1
|
Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 2013; 4:e00241-13. [PMID: 23900169 PMCID: PMC3735196 DOI: 10.1128/mbio.00241-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/26/2013] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is a significant cause of infections worldwide and is able to utilize aerobic respiration, anaerobic respiration, or fermentation as the means by which it generates the energy needed for proliferation. Aerobic respiration is supported by heme-dependent terminal oxidases that catalyze the final step of aerobic respiration, the reduction of O2 to H2O. An inability to respire forces bacteria to generate energy via fermentation, resulting in reduced growth. Elucidating the roles of these energy-generating pathways during colonization of the host could uncover attractive therapeutic targets. Consistent with this idea, we report that inhibiting aerobic respiration by inactivating heme biosynthesis significantly impairs the ability of S. aureus to colonize the host. Two heme-dependent terminal oxidases support aerobic respiration of S. aureus, implying that the staphylococcal respiratory chain is branched. Systemic infection with S. aureus mutants limited to a single terminal oxidase results in an organ-specific colonization defect, resulting in reduced bacterial burdens in either the liver or the heart. Finally, inhibition of aerobic respiration can be achieved by exposing S. aureus to noniron heme analogues. These data provide evidence that aerobic respiration plays a major role in S. aureus colonization of the host and that this energy-generating process is a viable therapeutic target. IMPORTANCE Staphylococcus aureus poses a significant threat to public health as antibiotic-resistant isolates of this pathogen continue to emerge. Our understanding of the energy-generating processes that allow S. aureus to proliferate within the host is incomplete. Host-derived heme is the preferred source of nutrient iron during infection; however, S. aureus can synthesize heme de novo and use it to facilitate aerobic respiration. We demonstrate that S. aureus heme biosynthesis powers a branched aerobic respiratory chain composed of two terminal oxidases. The importance of having two terminal oxidases is demonstrated by the finding that each plays an essential role in colonizing distinct organs during systemic infection. Additionally, this process can be targeted by small-molecule heme analogues called noniron protoporphyrins. This study serves to demonstrate that heme biosynthesis supports two terminal oxidases that are required for aerobic respiration and are also essential for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Neal D Hammer
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Ge H, Lv X, Fan J, Gao Y, Teng M, Niu L. Crystal structure of glutamate-1-semialdehyde aminotransferase from Bacillus subtilis with bound pyridoxamine-5'-phosphate. Biochem Biophys Res Commun 2010; 402:356-60. [PMID: 20946885 DOI: 10.1016/j.bbrc.2010.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022]
Abstract
Glutamate-1-semialdehyde aminotransferase (GSA-AT), also named glutamate-1-semialdehyde aminomutase (GSAM), a pyridoxamine-5'-phosphate (PMP)/pyridoxal-5'-phosphate (PLP) dependent enzyme, catalyses the transamination of the substrate glutamate-1-semialdehyde (GSA) to the product 5-Aminolevulinic acid (ALA) by an unusual intramolecular exchange of amino and oxo groups within the catalytic intermediate 4,5-diaminovalerate (DAVA). This paper presents the crystal structure of GSA-AT from Bacillus subtilis (GSA-ATBsu) in its PMP-bound form at 2.3Å resolution. The structure was determined by molecular replacement using the Synechococcus GSAM (GSAMSyn) structure as a search model. Unlike the previous reported GSAM/GSA-AT structures, GSA-ATBsu is a symmetric homodimer in the PMP-bound form, which shows the structural symmetry at the gating loop region with open state, as well as identical cofactor (PMP) binding in each monomer. This observation of PMP in combination with an "open" lid supports one characteristic feature for this enzyme, as the catalyzed reaction is believed to be initiated by PMP. Furthermore, the symmetry of GSA-ATBsu structure challenges the previously proposed negative cooperativity between monomers of this enzyme.
Collapse
Affiliation(s)
- Honghua Ge
- Modern Experiment Technology Center, Anhui University, Hefei, Anhui 230039, China.
| | | | | | | | | | | |
Collapse
|
3
|
Grimm B. Identification of a hemA gene from Synechocystis by complementation of an E. coli hemA mutant. Hereditas 2008; 117:195-7. [PMID: 1459859 DOI: 10.1111/j.1601-5223.1992.tb00174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- B Grimm
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| |
Collapse
|
4
|
Jordan PM. The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. CIBA FOUNDATION SYMPOSIUM 2007; 180:70-89; discussion 89-96. [PMID: 7842863 DOI: 10.1002/9780470514535.ch5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The biosynthesis of the uroporphyrinogen III macrocycle from porphobilinogen requires the sequential participation of two enzymes--porphobilinogen deaminase (1-hydroxymethylbilane synthase, EC 4.3.1.8) and uroporphyrinogen III synthase (cosynthase, EC 4.2.1.75). The product of the deaminase-catalysed reaction is a highly unstable 1-hydroxymethylbilane called preuroporphyrinogen which acts as the substrate for the uroporphyrinogen III synthase, resulting in the exclusive formation of uroporphyrinogen III. In the absence of the synthase, preuroporphyrinogen cyclizes spontaneously to give uroporphyrinogen I. Porphobilinogen deaminase contains a dipyrromethane cofactor that acts as a primer onto which the tetrapyrrole chain is built. The assembly process occurs in stages through enzyme-intermediate complexes, ES, ES2, ES3 and ES4. The negatively charged carboxylates of the cofactor, substrate and intermediate complexes interact with positively charged amino acid side chains in the catalytic cleft. Mutagenesis of conserved arginines has dramatic effects on the assembly of the dipyrromethane cofactor and on the tetrapolymerization process. During the polymerization, the enzyme changes conformation to accommodate the elongating pyrrole chain. The structure of the deaminase from Escherichia coli has been determined by X-ray crystallography at 1.9A resolution and gives important insight into the enzymic mechanism. Aspartate 84 plays a key role in catalysis and its substitution by glutamate reduces kcat by two orders of magnitude.
Collapse
Affiliation(s)
- P M Jordan
- School of Biological Sciences, Queen Mary and Westfield College, University of London, UK
| |
Collapse
|
5
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
6
|
Petrícek M, Petrícková K, Havlícek L, Felsberg J. Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol 2006; 188:5113-23. [PMID: 16816183 PMCID: PMC1539946 DOI: 10.1128/jb.01919-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.
