1
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
3
|
Yokoyama S, Hayashi M, Goto T, Muto Y, Tanaka K. Identification of cfxA gene variants and susceptibility patterns in β-lactamase-producing Prevotella strains. Anaerobe 2023; 79:102688. [PMID: 36580990 DOI: 10.1016/j.anaerobe.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Antimicrobial-resistant isolates of Prevotella species, especially those resistant to β-lactams, have become increasingly common. Here, we aimed to elucidate the underlying mechanisms contributing to the emergence and spread of antimicrobial resistance in Prevotella species. METHODS Prevotella species were isolated from a variety of clinical specimens. β-lactamase production was determined using nitrocefin discs, and the determination of minimum inhibitory concentration (MIC) to ten antimicrobials was done by the agar dilution method. Four resistance genes (cfxA, tetQ, ermF, and nim) and cfxA-flanking regions were detected using polymerase chain reaction. cfxA and the flanking regions were sequenced, and a phylogenetic tree was constructed based on CfxA amino acid sequences using the UPGMA method. RESULTS Among the 45 Prevotella isolates identified, 35 (77.8%) produced β-lactamases and had the cfxA genes. The tetQ, ermF, and nim genes were detected in 53.3%, 17.8%, and 0% of the 45 isolates, respectively. Among the 33 sequenced cfxA alleles, cfxA2 (45.5%) was the most frequent, followed by cfxA3 (42.4%) and a novel variant (cfxA7, 12.1%). The novel CfxA7 β-lactamase had a novel L155F substitution not previously reported in CfxA variants. The MICs of all β-lactam agents tested, excluding cefmetazole and meropenem, were lower among cfxA7-positive isolates than in cfxA2-and cfxA3-positive isolates. CONCLUSIONS Differences in MICs of penicillins and cephalosporins may be due to amino acid substitutions in the CfxA variants, CfxA2, CfxA3, and CfxA7, among Prevotella isolates. Possession of cfxA-mobA, tetQ, and ermF may increase the risks of the emergence and spread of multidrug-resistant Prevotella species.
Collapse
Affiliation(s)
- Sodai Yokoyama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Takatsugu Goto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Yoshinori Muto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan; Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.
| |
Collapse
|
4
|
Lund D, Kieffer N, Parras-Moltó M, Ebmeyer S, Berglund F, Johnning A, Larsson DGJ, Kristiansson E. Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes. Microb Genom 2022; 8. [PMID: 35084301 PMCID: PMC8914350 DOI: 10.1099/mgen.0.000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrolides are broad-spectrum antibiotics used to treat a range of infections. Resistance to macrolides is often conferred by mobile resistance genes encoding Erm methyltransferases or Mph phosphotransferases. New erm and mph genes keep being discovered in clinical settings but their origins remain unknown, as is the type of macrolide resistance genes that will appear in the future. In this study, we used optimized hidden Markov models to characterize the macrolide resistome. Over 16 terabases of genomic and metagenomic data, representing a large taxonomic diversity (11 030 species) and diverse environments (1944 metagenomic samples), were searched for the presence of erm and mph genes. From this data, we predicted 28 340 macrolide resistance genes encoding 2892 unique protein sequences, which were clustered into 663 gene families (<70 % amino acid identity), of which 619 (94 %) were previously uncharacterized. This included six new resistance gene families, which were located on mobile genetic elements in pathogens. The function of ten predicted new resistance genes were experimentally validated in Escherichia coli using a growth assay. Among the ten tested genes, seven conferred increased resistance to erythromycin, with five genes additionally conferring increased resistance to azithromycin, showing that our models can be used to predict new functional resistance genes. Our analysis also showed that macrolide resistance genes have diverse origins and have transferred horizontally over large phylogenetic distances into human pathogens. This study expands the known macrolide resistome more than ten-fold, provides insights into its evolution, and demonstrates how computational screening can identify new resistance genes before they become a significant clinical problem.
Collapse
Affiliation(s)
- David Lund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Nicolas Kieffer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcos Parras-Moltó
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Erik Kristiansson,
| |
Collapse
|
5
|
Insertional Inactivation of Prevotella intermedia OxyR Results in Reduced Survival with Oxidative Stress and in the Presence of Host Cells. Microorganisms 2021; 9:microorganisms9030551. [PMID: 33800047 PMCID: PMC7999485 DOI: 10.3390/microorganisms9030551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
One of the most abundant bacteria in the subgingival pockets of patients with bleeding following mechanical periodontal therapy is Prevotella intermedia. However, despite its abundance, the molecular mechanisms of its contribution to periodontal disease are not well known. This is mainly due to the lack of genetic tools that would allow examination of the role of predicted virulence factors in the pathogenesis of this bacterium. Here, we report on the first mutant in the P. intermedia OMA14 strain. The mutation is an allelic exchange replacement of the sequences coding for a putative OxyR regulator with ermF sequences coding for the macrolide-lincosamide resistance in anaerobic bacteria. The mutant is severely impaired in its ability to grow with eukaryotic cells, indicating that it is an important target for interventional strategies. Further analyses reveal that its ability to grow with oxidative stress species, in the form of hydrogen peroxide and oxygen, is severely affected. Transcriptome analysis reveals that the major deregulated genes code for the alkylhydroperoxide reductase system, AhpCF, mediating protection from peroxide stress. Moreover, genes coding for Dps, CydA and Ftn are downregulated in the mutant strain, as further verified using qRT-PCR analysis. In conclusion, we succeeded in generating the first P. intermedia mutant and show that the OxyR-deficient strain is unable to survive with a variety of host cells as well as with oxidative stress.
Collapse
|
6
|
Yi X, Lin C, Ong EJL, Wang M, Li B, Zhou Z. Expression of resistance genes instead of gene abundance are correlated with trace levels of antibiotics in urban surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:437-446. [PMID: 31026690 DOI: 10.1016/j.envpol.2019.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 05/06/2023]
|
7
|
Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria. mSystems 2018; 3:mSystems00143-17. [PMID: 29359196 PMCID: PMC5768790 DOI: 10.1128/msystems.00143-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. To identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylum Bacteroidetes. IMPORTANCE Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.
Collapse
|
8
|
Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit Rev Microbiol 2016; 43:1-30. [DOI: 10.3109/1040841x.2015.1136261] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Noemí Palma
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Gertrudis Horna
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria J Pons
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| |
Collapse
|
9
|
Carey DE, Zitomer DH, Kappell AD, Choi MJ, Hristova KR, McNamara PJ. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1060-1067. [PMID: 27291499 DOI: 10.1039/c6em00282j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.
Collapse
Affiliation(s)
- Daniel E Carey
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, USA.
| | - Daniel H Zitomer
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, USA.
| | - Anthony D Kappell
- Department of Biological Sciences, Marquette University, 530 N. 15th Street, Milwaukee, WI, USA
| | - Melinda J Choi
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, USA.
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, 530 N. 15th Street, Milwaukee, WI, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Carey DE, Zitomer DH, Hristova KR, Kappell AD, McNamara PJ. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:126-134. [PMID: 26588246 DOI: 10.1021/acs.est.5b03080] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).
