1
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Peptidoglycan Sensing Prevents Quiescence and Promotes Quorum-Independent Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2020; 202:JB.00157-20. [PMID: 32778561 DOI: 10.1128/jb.00157-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.
Collapse
|
3
|
Lupino KM, Romano KA, Simons MJ, Gregg JT, Panepinto L, Cruz GM, Grajek L, Caputo GA, Hickman MJ, Hecht GB. A Recurrent Silent Mutation Implicates fecA in Ethanol Tolerance by Escherichia coli. BMC Microbiol 2018; 18:36. [PMID: 29669516 PMCID: PMC5907409 DOI: 10.1186/s12866-018-1180-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background An issue associated with efficient bioethanol production is the fact that the desired product is toxic to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli strain FBR5. Results Membrane permeability assays indicate that many of the strains in the collection have alterations in membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature. To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all. Interestingly, we found that four independently-isolated strains acquired an identical C → A (V244 V) silent mutation in the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular response to ethanol. Conclusions The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression. Electronic supplementary material The online version of this article (10.1186/s12866-018-1180-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine M Lupino
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Kymberleigh A Romano
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Matthew J Simons
- Department of Molecular Genetics and Microbiology, Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - John T Gregg
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Leanna Panepinto
- School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.,Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Ghislaine M Cruz
- Department of Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Lauren Grajek
- Revlon Research Center, Edison, NJ, USA.,Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Gregory A Caputo
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA.,Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Mark J Hickman
- Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA
| | - Gregory B Hecht
- Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, USA.
| |
Collapse
|
4
|
Graf MMH, Maurer M, Oostenbrink C. Free-energy calculations of residue mutations in a tripeptide using various methods to overcome inefficient sampling. J Comput Chem 2016; 37:2597-605. [PMID: 27634475 PMCID: PMC5082540 DOI: 10.1002/jcc.24488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
Abstract
Previous free-energy calculations have shown that the seemingly simple transformation of the tripeptide KXK to KGK in water holds some unobvious challenges concerning the convergence of the forward and backward thermodynamic integration processes (i.e., hysteresis). In the current study, the central residue X was either alanine, serine, glutamic acid, lysine, phenylalanine, or tyrosine. Interestingly, the transformation from alanine to glycine yielded the highest hysteresis in relation to the extent of the chemical change of the side chain. The reason for that could be attributed to poor sampling of φ2 /ψ2 dihedral angles along the transformation. Altering the nature of alanine's Cβ atom drastically improved the sampling and at the same time led to the identification of high energy barriers as cause for it. Consequently, simple strategies to overcome these barriers are to increase simulation time (computationally expensive) or to use enhanced sampling techniques such as Hamiltonian replica exchange molecular dynamics and one-step perturbation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael M H Graf
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria
| | - Manuela Maurer
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria.
| |
Collapse
|
5
|
Shiver AL, Osadnik H, Kritikos G, Li B, Krogan N, Typas A, Gross CA. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S. PLoS Genet 2016; 12:e1006124. [PMID: 27355376 PMCID: PMC4927156 DOI: 10.1371/journal.pgen.1006124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. Bacterial species differ in their susceptibility to antibiotics but the reason for these differences remains an open question. Understanding the genetic basis of antibiotic susceptibility will be critical for predicting the efficacy of new antibiotics and possibly finding new antibiotic targets. Here we report a large-scale study that connects bacterial genes to antibiotics, using a set of antibiotics that were chosen to include poorly characterized compounds. We discovered genes that confer resistance to a number of neglected antibiotics, expanding our knowledge of gene function and antibiotic resistance in Escherichia coli K-12. Starting from this large-scale screen, we then investigated how two antibiotics with a common history, kasugamycin and blasticidin S, enter bacterial cells. Both mimic naturally occurring nutrients to trick E. coli into actively bringing them inside. Kasugamycin is used to control microbes that cause agricultural diseases and mutations that reduce uptake like those we describe here may be an underappreciated factor in the development of resistance to kasugamycin.
Collapse
Affiliation(s)
- Anthony L. Shiver
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Bo Li
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nevan Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institutes, San Francisco, California, United States of America
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- QB3, California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Immune response to oligopeptide permease A (OppA) protein in pigs naturally and experimentally infected with Haemophilus parasuis. Res Vet Sci 2016; 107:62-67. [PMID: 27473976 DOI: 10.1016/j.rvsc.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/21/2022]
Abstract
Haemophilus parasuis is an important swine pathogen that causes Glasser's disease, characterized by pneumonia, polyserositis and meningitis. Protection against H. parasuis infection is associated with the presence of homologous antibodies in serum. However, a H. parasuis antigen that can elicit a protective immune response against all H. parasuis strains has yet to be found. A novel immunogenic and species-specific H. parasuis protein was identified by screening H. parasuis whole cell proteins using swine convalescent sera. One protein of 52kDa was clearly immunodominant and conserved among different H. parasuis strains. This protein was further identified as an oligopeptide permease A (OppA). Because OppA elicited a specific antibody response in pigs that recovered from H. parasuis infection, we investigated its potential role in diagnostics and protective immunity. An ELISA test using recombinant OppA (rOppA) as its coating antigen was further developed and tested. H. parasuis specific antibodies to rOppA were detected in serum from convalescent pigs but not in serum from specific pathogen free (SPF) or conventional pigs. Pigs immunized with rOppA protein had robust serological responses. However, the antibodies were not protective against challenge infection. We conclude that OppA is a universal species-specific H. parasuis immunogen, and a good marker for previous systemic infection with H. parasuis.
Collapse
|
7
|
Maurer M, de Beer SBA, Oostenbrink C. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A. Molecules 2016; 21:499. [PMID: 27092480 PMCID: PMC5881882 DOI: 10.3390/molecules21040499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.
Collapse
Affiliation(s)
- Manuela Maurer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | - Stephanie B A de Beer
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
8
|
Grudniak AM, Pawlak K, Bartosik K, Wolska KI. Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli. Mutat Res 2013; 745-746:1-5. [PMID: 23618614 DOI: 10.1016/j.mrfmmm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
Mutation of the heat shock gene, htpG, causes severe defects of several cellular functions in Escherichia coli. A null htpG mutant constructed by gene replacement was impaired in the biosynthesis and secretion of several enzymes, and in biofilm formation and proteolysis. A significant decrease in the activity of β-lactamase in the ΔhtpG mutant was observed at 42°C. The alkaline phosphatase activity in sonicates of cells propagated at this raised temperature was lower in the ΔhtpG mutant than in the wild-type strain. The ability of the ΔhtpG mutant to degrade abnormal proteins was also impaired compared with the wild-type, but was increased at 42°C. Assays based on bioluminescence and crystal violet staining demonstrated that biofilm formation was diminished in the ΔhtpG mutant at the elevated temperature. All these defects can be complemented upon introducing htpG wild allele.
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
9
|
Gleinser M, Grimm V, Zhurina D, Yuan J, Riedel CU. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Fact 2012; 11:80. [PMID: 22694891 PMCID: PMC3408352 DOI: 10.1186/1475-2859-11-80] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive properties.
