1
|
Hagaggi NSA, Abdul-Raouf UM. Production of bioactive β-carotene by the endophytic bacterium Citricoccus parietis AUCs with multiple in vitro biological potentials. Microb Cell Fact 2023; 22:90. [PMID: 37138322 PMCID: PMC10155329 DOI: 10.1186/s12934-023-02108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Although microalgae and plants are traditionally used for obtaining natural pigments, overexploitation and overharvesting threaten them. Bacteria represent a superior alternative for the production of pigments due to their ability to produce greater amounts in a short time without seasonal restrictions; furthermore, bacterial pigments have a wide range of uses and are safe and biodegradable. This study is the first on the production of ß-carotene as a promising bioactive agent from endophytic bacteria. RESULTS The yellow pigment produced by the endophytic bacterium Citricoccus parietis AUCs (NCBI accession number: OQ448507.1) was extracted by methanol and then purified and identified. One band was obtained by TLC analysis, which was identified as ß-carotene based on its spectroscopic and chromatographic characteristics. The pigment exhibited remarkable antibacterial, antioxidant and antidiabetic activities. CONCLUSIONS This research may serve as a valuable starting point for exploiting C. parietis AUCs as a potent source of ß-carotene for biomedical therapies. To validate the findings of this research, in vivo studies must be performed.
Collapse
Affiliation(s)
- Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| | - Usama M Abdul-Raouf
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
2
|
Tizabi D, Hill RT. Micrococcus spp. as a promising source for drug discovery: A review. J Ind Microbiol Biotechnol 2023; 50:kuad017. [PMID: 37460166 PMCID: PMC10548855 DOI: 10.1093/jimb/kuad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 10/05/2023]
Abstract
Historically, bacteria of the phylum, Actinobacteria have been a very prominent source of bioactive compounds for drug discovery. Among the actinobacterial genera, Micrococcus has not generally been prioritized in the search for novel drugs. The bacteria in this genus are known to have very small genomes (generally < 3 Mb). Actinobacteria with small genomes seldom contain the well-characterized biosynthetic gene clusters such as those encoding polyketide synthases and nonribosomal peptide synthetases that current genome mining algorithms are optimized to detect. Nevertheless, there are many reports of substantial pharmaceutically relevant bioactivity of Micrococcus extracts. On the other hand, there are remarkably few descriptions of fully characterized and structurally elucidated bioactive compounds from Micrococcus spp. This review provides a comprehensive summary of the bioactivity of Micrococcus spp. that encompasses antibacterial, antifungal, cytotoxic, antioxidant, and anti-inflammatory activities. This review uncovers the considerable biosynthetic potential of this genus and highlights the need for a re-examination of these bioactive strains, with a particular emphasis on marine isolates, because of their potent bioactivity and high potential for encoding unique molecular scaffolds.
Collapse
Affiliation(s)
- Daniela Tizabi
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| |
Collapse
|
3
|
Nupur, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 2021; 11:15964. [PMID: 34354109 PMCID: PMC8342508 DOI: 10.1038/s41598-021-95254-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.
Collapse
Affiliation(s)
- Nupur
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Alastair T Gardiner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| |
Collapse
|
4
|
Chen C, Sun‐Waterhouse D, Zhao M, Sun W. Beyond antioxidant actions: Insights into the antioxidant activities of tyr‐containing dipeptides in aqueous solution systems and liposomal systems. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chong Chen
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Dongxiao Sun‐Waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Mouming Zhao
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Weizheng Sun
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| |
Collapse
|
5
|
DeBritto S, Gajbar TD, Satapute P, Sundaram L, Lakshmikantha RY, Jogaiah S, Ito SI. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep 2020; 10:1542. [PMID: 32005900 PMCID: PMC6994680 DOI: 10.1038/s41598-020-58335-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
Pyocyanin is a blue green phenazine pigment produced in large quantities by active cultures of Pseudomonas aeruginosa, with advantageous applications in medicine, agriculture and for the environment. Hence, in the present study, a potent bacterium was isolated from agricultural soil and was identified morphologically and by 16S rRNA sequencing as P. aeruginosa (isolate KU_BIO2). When the influence of nutrient supplements in both King’s A and Nutrient media as amended was investigated, an enhanced pyocyanin production of 2.56 µg ml−1 was achieved in King’s A medium amended with soya bean followed by 1.702 µg ml−1 of pyocyanin from the nutrient medium amended with sweet potato. Purified pyocyanin was characterized by UV-Vis Spectrophotometer and Fourier-Transform Infrared spectroscopy (FTIR). Furthermore, Liquid Chromatography Mass Spectrum (LCMS) and Nuclear Magnetic Resonance (NMR) confirmed its mass value at 211 and as N-CH3 protons resonating at 3.363 ppm as a singlet respectively. The isolated pyocyanin displayed remarkable dye property by inducing color change in cotton cloth from white to pink. Lastly, the antifungal activity of test pyocyanin showed inhibition of growth of rice blast fungus, Magnaporthe grisea and bacterial blight of rice, Xanthomonas oryzae at concentrations of 150 and 200 ppm, respectively. Thus, this investigation provides evidence for diverse actions of pyocyanin which are nutrient dependent and are capable of acting on a large scale, by utilizing microbes existing in agriculture wastes, and thus could be used as an alternative source in the making of natural textile dyes with strong durability and a broad spectrum of ecofriendly agrochemicals.
