1
|
Shcherbak N, Prochaska H, Lystvan K, Prokhorova Y, Giritch A, Kuchuk M. Accumulation of colicin M protein and its biological activity in transgenic lettuce and mizuna plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1271757. [PMID: 37936936 PMCID: PMC10627015 DOI: 10.3389/fpls.2023.1271757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Food-borne illnesses caused by pathogenic Escherichia coli strains, especially enterohaemorrhagic E. coli (EHEC), are a serious public health problem, as debilitating disease and even death from such food poisonings have been repeatedly reported. Colicin M (ColM), a non-antibiotic antimicrobial protein produced by some strains of E. coli, has shown promising activity in controlling multiple enteropathogenic strains of E. coli and related pathogens. As contaminated green leafy vegetables are a frequent source of pathogenic E. coli infections, we genetically modified (GM) two edible crops, lettuce (Lactuca sativa L.) and mizuna (Brassica rapa subsp. nipposinica var. laciniata), to stably express the ColM gene and assessed the antibacterial activity of tissue extracts from these plants against selected E. coli strains in vitro. Transgenic plants of these species were developed using Agrobacterium-mediated transformation with a vector containing the ColM-coding gene (cma) under the control of the 35S promoter. Western blot analysis of recombinant ColM protein was performed in selected transgenic plants to confirm cma gene expression and quantify ColM accumulation. Extracts of transgenic plants expressing ColM showed significant activity against two major strains of EHEC (O157:H7 and O104:H4) as well as E. coli strains resistant to beta-lactam- and carbapenem-class antibiotics. Importantly, the antibacterial activity persisted in several subsequent generations of transgenic lettuce and mizuna plants that stably expressed the ColM gene. In addition, our results also show that the antibacterial activity of dried (up to 40°C) biomass of transgenic plants remained stable without a decrease for at least three months.
Collapse
Affiliation(s)
- Nataliia Shcherbak
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of National Academy of Sciences (NAS) of Ukraine, Kyiv, Ukraine
| | | | - Kateryna Lystvan
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of National Academy of Sciences (NAS) of Ukraine, Kyiv, Ukraine
| | - Yelizaveta Prokhorova
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of National Academy of Sciences (NAS) of Ukraine, Kyiv, Ukraine
| | | | - Mykola Kuchuk
- Department of Genetic Engineering, Institute of Cell Biology and Genetic Engineering of National Academy of Sciences (NAS) of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Li JZ, Zhou LY, Peng YL, Fan J. Pseudomonas bacteriocin syringacin M released upon desiccation suppresses the growth of sensitive bacteria in plant necrotic lesions. Microb Biotechnol 2019; 13:134-147. [PMID: 30672132 PMCID: PMC6922522 DOI: 10.1111/1751-7915.13367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Bacteriocins are regarded as important factors mediating microbial interactions, but their exact role in community ecology largely remains to be elucidated. Here, we report the characterization of a mutant strain, derived from Pseudomonas syringae pv. tomato DC3000 (Pst), that was incapable of growing in plant extracts and causing disease. Results showed that deficiency in a previously unannotated gene saxE led to the sensitivity of the mutant to Ca2+ in leaf extracts. Transposon insertions in the bacteriocin gene syrM, adjacent to saxE, fully rescued the bacterial virulence and growth of the ΔsaxE mutant in plant extracts, indicating that syrM‐saxE encode a pair of bacteriocin immunity proteins in Pst. To investigate whether the syrM‐saxE system conferred any advantage to Pst in competition with other SyrM‐sensitive pathovars, we compared the growth of a SyrM‐sensitive strain co‐inoculated with Pst strains with or without the syrM gene and observed a significant syrM‐dependent growth reduction of the sensitive bacteria on plate and in lesion tissues upon desiccation–rehydration treatment. These findings reveal an important biological role of SyrM‐like bacteriocins and help to understand the complex strategies used by P. syringae in adaptation to the phyllosphere niche in the context of plant disease.
Collapse
Affiliation(s)
- Jun-Zhou Li
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Zhou
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Fan
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.,Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
4
|
Colicin M, a peptidoglycan lipid-II-degrading enzyme: potential use for antibacterial means? Biochem Soc Trans 2013; 40:1522-7. [PMID: 23176510 DOI: 10.1042/bst20120189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are proteins produced by some strains of Escherichia coli to kill competitors belonging to the same species. Among them, ColM (colicin M) is the only one that blocks the biosynthesis of peptidoglycan, a specific bacterial cell-wall polymer essential for cell integrity. ColM acts in the periplasm by hydrolysing the phosphoester bond of the peptidoglycan lipid intermediate (lipid II). ColM cytotoxicity is dependent on FkpA of the targeted cell, a chaperone with peptidylprolyl cis-trans isomerase activity. Dissection of ColM was used to delineate the catalytic domain and to identify the active-site residues. The in vitro activity of the isolated catalytic domain towards lipid II was 50-fold higher than that of the full-length bacteriocin. Moreover, this domain was bactericidal in the absence of FkpA under conditions that bypass the import mechanism (FhuA-TonB machinery). Thus ColM undergoes a maturation process driven by FkpA that is not required for the activity of the isolated catalytic domain. Genes encoding proteins with similarity to the catalytic domain of ColM were identified in pathogenic strains of Pseudomonas and other genera. ColM acts on several structures of lipid II representative of the diversity of peptidoglycan chemotypes. All together, these data open the way to the potential use of ColM-related bacteriocins as broad spectrum antibacterial agents.