Collapse
Affiliation(s)
- Marita Gleinser
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany
| | | | | | | | | |
Collapse
|
10
|
Verna EC, Valadao R, Farrand E, Pichardo EM, Lai JC, Terrault NA, Brown RS. Effects of ethnicity and socioeconomic status on survival and severity of fibrosis in liver transplant recipients with hepatitis C virus. Liver Transpl 2012; 18:461-7. [PMID: 22467547 PMCID: PMC3674870 DOI: 10.1002/lt.23376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ethnicity and socioeconomic status of the host may affect the progression of hepatitis C virus (HCV). We aimed to compare survival and fibrosis progression in Hispanic white (HW) and non-Hispanic white (NHW) recipients of liver transplantation (LT) with HCV. All HW and NHW patients with HCV who underwent transplantation between January 2000 and December 2007 at 2 centers were retrospectively assessed. The primary outcomes were the time to death, death or graft loss due to HCV, and significant fibrosis [at least stage 2 of 4]. Five hundred eleven patients were studied (159 HW patients and 352 NHW patients), and the baseline demographics were similar for the 2 groups. NHW patients were more likely to be male, to have attended college, and to have private insurance, and they had a higher median household income (MHI). The unadjusted rates of survival (log-rank P = 0.93), death or graft loss due to HCV (P = 0.89), and significant fibrosis (P = 0.95) were similar between groups. In a multivariate analysis controlling for center, age [hazard ratio (HR) per 10 years = 1.43, P = 0.01], donor age (HR per 10 years = 1.25, P < 0.001), and rejection (HR = 1.47, P = 0.048) predicted death, whereas HW ethnicity (HR = 1.06, P = 0.77) was not significant. Independent predictors of significant fibrosis were HW ethnicity (HR = 2.42, P = 0.046), MHI (HR per $10,000 = 1.11, P = 0.01), donor age (HR per 10 years = 1.13, P = 0.02), cold ischemia time (HR = 1.06, P = 0.03), and the interaction between ethnicity and MHI (HR = 0.82, P = 0.03). In conclusion, there is no difference in post-LT survival or graft loss due to HCV between HW patients and NHW patients. Socioeconomic factors may influence disease severity; this is suggested by our findings of more significant fibrosis in HW patients with a low MHI.
Collapse
Affiliation(s)
- Elizabeth C. Verna
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY
| | - Rosa Valadao
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Erica Farrand
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY
| | - Elsa M. Pichardo
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY
| | - Jennifer C. Lai
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Norah A. Terrault
- Department of Medicine, University of California San Francisco, San Francisco, CA
,Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Robert S. Brown
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
11
|
Franklin DP, Laux DC, Williams TJ, Falk MC, Cohen PS. Growth of Salmonella typhimurium SL5319 and Escherichia coli F-18 in mouse cecal mucus: role of peptides and iron. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1990.tb01688.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Domains III and I-2{alpha}, at the entrance of the binding cleft, play an important role in cold adaptation of the periplasmic dipeptide-binding protein (DppA) from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. strain SM9913. Appl Environ Microbiol 2010; 76:4354-61. [PMID: 20453143 DOI: 10.1128/aem.02884-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptide transporter from a cold-adapted bacterium has never been reported. In the present study, the dpp operon from the psychrophilic bacterium Pseudoalteromonas sp. strain SM9913 was cloned and analyzed. The dipeptide binding protein DppA of SM9913 was overexpressed in Escherichia coli, and its cold adaptation characteristics were studied. The recombinant DppA of SM9913 (PsDppA) displayed the highest ligand-binding affinity at 15 degrees C, whereas the recombinant DppA of E. coli (EcDppA) displayed the highest ligand-binding affinity at 35 degrees C. Thermal and guanidium hydrochloride unfolding analyses indicated that PsDppA has more structural instability than EcDppA. Six domain-exchanged mutants of PsDppA were expressed and purified. Analyses of these mutants indicated that domains III, I-2, and I-3 of PsDppA were less stable than those from EcDppA and that domains III and I-2 made a significant contribution to the high binding affinity of PsDppA at low temperatures. Structural and sequence analyses suggested that the state transition-involved regions in domain III and the alpha part of domain I-2 are the hot spots of optimization during cold adaptation and that decreasing the side-chain size in these regions is an important strategy for the cold adaptation of PsDppA.
Collapse
|
13
|
Oshiro EE, Tavares MB, Suzuki CF, Pimenta DC, Angeli CB, de Oliveira JCF, Ferro MIT, Ferreira LCS, Ferreira RCC. Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species. Genet Mol Biol 2010; 33:341-7. [PMID: 21637492 PMCID: PMC3036861 DOI: 10.1590/s1415-47572010005000049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/09/2009] [Indexed: 11/21/2022] Open
Abstract
In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.
Collapse
Affiliation(s)
- Elisa E Oshiro
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. Appl Environ Microbiol 2008; 74:2690-9. [PMID: 18344336 DOI: 10.1128/aem.02809-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differential gene expression in biofilm cells suggests that adding the derepressed conjugative plasmid R1drd19 increases biofilm formation by affecting genes related to envelope stress (rseA and cpxAR), biofilm formation (bssR and cstA), energy production (glpDFK), acid resistance (gadABCEX and hdeABD), and cell motility (csgBEFG, yehCD, yadC, and yfcV); genes encoding outer membrane proteins (ompACF), phage shock proteins (pspABCDE), and cold shock proteins (cspACDEG); and phage-related genes. To investigate the link between the identified genes and biofilm formation upon the addition of R1drd19, 40 isogenic mutants were classified according to their different biofilm formation phenotypes. Cells with class I mutations (those in rseA, bssR, cpxA, and ompA) exhibited no difference from the wild-type strain in biofilm formation and no increase in biofilm formation upon the addition of R1drd19. Cells with class II mutations (those in gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) displayed increased biofilm formation compared to the wild-type strain but decreased biofilm formation upon the addition of R1drd19. Class III mutants showed increased biofilm formation compared to the wild-type strain and increased biofilm formation upon the addition of R1drd19. Cells with class IV mutations displayed increased biofilm formation compared to the wild-type strain but little difference upon the addition of R1drd19, and class V mutants exhibited no difference from the wild-type strain but increased biofilm formation upon the addition of R1drd19. Therefore, proteins encoded by the genes corresponding to the class I mutant phenotype are involved in R1drd19-promoted biofilm formation, primarily through their impact on cell motility. We hypothesize that the pili formed upon the addition of the conjugative plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as well as the other envelope stress response system, RseA-sigma(E), both of which, along with BssR, play a key role in bacterial biofilm formation.
Collapse
|
15
|
Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2008; 21:2804-17. [PMID: 17974919 DOI: 10.1101/gad.447207] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases (oppA, dppA), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions -57 to -45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets.
