1
|
Shen L, Peraglie C, Podlesainski D, Stracke C, Ojha RS, Caliebe F, Kaiser M, Forchhammer K, Hagemann M, Gutekunst K, Snoep JL, Bräsen C, Siebers B. Structure function analysis of ADP-dependent cyanobacterial phosphofructokinase reveals new phylogenetic grouping in the PFK-A family. J Biol Chem 2024:107868. [PMID: 39393572 DOI: 10.1016/j.jbc.2024.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Dependent on the light conditions, photosynthetic organisms switch between carbohydrate synthesis or breakdown, for which the reversibility of carbohydrate metabolism, including glycolysis, is essential. Kinetic regulation of phosphofructokinase (PFK), a key-control point in glycolysis, was studied in the cyanobacterium Synechocystis sp. PCC 6803. The two PFK iso-enzymes (PFK- A1, PFK-A2), were found to use ADP instead of ATP, and have similar kinetic characteristics, but differ in their allosteric regulation. PFK-A1 is inhibited by 3- phosphoglycerate, a product of the Calvin-Benson-Bassham cycle, while PFK-A2 is inhibited by ATP, which is provided by photosynthesis. This regulation enables cyanobacteria to switch PFK off in light, and on in darkness. ADP dependence has not been reported before for the PFK-A enzyme family, and was thought to be restricted to the PFK-B ribokinase superfamily. Phosphate donor specificity within the PFK-A family could be related to specific binding motifs in ATP-, ADP-, and PPi-dependent PFK-As. Phylogenetic analysis revealed a distribution of ADP-PFK-As in cyanobacteria and in a few alphaproteobacteria, which was confirmed in enzymatic studies.
Collapse
Affiliation(s)
- Lu Shen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany
| | - Carmen Peraglie
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany
| | - David Podlesainski
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany
| | - Ravi Shankar Ojha
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany
| | - Frauke Caliebe
- Molekulare Pflanzenphysiologie, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Karl Forchhammer
- Microbiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Hagemann
- Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Kirstin Gutekunst
- Molekulare Pflanzenphysiologie, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Jacky L Snoep
- Biochemistry, University of Stellenbosch, Private Bag X1, 7600 Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, State, Germany.
| |
Collapse
|
2
|
Greipel E, Nagy K, Csákvári E, Dér L, Galajda P, Kutasi J. Chemotactic Interactions of Scenedesmus sp. and Azospirillum brasilense Investigated by Microfluidic Methods. MICROBIAL ECOLOGY 2024; 87:52. [PMID: 38498218 PMCID: PMC10948495 DOI: 10.1007/s00248-024-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.
Collapse
Affiliation(s)
- Erika Greipel
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny 1/C, H-1117, Budapest, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Eszter Csákvári
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2, 6726, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Peter Galajda
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - József Kutasi
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
| |
Collapse
|
3
|
Martínez MDLÁM, Urzúa LS, Carrillo YA, Ramírez MB, Morales LJM. Polyhydroxybutyrate Metabolism in Azospirillum brasilense and Its Applications, a Review. Polymers (Basel) 2023; 15:3027. [PMID: 37514417 PMCID: PMC10383645 DOI: 10.3390/polym15143027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative Azospirillum brasilense accumulates approximately 80% of polyhydroxybutyrate (PHB) as dry cell weight. For this reason, this bacterium has been characterized as one of the main microorganisms that produce PHB. PHB is synthesized inside bacteria by the polymerization of 3-hydroxybutyrate monomers. In this review, we are focusing on the analysis of the PHB production by A. brasilense in order to understand the metabolism during PHB accumulation. First, the carbon and nitrogen sources used to improve PHB accumulation are discussed. A. brasilense accumulates more PHB when it is grown on a minimal medium containing a high C/N ratio, mainly from malate and ammonia chloride, respectively. The metabolic pathways to accumulate and mobilize PHB in A. brasilense are mentioned and compared with those of other microorganisms. Next, we summarize the available information to understand the role of the genes involved in the regulation of PHB metabolism as well as the role of PHB in the physiology of Azospirillum. Finally, we made a comparison between the properties of PHB and polypropylene, and we discussed some applications of PHB in biomedical and commercial areas.