Collapse
Affiliation(s)
- Daniel E Carey
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| | - Daniel H Zitomer
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University , 530 N. 15th Street, Milwaukee 53213, Wisconsin, United States
| | - Anthony D Kappell
- Department of Biological Sciences, Marquette University , 530 N. 15th Street, Milwaukee 53213, Wisconsin, United States
| | - Patrick J McNamara
- Department of Civil, Construction, and Environmental Engineering, 1637 West Wisconsin Avenue, Marquette University , Milwaukee 53213, Wisconsin, United States
| |
Collapse
|
11
|
Xing L, Yu H, Qi J, Jiang P, Sun B, Cui J, Ou C, Chang W, Hu Q. ErmF and ereD are responsible for erythromycin resistance in Riemerella anatipestifer. PLoS One 2015; 10:e0131078. [PMID: 26107936 PMCID: PMC4481100 DOI: 10.1371/journal.pone.0131078] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
To investigate the genetic basis of erythromycin resistance in Riemerella anatipestifer, the MIC to erythromycin of 79 R. anatipestifer isolates from China and one typed strain, ATCC11845, were evaluated. The results showed that 43 of 80 (53.8%) of the tested R. anatipestifer strains showed resistance to erythromycin, and 30 of 43 erythromycin-resistant R. anatipestifer strains carried ermF or ermFU with an MIC in the range of 32–2048 μg/ml, while the other 13 strains carrying the ereD gene exhibited an MIC of 4–16 μg/ml. Of 30 ermF + R. anatipestifer strains, 27 (90.0%) carried the ermFU gene which may have been derived from the CTnDOT-like element, while three other strains carried ermF from transposon Tn4351. Moreover, sequence analysis revealed that ermF, ermFU, and ereD were located within the multiresistance region of the R. anatipestifer genome.
Collapse
Affiliation(s)
- Linlin Xing
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61, Daizong Road, Tai’an, 271018, China
| | - Hui Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Pan Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Bingqing Sun
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Junsheng Cui
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Changcan Ou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Weishan Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61, Daizong Road, Tai’an, 271018, China
- * E-mail: (QH); (WC)
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
- * E-mail: (QH); (WC)
| |
Collapse
|
12
|
Luo H, Liu M, Wang L, Zhou W, Wang M, Cheng A, Jia R, Chen S, Sun K, Yang Q, Chen X, Zhu D. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer. Avian Pathol 2015; 44:162-8. [PMID: 25690020 DOI: 10.1080/03079457.2015.1019828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Riemerella anatipestifer is a major bacterial pathogen of waterfowl, globally responsible for avian septicaemic disease. As chemotherapy is the predominant method for the prevention and treatment of R. anatipestifer infection in poultry, the widespread use of antibiotics has favoured the emergence of antibiotic-resistant strains. However, little is known about R. anatipestifer susceptibility to macrolide antibiotics and its resistance mechanism. We report for the first time the identification of a macrolide resistance mechanism in R. anatipestifer that is mediated by the ribosomal RNA methyltransferase ermF. We identified the presence of the ermF gene in 64/206 (31%) R. anatipestifer isolates from different regions in China. An ermF deletion strain was constructed to investigate the function of the ermF gene on the resistance to high levels of macrolides. The ermF mutant strain showed significantly decreased resistance to macrolide and lincosamide, exhibiting 1024-, 1024-, 4- and >2048-fold reduction in the minimum inhibitory concentrations for erythromycin, azithromycin, tylosin and lincomycin, respectively. Furthermore, functional analysis of ermF expression in E. coli XL1-blue showed that the R. anatipestifer ermF gene was functional in E. coli XL1-blue and conferred resistance to high levels of erythromycin (100 µg/ml), supporting the hypothesis that the ermF gene is associated with high-level macrolide resistance. Our work suggests that ribosomal RNA modification mediated by the ermF methyltransferase is the predominant mechanism of resistance to erythromycin in R. anatipestifer isolates.
Collapse
Affiliation(s)
- Hongyan Luo
- a Research Center of Avian Diseases , College of Veterinary Medicine of Sichuan Agricultural University , Sichuan , P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ehrmann E, Handal T, Tamanai-Shacoori Z, Bonnaure-Mallet M, Fosse T. High prevalence of -lactam and macrolide resistance genes in human oral Capnocytophaga species. J Antimicrob Chemother 2013; 69:381-4. [DOI: 10.1093/jac/dkt350] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Ichimura M, Uchida K, Nakayama-Imaohji H, Hirakawa H, Tada T, Morita H, Yasutomo K, Okazaki K, Kuwahara T. Mariner-based transposon mutagenesis forBacteroidesspecies. J Basic Microbiol 2013; 54:558-67. [DOI: 10.1002/jobm.201200763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Minoru Ichimura
- Department of Microbiology; Faculty of Medicine, Kagawa University; Miki Kagawa Japan
- Department of Immunology and Parasitology; Institute of Health Biosciences, The University of Tokushima Graduate School; Kuramoto-cho Tokushima Japan
| | - Keiko Uchida
- Department of Microbiology; Faculty of Medicine, Kagawa University; Miki Kagawa Japan
- Department of Applied Bioscience; Faculty of Agriculture, Kagawa University; Miki Kagawa Japan
| | | | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kazusa-Kamatari; Kisarazu Chiba Japan
| | - Tomoyo Tada
- Department of Microbiology; Faculty of Medicine, Kagawa University; Miki Kagawa Japan
| | - Hidetoshi Morita
- School of Veterinary Medicine; Azabu University; Fuchinobe Sagamihara Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology; Institute of Health Biosciences, The University of Tokushima Graduate School; Kuramoto-cho Tokushima Japan
| | - Katsuichiro Okazaki
- Department of Applied Bioscience; Faculty of Agriculture, Kagawa University; Miki Kagawa Japan
| | - Tomomi Kuwahara
- Department of Microbiology; Faculty of Medicine, Kagawa University; Miki Kagawa Japan
| |
Collapse
|
15
|
Koike S, Aminov RI, Yannarell AC, Gans HD, Krapac IG, Chee-Sanford JC, Mackie RI. Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. MICROBIAL ECOLOGY 2010; 59:487-498. [PMID: 19924466 DOI: 10.1007/s00248-009-9610-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
RNA methylase genes are common antibiotic resistance determinants for multiple drugs of the macrolide, lincosamide, and streptogramin B (MLS(B)) families. We used molecular methods to investigate the diversity, distribution, and abundance of MLS(B) methylases in waste lagoons and groundwater wells at two swine farms with a history of tylosin (a macrolide antibiotic structurally related to erythromycin) and tetracycline usage. Phylogenetic analysis guided primer design for quantification of MLS(B) resistance genes found in tylosin-producing Streptomyces (tlr(B), tlr(D)) and commensal/pathogenic bacteria (erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q)). The near absence of tlr genes at these sites suggested a lack of native antibiotic-producing organisms. The gene combination erm(ABCF) was found in all lagoon samples analyzed. These four genes were also detected with high frequency in wells previously found to be contaminated by lagoon leakage. A weak correlation was found between the distribution of erm genes and previously reported patterns of tetracycline resistance determinants, suggesting that dissemination of these genes into the environment is not necessarily linked. Considerations of gene origins in history (i.e., phylogeny) and gene distributions in the landscape provide a useful "molecular ecology" framework for studying environmental spread of antibiotic resistance.