Collapse
Affiliation(s)
- Savitha DeBritto
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.,Division of Biological Sciences, School of Science and Technology, The University of Goroka, Goroka, 441, Papua New Guinea
| | - Tanzeembanu D Gajbar
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India
| | - Lalitha Sundaram
- Department of Botany, Periyar Palkalai Nagar, Periyar University, Salem, 636011, Tamil Nadu, India
| | | | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India.
| | - Shin-Ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
6
|
Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J, Lipski A. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 2020; 10:330. [PMID: 31941915 PMCID: PMC6962212 DOI: 10.1038/s41598-019-57006-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 01/10/2023] Open
Abstract
Carotenoids are associated with several important biological functions as antenna pigments in photosynthesis or protectives against oxidative stress. Occasionally they were also discussed as part of the cold adaptation mechanism of bacteria. For two Staphylococcus xylosus strains we demonstrated an increased content of staphyloxanthin and other carotenoids after growth at 10 °C but no detectable carotenoids after grow at 30 °C. By in vivo measurements of generalized polarization and anisotropy with two different probes Laurdan and TMA-DPH we detected a strong increase in membrane order with a simultaneous increase in membrane fluidity at low temperatures accompanied by a broadening of the phase transition. Increased carotenoid concentration was also correlated with an increased resistance of the cells against freeze-thaw stress. In addition, the fatty acid profile showed a moderate adaptation to low temperature by increasing the portion of anteiso-branched fatty acids. The suppression of carotenoid synthesis abolished the effects observed and thus confirmed the causative function of the carotenoids in the modulation of membrane parameters. A differential transcriptome analysis demonstrated the upregulation of genes involved in carotenoid syntheses under low temperature growth conditions. The presented data suggests that upregulated synthesis of carotenoids is a constitutive component in the cold adaptation strategy of Staphylococcus xylosus and combined with modifications of the fatty acid profile constitute the adaptation to grow under low temperature conditions.
Collapse
Affiliation(s)
- Waldemar Seel
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Denise Baust
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Dominik Sons
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Maren Albers
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Lara Etzbach
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Molecular Food Technology, 53115, Bonn, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, 50829, Cologne, Germany
- Institute of Clinical Molecular Biology, Kiel University (CAU)/University Hospital Schleswig Holstein, 24105, Kiel, Germany
| | - André Lipski
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Characterization and antifungal activity of the yellow pigment produced by a Bacillus sp. DBS4 isolated from the lichen Dirinaria agealita. Saudi J Biol Sci 2019; 27:1403-1411. [PMID: 32346353 PMCID: PMC7182979 DOI: 10.1016/j.sjbs.2019.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 11/21/2022] Open
Abstract
This study emphasis the production of yellow pigment from endolichenic Bacillus sp. isolated from the lichen Dirinaria aegialita (Afzel. ex Ach.) B.J. Moore. Yellow pigment-producing twenty different strains were investigated. The hyperactive pigment-producing bacterial strain was identified as Bacillus gibsonii based on 99 % sequence similarity. Maximum bacterial pigment production appeared in Luria Bertani medium. Methanol extraction of the pigment and its partial purification using TLC was carried out. Furthermore, isolated pigments were characterized using UV-visible spectroscopy, FTIR spectroscopy, and GC-MS results related to the possibility of the carotenoid occurrence. The pigment also exhibited efficient antifungal activity against selected fungal pathogens of economic importance. Likewise, the pigment extract evaluated for the total antioxidant potential using Phosphomolybdenum and Ferric reducing antioxidant power assay and the results represented in Ascorbic Acid Equivalent (AAE)- 21.45 ± 1.212 mg/mL. The SC50 of the pigment extract found to be 75.125 ± 0.18 µg/ml determined by the ABTS assay.
Collapse
|
8
|
Parrilli E, Tedesco P, Fondi M, Tutino ML, Lo Giudice A, de Pascale D, Fani R. The art of adapting to extreme environments: The model system Pseudoalteromonas. Phys Life Rev 2019; 36:137-161. [PMID: 31072789 DOI: 10.1016/j.plrev.2019.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Abstract
Extremophilic microbes have adapted to thrive in ecological niches characterized by harsh chemical/physical conditions such as, for example, very low/high temperature. Living organisms inhabiting these environments have developed peculiar mechanisms to cope with extreme conditions, in such a way that they mark the chemical-physical boundaries of life on Earth. Studying such mechanisms is stimulating from a basic research viewpoint and because of biotechnological applications. Pseudoalteromonas species are a group of marine gamma-proteobacteria frequently isolated from a range of extreme environments, including cold habitats and deep-sea sediments. Since deep-sea floors constitute almost 60% of the Earth's surface and cold temperatures represent the most common of the extreme conditions, the genus Pseudoalteromonas can be considered one of the most important model systems for studying microbial adaptation. Particularly, among all Pseudoalteromonas representatives, P. haloplanktis TAC125 has recently gained a central role. This bacterium was isolated from seawater sampled along the Antarctic ice-shell and is considered one of the model organisms of cold-adapted bacteria. It is capable of thriving in a wide temperature range and it has been suggested as an alternative host for the soluble overproduction of heterologous proteins, given its ability to rapidly multiply at low temperatures. In this review, we will present an overview of the recent advances in the characterization of Pseudoalteromonas strains and, more importantly, in the understanding of their evolutionary and chemical-physical strategies to face such a broad array of extreme conditions. A particular attention will be given to systems-biology approaches in the study of the above-mentioned topics, as genome-scale datasets (e.g. genomics, proteomics, phenomics) are beginning to expand for this group of organisms. In this context, a specific section dedicated to P. haloplanktis TAC125 will be presented to address the recent efforts in the elucidation of the metabolic rewiring of the organisms in its natural environment (Antarctica).