Collapse
Affiliation(s)
- María de Los Ángeles Martínez Martínez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Lucía Soto Urzúa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Yovani Aguilar Carrillo
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Mirian Becerril Ramírez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| | - Luis Javier Martínez Morales
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla 72570, Mexico
| |
Collapse
|
4
|
Palacios OA, Espinoza-Hicks JC, Camacho-Dávila AA, López BR, de-Bashan LE. Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense : Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense. MICROBIAL ECOLOGY 2023; 85:1412-1422. [PMID: 35524818 DOI: 10.1007/s00248-022-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.
Collapse
Affiliation(s)
- Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - José C Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Alejandro A Camacho-Dávila
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Circuito Universitario S/N, Chihuahua, México
| | - Blanca R López
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S, Mexico
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA.
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, B.C.S, Mexico.
- Dept. of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
5
|
Singh VS, Dubey BK, Rai S, Singh SP, Tripathi AK. Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization. Appl Microbiol Biotechnol 2022; 106:7891-7903. [DOI: 10.1007/s00253-022-12250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
|
6
|
Garcia MVC, Nogueira MA, Hungria M. Combining microorganisms in inoculants is agronomically important but industrially challenging: case study of a composite inoculant containing Bradyrhizobium and Azospirillum for the soybean crop. AMB Express 2021; 11:71. [PMID: 34021824 PMCID: PMC8141083 DOI: 10.1186/s13568-021-01230-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The increasing global perception of the importance of microbial inoculants to promote productivity and sustainability in agriculture prompts the adoption of bio-inputs by the farmers. The utilization of selected elite strains of nitrogen-fixing and other plant-growth promoting microorganisms in single inoculants creates a promising market for composite inoculants. However, combining microorganisms with different physiological and nutritional needs requires biotechnological development. We report the development of a composite inoculant containing Bradyrhizobium diazoefficiens and Azospirillum brasilense for the soybean crop. Evaluation of use of carbon sources indicates differences between the microbial species, with Bradyrhizobium growing better with mannitol and glycerol, and Azospirillum with malic acid and maleic acid, allowing the design of a formulation for co-culture. Species also differ in their growth rates, and the best performance of both microorganisms occurred when Azospirillum was inoculated on the third day of growth of Bradyrhizobium. The composite inoculant developed was evaluated in five field trials performed in Brazil, including areas without and with naturalized populations of Bradyrhizobium. The composite inoculant resulted in symbiotic performance comparable to the application of the two microorganisms separately. In comparison to the single inoculation with Bradyrhizobium, co-inoculation resulted in average increases of 14.7% in grain yield and 16.4% in total N accumulated in the grains. The performance of the composite inoculant was similar or greater than that of the non-inoculated control receiving a high dose of N-fertilizer, indicating the importance of the development and validation of inoculants carrying multiple beneficial microorganisms.
Collapse
|
7
|
Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere. Appl Environ Microbiol 2020; 86:AEM.01026-20. [PMID: 32471917 DOI: 10.1128/aem.01026-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Plant roots shape the rhizosphere community by secreting compounds that recruit diverse bacteria. Colonization of various plant roots by the motile alphaproteobacterium Azospirillum brasilens e causes increased plant growth, root volume, and crop yield. Bacterial chemotaxis in this and other motile soil bacteria is critical for competitive colonization of the root surfaces. The role of chemotaxis in root surface colonization has previously been established by endpoint analyses of bacterial colonization levels detected a few hours to days after inoculation. More recently, microfluidic devices have been used to study plant-microbe interactions, but these devices are size limited. Here, we use a novel slide-in chamber that allows real-time monitoring of plant-microbe interactions using agriculturally relevant seedlings to characterize how bacterial chemotaxis mediates plant root surface colonization during the association of A. brasilens e with Triticum aestivum (wheat) and Medicago sativa (alfalfa) seedlings. We track A. brasilense accumulation in the rhizosphere and on the root surfaces of wheat and alfalfa. A. brasilense motile cells display distinct chemotaxis behaviors in different regions of the roots, including attractant and repellent responses that ultimately drive surface colonization patterns. We also combine these observations with real-time analyses of behaviors of wild-type and mutant strains to link chemotaxis responses to distinct chemicals identified in root exudates to specific chemoreceptors that together explain the chemotactic response of motile cells in different regions of the roots. Furthermore, the bacterial second messenger c-di-GMP modulates these chemotaxis responses. Together, these findings illustrate dynamic bacterial chemotaxis responses to rhizosphere gradients that guide root surface colonization.IMPORTANCE Plant root exudates play critical roles in shaping rhizosphere microbial communities, and the ability of motile bacteria to respond to these gradients mediates competitive colonization of root surfaces. Root exudates are complex chemical mixtures that are spatially and temporally dynamic. Identifying the exact chemical(s) that mediates the recruitment of soil bacteria to specific regions of the roots is thus challenging. Here, we connect patterns of bacterial chemotaxis responses and sensing by chemoreceptors to chemicals found in root exudate gradients and identify key chemical signals that shape root surface colonization in different plants and regions of the roots.