Collapse
Affiliation(s)
- Cynthia M Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Weinberg MV, Maier RJ. Peptide transport in Helicobacter pylori: roles of dpp and opp systems and evidence for additional peptide transporters. J Bacteriol 2007; 189:3392-402. [PMID: 17322309 PMCID: PMC1855898 DOI: 10.1128/jb.01636-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite research into the nutritional requirements of Helicobacter pylori, little is known regarding its use of complex substrates, such as peptides. Analysis of genome sequences revealed putative ABC-type transporter genes for dipeptide (dppABCDF) and oligopeptide (oppABCD) transport. Genes from each system were PCR amplified, cloned, and disrupted by cassette insertion either individually (dppA, dppB, dppC, oppA, oppB, and oppC) or to create double mutants (dppA oppA, dppB oppB, dppB dppC, and oppB oppC). Peptide-utilizing abilities of the strains were assessed by monitoring growth in a chemically defined medium where the only source of the essential amino acid isoleucine was from peptides of various lengths (two to nine amino acids long). The dipeptide system mutants lacked the ability to use certain dipeptides, hexapeptides, and nonapeptides. However, these mutants retained some ability to grow with other dipeptides, tripeptides, and tetrapeptides. Of the oligopeptide mutants, only the oppB strain differed significantly from the wild type. This strain showed a wild-type phenotype for growth with longer peptides (hexa- and nonapeptides) while having a decreased ability to utilize di-, tri-, and tetrapeptides. The dppA oppA and dppB oppB mutants showed similar phenotypes to those of the dppA and dppB mutants, respectively. Peptide digestion by metalloproteases was ruled out as the cause for residual peptide transport by growing mutant strains in the presence of either EDTA or EGTA. Degradation products associated with a fluorescein isothiocyanate-labeled hexapeptide (plus cells) were minimal. An as yet unidentified peptide transport system(s) in H. pylori is proposed to be responsible for the residual transport.
Collapse
Affiliation(s)
- Michael V Weinberg
- Department of Microbiology, Biological Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
17
|
Kern R, Malki A, Abdallah J, Tagourti J, Richarme G. Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 2006; 189:603-10. [PMID: 17085547 PMCID: PMC1797394 DOI: 10.1128/jb.01522-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.
Collapse
Affiliation(s)
- Renée Kern
- Stress Molecules, Institut Jacques Monod, Universite Paris 7, 2 place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
18
|
Ziolkowska K, Derreumaux P, Folichon M, Pellegrini O, Régnier P, Boni IV, Hajnsdorf E. Hfq variant with altered RNA binding functions. Nucleic Acids Res 2006; 34:709-20. [PMID: 16449205 PMCID: PMC1356530 DOI: 10.1093/nar/gkj464] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/19/2005] [Accepted: 01/07/2006] [Indexed: 11/15/2022] Open
Abstract
The interaction between Hfq and RNA is central to multiple regulatory processes. Using site-directed mutagenesis, we have found a missense mutation in Hfq (V43R) which strongly affects2 the RNA binding capacity of the Hfq protein and its ability to stimulate poly(A) tail elongation by poly(A)-polymerase in vitro. In vivo, overexpression of this Hfq variant fails to stimulate rpoS-lacZ expression and does not restore a normal growth rate in hfq null mutant. Cells in which the wild-type gene has been replaced by the hfqV43R allele exhibit a phenotype intermediate between those of the wild-type and of the hfq minus or null strains. This missense mutation derepresses Hfq synthesis. However, not all Hfq functions are affected by this mutation. For example, HfqV43R represses OppA synthesis as strongly as the wild-type protein. The dominant negative effect of the V43R mutation over the wild-type allele suggests that hexamers containing variant and genuine subunits are presumably not functional. Finally, molecular dynamics studies indicate that the V43R substitution mainly changes the position of the K56 and Y55 side chains involved in the Hfq-RNA interaction but has probably no effect on the folding and the oligomerization of the protein.
Collapse
Affiliation(s)
- Katarzyna Ziolkowska
- ‘Régulation de l'Expression Génétique chez les Microorganismes’ UPR CNRS no. 9073conventionnée avec l'Université Paris 7, Denis Diderot, Paris, France
- ‘Laboratoire de Biochimie Théorique’ UPR CNRS no. 9080 conventionnée avec l'Université Paris 7Denis Diderot, Paris, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences117997 Moscow, Russia
| | - Philippe Derreumaux
- ‘Laboratoire de Biochimie Théorique’ UPR CNRS no. 9080 conventionnée avec l'Université Paris 7Denis Diderot, Paris, France
| | - Marc Folichon
- ‘Régulation de l'Expression Génétique chez les Microorganismes’ UPR CNRS no. 9073conventionnée avec l'Université Paris 7, Denis Diderot, Paris, France
- ‘Laboratoire de Biochimie Théorique’ UPR CNRS no. 9080 conventionnée avec l'Université Paris 7Denis Diderot, Paris, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences117997 Moscow, Russia
| | - Olivier Pellegrini
- ‘Régulation de l'Expression Génétique chez les Microorganismes’ UPR CNRS no. 9073conventionnée avec l'Université Paris 7, Denis Diderot, Paris, France
- ‘Laboratoire de Biochimie Théorique’ UPR CNRS no. 9080 conventionnée avec l'Université Paris 7Denis Diderot, Paris, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences117997 Moscow, Russia
| | - Philippe Régnier
- ‘Régulation de l'Expression Génétique chez les Microorganismes’ UPR CNRS no. 9073conventionnée avec l'Université Paris 7, Denis Diderot, Paris, France
- ‘Laboratoire de Biochimie Théorique’ UPR CNRS no. 9080 conventionnée avec l'Université Paris 7Denis Diderot, Paris, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences117997 Moscow, Russia
| | - Irina V. Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences117997 Moscow, Russia
| | - Eliane Hajnsdorf
- To whom correspondence should be addressed at UPR CNRS 9073, conventionnée avec l'Université Paris 7, Denis Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France. Tel: +33 1 58 41 51 26; Fax: +33 1 58 41 50 20;
| |
Collapse
|
19
|
Ying T, Wang H, Li M, Wang J, Wang J, Shi Z, Feng E, Liu X, Su G, Wei K, Zhang X, Huang P, Huang L. Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 2006; 5:4777-93. [PMID: 16281178 DOI: 10.1002/pmic.200401326] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Shigella flexneri 2a is an important pathogen causing bacillary dysentery in humans. In order to investigate any potential vaccine candidate proteins present in outer membrane proteins (OMPs) and extracellular proteins of S. flexneri 2a 2457T, we use the proteome mapping and database analyzing techniques. A subproteome map and database of OMPs were established first. One hundred and nine of the total 126 marked spots were cut out and processed to MALDI-TOF-MS and PMF. Eighty-seven spots were identified and they represented 55 OMP entries. Furthermore, immunoproteomics analysis of OMPs and extracellular proteins were performed. Total of 34 immunoreactive spots were identified, in which 22 and 12 were from OMPs and extracellular proteins, respectively. Eight novel antigens were found and some of these antigens may be potential vaccine candidate proteins. These results are useful for future studying of pathogenicity, vaccine, and novel antibacterial drugs. Maps and tables of all identified proteins are available on the Internet at www.proteomics.com.cn.