Collapse
Affiliation(s)
- Miroslav Petrícek
- Institute of Microbiology AS CR, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Kaczanowska M, Rydén-Aulin M. The YrdC protein--a putative ribosome maturation factor. ACTA ACUST UNITED AC 2004; 1727:87-96. [PMID: 15716138 DOI: 10.1016/j.bbaexp.2004.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 10/26/2022]
Abstract
Release factor one (RF1) terminates protein synthesis in response to stop codons UAG and UAA. A mutant allele of RF1 causes temperature sensitive growth at 42 degrees C. We have earlier described the isolation of a suppressor of the temperature sensitive phenotype. The suppressor mutation is a small deletion in the open reading frame yrdC, and we have shown that the DeltayrdC mutation leads to immature 30S subunits and, as a consequence, to fewer translating ribosomes. YrdC is a small conserved protein with a dsRNA-binding surface. Here, we have characterized the YrdC protein. We show that the deletion leads to no production of functional protein, and we have indications that the YrdC protein might be essential in a wild type background. The protein is needed for the maturation of 16S rRNA, even though it does not interact tightly with either of the ribosomal subunits, or the 70S particles. The less effective maturation of rRNA affects the ribosomal feedback control, leading to an increase in expression from P1rrnB. We suggest that the function of the YrdC protein is to keep an rRNA structure needed for proper processing of 16S rRNA, especially at lower temperatures. This activity may require other factor(s). We suggest the gene be renamed rimN, and the mutant allele rimN141.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology and Toxicology (GMT), University of Stockholm, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
8
|
Li J, Deslouches B, Cosloy SD, Russell CS. A heme-deficient strain of Escherichia coli has a three-base pair deletion in a "hotspot" in hemA. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:102-5. [PMID: 12697336 DOI: 10.1016/s0167-4781(03)00041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The key regulatory step in heme biosynthesis in Escherichia coli is at the level of glutamyl-tRNA reductase (GTR), an enzyme which is encoded by hemA. A strain, HU227, with a spontaneous in-frame mutation in hemA has no GTR activity. The mutation is shown to be a three-base deletion at a "hotspot" in the gene. The amino acid sequence in this region is highly conserved.
Collapse
Affiliation(s)
- Juncheng Li
- Department of Biology, City College, City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
9
|
Nishikawa S, Murooka Y. 5-Aminolevulinic acid: production by fermentation, and agricultural and biomedical applications. Biotechnol Genet Eng Rev 2002; 18:149-70. [PMID: 11530687 DOI: 10.1080/02648725.2001.10648012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S Nishikawa
- New Products & Technology Laboratory, Cosmo Research Institute, 1134-2 Gongendo, Satte, Saitama 340-01931, Japan
| | | |
Collapse
|
10
|
Anderson PJ, Entsch B, McKay DB. A gene, cobA + hemD, from Selenomonas ruminantium encodes a bifunctional enzyme involved in the synthesis of vitamin B12. Gene 2001; 281:63-70. [PMID: 11750128 DOI: 10.1016/s0378-1119(01)00820-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coenzymes derived from vitamin B12 (cyanocobalamin) are particularly important for core metabolism in ruminant animals. Selenomonas ruminantium, a Gram-positive obligate anaerobe isolated from cattle, is the main contributor of vitamin B12 to such ruminant animals. In nature, there are both aerobic and anaerobic pathways for B12 synthesis - the latter is only partly elucidated. Until now, there has been no investigation of B12 synthesis in S. ruminantium, which must use an anaerobic pathway. This paper reports the cloning of the chromosomal operon from S. ruminantium which is responsible for the first committed steps in corrinoid synthesis. Five open reading frames were found in the cloned fragment. All deduced amino acid sequences had similarity to defined proteins in the databases that are involved in porphyrin and corrin synthesis. Of particular interest is the gene designated cobA + hemD, which encodes a single polypeptide possessing two catalytic functions - uroporphyrinogen III synthase and uroporphyrinogen III 2,7-methyltransferase. This enzyme converts hydroxymethylbilane to precorrin-2. The functions of the protein coded by cobA + hemD were established by heterologous expression in Escherichia coli. The CobA activity has been demonstrated for three distinct types of proteins - monofunctional, bifunctional with siroheme formation and, this report, bifunctional with uroporphyrinogen III synthesis. The type found in S. ruminantium (cobA + hemD) is probably restricted to obligately anaerobic fermentative bacteria.
Collapse
Affiliation(s)
- P J Anderson
- Molecular and Cellular Biology, School of Biological Sciences, University of New England, Armidale, NSW 2351, Australia
| | | | | |
Collapse
|
11
|
Giard JC, Rince A, Capiaux H, Auffray Y, Hartke A. Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J Bacteriol 2000; 182:4512-20. [PMID: 10913085 PMCID: PMC94623 DOI: 10.1128/jb.182.16.4512-4520.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis induces the synthesis of at least 42 proteins during 24 h of glucose starvation. Because of its induction during carbohydrate and complete starvation (incubation in tap water) and CdCl(2) and bile salts stresses, one of these proteins (Gls24) was qualified as a "general stress protein" and was analyzed at the molecular level. Its corresponding gene, gls24, seems to be the penultimate gene of an operon composed, altogether, of six open reading frames (ORFs). The ORF preceding gls24 (orf4) showed very strong identity with gls24. The deduced polypeptides of these two genes showed similarity with a 20-kDa hypothetical protein from Lactococcus lactis and an alkaline stress protein from Staphylococcus aureus with no previously known biological significance. Data from the operon sequence and Northern analysis led to the conclusions that (i) gls24 possesses its own promoter which is especially induced at the onset of starvation and (ii) the operon promoter is stress inducible in exponential-phase cells. A mutation in the gls24 gene led to a severe reduction of growth rate and reduction of survival against 0.3% bile salts in the 24-h-starved cells compared to the wild-type strain. Moreover, the chain length of the mutant is significantly reduced during growth. These results argue strongly for a role of the protein Gls24 and/or GlsB in morphological changes and in stress tolerance in E. faecalis. Comparison of two-dimensional protein gels from wild-type cells with those from gls24 mutant cells revealed a pleiotropic effect of the mutation on gene expression. At least nine proteins were present in larger amounts in the mutant. For six of them, the corresponding N-terminal microsequence has been obtained. Three of these sequences map in genes coding for L-lactate dehydrogenase, lipoamide dehydrogenase, and pyruvate decarboxylase, all involved in pyruvate metabolism.
Collapse
Affiliation(s)
- J C Giard
- Laboratoire de Microbiologie de l'Environnement, Université de Caen, 14032 Caen, France.
| | | | | | | | | |
Collapse
|
12
|
Vothknecht UC, Kannangara CG, von Wettstein D. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. PHYTOCHEMISTRY 1998; 47:513-519. [PMID: 9461671 DOI: 10.1016/s0031-9422(97)00538-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamyl tRNA(Glu) reductase converts glutamate molecules that are ligated at their alpha-carboxyl groups to tRNA(Glu) into glutamate 1-semialdehyde, an intermediate in the synthesis of 5-aminolevulinate, chlorophyll and haem. The mature plant enzymes contain a highly conserved extension of 31-34 amino acids at the N-terminus not present in bacterial enzymes. It is shown that barley glutamyl tRNAGlu reductases with a deletion of the 30 N-terminal amino acids have the same high specific activity as the untruncated enzymes, but are highly resistant to feed-back inhibition by haem. This peptide domain thus interacts directly or indirectly with haem and the toxicity of the 30 amino acid peptide for Escherichia coli experienced in mutant rescue and overexpression experiments can be explained by extensive haem removal from the metabolic pools that cannot be tolerated by the cell. Induced missense mutations identify nine amino acids in the 451 residue long C-terminal part of the barley glutamyl tRNA(Glu) reductase which upon substitution curtail drastically, but do not eliminate entirely the catalytic activity of the enzyme. These amino acids are thus important for the catalytic reaction or tRNA binding.