Collapse
|
8
|
|
9
|
Yevstigneyeva SS, Sigida EN, Fedonenko YP, Konnova SA, Ignatov VV. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Ayyaz K, Zaheer A, Rasul G, Mirza MS. Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat. Braz J Microbiol 2016; 47:542-50. [PMID: 27133558 PMCID: PMC4927691 DOI: 10.1016/j.bjm.2015.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
The main objective of the present study was to isolate phytohormone-producing, phosphate-solubilizing strains of Azospirillum from wheat to be used as inoculants for plant growth promotion. Five Azospirillum strains were isolated from the rhizosphere of field-grown wheat (Triticum aestivum L.), and it was confirmed by BOX-polymerase chain reaction (PCR) that the isolates were different and not re-isolates of the same strain. Sequence analysis of the PCR-amplified 16S rRNA gene indicated that four isolates showed maximum similarity to Azospirillum brasilense and one isolate showed maximum similarity to Azospirillum zeae. This is the first report indicating the presence of an A. zeae like isolate in the wheat rhizosphere in Pakistan. The bacterial isolates were characterized for their plant growth-promoting traits, phosphate solubilization, and indole-3-acetic acid (IAA) production. None of the isolates showed phosphate solubilization activity in the commonly used Pikovskaya medium. However, all strains (except AzoK4) exhibited ability to solubilize tricalcium phosphate (TCP) in modified Pikovskaya medium in which sucrose was replaced by Na-malate, as well as in TCP-supplemented Luria-Bertani (LB) medium. Organic acids, such as acetic, citric, lactic, malic, and succinic acids, were detected in culture supernatants of the tested Azospirillum strains. All strains exhibited ability to produce IAA in the growth medium, except Azospirillum sp. AzoK1. Among the strains tested, the maximum IAA production (30.49±1.04mgL(-1)) and phosphate solubilization (105.50±4.93mgL(-1)) were shown by a pure culture of Azospirillum sp. AzoK2. In pot experiments, single-strain inocula of Azospirillum sp. AzoK1 and AzoK2 improved wheat plant growth.
Collapse
Affiliation(s)
- Khadija Ayyaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Ghulam Rasul
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
11
|
Carrasco-Espinosa K, García-Cabrera RI, Bedoya-López A, Trujillo-Roldán MA, Valdez-Cruz NA. Positive effect of reduced aeration rate on growth and stereospecificity of DL-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation. J Biotechnol 2014; 195:74-81. [PMID: 25556026 DOI: 10.1016/j.jbiotec.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 11/16/2022]
Abstract
Azospirillum brasilense has significance as a growth promoter in plants of commercial interest. Two industrial native strains (Start and Calf), used as a part of an inoculant formulation in Mexico during the last 15 years, were incubated in laboratory-scale pneumatic bioreactors at different aeration rates. In both strains, the positive effect of decreased aeration was observed. At the lowest (0.1 vvm, air volume/liquid volume×minute), the highest biomass were obtained for Calf (7.8 × 10(10)CFU/ml), and Start (2.9 × 10(9)CFU/ml). These were higher in one magnitude order compared to cultures carried out at 0.5 vvm, and two compared to those at 1.0 vvm. At lower aeration, both stereoisomeric forms of malic acid were consumed, but at higher aeration, just L-malate was consumed. A reduction in aeration allows an increase of the shelf life and the microorganism saved higher concentrations of polyhydroxybutyrate. The selected fermentation conditions are closely related to those prevalent in large-scale bioreactors and offer the possibility of achieving high biomass titles with high shelf life at a reduced costs, due to the complete use of a carbon source at low aeration of a low cost raw material as DL-malic acid mixture in comparison with the L-malic acid stereoisomer.