Collapse
|
5
|
Grinter R, Roszak AW, Cogdell RJ, Milner JJ, Walker D. The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 2012; 287:38876-88. [PMID: 22995910 DOI: 10.1074/jbc.m112.400150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca(2+) in the active site, we show that syringacin M activity is supported by Ca(2+), along with Mg(2+) and Mn(2+), and the protein is catalytically inactive in the absence of these ions.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity, and Inflammation, School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Barreteau H, El Ghachi M, Barnéoud-Arnoulet A, Sacco E, Touzé T, Duché D, Gérard F, Brooks M, Patin D, Bouhss A, Blanot D, van Tilbeurgh H, Arthur M, Lloubès R, Mengin-Lecreulx D. Characterization of colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis. Microb Drug Resist 2012; 18:222-9. [PMID: 22432709 DOI: 10.1089/mdr.2011.0230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For a long time, colicin M was known for killing susceptible Escherichia coli cells by interfering with cell wall peptidoglycan biosynthesis, but its precise mode of action was only recently elucidated: this bacterial toxin was demonstrated to be an enzyme that catalyzes the specific degradation of peptidoglycan lipid intermediate II, thereby provoking the arrest of peptidoglycan synthesis and cell lysis. The discovery of this activity renewed the interest in this colicin and opened the way for biochemical and structural analyses of this new class of enzyme (phosphoesterase). The identification of a few orthologs produced by pathogenic strains of Pseudomonas further enlarged the field of investigation. The present article aims at reviewing recently acquired knowledge on the biology of this small family of bacteriocins.
Collapse
Affiliation(s)
- Hélène Barreteau
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud , UMR 8619 CNRS, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Colicin M hydrolyses branched lipids II from Gram-positive bacteria. Biochimie 2011; 94:985-90. [PMID: 22210388 DOI: 10.1016/j.biochi.2011.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Lipids II found in some Gram-positive bacteria were prepared in radioactive form from l-lysine-containing UDP-MurNAc-pentapeptide. The specific lateral chains of Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus (di-L-alanine, D-isoasparagine, and pentaglycine, respectively) were introduced by chemical peptide synthesis using the Fmoc chemistry. The branched nucleotides obtained were converted into the corresponding lipids II by enzymatic synthesis using the MraY and MurG enzymes. All of the lipids were hydrolysed by Escherichia coli colicin M at approximately the same rate as the meso-diaminopimelate-containing lipid II found in Gram-negative bacteria, thereby opening the way to the use of this enzyme as a broad spectrum antibacterial agent.
Collapse
|
8
|
Helbig S, Patzer SI, Schiene-Fischer C, Zeth K, Braun V. Activation of colicin M by the FkpA prolyl cis-trans isomerase/chaperone. J Biol Chem 2010; 286:6280-90. [PMID: 21149455 PMCID: PMC3057819 DOI: 10.1074/jbc.m110.165274] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Colicin M (Cma) is specifically imported into the periplasm of Escherichia coli and kills the cells. Killing depends on the periplasmic peptidyl prolyl cis-trans isomerase/chaperone FkpA. To identify the Cma prolyl bonds targeted by FkpA, we replaced the 15 proline residues individually with alanine. Seven mutant proteins were fully active; Cma(P129A), Cma(P176A), and Cma(P260A) displayed 1%, and Cma(P107A) displayed 10% of the wild-type activity. Cma(P107A), Cma(P129A), and Cma(P260A), but not Cma(P176A), killed cells after entering the periplasm via osmotic shock, indicating that the former mutants were translocation-deficient; Cma(P129A) did not bind to the FhuA outer membrane receptor. The crystal structures of Cma and Cma(P176A) were identical, excluding inactivation of the activity domain located far from Pro-176. In a new peptidyl prolyl cis-trans isomerase assay, FkpA isomerized the Cma prolyl bond in peptide Phe-Pro-176 at a high rate, but Lys-Pro-107 and Leu-Pro-260 isomerized at only <10% of that rate. The four mutant proteins secreted into the periplasm via a fused signal sequence were toxic but much less than wild-type Cma. Wild-type and mutant Cma proteins secreted or translocated across the outer membrane by energy-coupled import or unspecific osmotic shock were only active in the presence of FkpA. We propose that Cma unfolds during transfer across the outer or cytoplasmic membrane and refolds to the active form in the periplasm assisted by FkpA. Weak refolding of Cma(P176A) would explain its low activity in all assays. Of the four proline residues identified as being important for Cma activity, Phe-Pro-176 is most likely targeted by FkpA.
Collapse
Affiliation(s)
- Stephanie Helbig
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
Colicin M (Cma) lyses Escherichia coli cells by inhibiting murein biosynthesis through hydrolysis of the phosphate ester between C(55)-polyisoprenol and N-acetylmuramyl (MurNAc)-pentapeptide-GlcNAc in the periplasm. To identify Cma functional domains, we isolated 54 point mutants and small deletion mutants and examined their cytotoxicity levels. Activity and uptake mutants were distinguished by osmotic shock, which transfers Cma into the periplasm independent of the specific FhuA receptor and the Ton system. Deletion of the hydrophobic helix α1, which extends from the compact Cma structure, abolished interference with the antibiotic albomycin, which is transported across the outer membrane by the same system as Cma, thereby identifying α1 as the Cma site that binds to FhuA. Deletion of the C-terminal Lys-Arg strongly reduced Cma translocation across the outer membrane after binding to FhuA. Conversion of Asp226 to Glu, Asn, or Ala inactivated Cma. Asp226 is exposed at the Cma surface and is surrounded by Asp225, Asp229, His235, Tyr228, and Arg236; replacement of each with alanine inactivated Cma. We propose that Asp226 directly participates in phosphate ester hydrolysis and that the surrounding residues contribute to the active site. These residues are strongly conserved in Cma-like proteins of other species. Replacement of other conserved residues with alanine inactivated Cma; these mutations probably altered the Cma structure, as particularly apparent for mutants in the unique open β-barrel of Cma, which were isolated in lower yields. Our results identify regions in Cma responsible for uptake and activity and support the concept of a three-domain arrangement of Cma.