Collapse
Affiliation(s)
- U C Vothknecht
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
13
|
Kafala B, Sasarman A. Isolation of the Staphylococcus aureus hemCDBL gene cluster coding for early steps in heme biosynthesis. Gene X 1997; 199:231-9. [PMID: 9358061 DOI: 10.1016/s0378-1119(97)00372-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently reported [Kafala, B., Sasarman, A., 1994. Can. J. Microbiol. 40, 651 657] the cloning and sequencing of the Staphylococcus aureus hemB gene. This gene purportedly encodes the delta-aminolevulinic acid dehydratase of the heme pathway. In this present communication, we report the sequences and identities of three putative hem genes. Two of these genes are located immediately upstream from hemB. Complementation analysis of Escherichia coli and Salmonella typhimurium hemC and hemD mutants and the comparison of the Sa nucleotide sequences with those of Bacillus subtilis and Ec showed that these two open reading frames, ORF1 and ORF2, are likely to be the hemC gene coding for porphobilinogen deaminase and the hemD gene coding for uroporphyrinogen III synthase, respectively. The third hem gene, hemL, is located immediately downstream of hemB, and encodes glutamate 1-semialdehyde 2,1-aminotransferase. Sequencing of the region which extends past hemL indicates that no further hem genes are located downstream of hemL. In Sa, hemC, hemD, hemB and hemL are proposed to constitute a hem cluster encoding enzymes required for the synthesis of uroporphyrinogen III from glutamate 1-semialdehyde (GSA).
Collapse
Affiliation(s)
- B Kafala
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
14
|
Antelmann H, Bernhardt J, Schmid R, Mach H, Völker U, Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997; 18:1451-63. [PMID: 9298659 DOI: 10.1002/elps.1150180820] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entirely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor sigma B is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Collapse
Affiliation(s)
- H Antelmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie und Molekularbiologie, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Antelmann H, Engelmann S, Schmid R, Hecker M. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol 1996; 178:6571-8. [PMID: 8932314 PMCID: PMC178544 DOI: 10.1128/jb.178.22.6571-6578.1996] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The AhpC subunit of the Bacillus subtilis alkyl hydroperoxide reductase was identified as a general stress protein induced in response to heat or salt stress or after entry of the organism into the stationary phase. The ahp operon, encoding the two subunits AhpC and AhpF, was cloned and localized between the gntRKPZ operon and the bglA locus. Two-dimensional gel analyses revealed an especially strong induction of AhpC and AhpF in cells subjected to oxidative stress. Transcriptional studies showed a 3- to 4-fold induction of ahp mRNA after heat or salt stress or starvation for glucose and a 20-fold induction by oxidative stress, thus confirming the protein induction data for AhpC and AhpF. Stress induction occurred at a sigmaA-dependent promoter that overlaps with operator sites similar to the per box. Compared with the wild type, the ahpC mutant was resistant to hydrogen peroxide because of the derepression of the peroxide regulon (N. Bsat, L. Chen, and J. D. Helmann, J. Bacteriol. 178:6579-6586, 1996) but more sensitive to cumene hydroperoxide (CHP) during exponential growth. In contrast, stationary-phase wild-type and ahpC mutant cells displayed complete resistance to treatment with 1 mM CHP. Moreover, a sigmaB mutant was found to be extremely sensitive to CHP during vegetative growth and in stationary phase, which indicates that sigmaB-dependent general stress proteins are involved in the protection of cells against oxidative stress.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
16
|
Vothknecht UC, Kannangara CG, von Wettstein D. Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci U S A 1996; 93:9287-91. [PMID: 8799193 PMCID: PMC38634 DOI: 10.1073/pnas.93.17.9287] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.
Collapse
Affiliation(s)
- U C Vothknecht
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
17
|
Hungerer C, Weiss DS, Thauer RK, Jahn D. The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg. Bioorg Med Chem 1996; 4:1089-95. [PMID: 8831980 DOI: 10.1016/0968-0896(96)00098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In archaea the first general tetrapyrrole precursor 5-aminolevulinic acid (ALA) is formed via the tRNA-dependent five-carbon pathway from glutamate. We have cloned the hemA gene encoding the central enzyme of the pathway glutamyl-tRNA reductase from the methanogenic archaeon Methanobacterium thermoautotrophicum by complementation of an Escherichia coli hemA mutant to ALA prototrophy. An 1194 bp open reading frame that encodes a 398 amino acid polypeptide with the calculated M, 44,509 was detected. The deduced amino acid sequence showed 20-35% amino acid identity to bacterial HemAs with the highest identity score to the Pseudomonas aeruginosa HemA. An identity of approximately 22% was found to plant HemAs. Glutamyl-tRNA reductase activity was shown for the M. thermoautotrophicum HemA after overexpression in E. coli and partial purification. The enzymatic reaction catalyzed by the partially purified enzyme revealed a temperature optimum of 65 degrees C at an optimal pH of 7.0. The reductase utilized preferentially NADPH for the reduction of the activated carboxyl group. The presence of ATP and GTP showed no obvious influence on catalysis.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie des Fachbereich Biologie der Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
18
|
Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Malashkevich VN, Hädener A, Warren MJ, Shoolingin-Jordan PM. The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.76-A resolution. Proteins 1996; 25:48-78. [PMID: 8727319 DOI: 10.1002/(sici)1097-0134(199605)25:1<48::aid-prot5>3.0.co;2-g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Porphobilinogen deaminase (PBGD) catalyses the polymerization of four molecules of porphobilinogen to form the 1-hydroxymethylbilane, preuroporphyrinogen, a key intermediate in the biosynthesis of tetrapyrroles. The three-dimensional structure of wild-type PBGD from Escherichia coli has been determined by multiple isomorphous replacement and refined to a crystallographic R-factor of 0.188 at 1.76 A resolution. the polypeptide chain of PBGD is folded into three alpha/beta domains. Domains 1 and 2 have a similar overall topology, based on a five-stranded, mixed beta-sheet. These two domains, which are linked by two hinge segments but otherwise make few direct interactions, form an extensive active site cleft at their interface. Domain 3, an open-faced, anti-parallel sheet of three strands, interacts approximately equally with the other two domains. The dipyrromethane cofactor is covalently attached to a cysteine side-chain borne on a flexible loop of domain 3. The cofactor serves as a primer for the assembly of the tetrapyrrole product and is held within the active site cleft by hydrogen-bonds and salt-bridges that are formed between its acetate and propionate side-groups and the polypeptide chain. The structure of a variant of PBGD, in which the methionines have been replaced with selenomethionines, has also been determined. The cofactor, in the native and functional form of the enzyme, adopts a conformation in which the second pyrrole ring (C2) occupies an internal position in the active site cleft. On oxidation, however, this C2 ring of the cofactor adopts a more external position that may correspond approximately to the site of substrate binding and polypyrrole chain elongation. The side-chain of Asp84 hydrogen-bonds the hydrogen atoms of both cofactor pyrrole nitrogens and also potentially the hydrogen atom of the pyrrole nitrogen of the porphobilinogen molecule bound to the proposed substrate binding site. This group has a key catalytic role, possibly in stabilizing the positive charges that develop on the pyrrole nitrogens during the ring-coupling reactions. Possible mechanisms for the processive elongation of the polypyrrole chain involve: accommodation of the elongating chain within the active site cleft, coupled with shifts in the relative positions of domains 1 and 2 to carry the terminal ring into the appropriate position at the catalytic site; or sequential translocation of the elongating polypyrrole chain, attached to the cofactor on domain 3, through the active site cleft by the progressive movement of domain 3 with respect to domains 1 and 2. Other mechanisms are considered although the amino acid sequence comparisons between PBGDs from all species suggest they share the same three-dimensional structure and mechanism of activity.