Collapse
Affiliation(s)
- Satoshi Koike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
PUMBWE LILIAN, CURZON MATTHEW, WEXLER HANNAHM. RAPID MULTIPLEX PCR ASSAY FOR SIMULTANEOUS DETECTION OF MAJOR ANTIBIOTIC RESISTANCE DETERMINANTS IN CLINICAL ISOLATES OFBACTEROIDES FRAGILIS. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1745-4581.2008.00143.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
García N, Gutiérrez G, Lorenzo M, García JE, Píriz S, Quesada A. Genetic determinants for cfxA expression in Bacteroides strains isolated from human infections. J Antimicrob Chemother 2008; 62:942-7. [PMID: 18775891 DOI: 10.1093/jac/dkn347] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES To identify genetic determinants that determine beta-lactamase expression in Bacteroides strains isolated from human infections. METHODS Beta-lactam susceptibility and beta-lactamase enzyme expression were characterized in selected strains. Beta-lactamase genes and surrounding regions were analysed by PCR, inverse PCR and Southern hybridization. RESULTS High resistance to penicillins and cephalosporins was found among most isolated strains, in which all known beta-lactamase genes from Bacteroides are represented, but differences were found in their expression of enzyme activity. In contrast to the cepA gene, ubiquitously found but frequently inactive, or cfiA, which only confers carbapenem resistance in two strains, the detection of high beta-lactamase expression correlates closely with the presence of cfxA genes. This genetic determinant shares variability of upstream regulatory elements, including sequence tags from Tn4555, Tn4351 and IS614B, and polymorphisms of encoded amino acid sequences at positions G(57)C and Y(259)C, which might determine enzyme expression characteristics. CONCLUSIONS The main determinant for beta-lactamase expression in Bacteroides strains is the cfxA gene, in which IS614B integration upstream of the coding sequence represents a molecular marker for higher levels of enzyme activity.
Collapse
Affiliation(s)
- Nuria García
- Departamento de Medicina y Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad s/n, 10071 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Capnocytophaga canimorsus, a commensal bacterium from canine oral flora, has been isolated throughout the world from severe human infections caused by dog bites. Due to the low level of evolutionary relationship to Proteobacteria, genetic methods suitable for the genus Capnocytophaga needed to be established. Here, we show that Tn4351, derived from Bacteroides fragilis, could be introduced by conjugation into C. canimorsus and conferred resistance to erythromycin. By mapping and sequencing a naturally occurring plasmid isolated from a clinical isolate of C. canimorsus, we identified a repA gene that allowed us to construct Escherichia coli-Capnocytophaga shuttle vectors. Most commonly used antibiotic markers were not functional in C. canimorsus, but cefoxitin (cfxA), tetracycline (tetQ), and erythromycin (ermF) resistances could be used as markers for plasmid maintenance in C. canimorsus and even in some other Capnocytophaga spp. Shuttle vectors were introduced into C. canimorsus either by conjugation using the origin of transfer (oriT) of RP4 or by electrotransformation. Taking advantage of the promoter of ermF, an expression vector was constructed. Finally, a method that allows site-directed mutagenesis is described. All these genetic tools pave the way, not only for molecular studies of the pathogenesis of C. canimorsus, but also for studies of other oral Capnocytophaga species.
Collapse
|
19
|
Olczak T, Sroka A, Potempa J, Olczak M. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 2007; 189:197-210. [PMID: 17922109 DOI: 10.1007/s00203-007-0309-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 09/13/2007] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis HmuY is a putative heme-binding lipoprotein associated with the outer membrane. It is part of an operon together with a gene encoding an outer-membrane hemin utilization receptor (HmuR) and four uncharacterized genes. A similar operon organization was found in Bacteroides fragilis and B. thetaiotaomicron, with the former containing an additional HmuY homologue encoded upstream of the hmuR-like gene. In P. gingivalis cultured under heme-limited conditions, a approximately 1-kb hmuY transcript was produced at high levels along with some approximately 3.5 and approximately 9-kb transcripts. Compared with the parental strain, mutants deficient in hmuY or hmuR or hmuY-hmuR gene function grew more slowly and bound lower amounts of hemin and hemoglobin. Significantly, they grew more slowly or were unable to grow when human serum was used as the sole iron/heme source. Analysis of the hmu promoter showed that it is regulated by iron. The HmuY protein normally occurs as a homodimer, but in the presence of hemin it may form tetramers. These results show that HmuY may be the first reported member of a new class of proteins in Porphyromonas and Bacteroides species involved in heme utilization, a function being exerted in conjunction with HmuR, an outer-membrane heme transporter.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
20
|
Pumbwe L, Wareham DW, Aduse-Opoku J, Brazier JS, Wexler HM. Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect 2007; 13:183-189. [PMID: 17328731 DOI: 10.1111/j.1469-0691.2006.01620.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigated the mechanisms of multidrug resistance (MDR) in an isolate of Bacteroides fragilis (WI1) from a patient with anaerobic sepsis. The MDR of WI1 affected susceptibility to beta-lactams, clindamycin, fluoroquinolones, metronidazole and tetracycline. In addition to its 5.31-Mb chromosome, WI1 possessed two low-copy-number plasmids, pHagl (5.6 kb) and pHag2 (9.9 kb), that were absent from B. fragilis NCTC 9343. Restriction digestion with EcoRV, HindIII and SstI, combined with DNA sequencing, revealed that pHAG2 contained a tet(Q) gene at base position 3689 that resided on the conjugative transposon CTn341. Genes cfiA (encoding a metallo-beta-lactamase) and erm(F) (encoding a macrolide-lincosamide-streptogramin B resistance determinant) were also found in WI1, but were absent from B. fragilis NCTC 9343. Nitrocefin hydrolysis revealed that WI1 had high beta-lactamase activity. Sequencing of the gyrA quinolone resistance-determining region revealed a mutation causing a Ser82 --> Phe substitution, and comparative quantitative real-time RT-PCR revealed that the cfiA, erm(F) and tet(Q) genes were all expressed in WI1. In addition, the resistance-nodulation-division efflux pump genes bmeB9 and bmeB15 were significantly over-expressed (12.30 +/- 0.42-fold and 3541.1 +/- 95.4-fold, respectively), and the efflux pump inhibitors carbonyl cyanide m-chlorophenylhydrazone and reserpine significantly increased the susceptibility of the isolate to several unrelated antibiotics (p <0.005). These data suggested that WI1 was highly multidrug-resistant because of the additive effects of chromosome- and plasmid-encoded resistance determinants.
Collapse
Affiliation(s)
- L Pumbwe
- Greater Los Angeles Veterans Administration Healthcare Systems, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA
| | - D W Wareham
- Department of Microbiology, Barts and The London NHS Trust; Centre for Infectious Disease, Institute of Cell and Molecular Science, Queen Mary's School of Medicine and Dentistry, University of London, London
| | - J Aduse-Opoku
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Queen Mary's School of Medicine and Dentistry, University of London, London
| | - J S Brazier
- Anaerobe Reference Laboratory, National Public Health Service Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | - H M Wexler
- Greater Los Angeles Veterans Administration Healthcare Systems, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Salyers AA, Moon K, Schlessinger D. The human intestinal tract – a hotbed of resistance gene transfer? Part II. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.clinmicnews.2007.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Chen S, Bagdasarian M, Kaufman MG, Walker ED. Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol 2006; 73:1089-100. [PMID: 17189449 PMCID: PMC1828668 DOI: 10.1128/aem.01577-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed techniques for the genetic manipulation of Flavobacterium species and used it to characterize several promoters found in these bacteria. Our studies utilized Flavobacterium hibernum strain W22, an environmental strain we isolated from tree hole habitats of mosquito larvae. Plasmids from F. hibernum strain W22 were more efficiently (approximately 1,250-fold) transferred by electroporation into F. hibernum strain W22 than those isolated from Escherichia coli, thus indicating that an efficient restriction barrier exists between these species. The strong promoter, tac, functional in proteobacteria, did not function in Flavobacterium strains. Therefore, a promoter-trap plasmid, pSCH03, containing a promoterless gfpmut3 gene was constructed. A library of 9,000 clones containing chromosomal fragments of F. hibernum strain W22 in pSCH03 was screened for their ability to drive expression of the promoterless gfpmut3 gene. Twenty strong promoters were used for further study. The transcription start points were determined from seven promoter clones by the 5' rapid amplification of cDNA ends technique. Promoter consensus sequences from Flavobacterium were identified as TAnnTTTG and TTG, where n is any nucleotide, centered approximately 7 and 33 bp upstream of the transcription start site, respectively. A putative novel ribosome binding site consensus sequence is proposed as TAAAA by aligning the 20-bp regions upstream of the translational start site in 25 genes. Our primary results demonstrate that at least some promoter and ribosome binding site motifs of Flavobacterium strains are unusual within the bacterial domain and suggest an early evolutionary divergence of this bacterial group. The techniques presented here allow for more detailed genetics-based studies and analyses of Flavobacterium species in the environment.