Collapse
Affiliation(s)
- Tianyi Ying
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ying TY, Wang JJ, Wang HL, Feng EL, Wei KH, Huang LY, Huang PT, Huang CF. Immunoproteomics of membrane proteins of Shigella flexneri 2a 2457T. World J Gastroenterol 2005; 11:6880-3. [PMID: 16425402 PMCID: PMC4725026 DOI: 10.3748/wjg.v11.i43.6880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 04/28/2005] [Accepted: 04/30/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To screen the immunogenic membrane proteins of Shigella flexneri 2a 2457T. METHODS The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogenic proteins of S. flexneri 2a 2457T. Serum was gained from rabbits immunized with the same bacteria. Immunogenic spots were cut out from the polyacrylamide gel and digested by trypsin in-gel. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) was performed to determine the molecular weight of peptides. Electrospray ionization (ESI-MS/MS) was performed to determine the sequences of the interesting peptides. RESULTS A total of 20 spots were successfully identified from Coomassie brilliant blue stained gels representing 13 protein entries, 5 known antigens and 8 novel antigens. A hypothetical protein (YaeT) was detected, which might be a candidate target of vaccine. CONCLUSION Membrane proteins of S. flexneri 2a 2457T were successfully observed by 2-DE. Several known and novel antigens were identified by mass spectrum.
Collapse
Affiliation(s)
- Tian-Yi Ying
- Beijing Institute of Biotechnology, State Key Lab of Pathogen and Biosecurity, Beijing 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Oshiro EE, Nepomuceno RSL, Faria JB, Ferreira LCS, Ferreira RCC. Site-directed gene replacement of the phytopathogen Xanthomonas axonopodis pv. citri. J Microbiol Methods 2005; 65:171-9. [PMID: 16087261 DOI: 10.1016/j.mimet.2005.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/23/2005] [Accepted: 07/05/2005] [Indexed: 11/17/2022]
Abstract
In this work we defined experimental conditions for site-directed gene replacement of the Xanthomonas axonopodis pv. citri (Xac), an economically relevant pathogen of citrus plants. The procedure involved, first, optimizing the electrotransformation conditions of the Xac 306 strain and, second, constructing non-replicative suicide vectors carrying knockout copies of the target gene. Using specific experimental conditions, transformation efficiencies of Xac were at least 100 fold higher than those achieved with electroporation protocols previously designed for X. campestris transformation. Successful gene replacement events were achieved with a suicide vector derived from R6K plasmid (pWR-SS) but not with those with ColE1 replication origin. We have chosen the oppA as a target gene, encoding the binding component (OppA) of the major oligopeptide uptake system found in the genome of the Xac 306 strain, although not in X. campestris pv. campestris (Xcc). Defining the experimental conditions, which allow for the specific mutagenesis of the Xac 306 strain, represents a step in the understanding of both genetics and physiology of this economically important bacterial species.
Collapse
Affiliation(s)
- Elisa E Oshiro
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, SP, 05508-000, Brazil
| | | | | | | | | |
Collapse
|
22
|
Levdikov VM, Blagova EV, Brannigan JA, Wright L, Vagin AA, Wilkinson AJ. The Structure of the Oligopeptide-binding Protein, AppA, from Bacillus subtilis in Complex with a Nonapeptide. J Mol Biol 2005; 345:879-92. [PMID: 15588833 DOI: 10.1016/j.jmb.2004.10.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/28/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Besides their role as a source of amino acids for Bacillus subtilis, exogenous peptides play important roles in the signalling pathways leading to the development of competence and sporulation. B.subtilis has three peptide transport systems all belonging to the ATP-binding cassette family, a dipeptide permease (Dpp) and two oligopeptide permeases (Opp and App) with overlapping specificity. These comprise a membrane-spanning channel through which the peptide passes, a pair of ATPases which couple ATP hydrolysis to peptide translocation and a lipid-modified, membrane-anchored extracellular "binding-protein" that serves as the receptor for the system. Here, we present the crystal structure of a soluble form of the peptide-binding protein AppA, which has been solved to 1.6 A spacing by anomalous scattering and molecular replacement methods. The structure reveals a protein made of two distinct lobes with a topology similar to those of DppA from Escherichia coli and OppA from Salmonella typhimurium. Examination of the interlobe region reveals an enlarged pocket, containing electron density defining a nonapeptide ligand. The main-chain of the peptide is well defined and makes a series of polar contacts with the protein including salt-bridges at both its termini. The side-chain density is ambiguous in places, consistent with the interpretation that a population of peptides is bound, whose average electron density resembles the amino acid sequence N-VDSKNTSSW-C.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | | | | | | | | | | |
Collapse
|
23
|
Antal M, Bordeau V, Douchin V, Felden B. A small bacterial RNA regulates a putative ABC transporter. J Biol Chem 2004; 280:7901-8. [PMID: 15618228 DOI: 10.1074/jbc.m413071200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A small noncoding bacterial ribonucleic acid of 62-64 nucleotides, RydC, was identified in the genomes of Escherichia coli, Salmonella, and Shigella. In vivo, RydC binds to the RNA-binding protein Hfq, and it is unstable when Hfq is absent. Mobility assays reveal that complex formation between RydC and Hfq is specific, with an apparent binding constant of approximately 300 nm. Sequence alignments combined with structural probing demonstrate that RydC folds as a pseudoknot. Hfq binds the loops crossing the deep and shallow grooves of the pseudoknotted RNA and reorganizes its overall conformation. An interaction with a polycistronic mRNA, yejABEF, which encodes a putative ABC transporter, was detected by affinity purification of immobilized RNA-Hfq complexes. In vivo, the yejABEF operon is expressed on minimal medium. Remarkably, its expression is reduced when RydC is absent, and the operon is degraded when RydC expression is stimulated. This observation correlates with the growth defects associated with a stimulation of its expression in vivo, generating a thermosensitive phenotype that affects growth on minimal media supplemented with glycerol, maltose, or ribose. We conclude that RydC regulates the yejABEF-encoded ABC permease at the mRNA level. This small RNA may contribute to optimal adaptation of some Enterobacteria to environmental conditions.