Collapse
Affiliation(s)
- G V Louie
- Department of Crystallography, Birkbeck College, University of London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. PLANT PHYSIOLOGY 1996; 110:1223-30. [PMID: 8934625 PMCID: PMC160912 DOI: 10.1104/pp.110.4.1223] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The first committed step of porphyrin synthesis in higher plants is the reduction of glutamyl-tRNA to glutamate 1-semialdehyde. This reaction is catalyzed by glutamyl-tRNA reductase, which is encoded by hemA genes. Two hemA cDNA clones (hemA1 and hemA2) were obtained from cucumber (Cucumis sativus) cotyledons by the PCR and cDNA library screening. They showed significant homology with published hemA sequences. Southern blot analysis of cucumber genomic DNA revealed that these genes are located at different loci and that there is another gene similar to the hemA genes. Accumulation of hemA1 mRNA was detected primarily in cotyledons and hypocotyls of greening cucumber seedlings, whereas that of hemA2 mRNA was detected in all tissues examined. Illumination of cucumber seedlings increased markedly the accumulation of hemA1 mRNA, but it did not induce remarkable changes in that of hemA2 mRNA. These findings suggest that hemA1 mRNA was accumulated in response to the demand of Chl synthesis in photosynthesizing tissues, whereas hemA2 mRNA was expressed in response to the demand of the synthesis of porphyrins other than chlorophylls.
Collapse
Affiliation(s)
- R Tanaka
- Department of Botany, Kyoto University, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun G, Sharkova E, Chesnut R, Birkey S, Duggan MF, Sorokin A, Pujic P, Ehrlich SD, Hulett FM. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J Bacteriol 1996; 178:1374-85. [PMID: 8631715 PMCID: PMC177812 DOI: 10.1128/jb.178.5.1374-1385.1996] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two Bacillus subtilis genes, designated resD and resE, encode proteins that are similar to those of two-component signal transduction systems and play a regulatory role in respiration. The overlapping resD-resE genes are transcribed during vegetative growth from a very weak promoter directly upstream of resD. They are also part of a larger operon that includes three upstream genes, resABC (formerly orfX14, -15, and -16), the expression of which is strongly induced postexponentially. ResD is required for the expression of the following genes: resA, ctaA (required for heme A synthesis), and the petCBD operon (encoding subunits of the cytochrome bf complex). The resABC genes are essential genes which encode products with similarity to cytochrome c biogenesis proteins. resD null mutations are more deleterious to the cell than those of resE. resD mutant phenotypes, directly related to respiratory function, include streptomycin resistance, lack of production of aa3 or caa3 terminal oxidases, acid accumulation when grown with glucose as a carbon source, and loss of ability to grow anaerobically on a medium containing nitrate. A resD mutation also affected sporulation, carbon source utilization, and Pho regulon regulation. The data presented here support an activation role for ResD, and to a lesser extent ResE, in global regulation of aerobic and anaerobic respiration i B.subtilis.
Collapse
Affiliation(s)
- G Sun
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of the hemB gene encoding δ-aminolevulinic acid dehydratase from Propionibacterium freudenreichii. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)85028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Nakayashiki T, Nishimura K, Tanaka R, Inokuchi H. Partial inhibition of protein synthesis accelerates the synthesis of porphyrin in heme-deficient mutants of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:139-46. [PMID: 7500934 DOI: 10.1007/bf00290359] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of glutamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.
Collapse
Affiliation(s)
- T Nakayashiki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
23
|
Fujino E, Fujino T, Karita S, Sakka K, Ohmiya K. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J Bacteriol 1995; 177:5169-75. [PMID: 7665501 PMCID: PMC177302 DOI: 10.1128/jb.177.17.5169-5175.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 6.2-kbp DNA fragment encoding the enzymes in the porphyrin synthesis pathway of a cellulolytic anaerobe, Clostridium josui, was cloned into Escherichia coli and sequenced. This fragment contained four hem genes, hemA, hemC, hemD, and hemB, in order, which were homologous to the corresponding genes from E. coli and Bacillus subtilis. A typical promoter sequence was found only upstream of hemA, suggesting that these four genes were under the control of this promoter as an operon. The hemA and hemD genes cloned from C. josui were able to complement the hemA and hemD mutations, respectively, of E. coli. The COOH-terminal region of C. josui HemA and the NH2-terminal region of C. josui HemD were homologous to E. coli CysG (Met-1 to Leu-151) and to E. coli CysG (Asp-213 to Phe-454) and Pseudomonas denitrificans CobA, respectively. Furthermore, the cloned 6.2-kbp DNA fragment complemented E. coli cysG mutants. These results suggested that both C. josui hemA and hemD encode bifunctional enzymes.
Collapse
Affiliation(s)
- E Fujino
- School of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | |
Collapse
|
24
|
Chen L, Keramati L, Helmann JD. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A 1995; 92:8190-4. [PMID: 7667267 PMCID: PMC41122 DOI: 10.1073/pnas.92.18.8190] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Bacillus subtilis mrgA gene encodes an abundant DNA-binding protein that protects cells against the lethal effects of H2O2. Transcription of mrgA is induced by H2O2 or by entry into stationary phase when manganese and iron levels are low. We have selected for strains derepressed for transcription of mrgA in the presence of Mn(II). The resulting cis-acting mutants define an operator site just upstream of the mrgA promoter. Similar sequences flank the promoters for the catalase gene, katA, and the heme biosynthesis operon, hemAXCDBL. Like mrgA, transcription of the katA and hem genes is repressed by Mn(II), which thereby potentiates the killing action of H2O2. We identified two classes of trans-acting mutants derepressed for mrgA transcription in the presence of Mn(II): some exhibit a coordinate derepression of MrgA, catalase, heme biosynthesis, and alkyl hydroperoxide reductase and are H2O2 resistant, while others have reduced catalase activity and are H2O2 sensitive. These data indicate that the peroxide stress response of B. subtilis is regulated by a repressor that senses both metal ion levels and H2O2.