Collapse
|
10
|
Human- and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors. J Bacteriol 2009; 191:3657-64. [PMID: 19346308 DOI: 10.1128/jb.01824-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding proteins that exhibit similarity to the C-terminal domain of Escherichia coli colicin M were identified in the genomes of some Pseudomonas species, namely, P. aeruginosa, P. syringae, and P. fluorescens. These genes were detected only in a restricted number of strains. In P. aeruginosa, for instance, the colicin M homologue gene was located within the ExoU-containing genomic island A, a large horizontally acquired genetic element and virulence determinant. Here we report the cloning of these genes from the three Pseudomonas species and the purification and biochemical characterization of the different colicin M homologues. All of them were shown to exhibit Mg(2+)-dependent diphosphoric diester hydrolase activity toward the two undecaprenyl phosphate-linked peptidoglycan precursors (lipids I and II) in vitro. In all cases, the site of cleavage was localized between the undecaprenyl and pyrophospho-MurNAc moieties of these precursors. These enzymes were not active on the cytoplasmic precursor UDP-MurNAc-pentapeptide or (or only very poorly) on undecaprenyl pyrophosphate. These colicin M homologues have a narrow range of antibacterial activity. The P. aeruginosa protein at low concentrations was shown to inhibit growth of sensitive P. aeruginosa strains. These proteins thus represent a new class of bacteriocins (pyocins), the first ones reported thus far in the genus Pseudomonas that target peptidoglycan metabolism.
Collapse
|
11
|
Zeth K, Römer C, Patzer SI, Braun V. Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J Biol Chem 2008; 283:25324-25331. [PMID: 18640984 PMCID: PMC2533080 DOI: 10.1074/jbc.m802591200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/23/2008] [Indexed: 11/06/2022] Open
Abstract
Colicins are cytotoxic proteins secreted by certain strains of Escherichia coli. Colicin M is unique among these toxins in that it acts in the periplasm and specifically inhibits murein biosynthesis by hydrolyzing the pyrophosphate linkage between bactoprenol and the murein precursor. We crystallized colicin M and determined the structure at 1.7A resolution using x-ray crystallography. The protein has a novel structure composed of three domains with distinct functions. The N-domain is a short random coil and contains the exposed TonB box. The central domain includes a hydrophobic alpha-helix and binds presumably to the FhuA receptor. The C-domain is composed of a mixed alpha/beta-fold and forms the phosphatase. The architectures of the individual modules show no similarity to known structures. Amino acid replacements in previously isolated inactive colicin M mutants are located in the phosphatase domain, which contains a number of surface-exposed residues conserved in predicted bacteriocins of other bacteria. The novel phosphatase domain displays no sequence similarity to known phosphatases. The N-terminal and central domains are not conserved among bacteriocins, which likely reflect the distinct import proteins required for the uptake of the various bacteriocins. The homology pattern supports our previous proposal that colicins evolved by combination of distinct functional domains.
Collapse
Affiliation(s)
- Kornelius Zeth
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, D-72076 Tübingen, Germany
| | - Christin Römer
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, D-72076 Tübingen, Germany
| | - Silke I Patzer
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, D-72076 Tübingen, Germany
| | - Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, D-72076 Tübingen, Germany.
| |
Collapse
|
12
|
Abstract
The multiprotein TonB system of Escherichia coli involves proteins in both the cytoplasmic membrane and the outer membrane. By a still unclear mechanism, the proton-motive force of the cytoplasmic membrane is used to catalyze active transport through high-affinity transporters in the outer membrane. TonB, ExbB, and ExbD are required to transduce the cytoplasmic membrane energy to these transporters. For E. coli, transport ligands consist of iron-siderophore complexes, vitamin B(12), group B colicins, and bacteriophages T1 and ø80. Our experimental philosophy is that data gathered in vivo, where all known and unknown components are present at balanced chromosomal levels in the whole cell, can be interpreted with less ambiguity than when a subset of components is overexpressed or analysed in vitro. This chapter describes in vivo assays for the TonB system and their application.
Collapse
Affiliation(s)
- Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, Mengin-Lecreulx D. Colicin M Exerts Its Bacteriolytic Effect via Enzymatic Degradation of Undecaprenyl Phosphate-linked Peptidoglycan Precursors. J Biol Chem 2006; 281:22761-72. [PMID: 16777846 DOI: 10.1074/jbc.m602834200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin M was earlier demonstrated to provoke Escherichia coli cell lysis via inhibition of cell wall peptidoglycan (murein) biosynthesis. As the formation of the O-antigen moiety of lipopolysaccharides was concomitantly blocked, it was hypothesized that the metabolism of undecaprenyl phosphate, an essential carrier lipid shared by these two pathways, should be the target of this colicin. However, the exact target and mechanism of action of colicin M was unknown. Colicin M was now purified to near homogeneity, and its effects on cell wall peptidoglycan metabolism reinvestigated. It is demonstrated that colicin M exhibits both in vitro and in vivo enzymatic properties of degradation of lipid I and lipid II peptidoglycan intermediates. Free undecaprenol and either 1-pyrophospho-MurNAc-pentapeptide or 1-pyrophospho-MurNAc-(pentapeptide)-Glc-NAc were identified as the lipid I and lipid II degradation products, respectively, showing that the cleavage occurred between the lipid moiety and the pyrophosphoryl group. This is the first time such an activity is described. Neither undecaprenyl pyrophosphate nor the peptidoglycan nucleotide precursors were substrates of colicin M, indicating that both undecaprenyl and sugar moieties were essential for activity. The bacteriolytic effect of colicin M therefore appears to be the consequence of an arrest of peptidoglycan polymerization steps provoked by enzymatic degradation of the undecaprenyl phosphate-linked peptidoglycan precursors.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, UMR 8619 CNRS, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Ton-dependent colicins and microcins are actively taken up into sensitive cells at the expense of energy which is provided by the proton motive force of the cytoplasmic membrane. The Ton system consisting of the proteins TonB, ExbB and ExbD is required for colicin and microcin import. Colicins as well as the outer membrane transport proteins contain proximal to the N-terminus a short sequence, called TonB box, which interacts with TonB and in which point mutants impair uptake. No TonB box is found in microcins. Colicins are composed of functional modules which during evolution have been interchanged resulting in new colicins. The modules define sites of interaction with the outer membrane transport genes, TonB, the immunity proteins, and the activity regions. Six TonB-dependent microcins with different primary structures are processed and exported by highly homologous proteins. Three of these microcins are modified in an unknown way and they have in common specificity for catecholate siderophore receptors.
