sites.
Collapse
|
25
|
Sandri-Goldin RM, Levine M, Glorioso JC. Method for induction of mutations in physically defined regions of the herpes simplex virus genome. J Virol 1981; 38:41-9. [PMID: 6264113 PMCID: PMC171124 DOI: 10.1128/jvi.38.1.41-49.1981] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A procedure was developed for inducing mutations in isolated restriction enzyme fragments of herpes simplex virus type 1 (HSV-1) DNA with nitrous acid. The mutations were then transferred to the viral genome by genetic recombination during cotransfection of rabbit kidney cells with the mutagenized fragments and intact HSV-1 DNA. The HpaI restriction enzyme fragments LD, B, LG, I, and J were mutagenized. Temperature-sensitive mutants were found at frequencies of 1 to 5% among the progeny of the transfections. Syncytial mutants also were found at high frequency when fragment B or LD was used for mutagenesis. Fifteen of these mutants, 11 temperature sensitive and 4 syncytial, were used for further studies, including complementation analysis, DNA synthesis, and marker rescue. Marker rescue data presented here and in the accompanying publication (A. L. Goldin, R. M. Sandri-Goldin, M. Levine, and J. C. Glorioso, J. Virol. 38: 50-58, 1981) confirm the map position of some of the newly isolated mutants.
Collapse
|
26
|
Murphey-Corb M, Kong HL, Murray ML. Interaction of mutagenic spermidine-nitrous acid reaction products with uvr- and recA-dependent repair systems in Salmonella. J Bacteriol 1980; 142:191-5. [PMID: 6989804 PMCID: PMC293927 DOI: 10.1128/jb.142.1.191-195.1980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It has been observed previously that the mutagenic action of nitrous acid may be potentiated by polyamines. We examined the cellular response of two deoxyribonucleic acid repair systems to treatment with spermidine-nitrite reaction products. uvrB- deficient mutants of Salmonella typhimurium LT2 showed enhanced lethal and mutagenic response to the reaction products. Lethal activity was further enhanced in a uvrB recA double mutant, whereas mutagenic activity was not detectable. Dependence of mutagenesis on the recA gene implicates the action of an error-prone repair system in the fixation of a premutagenic lesion as a mutation. From consideration of the substrate characteristics of the two repair systems studied, it is suggested that the deoxyribonucleic acid lesion formed by the reaction products of spermidine and nitrite is an intrastrand cross-link.
Collapse
|