Collapse
Affiliation(s)
- L Chen
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
25
|
Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 1995; 23:2351-60. [PMID: 7630711 PMCID: PMC307037 DOI: 10.1093/nar/23.13.2351] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequence analysis of 236 promoters recognized by the Bacillus subtilis sigma A-RNA polymerase reveals an extended promoter structure. The most highly conserved bases include the -35 and -10 hexanucleotide core elements and a TG dinucleotide at position -15, -14. In addition, several weakly conserved A and T residues are present upstream of the -35 region. Analysis of dinucleotide composition reveals A2- and T2-rich sequences in the upstream promoter region (-36 to -70) which are phased with the DNA helix: An tracts are common near -43, -54 and -65; Tn tracts predominate at the intervening positions. When compared with larger regions of the genome, upstream promoter regions have an excess of An and Tn sequences for n > 4. These data indicate that an RNA polymerase binding site affects DNA sequence as far upstream as -70. This sequence conservation is discussed in light of recent evidence that the alpha subunits of the polymerase core bind DNA and that the promoter may wrap around RNA polymerase.
Collapse
Affiliation(s)
- J D Helmann
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
26
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
27
|
Xu W, Kozak CA, Desnick RJ. Uroporphyrinogen-III synthase: molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7. Genomics 1995; 26:556-62. [PMID: 7607680 DOI: 10.1016/0888-7543(95)80175-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uroporphyrinogen-III synthase (URO-S; EC 4.2.1.75), the fourth enzyme in the heme biosynthetic pathway, is responsible for the conversion of hydroxymethylbilane to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-S is the enzymatic defect in congenital erythropoietic porphyria (CEP), an autosomal recessive disorder. For the generation of a mouse model of CEP, the human URO-S cDNA was used to screen 2 x 10(6) recombinants from a mouse adult liver cDNA library. Ten positive clones were isolated, and dideoxy sequencing of the entire 1.6-kb insert of clone pmUROS-1 revealed 5' and 3' untranslated sequences of 144 and 623 bp, respectively, and an open reading frame of 798 bp encoding a 265-amino-acid polypeptide with a predicted molecular mass of 28,501 Da. The mouse and human coding sequences had 80.5 and 77.8% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active monomeric enzyme in Escherichia coli. In addition, the analysis of two multilocus genetic crosses localized the mouse gene on chromosome 7, consistent with the mapping of the human gene to a position of conserved synteny on chromosome 10. The isolation, expression, and chromosomal mapping of this full-length cDNA should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of CEP for characterization of the disease pathogenesis and evaluation of gene therapy.
Collapse
Affiliation(s)
- W Xu
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | |
Collapse
|
28
|
Shoolingin-Jordan PM. Porphobilinogen deaminase and uroporphyrinogen III synthase: structure, molecular biology, and mechanism. J Bioenerg Biomembr 1995; 27:181-95. [PMID: 7592565 DOI: 10.1007/bf02110033] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Porphobilinogen deaminase (hydroxymethylbilane synthase) and uroporphyrinogen III synthase (uroporphyrinogen III cosynthase) catalyze the transformation of four molecules of porphobilinogen, via the 1-hydroxymethylbilane, preuroporphyrinogen, into uroporphyrinogen III. A combination of studies involving protein chemistry, molecular biology, site-directed mutagenesis, and the use of chemically synthesized substrate analogs and inhibitors is helping to unravel the complex mechanisms by which the two enzymes function. The determination of the X-ray structure of E. coli porphobilinogen deaminase at 1.76 A resolution has provided the springboard for the design of further experiments to elucidate the precise mechanism for the assembly of both the dipyrromethane cofactor and the tetrapyrrole chain. The human deaminase structure has been modeled from the E. coli structure and has led to a molecular explanation for the disease acute intermittent porphyria. Molecular modeling has also been employed to stimulate the spiro-mechanism of uroporphyrinogen III synthase.
Collapse
Affiliation(s)
- P M Shoolingin-Jordan
- Department of Biochemistry, School of Biological Sciences, University of Southampton, Hants, England
| |
Collapse
|
29
|
Hungerer C, Troup B, Römling U, Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 1995; 177:1435-43. [PMID: 7883699 PMCID: PMC176757 DOI: 10.1128/jb.177.6.1435-1443.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined transcription start sites.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Schmidt R, Decatur AL, Rather PN, Moran CP, Losick R. Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol 1994; 176:6528-37. [PMID: 7961403 PMCID: PMC197006 DOI: 10.1128/jb.176.21.6528-6537.1994] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Bacillus subtilis RNA polymerase sigma factor sigma G is a cell-type-specific regulatory protein that governs the transcription of genes that are expressed at an intermediate to late stage of sporulation in the forespore compartment of the sporangium. Here we report the identification of a mutation (lon-1) that causes inappropriate transcription of genes under the control of sigma G under nutritional and genetic conditions in which sporulation is prevented. The mutation is located at 245 degrees on the genetic map and lies within a newly identified open reading frame that is predicted to encode a homolog to Lon protease. Inappropriate transcription of sigma G-controlled genes in the lon-1 mutant is not prevented by mutations in genes that are normally required for the appearance of sigma G during sporulation but is prevented by a mutation in the structural gene (spoIIIG) for sigma G itself. In light of previous work showing that spoIIIG is subject to positive autoregulation, we propose that Lon protease is responsible (possibly by causing degradation of sigma G) for preventing sigma G-directed transcription of spoIIIG and hence the accumulation of sigma G in cells that are not undergoing sporulation. An integrated physical and genetic map is presented that encompasses 36 kb of uninterrupted DNA sequence from the lon pheA region of the chromosome, corresponding to 245 degrees to 239 degrees on the genetic map.
Collapse
Affiliation(s)
- R Schmidt
- Biological Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | |
Collapse
|
31
|
Pontoppidan B, Kannangara CG. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:529-37. [PMID: 7957167 DOI: 10.1111/j.1432-1033.1994.00529.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5-Aminolevulinic acid for chlorophyll synthesis in greening barley is formed from glutamate. One of the steps involved in the conversion of glutamate to 5-aminolevulinic acid involves a reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde and tRNA(Glu). An enzyme catalysing this reduction was purified from the stroma of greening barley chloroplasts. An approximately 270-kDa protein composed of 54-kDa identical subunits was identified as the barley glutamyl-tRNA(Glu) reductase after purification by Sephacryl S-300, Cibacron Blue-Sepharose, 2'-5'-ADP-Sepharose, Mono S, Mini Q and Superose 12 chromatography. The sequence of 18 amino acids from the N-terminus of the reductase is 50% identical to a cDNA-deduced domain of the Arabidopsis thaliana hemA protein and encoded in a barley hemA cDNA sequence. This is an unequivocal demonstration that the glutamyl-tRNA(Glu) reductase subunit of higher plants is encoded in a hemA gene of the nuclear genome. Heme at 4 microM concentration or glutamate 1-semialdehyde at 200 microM caused a 50% inhibition of the reductase activity. Micromolar concentrations of Zn2+, Cu2+ and Cd2+ also inhibited barley glutamyl-tRNA(Glu) reductase.