Collapse
Affiliation(s)
- S Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
23
|
Vingadassalom D, Kolb A, Mayer C, Rybkine T, Collatz E, Podglajen I. An unusual primary sigma factor in the Bacteroidetes phylum. Mol Microbiol 2005; 56:888-902. [PMID: 15853878 DOI: 10.1111/j.1365-2958.2005.04590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of housekeeping gene promoters with a unique consensus sequence in Bacteroides fragilis, previously described by Bayley et al. (2000, FEMS Microbiol Lett 193: 149-154), suggested the existence of a particular primary sigma factor. The single rpoD-like gene observed in the B. fragilis genome, and similarly in those of other members of the Bacteroidetes phylum, was found to be essential. It encodes a protein, sigma(ABfr), of only 32.7 kDa that is produced with equal abundance during all phases of growth and was concluded to be the primary sigma factor. sigma(ABfr) and its orthologues in the Bacteroidetes are unusual primary sigma factors in that they lack region 1.1, have a unique signature made up of 29 strictly identical amino acids and are the only RpoD factors that cluster with the RpoS factors. Although binding to the Escherichia coli core RNA polymerase, sigma(ABfr) does not support transcription initiation from any promoter when it is part of the heterologous holoenzyme, while in the reconstituted homologous holoenzyme it does so only from typical B. fragilis, including rrs, promoters but not from the lacUV5 or RNA I promoters.
Collapse
Affiliation(s)
- Didier Vingadassalom
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, 75270 Paris, France
| | | | | | | | | | | |
Collapse
|
24
|
Gupta A, Vlamakis H, Shoemaker N, Salyers AA. A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol 2004; 69:6455-63. [PMID: 14602600 PMCID: PMC262298 DOI: 10.1128/aem.69.11.6455-6463.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The erythromycin resistance gene ermB has been found in a variety of gram-positive bacteria. This gene has also been found in Bacteroides species but only in six recently isolated strains; thus, the gene seems to have entered this genus only recently. One of the six Bacteroides ermB-containing isolates, WH207, could transfer ermB to Bacteroides thetaiotaomicron strain BT4001 by conjugation. WH207 was identified as a Bacteroides uniformis strain based on the sequence of its 16S rRNA gene. Results of pulsed-field gel electrophoresis experiments demonstrated that the transferring element was normally integrated into the Bacteroides chromosome. The element was estimated from pulsed-field gel data to be about 100 kb in size. Since the element appeared to be a conjugative transposon (CTn), it was designated CTnBST. CTnBST was able to mobilize coresident plasmids and the circular form of the mobilizable transposon NBU1 to Bacteroides and Escherichia coli recipients. A 13-kb segment that contained ermB was cloned and sequenced. Most of the open reading frames in this region had little similarity at the amino acid sequence level to any proteins in the sequence databases, but a 1,723-bp DNA segment that included a 950-bp segment downstream of ermB had a DNA sequence that was virtually identical to that of a segment of DNA found previously in a Clostridium perfringens strain. This finding, together with the finding that ermB is located on a CTn, supports the hypothesis that CTnBST could have entered Bacteroides from some other genus, possibly from gram-positive bacteria. Moreover, this finding supports the hypothesis that many transmissible antibiotic resistance genes in Bacteroides are carried on CTns.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
25
|
Spigaglia P, Mastrantonio P. Analysis of macrolide-lincosamide-streptogramin B (MLS(B)) resistance determinant in strains of Clostridium difficile. Microb Drug Resist 2002; 8:45-53. [PMID: 12002649 DOI: 10.1089/10766290252913755] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The macrolide-lincosamide-streptogramin B (MLSB) resistance determinants have been detected among Clostridia in both C. perfringens and C. difficile strains. Previous studies have shown that MLSB-resistant C. difficile strains can be differentiated by specific hybridizing bands using an erm(B) probe. A recent study has demonstrated that C. difficile 630, a strain highly resistant to clindamycin and erythromycin (MIC > or = 256 ml/L), showing a hybridizing band at 9.7 kb, contains two copies of an erm(B) gene. It was also hypothesized that C. difficile 630 erm(B) determinant has arisen from a progenitor, represented by the C. perfringens CP592 determinant, which contains only one copy of an erm(B) gene that differs from C. difficile 630 erm(B) for seven nucleotide substitutions. To investigate the possibility that C. difficile strains with hybridizing fragments of different molecular size have an erm(B) determinant not identical to the one described in C. difficile 630, we performed a genetic analysis on the erm(B) determinant in 18 C. difficile strains, isolated from different sources. The results showed a heterogeneity in erm(B) determinant: C. difficile strains with hybridizing bands at 7.3 or 3.7 kb contained only one erm(B) copy, whereas strains with a band at 9.7 kb had two copies. The majority of the toxigenic strains examined was characterized by only one erm(B) copy with a sequence identical to the one found in C. difficile 630 and a lower resistance level for erythromycin (MICs ranging from 16 to 24 ml/L). Differently, some strains had an erm(B) gene identical to the one found in C. perfringens CP592. PCR ribotyping and clustering analysis indicate that the examined resistant strains, except one, belong to the same genetic lineage. These results seem to support the hypothesis of the evolution of the C. difficile 630 erm(B) determinant. The functional significance of one or two copies of erm(B) gene in C. difficile strains should be further investigated.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
26
|
Abstract
Two principal mechanisms of resistance to macrolides have been identified in Gram-positive bacteria. Erythromycin-resistant methylase is encoded by erm genes. Resultant structural changes to rRNA prevent macrolide binding and allow synthesis of bacterial proteins to continue. Presence of the erm gene results in high-level resistance. Modification of the mechanism whereby antibiotics are eliminated from the bacteria also brings about resistance. Bacteria carrying the gene encoding macrolide efflux (i.e. the mefE gene) display relatively low-level resistance. Azithromycin, because of its ability to achieve concentrations at sites of infections, is capable of eradicating mefE-carrying strains. Other resistance mechanisms, involving stimulation of enzymatic degradation, appear not to be clinically significant.