Collapse
Affiliation(s)
- Karen Carrasco-Espinosa
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F. CP 04510, Mexico
| | - Ramsés I García-Cabrera
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F. CP 04510, Mexico
| | - Andrea Bedoya-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F. CP 04510, Mexico
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F. CP 04510, Mexico
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México, D.F. CP 04510, Mexico.
| |
Collapse
|
12
|
Boyko AS, Konnova SA, Fedonenko YP, Zdorovenko EL, Smol'kina ON, Kachala VV, Ignatov VV. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum. Microbiol Res 2011; 166:585-93. [PMID: 21334868 DOI: 10.1016/j.micres.2011.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 11/28/2022]
Abstract
Azospirillum brasilense SR55, isolated from the rhizosphere of Triticum durum, was classified as serogroup II on the basis of serological tests. Such serogroup affiliation is uncharacteristic of wheat-associated Azospirillum species. The lipid A of A. brasilense SR55 lipopolysaccharide contained 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, hexadecanoic and octadecenoic fatty acids. The structure of the lipopolysaccharide's O polysaccharide was established, with the branched octasaccharide repeating unit being represented by l-rhamnose, l-3-O-Me-rhamnose, d-galactose and d-glucuronic acid. The SR55 lipopolysaccharide induced deformations of wheat root hairs. The lipopolysaccharide was not involved in bacterial cell aggregation, but its use to pretreat wheat roots was conducive to cell adsorption. This study shows that Azospirillum bacteria can utilise their own lipopolysaccharide as a carbon source, which may give them an advantage in competitive natural environments.
Collapse
Affiliation(s)
- Alevtina S Boyko
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Leyva LA, Bashan Y. Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:898-904. [PMID: 18619846 DOI: 10.1016/j.plaphy.2008.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
The mesquite amargo (Prosopis articulate), one of the main nurse trees of the Sonoran Desert in Mexico, is responsible for major, natural re-vegetation processes. It exudes gluconic acid in root exudates, a favorite carbon source for the plant growth-promoting bacterium Azospirillum brasilense. Two enzymes, gluconokinase (EC 2.7.1.12) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44), participating in the phosphogluconate pathway, are active in the bacteria. Bacterial 6-phosphogluconate dehydrogenase is a constitutive enzyme, while gluconokinase is induced upon exposure to gluconic acid. Both enzymes are active in young, non-inoculated mesquite seedlings growing under hydroponic conditions. When A. brasilense Cd bacteria are inoculated on the root system, the roots exhibit much higher activity of gluconokinase, but not 6-phosphogluconate dehydrogenase. Mesquite roots exhibit high levels of root colonization by the inoculating bacteria. At the same time, and also for plants growing under sand culture conditions, the seedlings grew taller, greener, had longer leaves, and were heavier.
Collapse
Affiliation(s)
- Luis A Leyva
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Colonia Playa Palo de Santa Rita, La Paz, BCS 23090, Mexico
| | | |
Collapse
|
14
|
Rodriguez H, Gonzalez T, Goire I, Bashan Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 2004; 91:552-5. [PMID: 15502903 DOI: 10.1007/s00114-004-0566-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 08/10/2004] [Indexed: 11/24/2022]
Abstract
In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.