Collapse
Affiliation(s)
- Maria Antal
- Biochimie Pharmaceutique, Université de Rennes I, UPRES Jeune Equipe 2311, Espri Inserm, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | |
Collapse
|
24
|
Wang XG, Kidder JM, Scagliotti JP, Klempner MS, Noring R, Hu LT. Analysis of differences in the functional properties of the substrate binding proteins of the Borrelia burgdorferi oligopeptide permease (Opp) operon. J Bacteriol 2004; 186:51-60. [PMID: 14679224 PMCID: PMC365673 DOI: 10.1128/jb.186.1.51-60.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Borrelia burgdorferi genome encodes five orthologues of the substrate binding protein oligopeptide permease A (OppA). It was previously shown that these genes are under the control of separate promoters and are differentially expressed under various environmental conditions. We were interested in determining whether there are also differences in substrate specificities among the proteins. The substrate specificities of recombinant proteins were determined by screening for high-affinity peptides by use of a combinatorial phage display heptapeptide library. Different heptapeptides with high affinities for OppA-1, OppA-2, and OppA-3 were identified. No heptapeptide binding OppA-4 or OppA-5 could be identified. Competitive binding assays were performed under various conditions to determine the substrate preferences of the OppA proteins. OppA-1 retained maximal activity over a broad range of pHs (5.5 to 7.5), whereas OppA-2 and OppA-3 showed peak activities at pHs below 5.5. OppA-1 and OppA-2 showed preferences for tripeptides over dipeptides and longer-chain peptides. Although a wide variety of amino acyl side chains were tolerated by all three OppA proteins, OppA-1 showed the broadest substrate specificity and was able to accommodate peptides composed of bulky hydrophobic residues; OppA-2 and OppA-3 showed preferences for peptides composed of small nonpolar amino acids. All three OppA proteins showed preferences for peptides composed of L- rather than D-amino acids. OppA-3 showed the greatest tolerance for changes in stereochemistry. Substantial differences in the substrate specificities of the OppA proteins of B. burgdorferi suggest that they may have distinct functions in the organism.
Collapse
Affiliation(s)
- Xing-Guo Wang
- Tupper Research Institute, Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
25
|
Langford PR, Sansone A, Valenti P, Battistoni A, Kroll JS. Bacterial superoxide dismutase and virulence. Methods Enzymol 2002; 349:155-66. [PMID: 11912905 DOI: 10.1016/s0076-6879(02)49331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Imperial College of Science, Technology and Medicine, St. Mary's Hospital Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Sansone A, Watson PR, Wallis TS, Langford PR, Kroll JS. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:719-726. [PMID: 11882706 DOI: 10.1099/00221287-148-3-719] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Periplasmic copper- and zinc-cofactored superoxide dismutases ([Cu,Zn]-SODs, SodC) of several Gram-negative pathogens can protect against superoxide-radical-mediated host defences, and thus contribute to virulence. This role has been previously defined for one [Cu,Zn]-SOD in various Salmonella serovars. Following the recent discovery of a second periplasmic [Cu,Zn]-SOD in Salmonella, the effect of knockout mutations in one or both of the original sodC-1 and the new sodC-2 on the virulence of the porcine pathogen Salmonella choleraesuis is investigated here. In comparison to wild-type, while sodC mutants--whether single or double--showed no impairment in growth, they all showed equally enhanced sensitivity to superoxide and a dramatically increased sensitivity to the combination of superoxide and nitric oxide in vitro. This observation had its correlate in experimental infection both ex vivo and in vivo. Mutation of sodC significantly impaired survival of S. choleraesuis in interferon gamma-stimulated murine macrophages compared to wild-type organisms, and all S. choleraesuis sodC mutants persisted in significantly lower numbers than wild-type in BALB/c (Ity(s)) and C3H/HeN (Ity(r)) mice after experimental infection, but in no experimental system were sodC-1 sodC-2 double mutants more attenuated than either single mutant. These data suggest that both [Cu,Zn]-SODs are needed to protect bacterial periplasmic or membrane components. While SodC plays a role in S. choleraesuis virulence, the data presented here suggest that this is through overcoming a threshold effect, probably achieved by acquisition of sodC-1 on a bacteriophage. Loss of either sodC gene confers maximum vulnerability to superoxide on S. choleraesuis.
Collapse
Affiliation(s)
- Assunta Sansone
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| | - Patricia R Watson
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK2
| | - Timothy S Wallis
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK2
| | - Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| | - J Simon Kroll
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
27
|
McLaggan D, Jones MA, Gouesbet G, Levina N, Lindey S, Epstein W, Booth IR. Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol Microbiol 2002; 43:521-36. [PMID: 11985727 DOI: 10.1046/j.1365-2958.2002.02764.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanosensitive channels play an essential role in the regulation of turgor pressure in bacteria. In Escherichia coli, there are multiple mechanosensitive channels that have been characterized genetically: MscL, YggB and KefA. In this report, we describe the cloning of the kefA gene, the organization of the KefA protein and the phenotype of a missense mutation, kefA, which affects the KefA mechanosensitive channel. The altered function of the channel is manifest through increased sensitivity to K+ during growth at low osmolarity and complete inhibition of growth in media containing high K+ concentrations (0.6 M) in the presence of betaine or proline. Growth in high Na+ medium (0.6 M NaCl plus 20 mM K+) is normal. Analysis of the cytoplasmic pools shows that the mutant cannot regulate the K+ content of the cytoplasm when grown in high K+ medium. However, regulation of pools of amino acids is essentially normal and the mutant can accumulate high pools of proline during growth inhibition. The mutant shows increased sensitivity to acid hypo-osmotic shock (transition from neutral to acid pH combined with a reduction in osmolarity). The data are consistent with abnormal regulation of KefA in the presence of high K+ concentrations and either betaine or proline.
Collapse
Affiliation(s)
- Debra McLaggan
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42:619-30. [PMID: 11722730 DOI: 10.1046/j.1365-2958.2001.02647.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term antibiotic treatment offers a rare opportunity to study the evolution of bacteria within the same individual. The appearance of new variants has been suggested to take place via the selection of enhanced resistance in compartments of the body in which the antibiotic concentration is low. Laboratory models of protected compartments have elegantly demonstrated their potential in selecting novel variants. However, comparable data from patients have been rare. In this study, extended antibiotic therapy in a single patient suffering from multiple infected liver cysts has provided the opportunity to observe and analyse the molecular evolution of antibiotic resistance. Each isolate has the same basic ompC gene sequence that is distinct from other Escherichia coli isolates, which suggests that they derive from the same founder population. However, the isolates differ in their auxotrophic markers, in the pI values of their dominant beta-lactamase activities and in the mutations in the promoter region of the ampC gene leading to increased expression of the AmpC enzyme. The data provide strong evidence for a single focal infection expanding via parallel pathways of evolution to give a range of antibiotic-resistant isolates. These data suggest that the infected cysts provide numerous protected environments that are the foci for the separate development of distinct variants.
Collapse
Affiliation(s)
- A S Low
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
29
|
Wolska KI, Bugajska E, Jurkiewicz D, Kuć M, Jóźwik A. Antibiotic susceptibility of Escherichia coli dnaK and dnaJ mutants. Microb Drug Resist 2001; 6:119-26. [PMID: 10990266 DOI: 10.1089/107662900419429] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a beta-lactam, chloramphenicol, tetracycline) has been studied. It was found that null dnaJ and dnaKdnaJ mutants are impaired in the functions leading to antibiotic susceptibility. The secretion of beta-lactamase to the periplasmic space is diminished in both mutants, and the additive effect of the two mutations was observed. The activity of chloramphenicol acetyltransferase is also impaired in an additive manner in both mutant strains. Tetracycline uptake is changed only in the double deletion mutant. These defects were observed only during incubation at high temperature (42 degrees C). Efficient complementation of some of these defects by the wild-type alleles introduced on low-copy number plasmid was achieved. Minimal inhibitory concentrations and the titer of the wild-type strains, delta dnaJ and delta dnaKdnaJ mutants treated with ampicillin, chloramphenicol, and tetracycline were also determined. Higher susceptibility of both mutants to chloramphenicol and tetracycline, as compared to their wild-type parent, was observed only after 1 h preincubation of cultures at 42 degrees C. On the contrary, both mutants were less susceptible to ampicillin than their parent strain.