Collapse
Affiliation(s)
- J C Pechère
- Department of Microbiology and Genetics, University Medical Centre, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland.
| |
Collapse
|
27
|
Roberts MC. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 2002; 20:261-83. [PMID: 11936257 DOI: 10.1385/mb:20:3:261] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine's greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human's increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes for resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195, USA.
| |
Collapse
|
28
|
Reig M, Galan J, Baquero F, Perez-Diaz JC. Macrolide resistance in Peptostreptococcus spp. mediated by ermTR: possible source of macrolide-lincosamide-streptogramin B resistance in Streptococcus pyogenes. Antimicrob Agents Chemother 2001; 45:630-2. [PMID: 11158770 PMCID: PMC90342 DOI: 10.1128/aac.45.2.630-632.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eighty percent (21 of 26) of macrolide-resistant Peptostreptococcus strains studied harbored the ermTR gene. This methyltransferase gene is also the most frequently found gene among macrolide-lincosamide-streptogramin B-resistant Streptococcus pyogenes strains. Transfer of the ermTR gene from Peptostreptococcus magnus to macrolide-susceptible S. pyogenes strains indicates that this resistance determinant may circulate among gram-positive aerobic and anaerobic species of the oropharyngeal bacterial flora.
Collapse
Affiliation(s)
- M Reig
- Department of Microbiology, Ramón y Cajal Hospital, National Institute of Health (INSALUD), 28034 Madrid, Spain.
| | | | | | | |
Collapse
|
29
|
Abaibou H, Chen Z, Olango GJ, Liu Y, Edwards J, Fletcher HM. vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun 2001; 69:325-35. [PMID: 11119521 PMCID: PMC97887 DOI: 10.1128/iai.69.1.325-335.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 0.9-kb open reading frame encoding a unique 32-kDa protein was identified downstream of the recA gene of Porphyromonas gingivalis. Reverse transcription-PCR and Northern blot analysis showed that both the recA gene and this open reading frame are part of the same transcriptional unit. This cloned fragment was insertionally inactivated using the ermF-ermAM antibiotic resistance cassette to create a defective mutant by allelic exchange. When plated on Brucella blood agar, the mutant strain, designated P. gingivalis FLL92, was non-black pigmented and showed significant reduction in beta-hemolysis compared with the parent strain, P. gingivalis W83. Arginine- and lysine-specific cysteine protease activities, which were mostly soluble, were approximately 90% lower than that of the parent strain. Expression of the rgpA, rgpB, and kgp protease genes was the same in P. gingivalis FLL92 as in the wild-type strain. In contrast to the parent strain, P. gingivalis FLL92 showed increased autoaggregration in addition to a significant reduction in hemagglutinating and hemolysin activities. In in vivo experiments using a mouse model, P. gingivalis FLL92 was dramatically less virulent than the parent strain. A molecular survey of this mutant and the parent strain using all known P. gingivalis insertion sequence elements as probes suggested that no intragenomic changes due to the movement of these elements have occurred in P. gingivalis FLL92. Taken together, these results suggest that the recA downstream gene, designated vimA (virulence-modulating gene), plays an important role in virulence modulation in P. gingivalis W83, possibly representing a novel posttranscriptional or translational regulation of virulence factors in P. gingivalis.
Collapse
Affiliation(s)
- H Abaibou
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bayley DP, Rocha ER, Smith CJ. Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 2000; 193:149-54. [PMID: 11094294 DOI: 10.1111/j.1574-6968.2000.tb09417.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is little known about the sequences that mediate the initiation of transcription in Bacteroides fragilis, thus transcriptional start sites for 13 new genes were determined and a total of 23 promoter regions upstream of the start sites were aligned and similarities were noted. A region at about -7 contained a consensus sequence of TAnnTTTG and upstream in the region centered at about -33, another TTTG motif was found in the majority of promoters examined. Canonical, Escherichia coli, -10 and -35 consensus sequences were not readily apparent. Mutations within the -7 motif indicated the TTTG residues were essential since changes in this sequence reduced the promoter activity to that of a no promoter control in a chloramphenicol acetyl transferase transcriptional fusion model system. Additional fusion studies indicated that the -33 region was also necessary for full activity.
Collapse
Affiliation(s)
- D P Bayley
- Department of Microbiology and Immunology, 600 Moye Blvd., East Carolina University School of Medicine, Greenville, NC 27858-4354, USA
| | | | | |
Collapse
|
31
|
Simpson W, Olczak T, Genco CA. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 2000; 182:5737-48. [PMID: 11004172 PMCID: PMC94695 DOI: 10.1128/jb.182.20.5737-5748.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative pathogen Porphyromonas gingivalis requires hemin for growth. Hemoglobin bound to haptoglobin and hemin complexed to hemopexin can be used as heme sources, indicating that P. gingivalis must have a means to remove the hemin from these host iron-binding proteins. However, the specific mechanisms utilized by P. gingivalis for the extraction of heme from heme-binding proteins and for iron transport are poorly understood. In this study we have determined that a newly identified TonB-dependent hemoglobin-hemin receptor (HmuR) is involved in hemoglobin binding and utilization in P. gingivalis A7436. HmuR shares amino acid homology with TonB-dependent outer membrane receptors of gram-negative bacteria involved in the acquisition of iron from hemin and hemoglobin, including HemR of Yersinia enterocolitica, ShuA of Shigella dysenteriae, HpuB of Neisseria gonorrhoeae and N. meningitidis, HmbR of N. meningitidis, HgbA of Haemophilus ducreyi, and HgpB of H. influenzae. Southern blot analysis confirmed the presence of the hmuR gene and revealed genetic variability in the carboxy terminus of hmuR in P. gingivalis strains 33277, 381, W50, and 53977. We also identified directly upstream of the hmuR gene a gene which we designated hmuY. Upstream of the hmuY start codon, a region with homology to the Fur binding consensus sequence was identified. Reverse transcription-PCR analysis revealed that hmuR and hmuY were cotranscribed and that transcription was negatively regulated by iron. Inactivation of hmuR resulted in a decreased ability of P. gingivalis to bind hemoglobin and to grow with hemoglobin or hemin as sole iron sources. Escherichia coli cells expressing recombinant HmuR were shown to bind hemoglobin and hemin. Furthermore, purified recombinant HmuR was demonstrated to bind hemoglobin. Taken together, these results indicate that HmuR serves as the major TonB-dependent outer membrane receptor involved in the utilization of both hemin and hemoglobin in P. gingivalis.
Collapse
Affiliation(s)
- W Simpson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
32
|
Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 1999; 43:2823-30. [PMID: 10582867 PMCID: PMC89572 DOI: 10.1128/aac.43.12.2823] [Citation(s) in RCA: 580] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M C Roberts
- Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Yamazoe K, Kato N, Kato H, Tanaka K, Katagiri Y, Watanabe K. Distribution of the cfiA gene among Bacteroides fragilis strains in Japan and relatedness of cfiA to imipenem resistance. Antimicrob Agents Chemother 1999; 43:2808-10. [PMID: 10543771 PMCID: PMC89567 DOI: 10.1128/aac.43.11.2808] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cfiA gene, encoding an imipenem-hydrolyzing metallo-beta-lactamase produced by Bacteroides fragilis, and insertion-like elements were detected by PCR amplification with B. fragilis strains isolated in Japan. The cfiA gene was found in 1.9 and 4.1% of the imipenem-susceptible B. fragilis isolates collected from 1987 to 1988 and from 1992 to 1994, respectively. Insertion-like elements adjacent to the cfiA gene were found in all nine metallo-beta-lactamase-producing imipenem-resistant strains tested but not in nine cfiA-positive strains with no detectable metallo-beta-lactamase activity.