Collapse
Affiliation(s)
- B Pontoppidan
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | |
Collapse
|
32
|
Hansson M, Hederstedt L. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J Bacteriol 1994; 176:5962-70. [PMID: 7928957 PMCID: PMC196813 DOI: 10.1128/jb.176.19.5962-5970.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The hemY gene of the Bacillus subtilis hemEHY operon is essential for protoheme IX biosynthesis. Two previously isolated hemY mutations were sequenced. Both mutations are deletions affecting the hemY reading frame, and they cause the accumulation of coproporphyrinogen III or coproporphyrin III in the growth medium and the accumulation of trace amounts of other porphyrinogens or porphyrins intracellularly. HemY was found to be a 53-kDa peripheral membrane-bound protein. In agreement with recent findings by Dailey et al. (J. Biol. Chem. 269:813-815, 1994) B. subtilis HemY protein synthesized in Escherichia coli oxidized coproporphyrinogen III and protoporphyrinogen IX to coproporphyrin and protoporphyrin, respectively. The protein is not a general porphyrinogen oxidase since it did not oxidize uroporphyrinogen III. The apparent specificity constant, kcat/Km, for HemY was found to be about 12-fold higher with coproporphyrinogen III as a substrate compared with protoporphyrinogen IX as a substrate. The protoporphyrinogen IX oxidase activity is consistent with the function of HemY in a late step of protoheme IX biosynthesis, i.e., HemY catalyzes the penultimate step of the pathway. However, the efficient coproporphyrinogen III to coproporphyrin oxidase activity is unexplained in the current view of protoheme IX biosynthesis.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, Lund University, Sweden
| | | |
Collapse
|
33
|
Darie S, Gunsalus RP. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. J Bacteriol 1994; 176:5270-6. [PMID: 8071201 PMCID: PMC196710 DOI: 10.1128/jb.176.17.5270-5276.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While many organisms synthesize delta-aminolevulinate, the precursor of heme, by condensing succinyl-coenzyme A and glycine, others use a glutamate-dependent pathway in which glutamyl-tRNA dehydrogenase catalyzes the rate-determining step. The hemeA gene that encodes this latter enzyme in Escherichia coli has been cloned and sequenced. To examine how its expression is regulated, we constructed hemA-lacZ operon and gene fusions and inserted them into the chromosome in single copy. The effect of aerobic and anaerobic growth conditions and the availability of electron acceptors and various carbon substrates were documented. Use of different types of cell culture medium resulted in a fivefold variation in hemA-lacZ expression during aerobic cell growth. Anaerobic growth resulted in 2.5-fold-higher hemA-lacZ expression than aerobic growth. This control is mediated by the fnr and arcA gene products. Fnr functions as a repressor of hemA transcription during anaerobic cell growth only, whereas the arcA gene product activates hemA gene expression under both aerobic and anaerobic conditions. Integration host factor protein was also shown to be required for control of hemA gene regulation. To determine whether an intermediate or a product of the heme biosynthetic pathway is involved in hemA regulation, hemA-lacZ expression was analyzed in a hemA mutant. Expression was elevated by 20-fold compared with that in a wild-type strain, while the addition of the heme pathway intermediate delta-aminolevulinate to the culture medium restored expression to wild-type levels. These results suggest that the heme pathway is feedback regulated at the level of hemA gene expression, to supply heme as it is required during different modes of cell growth.
Collapse
Affiliation(s)
- S Darie
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | |
Collapse
|
34
|
Moberg PA, Avissar YJ. A gene cluster inChlorobium vibrioforme encoding the first enzymes of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1994; 41:253-259. [PMID: 24310032 DOI: 10.1007/bf02184166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/1993] [Accepted: 01/10/1994] [Indexed: 06/02/2023]
Abstract
A cloned 5.8-kb genomic fragment of the green sulfur bacteriumChlorobium vibrioforme encodes the genes for three enzymes catalyzing early steps in the biosynthetic pathway of tetrapyrroles, common to chlorophyll and heme. ThehemA, hemC andhemD genes encode the enzymes glutamyl tRNA dehydrogenase, porphobilinogen deaminase and uroporphyrinogen III synthase, respectively. The cloned genes were expressed in transformedEscherichia coli orSalmonella typhimurium and conferred autotrophy on the respective auxotrophs. Activities of the enzymes encoded by the cloned genes were demonstrated in vitro, with cell extracts obtained from the transformed enterobacteria. The proximity of these genes indicates that they form a cluster inChlorobium vibrioforme, while in most other organisms they appear to be scattered. The presence of this cluster may imply coordinate regulation of the genes involved and they may constitute an operon.
Collapse
Affiliation(s)
- P A Moberg
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
35
|
Jones RM, Jordan PM. Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 1994; 299 ( Pt 3):895-902. [PMID: 8192681 PMCID: PMC1138105 DOI: 10.1042/bj2990895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Porphobilinogen deaminase (EC 4.3.1.8) has been purified to homogeneity (16,000-fold) from the plant Arabidopsis thaliana in yields of 8%. The deaminase is a monomer of M(r) 35,000, as shown by SDS/PAGE, and 31,000, using gel-filtration chromatography. The pure enzyme has a Vmax. of 4.5 mumol/h per mg and a Km of 17 +/- 4 microM. Determination of the pI and pH optimum revealed values of 5.2 and 8.0 respectively. The sequence of the N-terminus was found to be NH2-XVAVEQKTRTAI. The deaminase is heat-stable up to 70 degrees C and is inhibited by NH3 and hydroxylamine. The enzyme is inactivated by arginine-, histidine- and lysine-specific reagents. Incubation with the substrate analogue and suicide inhibitor, 2-bromoporphobilinogen, results in chain termination and in inactivation.
Collapse
Affiliation(s)
- R M Jones
- School of Biological Sciences, Queen Mary and Westfield College, University of London, U.K
| | | |
Collapse
|
36
|
Ilag LL, Kumar AM, Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. THE PLANT CELL 1994; 6:265-75. [PMID: 7908550 PMCID: PMC160432 DOI: 10.1105/tpc.6.2.265] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles, such as chlorophyll and heme. The major control of chlorophyll biosynthesis is at the step of ALA formation. In the chloroplasts of plants, as in Escherichia coli, ALA is derived from the glutamate of Glu-tRNA via the two-step C5 pathway. The first enzyme, Glu-tRNA reductase, catalyzes the reduction of Glu-tRNA to glutamate 1-semialdehyde with the release of intact tRNA. The second enzyme, glutamate 1-semialdehyde 2,1-aminomutase, converts glutamate 1-semialdehyde to ALA. To further examine ALA formation in plants, we isolated Arabidopsis genes that encode the enzymes of the C5 pathway via functional complementation of mutations in the corresponding genes of E. coli. The Glu-tRNA reductase gene was designated HEMA and the glutamate 1-semialdehyde 2,1-aminomutase gene, GSA1. Each gene contains two short introns (149 and 241 nucleotides for HEMA, 153 and 86 nucleotides for GSA1). The deduced amino acid sequence of the HEMA protein predicts a protein of 60 kD with substantial similarity (30 to 47% identity) to sequences derived from the known hemA genes from microorganisms that make ALA by the C5 pathway. Purified Arabidopsis HEMA protein has Glu-tRNA reductase activity. The GSA1 gene encodes a 50-kD protein whose deduced amino acid sequence shows extensive homology (55 to 78% identity) with glutamate 1-semialdehyde 2,1-aminomutase proteins from other species. RNA gel blot analyses indicated that transcripts for both genes are found in root, leaf, stem, and flower tissues and that their levels are dramatically elevated by light. Thus, light may regulate ALA, and hence chlorophyll formation, by exerting coordinated transcriptional control over both enzymes of the C5 pathway.