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Pietro Tedesco
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy
| | | | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Napoli, Italy, Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Napoli, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, ViaMadonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
9
|
Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
da Costa WLO, Araújo CLDA, Dias LM, Pereira LCDS, Alves JTC, Araújo FA, Folador EL, Henriques I, Silva A, Folador ARC. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance. PLoS One 2018; 13:e0198965. [PMID: 29940001 PMCID: PMC6016940 DOI: 10.1371/journal.pone.0198965] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Exiguobacterium antarcticum strain B7 is a psychrophilic Gram-positive bacterium that possesses enzymes that can be used for several biotechnological applications. However, many proteins from its genome are considered hypothetical proteins (HPs). These functionally unknown proteins may indicate important functions regarding the biological role of this bacterium, and the use of bioinformatics tools can assist in the biological understanding of this organism through functional annotation analysis. Thus, our study aimed to assign functions to proteins previously described as HPs, present in the genome of E. antarcticum B7. We used an extensive in silico workflow combining several bioinformatics tools for function annotation, sub-cellular localization and physicochemical characterization, three-dimensional structure determination, and protein-protein interactions. This genome contains 2772 genes, of which 765 CDS were annotated as HPs. The amino acid sequences of all HPs were submitted to our workflow and we successfully attributed function to 132 HPs. We identified 11 proteins that play important roles in the mechanisms of adaptation to adverse environments, such as flagellar biosynthesis, biofilm formation, carotenoids biosynthesis, and others. In addition, three predicted HPs are possibly related to arsenic tolerance. Through an in vitro assay, we verified that E. antarcticum B7 can grow at high concentrations of this metal. The approach used was important to precisely assign function to proteins from diverse classes and to infer relationships with proteins with functions already described in the literature. This approach aims to produce a better understanding of the mechanism by which this bacterium adapts to extreme environments and to the finding of targets with biotechnological interest.
Collapse
Affiliation(s)
- Wana Lailan Oliveira da Costa
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Carlos Leonardo de Aragão Araújo
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Larissa Maranhão Dias
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Lino César de Sousa Pereira
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Jorianne Thyeska Castro Alves
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Fabrício Almeida Araújo
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Edson Luiz Folador
- Biotechnology Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Isabel Henriques
- Biology Department & CESAM, University of Aveiro, Aveiro, Portugal
| | - Artur Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Adriana Ribeiro Carneiro Folador
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
- * E-mail: ,
| |
Collapse
|
11
|
Singh P, Singh SM, Singh RN, Naik S, Roy U, Srivastava A, Bölter M. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic. J Basic Microbiol 2017; 57:1018-1036. [DOI: 10.1002/jobm.201700061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science (BITS); Pilani-K.K. Birla Goa Campus; Zuarinagar Goa India
| | - Shiv M. Singh
- National Centre for Antarctic and Ocean Research; Ministry of Earth Sciences; Vasco-Da-Gama Goa India
| | - Ram N. Singh
- National Bureau of Agriculturally Important Microorganisms (NBAIM); Uttar Pradesh India
| | - Simantini Naik
- National Centre for Antarctic and Ocean Research; Ministry of Earth Sciences; Vasco-Da-Gama Goa India
| | - Utpal Roy
- Birla Institute of Technology and Science (BITS); Pilani-K.K. Birla Goa Campus; Zuarinagar Goa India
| | - Alok Srivastava
- National Bureau of Agriculturally Important Microorganisms (NBAIM); Uttar Pradesh India
| | - Manfred Bölter
- Institute of Ecosystem Research; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
12
|
Singh A, Krishnan KP, Prabaharan D, Sinha RK. Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol 2017; 57:770-780. [DOI: 10.1002/jobm.201700182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Archana Singh
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Kottekattu P. Krishnan
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Dharmar Prabaharan
- National Facility for Marine Cyanobacteria; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| | - Rupesh K. Sinha
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| |
Collapse
|
13
|
|
14
|
Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:707-714. [DOI: 10.1016/j.jphotobiol.2016.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
|
15
|
Abstract
The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors.