Collapse
Affiliation(s)
- Volkmar Braun
- Mikrobiologie and Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28 D-72076, Tübingen, Germany.
| | | | | |
Collapse
|
15
|
Ehlert K, Höltje JV. Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli. J Bacteriol 1996; 178:6766-71. [PMID: 8955294 PMCID: PMC178573 DOI: 10.1128/jb.178.23.6766-6771.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inhibition of phospholipid synthesis in Escherichia coli by either cerulenin treatment or glycerol starvation of a glycerol-auxotrophic mutant resulted in a concomitant block of murein synthesis. The intracellular pool of cytoplasmic and lipid-linked murein precursors was not affected by an inhibition of phospholipid synthesis, nor was the activity of the penicillin-binding proteins. In addition, a decrease in the activity of the two lipoprotein murein hydrolases, the lytic transglycosylases A and B, could not be demonstrated. The indirect inhibition of murein synthesis by cerulenin resulted in a 68% decrease of trimeric muropeptide structures, proposed to represent the attachment points of newly added murein. Importantly, inhibition of phospholipid synthesis also inhibited O-antigen synthesis with a sensitivity and kinetics similar to those of murein synthesis. It is concluded that the step common for murein and O-antigen synthesis, the translocation of the respective bactoprenolphosphate-linked precursor molecules, is affected by an inhibition of phospholipid synthesis. Consistent with this assumption, it was shown that murein synthesis no longer depends on ongoing phospholipid synthesis in ether-permeabilized cells. We propose that the assembly of a murein-synthesizing machinery, a multienzyme complex consisting of murein hydrolases and synthases, at specific sites of the membrane, where integral membrane proteins such as RodA and FtsW facilitate the translocation of the lipid-linked murein precursors to the periplasm, depends on ongoing phospholipid synthesis. This would explain the well-known phenomenon that both murein synthesis and antibiotic-induced autolysis depend on phospholipid synthesis and thereby indirectly on the stringent control.
Collapse
Affiliation(s)
- K Ehlert
- Abteilung Biology, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
16
|
Gross P, Braun V. Colicin M is inactivated during import by its immunity protein. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:388-96. [PMID: 8676883 DOI: 10.1007/bf02172531] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colicin M (Cma) displays a unique activity that interferes with murein and O-antigen biosynthesis through inhibition of lipid-carrier regeneration. Immunity is conferred by a specific immunity protein (Cmi) that inhibits the action of colicin M in the periplasm. The subcellular location of Cmi was determined by constructing hybrid proteins between Cmi and the TEM-beta-lactamase (BlaM), which confers resistance to ampicillin only when it is translocated across the cytoplasmic membrane with the aid of Cmi. The smallest Cmi'-BlaM hybrid that conferred resistance to 50 micrograms/ml ampicillin contained 19 amino acid residues of Cmi; cells expressing Cmi'-BlaM with only five N-terminal Cmi residues were ampicillin sensitive. These results support a model in which the hydrophobic sequence of Cmi comprising residues 3-23 serves to translocate residues 24-117 of Cmi into the periplasm and anchors Cmi to the cytoplasmic membrane. Residues 8-23 are integrated in the cytoplasmic membrane and are not involved in Cma recognition. This model was further tested by replacing residues 1-23 of Cmi by the hydrophobic amino acid sequence 1-42 of the penicillin binding protein 3 (PBP3). In vivo, PBP3'-'Cmi was as active as Cmi, demonstrating that translocation and anchoring of Cmi is not sequence-specific. Substitution of the 23 N-terminal residues of Cmi by the cleavable signal peptide of BlaM resulted in an active BlaM'-'Cmi hybrid protein. The immunity conferred by BlaM'-'Cmi was high, but not as high as that associated with Cmi and PBP3'-'Cmi, demonstrating that soluble Cmi lacking its membrane anchor is still active, but immobilization in the cytoplasmic membrane, the target site of Cma, increases its efficiency. Cmi delta 1-23 remained in the cytoplasm and conferred no immunity. We propose that the immunity protein inactivates colicin M in the periplasm before Cma can reach its target in the cytoplasmic membrane.
Collapse
Affiliation(s)
- P Gross
- Universität Tübingen, Germany
| | | |
Collapse
|
17
|
Moeck GS, Ratcliffe MJ, Coulton JW. Topological analysis of the Escherichia coli ferrichrome-iron receptor by using monoclonal antibodies. J Bacteriol 1995; 177:6118-25. [PMID: 7592376 PMCID: PMC177451 DOI: 10.1128/jb.177.21.6118-6125.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ferrichrome-iron transport in Escherichia coli is initiated by the outer membrane receptor FhuA. Thirty-five anti-FhuA monoclonal antibodies (MAbs) were isolated to examine the surface accessibility of FhuA sequences and their contribution to ligand binding. The determinants of 32 of the MAbs were mapped to eight distinct regions in the primary sequence of FhuA by immunoblotting against (i) five internal deletion FhuA proteins and (ii) four FhuA peptides generated by cyanogen bromide cleavage. Two groups of MAbs bound to FhuA in outer membrane vesicles but not to intact cells, indicating that their determinants, located between residues 1 and 20 and 21 and 59, are exposed to the periplasm. One of the 28 strongly immunoblot-reactive MAbs bound to FhuA on intact cells in flow cytometry, indicating that its determinant, located between amino acids 321 and 381, is cell surface exposed. This MAb and four others which in flow cytometry bound to cells expressing FhuA were tested for the ability to block ligand binding. While no MAb inhibited growth promotion by ferrichrome or cell killing by microcin 25, some prevented killing by colicin M and were partially able to inhibit the inactivation of T5 phage. These data provide evidence for spatially distinct ligand binding sites on FhuA. The lack of surface reactivity of most of the immunoblot-reactive MAbs suggests that the majority of FhuA sequences which lie external to the outer membrane may adopt a tightly ordered organization with little accessible linear sequence.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | | | | |
Collapse
|
18
|
Braun V, Pilsl H, Gross P. Colicins: structures, modes of action, transfer through membranes, and evolution. Arch Microbiol 1994; 161:199-206. [PMID: 8161282 DOI: 10.1007/bf00248693] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This article intends to inform a broader audience on a fascinating class of protein toxins (bacteriocins) which usually kill only cells of the same species. Those who gained a deeper interest in bacteriocins can find a comprehensive description of the field in a recent book based on a conference (James et al. 1992), and in more specialized review articles dealing with certain aspects (Pugsley 1984a, b), or certain colicins (De Graaf and Oudega 1986; Harkness and Olschläger 1991; Lazdunski et al. 1988). The older literature has been reviewed by Brandis and Smarda (1971), Reeves (1972), Hardy (1975) and Konisky (1982).