Collapse
Affiliation(s)
- K I Wolska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Poland.
| | | | | | | | | |
Collapse
|
30
|
Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 1999; 274:32555-64. [PMID: 10551808 DOI: 10.1074/jbc.274.46.32555] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apidaecins, short proline-arginine-rich peptides from insects, are highly bactericidal through a mechanism that includes stereoselective elements but is completely devoid of any pore-forming activity. The spectrum of antibacterial activity, always limited to Gram-negatives, is further dependent on a small number of variable residues and can be manipulated. We show here that mutations in the evolutionary conserved regions result in a more general loss of function, and we have used such analogs to probe molecular interactions in Escherichia coli. First, an assay was developed to measure selectively chiral association with cellular targets. By using this method, we find that apidaecin uptake is energy-driven and irreversible and yet can be partially competed by proline in a stereospecific fashion, results upholding a model of a permease/transporter-mediated mechanism. This putative transporter is not the end point of apidaecin action, for failure of certain peptide analogs to kill cells after entering indicates the existence of another downstream target. Tetracycline-induced loss of bactericidal activity and dose-dependent in vivo inhibition of translation by apidaecin point at components of the protein synthesis machinery as likely candidates. These findings provide new insights into the antibacterial mechanism of a unique group of peptides and perhaps, by extension, for distant mammalian relatives such as PR-39.
Collapse
Affiliation(s)
- M Castle
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
31
|
Wei Y, Miller CG. Characterization of a group of anaerobically induced, fnr-dependent genes of Salmonella typhimurium. J Bacteriol 1999; 181:6092-7. [PMID: 10498722 PMCID: PMC103637 DOI: 10.1128/jb.181.19.6092-6097.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the isolation of a group of anaerobically regulated, fnr-dependent lac fusions in Salmonella typhimurium and have grouped these oxd genes into classes based on map position. In order to identify these genes, we have replaced the original Mud-lac fusion in a member of each oxd class with the much smaller Mud-cam element, cloned the fusion, and determined DNA sequence sufficient to define the oxd gene. Several of the fusions correspond to previously known genes from S. typhimurium or Escherichia coli: oxd-4 = cbiA and oxd-11 = cbiK, oxd-5 = hybB, oxd-7 = dcuB, oxd-8 = moaB, oxd-12 = dmsA, and oxd-14 = napB (aeg-46. 5). Two other fusions correspond to previously unknown loci: oxd-2 encodes an acetate/propionate kinase, and oxd-6 encodes a putative ABC transporter present in S. typhimurium but not in E. coli.
Collapse
Affiliation(s)
- Y Wei
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
32
|
Tsuhako MH, Ferreira LCS, Costa SOPD. OppA Escherichia coli mutants have osmodependent resistance to aminoglycoside antibiotics. Genet Mol Biol 1998. [DOI: 10.1590/s1415-47571998000100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oligopeptide permease (OppA) protein was found to be missing in the periplasmic fractions of Escherichia coli kanamycin-resistant mutants selected under high osmotic conditions. The growth behavior of one mutant in media containing kanamycin or the toxic peptide triornithine suggests that OppA and another cell envelope component contribute to the osmolarity-dependent aminoglycoside resistance of E. Coli.
Collapse
|
33
|
Park JT, Raychaudhuri D, Li H, Normark S, Mengin-Lecreulx D. MppA, a periplasmic binding protein essential for import of the bacterial cell wall peptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate. J Bacteriol 1998; 180:1215-23. [PMID: 9495761 PMCID: PMC107010 DOI: 10.1128/jb.180.5.1215-1223.1998] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
Mutants of a diaminopimelic acid (Dap)-requiring strain of Escherichia coli were isolated which failed to grow on media in which Dap was replaced by the cell wall murein tripeptide, L-alanyl-gamma-D-glutamyl-mesodiaminopimelate. In one such mutant, which is oligopeptide permease (Opp) positive, we have identified a new gene product, designated MppA (murein peptide permease A), that is about 46% identical to OppA, the periplasmic binding protein for Opp. A plasmid carrying the wild-type mppA gene allows the mutant to grow on tripeptide. Two other mutants that failed to grow on tripeptide were resistant to triornithine toxicity, indicating a defect in the opp operon. An E. coli strain whose entire opp operon was deleted but which carried the mppA locus was unable to grow on murein tripeptide unless it was provided with oppBCDF genes in trans. Our data suggest a model whereby the periplasmic MppA binds the murein tripeptide, which is then transported into the cytoplasm via membrane-bound and cytoplasmic OppBCDF. In assessing the affinity of MppA for non-cell wall peptides, we have found that proline auxotrophy can be satisfied with the peptide Pro-Phe-Lys, which utilizes either MppA or OppA in conjunction with OppBCDF for its uptake. Thus, MppA, OppA, and perhaps the third OppA paralog revealed by the E. coli genome sequence may each bind a particular family of peptides but interact with common membrane-associated components for transport of their bound ligands into the cell. As to the physiological function of MppA, the possibility that it may be involved in signal transduction pathway(s) is discussed.
Collapse
Affiliation(s)
- J T Park
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- J W Payne
- School of Biological Sciences, University of Wales, UK
| | | |
Collapse
|
35
|
Karlsson M, Hannavy K, Higgins CF. A sequence-specific function for the N-terminal signal-like sequence of the TonB protein. Mol Microbiol 1993; 8:379-88. [PMID: 8316087 DOI: 10.1111/j.1365-2958.1993.tb01581.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TonB is a proline-rich protein which provides a functional link between the inner and outer membranes of Gram-negative bacteria. TonB is anchored to the inner membrane via an N-terminal signal-like sequence and spans the periplasm, interacting with transport receptors in the outer membrane. We have investigated the role of the N-terminal signal-like peptide in TonB function. Replacement of the N-terminal sequence with heterologous sequences indicates that it has at least three distinct roles in TonB function: (i) to facilitate translocation of TonB across the cytoplasmic membrane; (ii) to anchor TonB to the cytoplasmic membrane; (iii) a sequence-specific functional interaction with the ExbBD proteins.
Collapse
Affiliation(s)
- M Karlsson
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
36
|
Grundy CE, Ayling PD. Fine structure mapping and complementation studies of the metD methionine transport system in Salmonella typhimurium. Genet Res (Camb) 1992; 60:1-6. [PMID: 1452012 DOI: 10.1017/s0016672300030603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A fine structure deletion map of the metD region of the chromosome of Salmonella typhimurium responsible for a high-affinity methionine transport system has been constructed. Complementation tests involving the introduction of metD+DNA contained in a pUC8 vector into metD strains indicated the presence of four complementation groups in the metD region. This suggested that the methionine system belongs to the osmotic shock-sensitive class of transport system, and therefore should possess a periplasmic methionine-binding protein and several membrane proteins. But a deletion mutation covering all known metD point mutations did not affect the level of a methionine binding activity in osmotic shock fluids, suggesting either that the deletion did not extend into the gene encoding the binding protein, or that the binding activity is not associated with the metD system. Possible reasons for the failure to isolate mutations in the gene for the binding protein are discussed.