Collapse
|
16
|
Singh P, Singh SM, Roy U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic. J Basic Microbiol 2015; 56:275-85. [PMID: 26567474 DOI: 10.1002/jobm.201500298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/18/2015] [Indexed: 11/05/2022]
Abstract
Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7) cells ml(-1) (mean 3.12 × 10(6) cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research.
Collapse
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Shiv Mohan Singh
- National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa-403804, India
| | - Utpal Roy
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
17
|
Structure of a novel monocyclic carotenoid, 3″-hydroxy-2′-isopentenylsaproxanthin ((3R,2′S)-2′-(3-hydroxy-3-methylbutyl)-3′, 4′-didehydro-1′, 2′-dihydro-β, ψ-carotene-3, 1′-diol), from a flavobacterium Gillisia limnaea strain DSM 15749. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Diversity and bioprospective potential (cold-active enzymes) of cultivable marine bacteria from the subarctic glacial Fjord, Kongsfjorden. Curr Microbiol 2014; 68:233-8. [PMID: 24121613 DOI: 10.1007/s00284-013-0467-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
The diversity and abundance of culturable bacteria in Kongsfjorden water (15 stations) and sediments (12 stations) were studied. Viable numbers ranged between 105–106 CFU l−1 in water and 102–104 CFU g−1 in the sediments. A total of 291 and 43 bacterial isolates were retrieved from the water (KJF) and sediments (FS), respectively. Based on 16S rRNA gene sequence similarities, the KJF and FS isolates were grouped into 49 and 23 phylotypes, respectively. The KJF and FS phylotypes represented three phyla namely, Actinobacteria, Bacteroidetes, and Proteobacteria. At the genus level, Flavobacterium and Shewanella and at the species level, Pseudoaltermonas arctica and Colwellia psychrerythraea were dominant in the water and sediments, respectively. Most phylotypes were psychrotolerant with upper growth temperature limit of 25–37 °C and tolerated 0.3–2.5 M NaCl and pH values of 5.0–11.0. Majority of the phylotypes produced one or more of the extracellular hydrolytic enzymes amylase, lipase, caseinase, urease, gelatinase, and DNase at 4 and 18 °C, while none were chitinolytic. Few of the FS phylotypes exhibited extracellular activity only at 4 or 18 °C. Nine FS and 21 KJF isolates were pigmented. The predominant cellular fatty acids were unsaturated, branched, and modified fatty acids, which are unique to cold-adapted bacteria.
Collapse
|
19
|
Hu F, Jia ZY, Liang R, Wang P, Ai XC, Zhang JP, Skibsted LH. β-Carotene as a Membrane Antioxidant Probed by Cholesterol-Anchored Daidzein. J Food Sci 2014; 79:C1688-94. [DOI: 10.1111/1750-3841.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Feng Hu
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Zhi-Yu Jia
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Ran Liang
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Peng Wang
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Xi-Cheng Ai
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Jian-Ping Zhang
- Dept. of Chemistry; Renmin Univ. of China; Beijing 100872 P.R. China
| | - Leif H. Skibsted
- Food Chemistry; Dept. of Food Science; Univ. of Copenhagen; Rolighedsvej 30, DK-1958 Frederiksberg C Denmark
| |
Collapse
|
20
|
KURNIA WUSQY NAELY, LIMANTARA LEENAWATY, FREDY KARWUR FERRY. Exploration, Isolation and Quantification of β-carotene from Bacterial Symbion of Acropora sp. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.2.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Takatani N, Nishida K, Sawabe T, Maoka T, Miyashita K, Hosokawa M. Identification of a novel carotenoid, 2′-isopentenylsaproxanthin, by Jejuia pallidilutea strain 11shimoA1 and its increased production under alkaline condition. Appl Microbiol Biotechnol 2014; 98:6633-40. [DOI: 10.1007/s00253-014-5702-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
|
22
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
23
|
Gharibzahedi SMT, Razavi SH, Mousavi SM. Microbial canthaxanthin: Perspectives on biochemistry and biotechnological production. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| | - Seyed Mohammad Mousavi
- Bioprocess Engineering Laboratory (BPEL); Department of Food Science, Engineering and Technology; Faculty of Agricultural Engineering and Technology, University of Tehran; Karaj Iran
| |
Collapse
|
24
|
UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. Extremophiles 2013; 17:367-78. [DOI: 10.1007/s00792-013-0525-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
25
|
Mohana D, Thippeswamy S, Abhishek R. Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. RADIATION PROTECTION AND ENVIRONMENT 2013. [DOI: 10.4103/0972-0464.142394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Prasad S, Pratibha MS, Manasa P, Buddhi S, Begum Z, Shivaji S. Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria. Curr Microbiol 2012; 66:64-71. [PMID: 23053490 DOI: 10.1007/s00284-012-0243-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/14/2012] [Indexed: 11/28/2022]
Abstract
The abundance and diversity of chemotactic heterotrophic bacteria associated with Arctic cyanobacteria was determined. The viable numbers ranged between 10(4) and 10(6) cell g(-1) cyanobacterial biomass. A total of 112 morphotypes, representing 22 phylotypes based on their 16S rRNA sequence similarity were isolated from the samples. All the phylotypes were Gram-negative with affiliation to the proteobacterial and bacteroidetes divisions. Among the 22 phylotypes, 14 were chemotactic to glucose. Majority of the phylotypes were psychrotolerant showing growth up to 30 °C. Representatives of Alphaproteobacteria, the genus Flavobacterium and the gammaproteobacterial Alcanivorax sp, were psychrophilic with growth at or below 18 °C. A significant percentage of phylotypes were pigmented (~68 %), rich in unsaturated membrane fatty acids and tolerated pH values and NaCl concentrations between 5.0-8.0 and 0.15-1.0 M, respectively. The percentages of phylotypes producing extracellular cold-active enzymes at 4 °C were amylase (18.18 %), lipase and urease (45.45 %), caseinase (59.09 %) and gelatinase (31.8 %).