Collapse
Affiliation(s)
- K Yamazoe
- Institute of Anaerobic Bacteriology, Gifu University School of Medicine, 40 Tsukasa-machi, Gifu 500-8705, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Schwarz S, Noble W. Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Vet Dermatol 1999; 10:163-176. [DOI: 10.1046/j.1365-3164.1999.00170.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Chung WO, Young K, Leng Z, Roberts MC. Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J Antimicrob Chemother 1999; 44:329-35. [PMID: 10511399 DOI: 10.1093/jac/44.3.329] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteroides spp. conjugative transposon Tn5030 is 150 kb which includes a 43 kb characterized region containing a number of defined genes and an open reading frame (ORF). The 43 kb region is organized with the ORF1 immediately upstream from the ermF gene, coding for an rRNA methylase, then an unknown 20 kb region downstream followed by the tetQ gene (coding for a ribosomal protection protein) then the rteA and rteB genes. The role of ORF1 is unclear; rteA is a putative sensor and rteB a regulator. Thirty-seven (62%) of 60 isolates, representing one gram-positive anaerobic and 13 gram-negative anaerobic species, co-transferred the ermFand tetQ genes to an unrelated Enterococcus faecalis recipient. We used the polymerase chain reaction to show the linkage between ORF1, ermF, tetQ, rteA and rteB. Our data suggest that the ORF1 gene product may participate in the transfer of the ermF gene with or without the ORF1-rteB region and has homology to bacterial transposases. Isolates that co-transferred the ermF and tetQ genes carried and transferred the rteB gene, suggesting that the rteB gene product may be important in transfer of the 43 kb ORF1-rteB region to E. faecalis. The rteB gene product is not required when ermF is transferred independently of tetQ.
Collapse
Affiliation(s)
- W O Chung
- Department of Pathobiology, University of Washington, Seattle 98195-7238, USA
| | | | | | | |
Collapse
|
36
|
Nakajima Y. Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 1999; 5:61-74. [PMID: 11810493 DOI: 10.1007/s101560050011] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1999] [Accepted: 02/25/1999] [Indexed: 11/24/2022]
Abstract
Macrolides have been used in the treatment of infectious diseases since the late 1950s. Since that time, a finding of antagonistic action between erythromycin and spiramycin in clinical isolates1 led to evidence of the biochemical mechanism and to the current understanding of inducible or constitutive resistance to macrolides mediated by erm genes containing, respectively, the functional regulation mechanism or constitutively mutated regulatory region. These resistant mechanisms to macrolides are recognized in clinically isolated bacteria. (1) A methylase encoded by the erm gene can transform an adenine residue at 2058 (Escherichia coli equivalent) position of 23S rRNA into an 6N, 6N-dimethyladenine. Position 2058 is known to reside either in peptidyltransferase or in the vicinity of the enzyme region of domain V. Dimethylation renders the ribosome resistant to macrolides (MLS). Moreover, another finding adduced as evidence is that a mutation in the domain plays an important role in MLS resistance: one of several mutations (transition and transversion) such as A2058G, A2058C or U, and A2059G, is usually associated with MLS resistance in a few genera of bacteria. (2) M (macrolide antibiotics)- and MS (macrolide and streptogramin type B antibiotics)- or PMS (partial macrolide and streptogramin type B antibiotics)-phenotype resistant bacteria cause decreased accumulation of macrolides, occasionally including streptogramin type B antibiotics. The decreased accumulation, probably via enhanced efflux, is usually inferred from two findings: (i) the extent of the accumulated drug in a resistant cell increases as much as that in a susceptible cell in the presence of an uncoupling agent such as carbonylcyanide-m-chlorophenylhydrazone (CCCP), 2,4-dinitrophenol (DNP), and arsenate; (ii) transporter proteins, in M-type resistants, have mutual similarity to the 12-transmembrane domain present in efflux protein driven by proton-motive force, and in MS- or PMS-type resistants, transporter proteins have mutual homology to one or two ATP-binding segments in efflux protein driven by ATP. (3) Two major macrolide mechanisms based on antibiotic inactivation are dealt with here: degradation due to hydrolysis of the macrolide lactone ring by an esterase encoded by the ere gene; and modification due to macrolide phosphorylation and lincosamide nucleotidylation mediated by the mph and lin genes, respectively. But enzymatic mechanisms that hydrolyze or modify macrolide and lincosamide antibiotics appear to be relatively rare in clinically isolated bacteria at present. (4) Important developments in macrolide antibiotics are briefly featured. On the basis of information obtained from extensive references and studies of resistance mechanisms to macrolide antibiotics, the mode of action of the drugs, as effectors, and a hypothetical explanation of the regulation of the mechanism with regard to induction of macrolide resistance are discussed.
Collapse
Affiliation(s)
- Yoshinori Nakajima
- Division of Microbiology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| |
Collapse
|
37
|
Roberts MC, Chung WO, Roe D, Xia M, Marquez C, Borthagaray G, Whittington WL, Holmes KK. Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. Antimicrob Agents Chemother 1999; 43:1367-72. [PMID: 10348754 PMCID: PMC89280 DOI: 10.1128/aac.43.6.1367] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Neisseria gonorrhoeae isolates from Seattle and two isolates from Uruguay were resistant to erythromycin (MIC, 4 to 16 microg/ml) and had reduced susceptibility to azithromycin (MIC, 1 to 4 microg/ml) due to the presence of the self-mobile rRNA methylase gene(s) ermF or ermB and ermF. The two Seattle isolates and one isolate from Uruguay were multiresistant, carrying either the 25.2-MDa tetM-containing plasmid (Seattle) or a beta-lactamase plasmid (Uruguay). Sixteen commensal Neisseria isolates (10 Neisseria perflava-N. sicca, 2 N. flava, and 4 N. mucosa) for which erythromycin MICs were 4 to 16 microg/ml were shown to carry one or more known rRNA methylase genes, including ermB, ermC, and/or ermF. Many of these isolates also were multiresistant and carried the tetM gene. This is the first time that a complete transposon or a complete conjugative transposon carrying an antibiotic resistance gene has been described for the genus Neisseria.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vedantam G, Novicki TJ, Hecht DW. Bacteroides fragilis transfer factor Tn5520: the smallest bacterial mobilizable transposon containing single integrase and mobilization genes that function in Escherichia coli. J Bacteriol 1999; 181:2564-71. [PMID: 10198023 PMCID: PMC93685 DOI: 10.1128/jb.181.8.2564-2571.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacterial genera, including Bacteroides spp., harbor mobilizable transposons, a class of transfer factors that carry genes for conjugal DNA transfer and, in some cases, antibiotic resistance. Mobilizable transposons are capable of inserting into and mobilizing other, nontransferable plasmids and are implicated in the dissemination of antibiotic resistance. This paper presents the isolation and characterization of Tn5520, a new mobilizable transposon from Bacteroides fragilis LV23. At 4,692 bp, it is the smallest mobilizable transposon reported from any bacterial genus. Tn5520 was captured from B. fragilis LV23 by using the transfer-deficient shuttle vector pGAT400DeltaBglII. The termini of Tn5520 contain a 22-bp imperfect inverted repeat, and transposition does not result in a target site repeat. Tn5520 also demonstrates insertion site sequence preferences characterized by A-T-rich nucleotide sequences. Tn5520 has been sequenced in its entirety, and two large open reading frames whose predicted protein products exhibit strong sequence similarity to recombinase-integrase enzymes and mobilization proteins, respectively, have been identified. The transfer, mobilization, and transposition properties of Tn5520 have been studied, revealing that Tn5520 mobilizes plasmids in both B. fragilis and Escherichia coli at high frequency and also transposes in E. coli.