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany
| | | | | |
Collapse
|
19
|
Pilsl H, Glaser C, Gross P, Killmann H, Olschläger T, Braun V. Domains of colicin M involved in uptake and activity. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:103-12. [PMID: 8341256 DOI: 10.1007/bf00276889] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Colicin M inhibits murein biosynthesis by interfering with bactoprenyl phosphate carrier regeneration. It belongs to the group B colicins the uptake of which through the outer membrane depends on the TonB, ExbB and ExbD proteins. These colicins contain a sequence, called the TonB box, which has been implicated in transport via TonB. Point mutations were introduced by PCR into the TonB box of the structural gene for colicin M, cma, resulting in derivatives that no longer killed cells. Mutations in the tonB gene suppressed, in an allele-specific manner, some of the cma mutations, suggesting that interaction of colicin M with TonB may be required for colicin M uptake. Among the hydroxylamine-generated colicin M-inactive cma mutants was one which carried cysteine in place of arginine at position 115. This colicin derivative still bound to the FhuA receptor and killed cells when translocated across the outer membrane by osmotic shock treatment. It apparently represents a new type of transport-deficient colicin M. Additional hydroxylamine-generated inactive derivatives of colicin M carried mutations centered on residues 193-197 and 223-252. Since these did not kill osmotically shocked cells the mutations must be located in a region which is important for colicin M activity. It is concluded that the TonB box at the N-terminal end of colicin M must be involved in colicin uptake via TonB across the outer membrane and that the C-terminal portion of the molecule is likely to contain the activity domain.
Collapse
Affiliation(s)
- H Pilsl
- Universität Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
A colicin M derivative containing the lipoprotein signal sequence is secreted and renders the colicin M target accessible from inside the cells. Arch Microbiol 1991. [DOI: 10.1007/bf00245391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Carmel G, Coulton JW. Internal deletions in the FhuA receptor of Escherichia coli K-12 define domains of ligand interactions. J Bacteriol 1991; 173:4394-403. [PMID: 2066336 PMCID: PMC208101 DOI: 10.1128/jb.173.14.4394-4403.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ferrichrome-iron receptor encoded by the fhuA gene of Escherichia coli K-12 is a multifunctional outer membrane receptor required for the binding and uptake of ferrichrome and bacteriophages T5, T1, phi 80, and UC-1 as well as colicin M. To identify domains of the protein which are important for FhuA activities, a library of 31 overlapping deletion mutants in the fhuA gene was generated. Export of FhuA deletion proteins to the outer membrane and receptor functions of the deletion proteins were analyzed. All but three of the deletion mutant FhuA proteins cofractionated with the outer membrane; no FhuA proteins were detected in outer membrane preparations or in cell extracts when the deletions spanned amino acids 418 to 440. Most deletion proteins were susceptible to cleavage by endogenous proteolytic activity; some degradation products were detected on Coomassie blue-stained gels and on Western blots (immunoblots). Receptor functions were measured with the mutated genes present on multicopy plasmids. Two deletion mutants, FhuA delta 060-069 and FhuA delta 129-168, conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating of bacteriophages as that of wild-type FhuA; killing by colicin M was also unaffected. For FhuA delta 021-128 and FhuA delta 406-417, reduced sensitivity to colicin M was detected; wild-type phenotypes were observed for all other FhuA functions. Deletions from amino acids 169 to 195 slightly reduced sensitivities to bacteriophages and to colicin M; ferrichrome growth promotion was unaffected. When deletions extended into the region of amino acids 196 to 405, all FhuA functions were either reduced or abolished. The results indicate that selected regions of the FhuA protein have receptor activities and demonstrate the presence of both shared and unique ligand-responsive domains.
Collapse
Affiliation(s)
- G Carmel
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Abstract
This communication summarizes our present knowledge of colicin M, an unusual member of the colicin group. The gene encoding colicin M, cma, has been sequenced and the protein isolated and purified. With a deduced molecular size of 29,453 Da, colicin M is the smallest of the known colicins. The polypeptide can be divided into functional domains for cell surface receptor binding, uptake into the cell, and killing activity. To kill, the colicin must enter from outside the cell. Colicin M blocks the biosynthesis of both peptidoglycan and O-antigen by inhibiting regeneration of the bactoprenyl-P carrier lipid. Autolysis occurs as a secondary effect following inhibition of peptidoglycan synthesis. Colicin M is the only colicin known to have such a mechanism of action. Immunity to this colicin is mediated by the cmi gene product, a protein of 13,890 Da. This cytoplasmic membrane protein confers immunity by binding to and thus neutralizing the colicin. Cmi shares properties with both immunity proteins of the pore-forming and the cytoplasmically active colicins. Genes for the colicin and immunity protein are found next to each other, but in opposite orientation, on pColM plasmids. The mechanism of colicin M release is not known.