Collapse
Affiliation(s)
- Sathish Prasad
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
27
|
Verde C, di Prisco G, Giordano D, Russo R, Anderson D, Cowan D. Antarctic psychrophiles: models for understanding the molecular basis of survival at low temperature and responses to climate change. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/14888386.2012.706703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Correa-Llantén DN, Amenábar MJ, Blamey JM. Antioxidant capacity of novel pigments from an Antarctic bacterium. J Microbiol 2012; 50:374-9. [PMID: 22752899 DOI: 10.1007/s12275-012-2029-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
In Antarctica microorganisms are exposed to several conditions that trigger the generation of reactive oxygen species, such as high UV radiation. Under these conditions they must have an important antioxidant defense system in order to prevent oxidative damage. One of these defenses are pigments which are part of the non-enzymatic antioxidant mechanisms. In this work we focused on the antioxidant capacity of pigments from an Antarctic microorganism belonging to Pedobacter genus. This microorganism produces different types of pigments which belong to the carotenoids group. The antioxidant capacity of a mix of pigments was analyzed by three different methods: 1,1-diphenyl-2-picrylhydrazyl, ROS detection and oxygen electrode. The results obtained from these approaches indicate that the mix of pigments has a strong antioxidant capacity. The oxidative damage induced by UVB exposure to liposomes was also analyzed. Intercalated pigments within the liposomes improved its resistance to lipid peroxidation. Based on the analysis carried out along this research we conclude that the antioxidant properties of the mix of pigments protect this bacterium against oxidative damage. These properties make this mix of pigments a powerful antioxidant mixture with potential biotechnological applications.
Collapse
|
29
|
Jagannadham MV, Chowdhury C. Differential expression of membrane proteins helps Antarctic Pseudomonas syringae to acclimatize upon temperature variations. J Proteomics 2012; 75:2488-99. [PMID: 22418587 DOI: 10.1016/j.jprot.2012.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/15/2012] [Accepted: 02/25/2012] [Indexed: 01/16/2023]
Abstract
Antarctic bacteria are adapted to the extremely low temperature. The transcriptional and translational machineries of these bacteria are adapted to the sub-zero degrees of temperature. Studies directed towards identifying the changes in the protein profiles during changes in the growth temperatures of an Antarctic bacterium Pseudomonas syringae Lz4W may help in understanding the molecular basis of cold adaptation. In this study, subcellular fractionation methods of proteins were used for the enrichment and identification of proteins including low abundance proteins. The membrane proteins of the bacterium P. syringae Lz4W were prepared employing sucrose density gradient method. The proteins were separated through 2D gel-electrophoresis with the pH ranges 3-10, 4-7 and 5-8 using the detergent, amidosulfobetaine (ASB-14). The proteins separated on the 1D SDS PAGE and 2D gels were identified with the help of LC-ESI MS/MS and MALDI TOF TOF using bioinformatic programs MASCOT and SEQUEST. Since the genome sequence of P. syringae Lz4W is not available, the proteins are identified by using the genome database of the Pseudomonas sp. available at NCBI. The present studies focus on identifying temperature dependent expression of proteins by employing LC-MS/MS method and the functional significance of these proteins is discussed.
Collapse
|
30
|
Ahmad WA, Yusof NZ, Nordin N, Zakaria ZA, Rezali MF. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 2012; 167:1220-34. [PMID: 22278051 DOI: 10.1007/s12010-012-9553-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/06/2012] [Indexed: 11/27/2022]
Abstract
The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L⁻¹) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of L-tryptophan. A much lower yield (0.15 g L⁻¹) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV-Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5-9, 25-100 °C, in the presence of light metal ions and oxidant such as H₂O₂. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum.