Collapse
Affiliation(s)
- G Vedantam
- Department of Medicine, Section of Infectious Disease, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
39
|
Chung WO, Werckenthin C, Schwarz S, Roberts MC. Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother 1999; 43:5-14. [PMID: 10381095 DOI: 10.1093/jac/43.1.5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We screened 183 different clinical anaerobic and aerobic bacteria isolated from humans and other animals for the presence of the ermF gene using a polymerase chain reaction (PCR) assay. The ermF gene was detected in 107 (58%) clinical isolates, including 42 (61%) of 69 gram-positive bacteria and 65 (57%) of 114 gram-negative bacteria. Twenty-five ATCC isolates were also tested; 20 (80%) carried the ermF gene. The gene products from the ermF PCR from four isolates were sequenced and showed 95-99% nucleotide homology with the ermF gene and 98-99% amino acid homology with the gene product. Eleven (58%) of the 19 gram-negative donors tested were able to transfer the ermF gene. All nine (100%) of the gram-positive donors tested transferred the ermF gene, using either Enterococcus faecalis or Haemophilus influenzae as the recipients.
Collapse
Affiliation(s)
- W O Chung
- Department of Pathobiology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina, 27858, USA.
| | | | | |
Collapse
|
41
|
Morgan RM, Macrina FL. bctA: a novel pBF4 gene necessary for conjugal transfer in Bacteroides spp. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2155-2165. [PMID: 9245805 DOI: 10.1099/00221287-143-7-2155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
pBF4 is a 41 kb conjugative R-plasmid that confers MLS (macrolide-lincosamide-streptogramin B) resistance in Bacteroides spp. To identify pBF4 genes governing conjugation, recombinational mutagenesis using a suicide vector carrying fragments of the pBF4 plasmid was employed. One of the six independent insertion mutants of pBF4 isolated using this method was found to be conjugation-deficient. Nucleotide sequence analysis around the insertion site on this plasmid revealed a 2.8 kb ORF that encoded a putative 110 kDa protein. A corresponding protein was observed when a 12 kb DNA fragment containing this ORF was used to program an in vitro transcription-translation system. Both the ORF and the predicted protein were novel when compared to available database sequences. This gene was designated bctA (Bacteroides conjugal transfer). Polyclonal rabbit antibodies that recognized a sub-sequence polypeptide of BctA reacted with a 55 kDa protein in Western blot analysis using a total protein extract from Bacteroides fragilis containing pBF4. The protein was not present in a B. fragilis strain containing the conjugation-deficient insertion mutant of pBF4. The 55 kDa protein was associated with the membrane fraction of B. fragilis. Although the cellular and biochemical basis of bctA-promoted conjugation remains unknown, this work demonstrates the existence of a heretofore unrecognized gene in bacterial conjugation, and the mutagenesis system used provides the means to isolate and characterize other genes involved in conjugal transfer in Bacteroides spp.
Collapse
Affiliation(s)
- Roderick M Morgan
- Department of Microbiology and Immunology. Box 980678 MCV Station, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Francis L Macrina
- Department of Microbiology and Immunology. Box 980678 MCV Station, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| |
Collapse
|
42
|
Roberts MC, Chung WO, Roe DE. Characterization of tetracycline and erythromycin resistance determinants in Treponema denticola. Antimicrob Agents Chemother 1996; 40:1690-4. [PMID: 8807063 PMCID: PMC163396 DOI: 10.1128/aac.40.7.1690] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Treponema denticola isolates were evaluated for the presence of known tetracycline and erythromycin resistance determinants by Southern blot hybridization of whole-cell DNA and PCR assays. We examined all isolates available, which included 12 clinical and 4 American Type Culture Collection isolates. Two isolates carried the Tet B determinant, five isolates carried both the Tet B and Erm F determinants, seven isolates carried the Erm F determinant, and two did not carry any of the Tet or Erm determinants tested. Both the Tet B and Erm F determinants appeared to be associated with the chromosome. Neither of the two T. denticola donors tested could transfer the Tet B determinant, but three of four T. denticola tested transferred the Erm F determinant to an Enterococcus faecalis recipient. This extends the host range of both the tetB and ermF genes into the genus Treponema.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, University of Washington, Seattle 98195-7238, USA.
| | | | | |
Collapse
|
43
|
Cooper AJ, Shoemaker NB, Salyers AA. The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother 1996; 40:506-8. [PMID: 8834912 PMCID: PMC163148 DOI: 10.1128/aac.40.2.506] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tcr Emr 7853, from Bacteroides thetaiotaomicron 7853, is a large chromosomal conjugative transposon which encodes resistance to both tetracycline (Tcr) and erythromycin (Emr). The erythromycin resistance gene of Tcr Emr 7853 did not cross-hybridize with ermF, the Emr gene found on previously studied Bacteroides regular and conjugative transposons. We have cloned and sequenced the erythromycin resistance gene from Tcr Emr 7853. The DNA sequence of this gene was 99.6% identical to that of ermG from Bacillus sphaericus.
Collapse
Affiliation(s)
- A J Cooper
- Department of Microbiology, University of Illinois, Urbana 61801, USA.
| | | | | |
Collapse
|
44
|
Fletcher HM, Schenkein HA, Morgan RM, Bailey KA, Berry CR, Macrina FL. Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 1995; 63:1521-8. [PMID: 7890419 PMCID: PMC173184 DOI: 10.1128/iai.63.4.1521-1528.1995] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In a previous study we cloned and determined the nucleotide sequence of the prtH gene from Porphyromonas gingivalis W83. This gene specifies a 97-kDa protease which is normally found in the membrane vesicles produced by P. gingivalis and which cleaves the C3 complement protein under defined conditions. We developed a novel ermF-ermAM antibiotic resistance gene cassette, which was used with the cloned prtH gene to prepare an insertionally inactivated allele of this gene. This genetic construct was introduced by electroporation into P. gingivalis W83 in order to create a protease-deficient mutant by recombinational allelic exchange. The mutant strain, designated V2296, was compared with the parent strain W83 for proteolytic activity and virulence. Extracellular protein preparations from V2296 showed decreased proteolytic activity compared with preparations from W83. Casein substrate zymography revealed that the 97-kDa proteolytic component as well as a 45-kDa protease was missing in the mutant. In in vivo experiments using a mouse model, V2296 was dramatically reduced in virulence compared with the wild-type W83 strain. A molecular survey of several clinical isolates of P. gingivalis using the prtH gene as a probe suggested that prtH gene sequences were conserved and that they may have been present in multiple copies. Two of 10 isolates did not hybridize with the prtH gene probe. These strains, like the V2296 mutant, also displayed decreased virulence in the mouse model. Taken together, these results suggest an important role for P. gingivalis proteases in soft tissue infections and specifically indicate that the prtH gene product is a virulence factor.