Collapse
Affiliation(s)
- L L Ilag
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
37
|
Asahara N, Murakami K, Korbrisate S, Hashimoto Y, Murooka Y. Cloning and characterization of the hemA gene for synthesis of delta-aminolevulinic acid in Xanthomonas campestris pv. phaseoli. Appl Microbiol Biotechnol 1994; 40:846-50. [PMID: 7764570 DOI: 10.1007/bf00173986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gene from Xanthomonas campestris pv. phaseoli that is involved in the C5 pathway of delta-amino-levulinic acid (ALA) of Escherichia coli. Subcloning of deletion fragments from the initial 2.5-kilobase (kb) chromosomal fragment allowed the isolation of a 1.6-kb fragment that could complement the hemM mutation. Nucleotide sequence analysis of the 1.6-kb DNA fragment revealed an open reading frame that encodes a polypeptide of 426 amino acid residues, and the deduced molecular mass of this polypeptide is 46768 Da. The amino acid sequence shows a high degree of homology of the HemA protein, which is glutamyl-tRNA reductase, to other organisms. Thus, we examined the complementation test of the cloned gene from Xanthomonas with a hemA mutation of E. coli and found that the gene complemented the hemA mutation. These results suggest that the cloned gene is hemA and the gene from Xanthomonas also complements both hemA and hemM mutations, as in the case of the E. coli hemA.
Collapse
Affiliation(s)
- N Asahara
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
38
|
Mohr CD, Sonsteby SK, Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:177-84. [PMID: 8159168 DOI: 10.1007/bf00391011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The algD gene encodes NAD-linked GDPmannose dehydrogenase, which is essential for the mucoid phenotype, an important virulence factor expressed by Pseudomonas aeruginosa in cystic fibrosis patients. AlgR, a response regulator controlling mucoidy, is required for high level expression of algD. Inactivation of algR completely abrogates algD expression while mutations immediately downstream of algR affect induction of the algD promoter. In order to examine the nature of genetic elements located downstream of algR, the complete nucleotide sequence of this region was determined. This analysis revealed the presence of two newly identified P. aeruginosa genes with predicted gene products homologous to known porphobilinogen deaminases (HemC) from other organisms, and uroporphyrinogen III cosynthase (HemD) from Escherichia coli. The concerted action of both of these enzymes is essential for the synthesis of heme precursors. Mutations within the region containing the P. aeruginosa homologs of hemC and hemD affect algD promoter activity during growth on nitrate. Furthermore, transcriptional analyses indicated that hemC was cotranscribed with algR at detectable levels in mucoid cells. These results suggest a link between physiological processes dependent on heme and conditions conductive to algD expression and mucoidy.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | | | |
Collapse
|
39
|
Hädener A, Matzinger PK, Malashkevich VN, Louie GV, Wood SP, Oliver P, Alefounder PR, Pitt AR, Abell C, Battersby AR. Purification, characterization, crystallisation and X-ray analysis of selenomethionine-labelled hydroxymethylbilane synthase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:615-24. [PMID: 8436121 DOI: 10.1111/j.1432-1033.1993.tb17589.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydroxymethylbilane synthase (HMBS) catalyses the conversion of porphobilinogen into hydroxymethylbilane, a linear tetrapyrrolic intermediate in the biosynthesis of haems, chlorophylls, vitamin B12 and related macrocycles. In the course of an investigation of the crystal structure of this enzyme, we intended to follow a new strategy to obtain the X-ray phase information, i.e. the collection of multiwavelength anomalous diffraction data from a crystal of a seleno-L-methionine (SeMet)-labelled variant of the protein. We have expressed and purified HMBS from Escherichia coli (34268 Da) in which all (six) methionine (Met) residues are replaced by SeMet. Complete replacement, as shown by amino acid composition analysis and by electrospray mass spectrometry, was achieved by growing the Met-requiring mutant E. coli PO1562 carrying the plasmid pPA410 in a medium containing 50 mg/l SeMet as the sole source of Met. [SeMet]HMBS exhibits full enzyme activity, as reflected by unchanged steady-state kinetic parameters relative to native enzyme. Rhombohedral crystals of [SeMet]HMBS could be grown at the pH optimum (7.4) of the enzyme (solutions containing 30 mg/ml protein, 0.4 mM EDTA, 20 mM dithiothreitol, 3 M NaCl and 15 mM Bristris-propane buffer were equilibrated by vapour diffusion at 20 degrees C against reservoirs of saturated NaCl). However, being very thin plates, these crystals were not suitable for X-ray analysis. Alternatively, rectangular crystals were obtained at pH 5.3 using conditions based on those reported for wild-type HMBS [sitting drops of 50 microliters containing 6-7 mg/ml protein, 0.3 mM EDTA, 15 mM dithiothreitol, 10% (mass/vol.) poly(ethylene glycol) 6000 and 0.01% NaN3 in 0.1 M sodium acetate were equilibrated by vapour diffusion at 20 degrees C against a reservoir of 10-20 mg solid dithiothreitol]. X-ray diffraction data of the crystals were complete to 93.8% at 0.21 nm resolution and showed that [SeMet]HMBS and native HMBS crystallise isomorphously. A difference Fourier map using FSeMet-Fnative and phases derived from the native structure, which has recently been determined independently by multiple isomorphous replacement, showed positive difference peaks centered at or close to where the sulphur atoms of the Met side chains appear in the native structure. In addition, paired positive/negative peaks in the difference map near the cofactor of HMBS indicate conformational differences in the active site, probably due to differences in the state of oxidation of the cofactor in the two crystalline samples.
Collapse
Affiliation(s)
- A Hädener
- Institut für Organische Chemie, Universität, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hansson M, Wachenfeldt C. Heme b (protoheme IX) is a precursor of heme a and heme d in Bacillus subtilis. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06015.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Hansson M, Hederstedt L. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 1992; 174:8081-93. [PMID: 1459957 PMCID: PMC207547 DOI: 10.1128/jb.174.24.8081-8093.1992] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations that cause a block in a late step of the protoheme IX biosynthetic pathway, i.e., in a step after uroporphyrinogen III, map at 94 degrees on the Bacillus subtilis chromosomal genetic map. We have cloned and sequenced the hem genes at this location. The sequenced region contains six open reading frames: ponA, hemE, hemH, hemY, ORFA, and ORFB. The ponA gene product shows over 30% sequence identity to penicillin-binding proteins 1A of Escherichia coli, Streptococcus pneumoniae, and Streptococcus oralis and probably has a role in cell wall metabolism. The hemE gene was identified from amino acid sequence comparisons as encoding uroporphyrinogen III decarboxylase. The hemH gene was identified by enzyme activity analysis of the HemH protein expressed in E. coli. It encodes a water-soluble ferrochelatase which catalyzes the final step in protoheme IX synthesis, the insertion of ferrous iron into protoporphyrin IX. The function of the hemY gene product was not elucidated, but mutation analysis shows that it is required for a late step in protoheme IX synthesis. The hemY gene probably encodes an enzyme with coproporphyrinogen III oxidase or protoporphyrinogen IX oxidase activity or both of these activities. Inactivation of the ORFA and ORFB genes did not block protoheme IX synthesis. Preliminary evidence for a hemEHY mRNA was obtained, and a promoter region located in front of hemE was identified. From these combined results we conclude that the hemEHY gene cluster encodes enzymes for the synthesis of protoheme IX from uroporphyrinogen III and probably constitutes an operon.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, University of Lund, Sweden
| | | |
Collapse
|
42
|
Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC, Jordan PM. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 1992; 359:33-9. [PMID: 1522882 DOI: 10.1038/359033a0] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three-domain structure of porphobilinogen deaminase, a key enzyme in the biosynthetic pathway of tetrapyrroles, has been defined by X-ray analysis at 1.9 A resolution. Two of the domains structurally resemble the transferrins and periplasmic binding proteins. The dipyrromethane cofactor is covalently linked to domain 3 but is bound by extensive salt-bridges and hydrogen-bonds within the cleft between domains 1 and 2, at a position corresponding to the binding sites for small-molecule ligands in the analogous proteins. The X-ray structure and results from site-directed mutagenesis provide evidence for a single catalytic site. Interdomain flexibility may aid elongation of the polypyrrole product in the active-site cleft of the enzyme.