Collapse
Affiliation(s)
- Wan Azlina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.
| | | | | | | | | |
Collapse
|
31
|
An CB, Li D, Liang R, Bu YZ, Wang S, Zhang EH, Wang P, Ai XC, Zhang JP, Skibsted LH. Chain length effects in isoflavonoid daidzein alkoxy derivatives as antioxidants: a quantum mechanical approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12652-12657. [PMID: 22007884 DOI: 10.1021/jf2030314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Daidzein, an isoflavonoid with known prooxidative effects in heterogeneous lipid/water systems, changes to an antioxidant for 7-n-alkoxy derivatives of daidzein. For an alkyl length increasing from 4 to 8, 12, and 16 carbons, the oxidation potential decreases gradually from 1.09 V (vs NHE) for daidzein (D) to 0.94 V for D16 in tetrahydrofuran as determined by cyclic voltammetry at 25 °C. The prooxidative effects transform into antioxidative effects from D8 with a maximal effect for D12 for aqueous phase initiation of lipid oxidation in liposomes despite a gradual decrease in Trolox equivalent antioxidant capacity (TEAC) with increasing alkyl chain length. Quantum mechanical calculations using density functional theory (DFT) showed that the bond dissociation energy of the O-H bond of the 4'-phenol is constant along the homologue series in contrast to Δμ, the change in dipole moment upon hydrogen atom donation, which increases for increasing chain length. The frontier orbital energy gap goes through a maximum for D12. The change in the A-to-B dihedral angle upon hydrogen atom donation further shows a maximum for D12 of 6.45°. The importance of these microscopic properties for antioxidative activity was confirmed by a change in liposome fluorescence anisotropy using a fluorescent probe showing maximal penetration into the lipid bilayer for D12 along the homologue series.
Collapse
Affiliation(s)
- Cun-Bin An
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jagannadham M, Saranya S. Analysis of the Membrane proteins of an Antarctic Bacterium Pseudomonas Syringae. PROTEOMICS INSIGHTS 2011. [DOI: 10.4137/pri.s5383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The proteins of an Antarctic bacterium Pseudomonas syringae Lz4W, identified earlier by different membrane protein preparation methods, were combined together and the redundant identities removed. In total, 1479 proteins including 148 outer membrane proteins from this bacterium were predicted by the algorithm PSORTb3.0. A detailed analysis on their subcellular localization was undertaken which was determined using TMHMM, TMB-hunt and BOMP. A comparison of PSORTb predicted outer membrane proteins with BOMP, revealed that most of the proteins predicted by the former, contained β–barrels in the outer membranes. A comparative analysis of PSORTb, TMHMM and TMB-hunt reveals that most of the outer membranes proteins of this bacterium could be identified using this approach. Thus, by using a combination of biochemical and different bioinformatics algorithms, the membrane proteins of P. syringae are analyzed. In particular, PSORTb results are compared and supported by other algorithms, to improve the strength of OM proteins prediction. Several proteins, having an important role in cold adaptation of the organism, could also be identified.
Collapse
Affiliation(s)
- M.V. Jagannadham
- Scientist, Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Tarnaka, Hyderabad, India
| | - S. Saranya
- Depatment of Life Sciences, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India
| |
Collapse
|
33
|
An CB, Liang R, Ma XH, Fu LM, Zhang JP, Wang P, Han RM, Ai XC, Skibsted LH. Retinylisoflavonoid as a Novel Membrane Antioxidant. J Phys Chem B 2010; 114:13904-10. [DOI: 10.1021/jp106734p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cun-Bin An
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Ran Liang
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Xiao-Hua Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Xi-Cheng Ai
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| | - Leif H. Skibsted
- Department of Chemistry, Renmin University of China, Beijing 100872, and Food Chemistry, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1058 Frederiksberg C, Denmark
| |
Collapse
|
34
|
Savini V, Catavitello C, Masciarelli G, Astolfi D, Balbinot A, Bianco A, Febbo F, D'Amario C, D'Antonio D. Drug sensitivity and clinical impact of members of the genus Kocuria. J Med Microbiol 2010; 59:1395-1402. [PMID: 20884772 DOI: 10.1099/jmm.0.021709-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms in the genus Kocuria are Gram-positive, coagulase-negative, coccoid actinobacteria belonging to the family Micrococcaceae, suborder Micrococcineae, order Actinomycetales. Sporadic reports in the literature have dealt with infections by Kocuria species, mostly in compromised hosts with serious underlying conditions. Nonetheless, the number of infectious processes caused by such bacteria may be higher than currently believed, given that misidentification by phenotypic assays has presumably affected estimates of the prevalence over the years. As a further cause for concern, guidelines for therapy of illnesses involving Kocuria species are lacking, mostly due to the absence of established criteria for evaluating Kocuria replication or growth inhibition in the presence of antibiotics. Therefore, breakpoints for staphylococci have been widely used throughout the literature to try to understand this pathogen's behaviour under drug exposure; unfortunately, this has sometimes created confusion, thus higlighting the urgent need for specific interpretive criteria, along with a deeper investigation into the resistance determinants within this genus. We therefore review the published data on cultural, genotypic and clinical aspects of the genus Kocuria, aiming to shed some light on these emerging nosocomial pathogens.