Collapse
Affiliation(s)
- C E Grundy
- Department of Applied Biology, University of Hull
| | | |
Collapse
|
37
|
Fricke B, Aurich H. Purification of a periplasmic insulin-cleaving proteinase from Acinetobacter calcoaceticus. Arch Microbiol 1992; 157:451-6. [PMID: 1510571 DOI: 10.1007/bf00249104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells of Acinetobacter calcoaceticus contain a constitutive periplasmic metalloproteinase showing similar properties as the periplasmic metalloproteinase of Escherichia coli. The periplasmic proteinase of A. calcoaceticus was purified, starting from periplasm, by ammonium sulfate precipitation, hydrophobic interaction chromatography and chromatofocusing up to the homogeneity of the enzyme in SDS-electrophoresis with a yield of 6.7% and a purification factor of 417. The enzyme has a molecular mass of 108,000 (gel filtration) or 112,000 (native electrophoresis), and consists of four identical subunits with a molecular mass of 27,000 (SDS-electrophoresis). The purified enzyme degrades preferentially polypeptides such as glucagon and insulin. Larger proteins are accepted as substrates to a considerably lower extent. All tested synthetic substrates with trypsin, chymotrypsin, elastase and thermolysin specificity were not cleaved. Therefore, the described enzyme was designated "insulin-cleaving proteinase" (ICP).
Collapse
Affiliation(s)
- B Fricke
- Institut für Biochemie, Bereich Medizin, Martin-Luther-Universität, Halle, Federal Republic of Germany
| | | |
Collapse
|
38
|
Pearce SR, Mimmack ML, Gallagher MP, Gileadi U, Hyde SC, Higgins CF. Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium. Mol Microbiol 1992; 6:47-57. [PMID: 1738314 DOI: 10.1111/j.1365-2958.1992.tb00836.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The oligopeptide permease of Salmonella typhimurium is a periplasmic binding protein-dependent transport system. Five gene products, OppABCDF, are required for the functioning of this transporter, two of which (OppB and OppC) are highly hydrophobic, integral membrane proteins and are responsible for mediating passage of peptides across the cytoplasmic membrane. OppB and OppC are each predicted, from their sequences, to span the membrane many times. In this paper we describe experimental evidence confirming these predictions using a combination of biochemical, immunological and genetic procedures. Each of these two proteins is shown to span the membrane six times, with the N- and C-termini both being located at the cytoplasmic face of the membrane. Opp is apparently a typical member of the ABC (ATP-binding cassette) superfamily of transporters. These findings, therefore, have general implications for the organization and function of other ABC transporters, including the human multidrug resistance protein and the product of the cystic fibrosis gene.
Collapse
Affiliation(s)
- S R Pearce
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | | | |
Collapse
|
39
|
Olson ER, Dunyak DS, Jurss LM, Poorman RA. Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol 1991; 173:234-44. [PMID: 1702779 PMCID: PMC207180 DOI: 10.1128/jb.173.1.234-244.1991] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe the isolation and analysis of an Escherichia coli gene, dppA, and its role in dipeptide transport. dppA maps near min 79 and encodes a protein (DppA) that has regions of amino acid similarity with a peptide-binding protein from Salmonella typhimurium (OppA). Like OppA, DppA is found in the periplasmic space and thus is most likely a dipeptide-binding protein. Insertional inactivation of dppA results in the inability of a proline auxotroph to utilize Pro-Gly as a proline source. dppA-dependent Pro-Gly utilization does not require any of the three major proline transport systems, demonstrating that DppA is not simply a dipeptidase. An in vivo competition assay was used to show that DppA is probably involved in the transport of dipeptides other than Pro-Gly. Transcription of dppA is repressed by the presence of casamino acids, suggesting that the cell alters its dipeptide transport capabilities in response to an environmental signal.
Collapse
Affiliation(s)
- E R Olson
- Molecular Biology Research, Upjohn Company, Kalamazoo, Michigan 49007
| | | | | | | |
Collapse
|
40
|
Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 1991; 5:173-85. [PMID: 1901616 DOI: 10.1111/j.1365-2958.1991.tb01838.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacillus subtilis spo0K mutants are blocked at the first step in sporulation. The spo0K strain was found to contain two mutations: one was linked to the trpS locus, and the other was elsewhere on the chromosome. The mutation linked to trpS was responsible for the sporulation defect (spo-). The unlinked mutation enhanced this sporulation deficiency but had no phenotype on its own. The spo- mutation was located in an operon of five genes highly homologous to the oligopeptide transport (Opp) system of Gram-negative species. Studies with toxic peptide analogues showed that this operon does indeed encode a peptide-transport system. However, unlike the Opp system of Salmonella typhimurium, one of the two ATP-binding proteins, OppF, was not required for peptide transport or for sporulation. The OppA peptide-binding protein, which is periplasmically located in Gram-negative species, has a signal sequence characteristic of lipoproteins with an amino-terminal lipo-amino acid anchor. Cellular location studies revealed that OppA was associated with the cell during exponential growth, but was released into the medium in stationary phase. A major role of the Opp system in Gram-negative bacteria is the recycling of cell-wall peptides as they are released from the growing peptidoglycan. We postulate that the accumulation of such peptides may play a signalling role in the initiation of sporulation, and that the sporulation defect in opp mutants results from an inability to transport these peptides.
Collapse
Affiliation(s)
- M Perego
- Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
41
|
Franklin DP, Laux DC, Williams TJ, Falk MC, Cohen PS. Growth ofSalmonella typhimuriumSL5319 andEscherichia coliF-18 in mouse cecal mucus: role of peptides and iron. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04068.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Sumantran VN, Schweizer HP, Datta P. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol 1990; 172:4288-94. [PMID: 2115866 PMCID: PMC213253 DOI: 10.1128/jb.172.8.4288-4294.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A novel L-threonine transport system is induced in Escherichia coli cells when incubated in amino acid-rich medium under anaerobic conditions. Genetic and biochemical analyses with plasmids harboring mutations in the anaerobically expressed tdcABC operon indicated that the tdcC gene product was responsible for L-threonine uptake. Competition experiments revealed that the L-threonine transport system is also involved in L-serine uptake and is partially shared for L-leucine transport; L-alanine, L-valine, and L-isoleucine did not affect L-threonine uptake. Transport of L-threonine was inhibited by the respiratory chain inhibitors KCN and carbonyl cyanide m-chlorophenylhydrazone and was Na+ independent. These results identify for the first time an E. coli gene encoding a permease specific for L-threonine-L-serine transport that is distinct from the previously described threonine-serine transport systems. A two-dimensional topological model predicted from the amino acid composition and hydropathy plot showed that the TdcC polypeptide appears to be an integral membrane protein with several membrane-spanning domains exhibiting a striking similarity with other bacterial permeases.