Collapse
Affiliation(s)
- G V Louie
- Department of Crystallography, Birkbeck College, University of London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215-8. [PMID: 1502723 DOI: 10.1016/0968-0004(92)90380-r] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In green plants, archaebacteria and many eubacteria, the porphyrin ring that is common to both chlorophyll and heme is synthesized from 5-aminolevulinic acid (ALA) via an interesting pathway. This two-step process involves the unusual enzymes glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase. Interest in this pathway has increased since it was discovered that a tRNA cofactor was required for the formation of ALA. This tRNA(Glu) is common to the biosyntheses of both porphyrins and proteins.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
44
|
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42438-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Schröder I, Hederstedt L, Kannangara CG, Gough P. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem J 1992; 281 ( Pt 3):843-50. [PMID: 1536660 PMCID: PMC1130766 DOI: 10.1042/bj2810843] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bacillus subtilis hemAXCDBL operon encodes enzymes for the synthesis of 5-aminolaevuline acid via the C5 pathway (hemA and hemL) and uroporphyrinogen III (hemB, hemC and hemD). B. subtilis HemA protein (molecular mass 50 kDa) was overexpressed in hemA mutant of both Escherichia coli and B. subtilis. A mutant B. subtilis HemA protein with a Cys to Tyr change at position 105 was also overexpressed. Both wild-type and mutant HemA proteins migrated as oligomers (molecular mass greater than or equal to 230 kDa) on gel-filtration columns. All column fractions containing wild-type HemA protein had glutamyl-tRNA reductase activity. No glutamyl-tRNA reductase activity was found with the mutant HemA protein. It is concluded that the B. subtilis hemA gene product is identical to, or part of, the glutamyl-tRNA reductase of the C5 pathway.
Collapse
Affiliation(s)
- I Schröder
- Department of Microbiology, University of Lund, Sweden
| | | | | | | |
Collapse
|
46
|
Jordan PM, Woodcock SC. Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. Biochem J 1991; 280 ( Pt 2):445-9. [PMID: 1747120 PMCID: PMC1130568 DOI: 10.1042/bj2800445] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Substitutions of conserved arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase were constructed by site-specific mutagenesis of the hemC gene. Mutant proteins exhibited a range of defects including the failure to assemble the dipyrromethane cofactor and the inability to initiate and propagate the tetrapolymerization reaction. Mutations of arginine residues at positions 11, 131, 132 and 155, all of which interact with the carboxylic acid side chains of the dipyrromethane cofactor, were the most disruptive.
Collapse
Affiliation(s)
- P M Jordan
- School of Biological Sciences, Queen Mary College, University of London, U.K
| | | |
Collapse
|
47
|
Majumdar D, Avissar YJ, Wyche JH, Beale SI. Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 1991; 156:281-9. [PMID: 1793335 DOI: 10.1007/bf00262999] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The green sulfur bacterium, Chlorobium vibrioforme, synthesizes the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate via the RNA-dependent five-carbon pathway. A 1.9-kb clone of genomic DNA from C. vibrioforme that is capable of transforming a glutamyl-tRNA reductase-deficient, ALA-dependent, hemA mutant of Escherichia coli to prototrophy was sequenced. The transforming C. vibrioforme DNA has significant sequence similarity to the E. coli, Salmonella typhimurium, and Bacillus subtilis hemA genes and contains a 1245 base open reading frame that encodes a 415 amino acid polypeptide with a calculated molecular weight of 46174. This polypeptide has over 28% amino acid identity with the polypeptides deduced from the nucleic acid sequences of the E. coli, S. typhimurium, and B. subtilis hemA genes. No sequence similarity was detected, at either the nucleic acid or the peptide level, with the Rhodobacter capsulatus or Bradyrhizobium japonicum hemA genes, which encode ALA synthase, or with the S. typhimurium hemL gene, which encodes glutamate-1-semialdehyde aminotransferase. These results establish that hemA encodes glutamyl-tRNA reductase in species that use the five-carbon ALA biosynthetic pathway. A second region of the cloned DNA, located downstream from the hemA gene, has significant sequence similarity to the E. coli and B. subtilis hemC genes. This region contains a potential open reading frame that encodes a polypeptide that has high sequence identity to the deduced E. coli and B. subtilis HemC peptides. hemC encodes the tetrapyrrole biosynthetic enzyme, porphobilinogen deaminase, in these species.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Majumdar
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | |
Collapse
|
48
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:2521-34. [PMID: 2041795 PMCID: PMC329494 DOI: 10.1093/nar/19.9.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
49
|
|
50
|
Drolet M, Sasarman A. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:250-6. [PMID: 2034217 DOI: 10.1007/bf00273610] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemA gene of Agrobacterium radiobacter ATCC4718 was identified by hybridization with a hemA probe from Rhizobium meliloti and cloned by complementation of a hemA mutant of Escherichia coli K12. E. coli hemA transformants carrying the hemA gene of Agrobacterium showed delta-aminolevulinic acid synthetase (delta-ALAS) activity in vitro. The hemA gene was carried on a 4.4 kb EcoRI fragment which could be reduced to a 2.6 kb EcoRI-SstI fragment without affecting its complementing or delta-ALAS activity. The sequence of the hemA gene showed an open reading frame of 1215 nucleotides, which could code for a protein of 44,361 Da. This is very close to the molecular weight of the HemA protein obtained using an in vitro coupled transcription-translation system (45,000 Da). Comparison of amino acid sequences of the delta-ALAS of A. radiobacter and Bradyrhizobium japonicum showed strong homology between the two enzymes; less, but still significant, homology was observed when A. radiobacter and human delta-ALAS were compared. Primer extension experiments enabled us to identify two promoters for the hemA gene of A. radiobacter. One of these promoters shows some similarity to the first promoter of the hemA gene of R. meliloti.
Collapse
Affiliation(s)
- M Drolet
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada
| | | |
Collapse
|