Collapse
|
23
|
Abstract
Colicin M (Cma) displays a unique mode of action in that it inhibits peptidoglycan and lipopolysaccharide biosynthesis through interference with bactoprenyl phosphate recycling. Protection of Cma-producing cells by the immunity protein (Cmi) was studied. The amount of Cmi determined the degree of inhibition of in vitro peptidoglycan synthesis by Cma. In cells, immunity breakdown could be achieved by overexpression of the Cma uptake system. Full immunity was restored after raising the cmi gene copy number. In sphaeroplasts, Cmi was degraded by trypsin, but this could be prevented by the addition of Cma. The N-terminal end includes the only hydrophobic amino acid sequence of Cmi, suggesting a function in anchoring of Cmi in the cytoplasmic membrane. It is proposed that Cmi does not act catalytically but binds Cma at the periplasmic face of the cytoplasmic membrane, thereby resulting in Cma inactivation. Two other possible modes of colicin M immunity, interference of Cmi with the uptake of Cma, and interaction of Cmi with the target of Cma, were ruled out by the data.
Collapse
Affiliation(s)
- T Olschläger
- Mikrobiologie II, Auf der Morgenstelle 28, Universität, Tübingen, Germany
| | | | | |
Collapse
|
24
|
Harkness RE, Braun V. Colicin M is only bactericidal when provided from outside the cell. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:37-40. [PMID: 2233679 DOI: 10.1007/bf00283020] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The colicin M structural gene, cma, was subcloned in a vector which allowed temperature-inducible control of its expression. Induction of expression of cma in colicin M uptake proficient strains was lethal for the host cell when the colicin M immunity protein was not present. In liquid culture cells lysed, and no colonies were formed on solid media. These effects were not observed in mutants defective in the colicin receptor (FhuA) or uptake functions (TonB, TolM), nor in wild-type cells treated with trypsin prior to induction of cma expression. It was concluded that cytoplasmic colicin M is not toxic for the producing cell. To exert a lethal effect the colicin has to enter the cell from outside. Cells expressing cma released small amounts of colicin M.
Collapse
Affiliation(s)
- R E Harkness
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
25
|
Harkness RE, Fiedler W, Braun V. Lack of inhibition by colicin M suggests bactoprenol independence of MDO biosynthesis. FEBS Lett 1990; 262:245-8. [PMID: 2185949 DOI: 10.1016/0014-5793(90)80201-s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biosynthesis of membrane-derived oligosaccharides (MDO), located in the periplasmic space of Escherichia coli, was not inhibited by colicin M, an inhibitor of bactoprenyl phosphate regeneration. This result suggests that bactoprenol does not serve as a lipid carrier of MDO oligosaccharides across the cytoplasmic membrane.
Collapse
|
26
|
Harkness RE, Braun V. In vitro peptidoglycan synthesis by envelopes from Escherichia coli tolM mutants is inhibited by colicin M. J Bacteriol 1990; 172:498-500. [PMID: 2152914 PMCID: PMC208462 DOI: 10.1128/jb.172.1.498-500.1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An in vitro peptidoglycan synthesis reaction was employed to further characterize the role of the tolM product in colicin M-induced inhibition of peptidoglycan synthesis. It was found that the tolM product is not the colicin M target and that this gene product does not play a role in the interaction of the colicin with its target. Colicin M remained associated with envelopes prepared from colicin-treated tolM mutants. These findings suggested that the tolM product most likely is involved with the internalization of colicin M.
Collapse
Affiliation(s)
- R E Harkness
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
27
|
|
28
|
|
29
|
Schultz G, Ullrich F, Heller KJ, Braun V. Export and activity of hybrid FhuA'-'Iut receptor proteins and of truncated FhuA' proteins of the outer membrane of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:230-8. [PMID: 2664450 DOI: 10.1007/bf00334361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The FhuA protein in the outer membrane of Escherichia coli serves as a multifunctional receptor for the phages T5, T1, phi 80, for colicin M, for ferrichrome (Fe3+-siderophore) and for the structurally related antibiotic, albomycin. To determine structural domains required for these receptor functions and for export, a fusion protein between FhuA and Iut (receptor for Fe3+-aerobactin and cloacin DF13) was constructed. In the FhuA'-'Iut hybrid protein, 24 amino acids of FhuA were replaced by 19 amino acids, 18 of which were from Iut. The number of plaque forming units of phage T5 and T1 on cells expressing FhuA'-'Iut was nearly as high as on cells expressing plasmid-encoded wild-type FhuA. However, 10(7)-fold higher concentrations of phage phi 80 and 10(3) times more colicin M were required to obtain a zone of growth inhibition. Truncated FhuA' proteins in which the last 24 amino acids at the carboxy-terminus were replaced by 16 (FhuA'2) or 3 (FhuA'T) amino acids could hardly be detected on polyacrylamide electrophoretograms of outer membrane proteins, due to proteolytic degradation. Sensitivity of cells expressing FhuA'2 to phage T5 and T1 was reduced by several orders of magnitude and sensitivity to phage phi 80 and colicin M was totally abolished. In contrast, cells expressing FhuA'T were nearly as sensitive to pahge T5, T1, and phi 80 and to colicin M as cells containing FhuA'-'Iut. None of the constructs could grow on ferrichrome as sole iron source and none was sensitive to albomycin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Schultz
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
30
|
Thumm G, Olschläger T, Braun V. Plasmid pColBM-Cl139 does not encode a colicin lysis protein but contains sequences highly homologous to the D protein (resolvase) and the oriV region of the miniF plasmid. Plasmid 1988; 20:75-82. [PMID: 2853881 DOI: 10.1016/0147-619x(88)90009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Colicins are usually released from producing cells by so-called lysis proteins. No sequence homologous to the structurally very similar colicin lysis genes was found in the gene cluster cmi cma cbi cba, which determines the activity and immunity proteins of colicin B and M on pColBM-Cl139. Instead, the region upstream of cmi contained sequences that showed 91% homology to the structural gene of protein D (resolvase) and 75.5% homology to the rfsF sequence of the Escherichia coli miniF plasmid. It is concluded that colicins B and M are not released via the activity of lysis proteins and that the highly homologous regions encode a resolvase and its target respectively.