Collapse
Affiliation(s)
- H M Fletcher
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
46
|
Cheng Q, Salyers AA. Use of suppressor analysis to find genes involved in the colonization deficiency of a Bacteroides thetaiotaomicron mutant unable to grow on the host-derived mucopolysaccharides chondroitin sulfate and heparin. Appl Environ Microbiol 1995; 61:734-40. [PMID: 7574611 PMCID: PMC167334 DOI: 10.1128/aem.61.2.734-740.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bacteroides thetaiotaomicron, one of the numerically predominant species of human colonic bacteria, can ferment two types of host-derived mucopolysaccharides, chondroitin sulfate (CS) and heparin (HP). Originally, the pathways for utilization of CS and HP appeared to be completely independent of each other, but we have recently identified a gene, chuR, that links the two utilization systems. chuR is probably a regulatory gene, but it controls only a small subset of genes involved in CS and HP utilization. Some of the genes controlled by chuR are important for survival of B. thetaiotaomicron in the colon because a mutant that no longer produced ChuR was unable to compete with the wild type for colonization of the intestinal tract of germfree mice. In an attempt to identify genes that either were controlled by ChuR or encoded proteins that interacted with ChuR, we used transposon mutagenesis to generate suppressor mutations that restored the ability of a chuR disruption mutant to grow on CS and HP. Two classes of suppressors were isolated. One class grew as well as the wild type on CS and HP and had recovered the ability to compete with the wild type for colonization of the germfree mouse intestinal tract. A second class grew more slowly on CS and HP and reached only a half-maximum level on CS. This mutant still had a colonization defect. Representatives of both classes of suppressor mutants have been characterized, and the results of this analysis suggest that the transposon insertions in the suppressor mutants probably affected regulatory genes whose products interact with ChuR.
Collapse
Affiliation(s)
- Q Cheng
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
47
|
Rogers MB, Bennett TK, Payne CM, Smith CJ. Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J Bacteriol 1994; 176:4376-84. [PMID: 7517394 PMCID: PMC205651 DOI: 10.1128/jb.176.14.4376-4384.1994] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacteroides fragilis is an important opportunistic pathogen of humans and is resistant to many drugs commonly used to treat anaerobic infections, including beta-lactams. A strain set comprised of B. fragilis isolates producing either low or high levels of the endogenous cephalosporinase activity, CepA, has been described previously (M. B. Rogers, A. C. Parker, and C. J. Smith, Antimicrob. Agents Chemother. 37:2391-2400, 1993). Clones containing cepA genes from each of seven representative strains were isolated, and the DNA sequences were determined. Nucleotide sequence comparisons revealed that there were few differences between the cepA coding sequences of the low- and high-activity strains. The cepA coding sequences were cloned into an expression vector, pFD340, and analyzed in a B. fragilis 638 cepA mutant. The results of beta-lactamase assays and ampicillin MICs showed that there was no significant difference in the enzymatic activity of structural genes from the high- or low-activity strains. Comparison of sequences upstream of the cepA coding region revealed that 50 bp prior to the translation start codon, the sequence for high-activity strains change dramatically. This region of the high-activity strains shared extensive homology with IS21, suggesting that an insertion was responsible for the increased expression of cepA in these isolates. Northern (RNA) blot analysis of total RNA by using cepA-specific DNA probes supported the idea that differential cepA expression in low- and high-activity strains was controlled at the level of transcription. However, the insertion did not alter the cepA transcription start site, which occurred 27 bp upstream of the ATG translation start codon in both expression classes. Possible mechanisms of cepA activation are discussed.
Collapse
Affiliation(s)
- M B Rogers
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354
| | | | | | | |
Collapse
|
48
|
Haggoud A, Reysset G, Azeddoug H, Sebald M. Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob Agents Chemother 1994; 38:1047-51. [PMID: 8067736 PMCID: PMC188148 DOI: 10.1128/aac.38.5.1047] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA sequence analysis of regions from plasmid pIP417 and chromosome BF8 which encode 5-nitroimidazole resistance in Bacteroides strains allowed the identification of two open reading frames corresponding to new genes, nimA (528 bp) and nimB (492 bp). Either gene may confer 5-nitroimidazole resistance to susceptible strains of Bacteroides. The encoded polypeptides have deduced molecular masses of 20.1 and 18.6 kDa, respectively, and share about 73% identity and 85% similarity. A new insertion sequence (IS) element named IS1168 lies 14 bases upstream of the nimA gene. The complete sequence of IS1168 was determined. A similar IS exists 12 bp upstream of the nimB gene. About 60% of the BF8 IS element was also sequenced and shown to be almost identical to IS1168.
Collapse
Affiliation(s)
- A Haggoud
- Unité des Anaérobies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
49
|
Podglajen I, Breuil J, Collatz E. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol 1994; 12:105-14. [PMID: 8057831 DOI: 10.1111/j.1365-2958.1994.tb00999.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A small number of isolates of Bacteroides fragilis, an anaerobic pathogen of the human intestinal flora, carries a copy (or copies) of the carbapenemresistance gene, cfiA, which may be silent or expressed. We have studied the mechanism of activation of the frequently silent gene in in vitro-selected mutants and in clinical isolates. In both types of strains, activation was observed as the consequence of the insertion, at several possible sites, of a novel 1.3 kb insertion sequence, IS1186, immediately upstream of the carbapenemase gene. IS1186 has two open reading frames, on opposite strands, with coding capacities for a 41.2 kDa (ORF1) and a 22.5kDa (ORF2) protein. The 41.2kDa protein has homology with some proteins predicted from open reading frames of IS elements or DNA direct repeats of aerobic, but not anaerobic, Gram-negative bacteria. Upon insertion, transcription of cfiA was found to be driven from a promoter identified on the right end of IS1186. In one instance, insertion occurred into the putative ribosome-binding site of cfiA, leaving intact the tetranucleotide AGAA which is concluded to be a fully functional ribosome-binding site. Between 3 and 14 copies of IS1186 were detected per genome and the element was found, within the species B. fragilis, almost exclusively in the subgroup carrying the cifA gene.
Collapse
Affiliation(s)
- I Podglajen
- Laboratoire de Microbiologie Médicale, Université Paris VI, France
| | | | | |
Collapse
|
50
|
Smith CJ, Parker AC. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J Bacteriol 1993; 175:2682-91. [PMID: 8386723 PMCID: PMC204571 DOI: 10.1128/jb.175.9.2682-2691.1993] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transmissible cefoxitin (FX) resistance in Bacteroides vulgatus CLA341 was associated with the 12.5-kb, mobilizable transposon, Tn4555, which encoded the beta-lactamase gene cfxA. Transfer occurred by a conjugation-like mechanism, was stimulated by growth of donor cells with tetracycline (TC), and required the presence of a Bacteroides chromosomal Tcr element. Transconjugants resistant to either FX, TC, or both drugs were obtained, but only Fxr Tcr isolates could act as donors of Fxr in subsequent matings. Transfer of Fxr could be restored in Fxr Tcs strains by the introduction of a conjugal Tcr element from Bacteroides fragilis V479-1. A covalently closed circular DNA form of Tn4555 was observed in donor cells by Southern hybridization, and the levels of this circular transposon increased significantly in cells grown with TC. Both the cfxA gene and the Tn4555 mobilization region hybridized to the circular DNA, suggesting that this was a structurally intact transposon unit. Circular transposon DNA purified by CsCl-ethidium bromide density gradient centrifugation was used to transform Tcs B. fragilis 638, and Fxr transformants were obtained. Both the circular form and the integrated Tn4555 were observed in transformants, but the circular form was present at less than one copy per chromosomal equivalent. Examination of genomic DNA from Fxr transformants and transconjugants revealed that Tn4555 could insert at a wide variety of chromosomal sites. Multiple transposon insertions were present in many of the transconjugants, indicating that there was no specific barrier to the introduction of a second transposon copy.
Collapse
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, North Carolina 27858-4354
| | | |
Collapse
|