Collapse
Affiliation(s)
- Vincenzo Savini
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Chiara Catavitello
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Gioviana Masciarelli
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Daniela Astolfi
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Andrea Balbinot
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Azaira Bianco
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | - Fabio Febbo
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| | | | - Domenico D'Antonio
- Clinical Microbiology and Virology, Department of Transfusion Medicine, 'Spirito Santo' Hospital, Pescara (Pe), Italy
| |
Collapse
|
35
|
Rossmanith P, Frühwirth K, Süà B, Schopf E, Wagner M. The use of chromogenic bacteria as coloured substitutes for pathogens: A simple strategy during design and development of a new method for sample pretreatment. Lett Appl Microbiol 2010; 50:230-3. [DOI: 10.1111/j.1472-765x.2009.02751.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
37
|
Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of kongsfjorden and Ny-alesund, Svalbard, Arctic. Curr Microbiol 2009; 59:537-47. [PMID: 19680721 DOI: 10.1007/s00284-009-9473-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Alesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 x 10(3)-1.3 x 10(4) cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Alesund also was very similar (0.6 x 10(4) and 3.4 x 10(4), respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4-37 degrees C), in their tolerance to NaCl (0.3-2 M NaCl) and growth pH range (2-11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20 degrees C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5 degrees C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.
Collapse
|
38
|
Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl Environ Microbiol 2009; 75:4419-26. [PMID: 19429554 DOI: 10.1128/aem.01523-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis of Pseudomonas syringae Lz4W, a psychrophilic bacterium capable of growing at temperatures between 2 and 30 degrees C, yielded 30 cold-sensitive mutants, and CSM1, one of these cold-sensitive mutants, was characterized. Growth of CSM1 was retarded when it was cultured at 4 degrees C but not when it was cultured at 22 degrees C and 28 degrees C compared to the growth of wild-type cells, indicating that CSM1 is a cold-sensitive mutant of P. syringae Lz4W. The mutated gene in CSM1 was identified as trmE (coding for tRNA modification GTPase), and evidence is provided that this gene is induced at low temperatures. Further, the cold-inducible nature of the trmE promoter was demonstrated. In addition, the transcription start site and the various regulatory elements of the trmE promoter, such as the -10 region, -35 region, UP element, cold box, and DEAD box, were identified, and the importance of these regulatory elements in promoter activity were confirmed. The importance of trmE in rapid adaptation to growth at low temperatures was further highlighted by plasmid-mediated complementation that alleviated the cold-sensitive phenotype of CSM1.
Collapse
|
39
|
Liang J, Tian YX, Fu LM, Wang TH, Li HJ, Wang P, Han RM, Zhang JP, Skibsted LH. Daidzein as an antioxidant of lipid: effects of the microenvironment in relation to chemical structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10376-10383. [PMID: 18841976 DOI: 10.1021/jf801907m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoflavone daidzein (D, pK a1 = 7.47 +/- 0.02 and pK a2 = 9.65 +/- 0.07) was, through a study of the parent compound and its three methyl anisol derivatives 7-methyldaidzein (7-Me-D, pK a = 9.89 +/- 0.05), 4'-methyldaidzein (4'-Me-D, pK a = 7.43 +/- 0.03), and 7,4'-dimethyldaidzein (7,4'-diMe-D), found to retard lipid oxidation in liposomal membranes through two mechanisms: (i) radical scavenging for which the 4'-OH was more effective than the 7-OH group in agreement with the oxidation potentials: 0.69 V for 4'-OH and 0.92 V for 7-OH versus Ag/AgCl in acidic solution and 0.44 V for 4'-O(-) and 0.49 V for 7-O(-) in alkaline solution and (ii) change in membrane fluidity through incorporation of the isoflavones, in effect hampering radical mobility. The radical scavenging efficiency measured by the rate of the reaction with the ABTS(*)(+) in aqueous solution followed the order D > 7-Me-D > 4'-Me-D > 7,4'-diMe-D, as also found for antioxidant efficiency in liposomes when oxidation was initiated with the water-soluble AAPH radical and monitored as the formation of conjugate dienes. For oxidation initiated by the lipid-soluble AMVN radical, the antioxidant efficiency was ranked as 4'-Me-D > D > 7,4'-diMe-D > 7-Me-D, and change in fluorescence anisotropy of fluorescent probes bound to the membrane surface or inside the lipid bilayer confirmed the effects of isoflavones on the membrane fluidity, especially for 7,4'-diMe-D.