Collapse
Affiliation(s)
- G Thumm
- Mikrobiologie II, University, Tübingen, West Germany
| | | | | |
Collapse
|
31
|
Olschläger T, Braun V. Sequence, expression, and localization of the immunity protein for colicin M. J Bacteriol 1987; 169:4765-9. [PMID: 2820942 PMCID: PMC213852 DOI: 10.1128/jb.169.10.4765-4769.1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli strains carrying the cmi locus on plasmids are immune against colicin M, which primarily inhibits murein biosynthesis, followed by lysis of cells. The nucleotide sequence of the cmi region was determined. It contains an open reading frame for a polypeptide with a molecular weight of 19,227. However, the major protein band observed on polyacrylamide gels after transcription and translation in an in vitro system or in minicells had an apparent molecular weight between 15,000 and 16,000. The nucleotide sequence contained internal ATG codons, two of which could serve for the synthesis of polypeptides with molecular weights of 15,349 and 15,996, respectively. A subclone with a DNA fragment that encoded these two shorter polypeptides exhibited full immunity. The colicin M immunity protein was found in the cytoplasmic membrane. The colicin M activity and immunity genes were transcribed in opposite directions. Both properties are typical of the channel-forming colicins and are in contrast to the colicins with endonuclease activities. However, colicin M does not form channels and exhibits no structural similarity to channel-forming colicins.
Collapse
Affiliation(s)
- T Olschläger
- Mikrobiologie II, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
32
|
Köck J, Olschläger T, Kamp RM, Braun V. Primary structure of colicin M, an inhibitor of murein biosynthesis. J Bacteriol 1987; 169:3358-61. [PMID: 3036784 PMCID: PMC212390 DOI: 10.1128/jb.169.7.3358-3361.1987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.
Collapse
|
33
|
Smarda J, Schuhmann E. Studies of colicin action on wall-less stable L-forms of Escherichia coli. II. Growth inhibition of complete and wall-less (L-form) cells of Escherichia coli by basic colicin types. J Basic Microbiol 1985; 25:451-6. [PMID: 3903105 DOI: 10.1002/jobm.3620250711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inhibitive activity of colicins of 16 types (produced by 22 colicinogenic strains) on rods and protoplast-like stable L-form cells of the strains Escherichia coli B, W1655 F+ and W1655 F- was compared. The results of 58 combinations tested fall into four groups (with three subgroups): both cell forms are sensitive: a) both cell forms are about equally sensitive, b) rods are distinctly more sensitive than L-form cells, c) L-form cells are distinctly more sensitive than rods; only rods are sensitive, L-form cells are not sensitive; only L-form cells are sensitive, rods are not sensitive; neither cell form is sensitive. Group la represents simple sensitivity; both cell wall and cytoplasmic membrane receptors are present and functioning. Groups 1b and 2 represent sensitivity, substantially or completely mediated by cell wall receptors. Groups 1c and 3 represent partial or complete "pseudoresistance" or "pseudotolerance"; cell wall receptors are absent or non-lethal, but cytoplasmic membrane ones are present and mediate the lethal effect. Group 4 represents both true resistance and true tolerance.
Collapse
|
34
|
Abstract
The structure of colicin M of Escherichia coli was studied with regard to its organization into functional domains. A proteolytic fragment with an Mr of 24,000 was isolated which comprised the carboxyterminal portion of the protein. It adsorbed to the outer membrane receptor protein and inhibited killing of cells by colicin M and by phage T5 that uses the same receptor. The fragment killed cells when the outer membrane was rendered permeable to macromolecules for a short time by the osmotic shock procedure. It is concluded that the fragment contains the receptor binding site and the active center but is lacking the sequence required for transport into cells. The carboxy-terminal amino acid sequence-Lys-Arg of the fragment was identical to that obtained from colicin M. Release of lysine and arginine led to inactivation of colicin M. The sequence of the first 39 amino acids of the amino terminal end of colicin M was determined.
Collapse
|
35
|
Dimoudis N, Komischke K, Braun V. Monoclonal antibodies against the FhuA (TonA) protein of the Escherichia coliouter membrane. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01383.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Olschläger T, Schramm E, Braun V. Cloning and expression of the activity and immunity genes of colicins B and M on ColBM plasmids. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:482-7. [PMID: 6094976 DOI: 10.1007/bf00436196] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The activity and immunity genes for colicins B and M on two conjugative ColBM plasmids, pCl139 and pF166, were cloned into pBR322 and pACYC184, respectively. The colicin regions on both recombinant plasmids were identical with regard to restriction endonuclease sites and the arrangement of the genes. They map close to each other in the order cmi cma cbi cba, where cmi denotes the locus that determines immunity to colicin M, cma the structural gene for colicin M, cbi immunity to colicin B, and cba the structural gene for colicin B. With the use of mutants obtained by insertion of the transposon Tn5, and by translation in minicells, the transcriptional polarity of cma and cba was found to be from right to left. cma and cba code for polypeptides with molecular weights of 27,000 and 58,000, respectively. No evidence of biosynthetic precursors was obtained.
Collapse
|
37
|
Abstract
Colicin V-treated Escherichia coli was inhibited in its capacity to carry out active transport of proline and was unable to generate a membrane potential. Colicin V also prevented membrane potential formation by isolated cytoplasmic membrane vesicles. We conclude that a primary effect of this colicin involves the cytoplasmic membrane as a target.