Collapse
Affiliation(s)
- Hilda Rodriguez
- Cuban Research Institute on Sugarcane By-Products, Havana, Cuba
| | | | | | | |
Collapse
|
15
|
Bashan Y, De-Bashan LE. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 2002; 68:2637-43. [PMID: 12039714 PMCID: PMC123946 DOI: 10.1128/aem.68.6.2637-2643.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 02/27/2002] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology, The Center for Biological Research of the Northwest, La Paz, Mexico
| | | |
Collapse
|
16
|
Chattopadhyay S, Mukherjee A, Ghosh S. Molecular cloning and sequencing of an operon, carRS of Azospirillum brasilense, that codes for a novel two-component regulatory system: demonstration of a positive regulatory role of carR for global control of carbohydrate catabolism. J Bacteriol 1994; 176:7484-90. [PMID: 8002571 PMCID: PMC197204 DOI: 10.1128/jb.176.24.7484-7490.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A pleiotropic carbohydrate mutant, CR17, of Azospirillum brasilense RG (wild type) that assimilates C4 dicarboxylates (succinate and malate) but not carbohydrate (fructose, arabinose, galactose, glycerol, and gluconate) as C sources for growth was used to identify the car (carbohydrate regulation) locus by complementation analysis. The 2.8-kb genomic fragment that complemented the Car- defect of CR17 and overlapped the fru operon (S. Chattopadhyay, A. Mukherjee, and S. Ghosh, J. Bacteriol. 175:3240-3243, 1993) has now been completely sequenced. The sequence contains an operon, carRS, coding for two proteins, CARR and CARS, having 236 and 352 amino acid residues, respectively. The 3'-flanking region of the carRS operon showed sequence homology with the 5' terminus of the fruB gene of a related bacterium, Rhodobacter capsulatus. A complementation study with carRS deletion clones showed that only the carR+ gene was required to complement the Car- defect of CR17, signifying that the carbohydrate pleiotropy was due to a lesion within this gene. Although the 2.8-kb DNA containing the carRS operon when introduced by conjugation into CR17 also complemented the Car- defect, the complemented transconjugant was unable to utilize succinate as a C source. The reason for this is not clear. A sequence analysis of the two protein products strongly suggests that the protein pair may constitute a novel two-component regulatory system for global expression of carbohydrate catabolic pathways in A. brasilense.
Collapse
|
17
|
Strzelczyk E, Kampert M, Li C. Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 1994. [DOI: 10.1016/s0944-5013(11)80136-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Chattopadhyay S, Mukherjee A, Ghosh S. Azospirillum brasilense locus coding for phosphoenolpyruvate:fructose phosphotransferase system and global regulation of carbohydrate metabolism. J Bacteriol 1993; 175:3240-3. [PMID: 8491742 PMCID: PMC204653 DOI: 10.1128/jb.175.10.3240-3243.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutants of Azospirillum brasilense unable to grow on fructose include ones affected only on fructose (Fru-) and others impaired on many or all carbohydrates through interference with induction of their specific pathways (Car-). Both types of mutants could be complemented by a cosmid in broad-host-range vector pLAFR1 containing a 27.5-kb genomic insert, Car(-)-complementing activity depending on a 2.2-kb fragment, and Fru(-)-complementing activity depending on an overlapping 9.6-kb fragment.
Collapse
|
19
|
Abstract
The Entner-Doudoroff pathway is now known to be very widely distributed in nature. Biochemical and physiological studies show that the Entner-Doudoroff pathway can operate in a linear and catabolic mode, in a 'cyclic' mode, in a modified mode involving non-phosphorylated intermediates, or in alternative modes involving C1 metabolism and anabolism. Molecular and genetic analyses of the Entner-Doudoroff pathway in Zymomonas mobilis, Escherichia coli and Pseudomonas aeruginosa have led to an improved understanding of some fundamental aspects of metabolic controls. It can be argued that the Entner-Doudoroff pathway is more primitive than Embden-Meyerhof-Parnas glycolysis.
Collapse
Affiliation(s)
- T Conway
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118
| |
Collapse
|
20
|
Westby CA, Enderlin CS, Steinberg NA, Joseph CM, Meeks JC. Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess. J Bacteriol 1987; 169:4211-4. [PMID: 2887545 PMCID: PMC213731 DOI: 10.1128/jb.169.9.4211-4214.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.
Collapse
|
21
|
Mukherjee A, Ghosh S. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense. J Bacteriol 1987; 169:4361-7. [PMID: 2957360 PMCID: PMC213753 DOI: 10.1128/jb.169.9.4361-4367.1987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fructose uptake and catabolism in Azospirillum brasilense is dependent on three fructose-inducible enzymes (fru-enzymes): (i) enzyme I and (ii) enzyme II of the phosphoenolpyruvate:fructose phosphotransferase system and (iii) 1-phosphofructokinase. In minimal medium containing 3.7 mM succinate and 22 mM fructose as sources of carbon, growth of A. brasilense was diauxic, succinate being utilized in the first phase of growth and fructose in the second phase with a lag period between the two growth phases. None of the fru-enzymes could be detected in cells grown with succinate as the sole source of carbon, but they were detectable toward the end of the first phase of diauxie. All the fru-enzymes were coinduced by fructose and coordinately repressed by succinate. Studies on the effect of succinate on differential rates of syntheses of the fru-enzymes revealed that their induced syntheses in fructose minimal medium were subject to transient as well as permanent (catabolite) repression by succinate. Succinate also caused a similar pattern of transient and permanent repression of the fructose transport system in A. brasilense. However, no inducer (fructose) exclusionlike effect was observed as there was no inhibition of fructose uptake in the presence of succinate with fructose-grown cells even when they were fully induced for succinate uptake activity.