Collapse
Affiliation(s)
- V N Sumantran
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | |
Collapse
|
43
|
Morikawa Y, Moore JP, Jones IM. HIV-1 envelope protein gp120 expression by secretion in E. coli: assessment of CD4 binding and use in epitope mapping. J Virol Methods 1990; 29:105-13. [PMID: 1698804 DOI: 10.1016/0166-0934(90)90013-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A non-glycosylated form of the HIV-1 envelope protein gp120 and four truncated derivatives have been expressed as non-fused secreted products in the periplasmic space of E. coli. We show that the full length molecule, whilst folded and soluble, fails to bind to CD4 consistent with other work that suggests an essential role for carbohydrate in gp120 function. In addition, when used in conjunction with the truncated derivatives, rapid epitope mapping of anti-gp120 monoclonal antibodies is achieved using both Western-blot and ELISA formats.
Collapse
Affiliation(s)
- Y Morikawa
- NERC Institute of Virology and Environmental Microbiology, Oxford, U.K
| | | | | |
Collapse
|
44
|
Keck W, van Leeuwen AM, Huber M, Goodell EW. Cloning and characterization of mepA, the structural gene of the penicillin-insensitive murein endopeptidase from Escherichia coli. Mol Microbiol 1990; 4:209-19. [PMID: 2187143 DOI: 10.1111/j.1365-2958.1990.tb00588.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The putative structural gene mepA of the penicillin-insensitive murein endopeptidase from Escherichia coli was cloned and sequenced. N-terminal sequence determination with the isolated endopeptidase protein showed that this enzyme is coded by the mepA gene and that it is synthesized initially with an N-terminal signal peptide. No significant sequence homology with the other (penicillin-sensitive) murein endopeptidase (dacB) or any other protein was found. The precise chromosomal mapping position of mepA relative to two other genes, aroC and fabB, was shown to be 50.4 min. E. coli strains carrying multicopy plasmids with the mepA gene produced 5-6-fold more endopeptidase and secreted it into the periplasm, where it appeared to function normally in vivo since the release of cell wall peptides into the medium increased in parallel. The transformed cells were, however, not unusually sensitive to penicillin and their murein had a normal degree of cross-bridges.
Collapse
Affiliation(s)
- W Keck
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
45
|
Stirling DA, Hulton CS, Waddell L, Park SF, Stewart GS, Booth IR, Higgins CF. Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Mol Microbiol 1989; 3:1025-38. [PMID: 2691838 DOI: 10.1111/j.1365-2958.1989.tb00253.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU loci of Salmonella typhimurium and Escherichia coli encode high-affinity glycine betaine transport systems which play an important role in survival under osmotic stress. Transcription of the proU locus is tightly regulated by osmolarity and this regulation appears to be mediated by osmotically induced changes in DNA supercoiling. In order to study the regulatory mechanisms involved we have cloned and characterized the proU locus of S. typhimurium by an in vivo transductional procedure. The locus is shown to consist of at least three genes, designated proVWX, cotranscribed as a single operon. The first gene in the operon encodes a protein sharing considerable sequence identity with ATP-binding proteins from other periplasmic transport systems. Unexpectedly, the highly expressed periplasmic glycine betaine binding protein was found to be encoded by a distal gene, proX, in the operon. The operon has no significant internal promoters but is expressed from a single osmoregulated promoter whose transcription start site has been mapped. The proU promoter of E. coli has also been sequenced and the transcription start site shown to be similar to that of S. typhimurium. Evidence is presented which suggests that, besides de novo glycine betaine uptake, an important function of ProU may be the recapture and recycling of other osmolytes that leak from the cell.
Collapse
Affiliation(s)
- D A Stirling
- Department of Biochemistry, University of Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Gallagher MP, Pearce SR, Higgins CF. Identification and localization of the membrane-associated, ATP-binding subunit of the oligopeptide permease of Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:133-41. [PMID: 2651120 DOI: 10.1111/j.1432-1033.1989.tb14623.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The OppF protein, a component of the oligopeptide permease of Salmonella typhimurium, is an ATP-binding protein and is believed to couple ATP hydrolysis to the transport process. This protein is an example of a large family of closely related proteins which couple ATP to a variety of different biological processes. The oppF gene has been cloned and sequenced. In order to identify and characterize its protein product we overproduced the protein from the cloned gene. Anti-OppF antibodies were raised against a synthetic peptide. Using these antibodies as a probe we identified OppF in wild-type and overproducing strains. Protease accessibility studies showed the protein to be a peripheral membrane protein located on the cytoplasmic side of the inner membrane. These findings have general implications for the organization and function of this class of prokaryotic and eukaryotic transport system.
Collapse
Affiliation(s)
- M P Gallagher
- Department of Biochemistry, University of Dundee, Scotland
| | | | | |
Collapse
|
47
|
Cottam AN, Ayling PD. Genetic studies of mutants in a high-affinity methionine transport system in Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:358-63. [PMID: 2540412 DOI: 10.1007/bf00339743] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A total of 30 metP mutations defective in the high-affinity methionine transport system were linked in P1 transduction to the zaf-1351::Tn10 insertion mutation at min 5-6 on the Salmonella typhimurium chromosome map. The relationship of metP to several other markers in this region was studied. Methionine transport was strongly inhibited by arsenate, suggesting that the metP system belongs to the shock-sensitive category and possesses a periplasmic binding protein. However, other experiments provided less clear cut evidence. Transport activity was only slightly reduced by osmotic shock; a methionine binding activity was detected in shock fluids from the wild-type strain, and although this activity was reduced by 50% in 3 frameshift mutants, mutants without any activity were not found. No differences were detected in the shock fluids of the 30 mutants when examined by SDS-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- A N Cottam
- Department of Applied Biology, University of Hull, UK
| | | |
Collapse
|
48
|
|
49
|
Russell JB, Strobel HJ, Driessen AJ, Konings WN. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium. J Bacteriol 1988; 170:3531-6. [PMID: 3136141 PMCID: PMC211324 DOI: 10.1128/jb.170.8.3531-3536.1988] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake.
Collapse
Affiliation(s)
- J B Russell
- U.S. Department of Agriculture, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
50
|
Newbury SF, Smith NH, Higgins CF. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 1987; 51:1131-43. [PMID: 2446776 DOI: 10.1016/0092-8674(87)90599-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper we demonstrate a role for mRNA stability in controlling relative gene expression within a polycistronic operon. The polycistronic malEFG operon of E. coli contains two REP sequences (highly conserved inverted repeats) within the malE-malF intercistronic region. Deletion of these REP sequences from the chromosomal operon not only destabilizes upstream malE mRNA, but also results in a 9-fold reduction in the synthesis of MalE protein. A single REP sequence seems to be as efficient as the two normally found in this intergenic region at stabilizing translationally active upstream mRNA. The widespread occurrence of REP sequences and other sequences that could potentially stabilize upstream mRNA suggests that this mechanism of control of gene expression may be rather common.
Collapse
Affiliation(s)
- S F Newbury
- Department of Biochemistry, University of Dundee, Scotland
| | | | | |
Collapse
|