Collapse
|
38
|
Southern JA, Katz W, Woods DR. Purification and properties of a cell-bound bacteriocin from a Bacteroides fragilis strain. Antimicrob Agents Chemother 1984; 25:253-7. [PMID: 6201135 PMCID: PMC185484 DOI: 10.1128/aac.25.2.253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A cell-bound bacteriocin was extracted from a Bacteroides fragilis BF-11 strain by treating the cells with a low-molarity buffer (0.01 M Tris-hydrochloride, pH 8.0). Sucrose osmotic shock experiments and ultrasonic lysis of whole cells indicated that the majority of the bacteriocin was located at the cell surface. Culture supernatants contained no significant bacteriocin activity. The bacteriocin was purified by DEAE-cellulose and Sephacryl S200 chromatography and had an apparent molecular weight of approximately 7,000. It was relatively heat stable and was inactivated by proteases. There was a delay of approximately 3.5 h before DNA, RNA, and protein synthesis were inhibited by the bacteriocin. Inhibition of macromolecular synthesis coincided with lysis of the susceptible indicator strain.
Collapse
|
39
|
|
40
|
Fecker L, Braun V. Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli. J Bacteriol 1983; 156:1301-14. [PMID: 6315685 PMCID: PMC217981 DOI: 10.1128/jb.156.3.1301-1314.1983] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Each of the four hydroxamate compounds, ferrichrome, aerobactin, rhodotorulic acid, and coprogen, known to transport ferric iron into Escherichia coli requires a specific outer membrane receptor protein. In addition, common transport functions for all four ferric hydroxamate compounds have been identified in the 3.5-min region of the linkage map and designated fhu. The fhu region was cloned into pBR322. By restriction analysis, Tn5 insertion mutations, and complementation studies between plasmid fragments and chromosomal mutants at least four loci in the order fhuA fhuC fhuD fhuB were found. The genetic products were determined in maxicells and minicells. fhuA codes for the known 78,000-dalton receptor protein and the 81,000-dalton precursor in the outer membrane, fhuC codes for a 30,000-dalton protein, and fhuD encodes a 26,000-dalton protein in the cytoplasmic membrane. No protein(s) could be assigned to the fhuB region. Truncated proteins derived from partial fhuA genes (68,000, 42,000, and 39,000 daltons) and a partial fhuD gene (24,000 daltons) and the strong polar effect on the expression of the genes indicated the direction of transcription to be from fhuA to fhuD.
Collapse
|
41
|
Heidinger S, Braun V, Pecoraro VL, Raymond KN. Iron supply to Escherichia coli by synthetic analogs of enterochelin. J Bacteriol 1983; 153:109-15. [PMID: 6217190 PMCID: PMC217347 DOI: 10.1128/jb.153.1.109-115.1983] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Synthetic analogs of enterochelin (enterobactin) were tested for their ability to support the growth of Escherichia coli K-12 under iron-limiting conditions. The cyclic compound MECAM [1,3,5-N.N'; N"-tris-(2,3-dihydroxybenzoyl)-triamino-methylbenzene] and its N-methyl derivative Me3MECAM promoted growth, whereas the 2,3-dihydroxy-5-sulfonyl derivatives MECAMS and Me3MECAMS were inactive. The same results were obtained with TRIMCAM [1,3,5-tris(2,3-dihydroxybenzoylcarbamido)-benzene] and TRIMCAMS (the 2,3-dihydroxy-5-sulfonyl derivative of TRIMCAM). However, the sulfonic acid-containing linear compound LICAMS [1,5,10-N,N', N"-tris(5-sulfo-2,3-dihydroxybenzoyl)-triaza-decane] supported growth. In contrast, LIMCAMC, in which the sulfonyl groups at the five position of LICAMS are replaced by carboxyl groups at the four position, was inactive. The uptake of the active analogs required the functions specified by the fepB, fesB, and tonB genes. Surprisingly, growth promotion of mutants lacking the enterochelin receptor protein in the outer membrane was observed. Only MECAM protected cells against colicin B (which kills cells after entering at the enterochelin uptake sites) and transported Fe3+ at about half the enterochelin rate.
Collapse
|
42
|
Abstract
Colicin M inhibited the incorporation of DL + meso-2,6-diamino[3,4,5-3H]pimelic acid into the murein (peptidoglycan) of growing cells of Escherichia coli W7 dap lys. The inhibition of the UDP-N-acetylmuramyl pentapeptide-dependent incorporation of UDP-N-acetyl-D-[U-14C]glucosamine into isolated cell envelopes indicated interference with a late step of murein biosynthesis. After the inhibition of murein biosynthesis, cells lysed, and they released lysis products of murein. In vitro, the murein biosynthesis of colicin M-tolerant mutants (tolM) was inhibited by colicin M. Therefore, tolerance is probably conferred by an impaired uptake of an altered fixation close to the target site and not by a mutation of the target itself. Preliminary studies with beta-lactam antibiotics and with mutants in penicillin-binding proteins did not reveal a specific enzymatic step inhibited by colicin M. The unique action among the colicins renders colicin M a potentially useful tool for studying murein biosynthesis.
Collapse
|
43
|
Schaller K, Krauel A, Braun V. Temperature-sensitive, colicin M-tolerant mutant of Escherichia coli. J Bacteriol 1981; 147:135-9. [PMID: 7016840 PMCID: PMC216017 DOI: 10.1128/jb.147.1.135-139.1981] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A mutant sensitive to colicin M at 30 degrees C and tolerant at 42 degrees C to high concentrations of colicin M was isolated from Escherichia coli K-12. A temperature shift from 30 to 42 degrees C rescued all cells up to the time they started to lyse at 30 degrees C (25 min after addition of colicin M). The growth rate at 42 degrees C remained unaffected by colicin M. AT 42 degrees C the cell-bound colicin M was inactivated by trypsin, sodium dodecyl sulfate, and antiserum against colicin M. Ferrichrome competed with colicin M at 42 degrees C only during the initial adsorption to the common receptor protein in the outer membrane. Since cells lysed earlier at 30 degrees C when they had been preincubated with colicin M at 42 degrees C, we conclude that the process leading finally to cell lysis is initiated at 42 degrees C and stops at a later stage of colicin M trypsin, dodecyl sulfate, and antiserum when cells were transferred from 30 to 42 degrees C, we assume that colicin M is translocated from its target site towards the cell surface. The mutation conferring tolerance was mapped close to the rpsL gene.
Collapse
|