Collapse
|
22
|
Sadasivan L, Neyra CA. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 1985; 163:716-23. [PMID: 3894333 PMCID: PMC219180 DOI: 10.1128/jb.163.2.716-723.1985] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phenomena of flocculation and floc formation by Azospirillum brasilense Sp7 (ATCC 29145) and Azospirillum lipoferum Sp59b (ATCC 29707) were studied in aerobic liquid cultures. Carbon sources representative of various entry pathways in combination with various nitrogen sources induced flocculation in both species of azospirilla. Noticeably, the combination of fructose and nitrate was the most effective in terms of floc yields. Phase-contrast microscopic observations revealed a transition in cell morphology from freely motile, vibrioid cells to nonmotile, highly refractile encysting forms during the formation of flocs. The nonmotile forms in flocs appeared to be entangled within a fibrillar matrix, and the cells were highly resistant to desiccation. Dried flocs kept for almost 6 months still maintained the highly refractile encysting forms, and their viability was confirmed by pellicle formation and acetylene reduction in semisolid malate medium. Electron microscopic observations of the desiccated flocs revealed the presence of cell forms containing abundant poly beta-hydroxybutyrate granules within a central body and surrounded by a thick layer of exopolysaccharides. The latter were characterized by alkali and acid digestion, crude cellulase hydrolysis, and calcofluor staining. It was concluded that the overproduction of exocellular polymers induces the flocculent growth and is associated with the concomitant transformation of vegetative cells to the desiccation-resistant encysting forms under limiting cultural conditions.
Collapse
|
23
|
Martínez-Drets G, Fabiano E, Cardona A. Carbohydrate Catabolism in
Azospirillum amazonense. Appl Environ Microbiol 1985; 50:183-5. [PMID: 16346836 PMCID: PMC238596 DOI: 10.1128/aem.50.1.183-185.1985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen fixer
Azospirillum amazonense
grew on the various disaccharides, hexoses, and pentoses tested in this study but not on polyols and on some tricarboxylic acid cycle intermediates. An active transport system was detected for sucrose and glucose but not for mannitol and 2-ketoglutarate. Six
A. amazonense
strains were examined for 16 carbon-metabolizing enzymes, and the results indicate that these strains employ the Entner-Doudoroff pathway to catabolize sucrose, fructose, and glucose. The hexose monophosphate and Embden-Meyerhof-Parnas pathways were not detectable.
Collapse
Affiliation(s)
- G Martínez-Drets
- Division of Biochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | |
Collapse
|
24
|
Gupta KD, Ghosh S. Identification of a phosphoenolpyruvate:fructose 1-phosphotransferase system in Azospirillum brasilense. J Bacteriol 1984; 160:1204-6. [PMID: 6501230 PMCID: PMC215847 DOI: 10.1128/jb.160.3.1204-1206.1984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An inducible phosphoenolpyruvate:fructose phosphotransferase system has been detected in Azospirillum brasilense, which requires a minimum of two components of the crude extracts for activity: (i) a soluble fraction (enzyme I) and (ii) a membrane fraction (enzyme II). The uninduced cells neither show any uptake of fructose nor express activity of either of these two enzyme fractions. C-1 of fructose is the site of phosphorylation. This phosphotransferase system does not accept glucose as a substrate for phosphorylation.
Collapse
|
25
|
Martinez-Drets G, Del Gallo M, Burpee C, Burris RH. Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. J Bacteriol 1984; 159:80-5. [PMID: 6588050 PMCID: PMC215595 DOI: 10.1128/jb.159.1.80-85.1984] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fructose, galactose, L-arabinose, gluconate, and several organic acids support rapid growth and N2 fixation of Azospirillum brasiliense ATCC 29145 (strain Sp7) as a sole source of carbon and energy. Growth of Azospirillum lipoferum ATCC 29707 (strain Sp59b) is also supported by glucose, mannose, mannitol, and alpha-ketoglutarate. Oxidation of fructose and gluconate by A. brasiliense Sp7 and of glucose, gluconate, and fructose by A. lipoferum Sp59b was achieved through inducible enzymatic mechanisms. Both strains exhibited all of the enzymes of the Embden-Meyerhof-Parnas pathway, and strain Sp59b also possesses all the enzymes of the Entner-Doudoroff pathway. Fluoride inhibited growth on fructose (strains Sp7 and Sp59b) or on glucose (strain Sp59b) but not on malate. There was no activity via the oxidative hexose monophosphate pathway in either strain. There was greater activity with 1-phosphofructokinase than with 6-phosphofructokinase in both strains. Strain Sp59b formed fructose-6-phosphate via hexokinase, an enzyme that is lacking in strain Sp7. A. brasiliense and A. lipoferum exhibited the enzymes both of the tricarboxylic acid cycle and of the glyoxylate shunt; iodoacetate, fluoropyruvate, and malonate were inhibitory. A. brasiliense Sp7 could not transport [14C]glucose and alpha-[14C]ketoglutarate into its cells.
Collapse
|
26
|
Abstract
The pathways for catabolism of fructose were investigated in the type strains of Azospirillum lipoferum and Azospirillum brasilense grown aerobically with (NH4)2SO4 as the nitrogen source. When grown on fructose, the former species possessed a complete Entner-Doudoroff pathway, whereas the latter species lacked activity for glucose-6-phosphate dehydrogenase. Both species possessed a complete catabolic Embden-Meyerhof-Parnas pathway. Neither species possessed the key enzyme of the hexose monophosphate pathway, 6-phosphogluconate dehydrogenase. Both species could phosphorylate fructose to fructose-1-phosphate by means of a phosphoenolpyruvate-phosphotransferase system, and high activities of 1-phosphofructokinase occurred. Both species possessed glucokinase activity, but only A. lipoferum had hexokinase activity; moreover, the cells of A. brasilense were nearly impermeable to glucose, accounting for the inability of this species to grow on glucose. Both species possessed pyruvate dehydrogenase, a complete tricarboxylic acid cycle, a glyoxylate shunt, and malic enzyme. Analysis of the acidic end products for both species indicated the formation of only small amounts of various organic acids, and most of the titratable acidity was due to utilization of the ammonium ions of the medium. Gluconic acid was not formed during growth of either species on fructose but was detected during growth of A. lipoferum on glucose; this species also possessed an NADP-linked glucose dehydrogenase and gluconokinase.
Collapse
|
27
|
Loh WH, Randles CI, Sharp WR, Miller RH. Intermediary carbon metabolism of Azospirillum brasilense. J Bacteriol 1984; 158:264-8. [PMID: 6425263 PMCID: PMC215407 DOI: 10.1128/jb.158.1.264-268.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Azospirillum brasilense Sp 7 grew rapidly in AZO medium containing reduced nitrogen and succinate as an energy source, with a doubling time of 43 min. No growth was measured with glucose as the sole carbon source. In contrast, Azospirillum lipoferum Sp 59b could grow in media containing either succinate or glucose with a doubling time of 69 min and 223 min, respectively. Warburg-Barcroft respirometry showed that the rate of oxygen consumption by A. brasilense Sp 7 on glucose medium (0.034 mumol of O2 min-1 mg-1 of cell protein) was only one-quarter of that on succinate medium (0.14 mumol of O2 min-1 mg-1). Radioisotopic labeling showed that very little glucose was assimilated by A. brasilense Sp 7 as compared to succinate. High respiration rates were measured on A. lipoferum Sp 59b with either succinate (0.15 mumol of O2 min-1 mg-1) or glucose (0.13 mumol of O2 min-1 mg-1) as the sole carbon source. The pattern of CO2 evolution from differentially labeled succinate indicated that A. brasilense Sp 7 had a complete tricarboxylic acid cycle. Assimilation of most of the radioactivity from labeled succinate, pyruvate, and acetate into lipids suggested a strong anabolic metabolism and the presence of an active malic enzyme of phosphoenolpyruvate carboxykinase. The distribution of radioactivity from differentially labeled pyruvate showed that gluconeogenesis competed with pyruvate dehydrogenase. Uptake and incorporation of labeled acetate also indicated the presence of a glyoxylate cycle in A. brasilense Sp 7.
Collapse
|