Collapse
Affiliation(s)
- Jun Liang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jagannadham MV. Identification of proteins from membrane preparations by a combination of MALDI TOF-TOF and LC-coupled linear ion trap MS analysis of an Antarctic bacteriumPseudomonas syringaeLz4W, a strain with unsequenced genome. Electrophoresis 2008; 29:4341-50. [DOI: 10.1002/elps.200700750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Mishra MN, Thirunavukkarasu N, Sharma IM, Jagnnadham MV, Tripathi AK. Mutation in a gene encoding anti-Ï factor inA. brasilenseconfers tolerance to elevated temperature, antibacterial peptide and PEG-200 via carotenoid synthesis. FEMS Microbiol Lett 2008; 287:221-9. [DOI: 10.1111/j.1574-6968.2008.01325.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Thirunavukkarasu N, Mishra MN, Spaepen S, Vanderleyden J, Gross CA, Tripathi AK. An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense. Microbiology (Reading) 2008; 154:2096-2105. [DOI: 10.1099/mic.0.2008/016428-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Mukti Nath Mishra
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| | - Stijn Spaepen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | - Carol A. Gross
- Departments of Microbiology and Immunology, and Cell and Tissue Biology, University of California, San Francisco, CA 94158-2517, USA
| | - Anil K. Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
43
|
|
44
|
Reddy GSN, Prakash JSS, Srinivas R, Matsumoto GI, Shivaji S. Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov., psychrophiles from a pond in Antarctica. Int J Syst Evol Microbiol 2003; 53:977-984. [PMID: 12892114 DOI: 10.1099/ijs.0.02396-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two unique psychrophilic strains (CMS 76rT and CMS 81yT) were isolated from a cyanobacterial mat sample from a pond in Wright Valley, McMurdo, Antarctica. Both isolates were assigned to the genus Leifsonia, since they were gram-positive, curved rods, non-motile, catalase-positive, contained DL-2,4-diaminobutyric acid, menaquinone MK-11, phosphatidylglycerol and diphosphatidylglycerol, had a high content of anteiso- and iso-branched fatty acids and had a DNA G + C content of 64-66 mol%. In addition, both isolates were related to the five reported species of Leifsonia at a level of about 95-96% 16S rDNA sequence similarity and differed from one another by 2.5%. Strains CMS 76rT and CMS 81yT also differed from one another in many other phenotypic characteristics and exhibited only 30% relatedness at the DNA-DNA level, thus indicating that they represent two different species. Furthermore, these two isolates also showed many distinct differences with respect to the reported species of Leifsonia in terms of their phenotypic characteristics, biochemical properties, chemotaxonomic features, sensitivity to various antibiotics and 16S rDNA similarity, clearly indicating that strains CMS 76rT (= MTCC 4210T = DSM 15304T = CIP 107783T) and CMS 81yT (= MTCC 4657T = DSM 15303T = CIP 107785T) represent the type strains of two novel species of Leifsonia, for which the names Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov. are proposed.
Collapse
Affiliation(s)
- G S N Reddy
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500 007, India
| | - J S S Prakash
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500 007, India
| | - R Srinivas
- Indian Institute of Chemical Technology, Uppal Road, Hyderabad - 500 007, India
| | - G I Matsumoto
- Otsuma Women's University, Department of Environment Science, School of Social Information Studies, Karakida 2-7-1, Tama-Shi, Wakazawa, Tokyo 206-0036, Japan
| | - S Shivaji
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500 007, India
| |
Collapse
|
45
|
Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 2003; 53:183-187. [PMID: 12656171 DOI: 10.1099/ijs.0.02336-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Strain CMS 76orT, an orange-pigmented bacterium, was isolated from a cyanobacterial mat sample from a pond located in McMurdo Dry Valley, Antarctica. On the basis of chemotaxonomic and phylogenetic properties, strain CMS 76orT was identified as a member of the genus Kocuria. It exhibited a 16S rDNA similarity of 99.8% and DNA-DNA similarity of 71% with Kocuria rosea (ATCC 186T). Phenotypic traits confirmed that strain CMS 78orT and K. rosea were well differentiated. Furthermore, strain CMS 76orT could be differentiated from the other reported species of Kocuria, namely Kocuria kristinae (ATCC 27570T), Kocuria varians (ATCC 15306T), Kocuria rhizophila (DSM 11926T) and Kocuria palustris (DSM 11025T), on the basis of a number of phenotypic features. Therefore, it is proposed that strain CMS 76orT (= MTCC 3702T = DSM 14382T) be assigned to a novel species of the genus Kocuria, as Kocuria polaris.
Collapse
Affiliation(s)
| | | | - Vadivel Prabahar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Genki I Matsumoto
- Department of Environmental and Information Science, Otsuma Women's University, Tamashi, Tokyo 206, Japan
| | - Erko Stackebrandt
- Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Mascheroder Weg 1b, D-38124 Braunschweig, Germany
| | - Sisinthy Shivaji
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| |
Collapse
|
46
|
Kumar GS, Jagannadham MV, Ray MK. Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae. J Bacteriol 2002; 184:6746-9. [PMID: 12426366 PMCID: PMC135421 DOI: 10.1128/jb.184.23.6746-6749.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Antarctic psychrotrophic bacterium Pseudomonas syringae was more sensitive to polymyxin B at a lower (4 degrees C) temperature of growth than at a higher (22 degrees C) temperature. The amount of hydroxy fatty acids in the lipopolysaccharides (LPS) also increased at the lower temperature. These changes correlated with the increase in fluidity of the hydrophobic phase of lipopolysaccharide aggregates in vitro.
Collapse
Affiliation(s)
- G Seshu Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | |
Collapse
|
47
|
The structure of carotenoids. Trends Ecol Evol 1999; 14:236. [PMID: 10354637 DOI: 10.1016/s0169-5347(99)01624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Adaptation to low temperature and regulation of gene expression in antarctic psychrotrophic bacteria. J Biosci 1998. [DOI: 10.1007/bf02936136] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Sharma SK, SaiRam M, Ilavazhagan G, Devendra K, Shivaji SS, Selvamurthy W. Mechanism of action of NIM-76: a novel vaginal contraceptive from neem oil. Contraception 1996; 54:373-8. [PMID: 8968666 DOI: 10.1016/s0010-7824(96)00204-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study was undertaken to elucidate the mechanism of spermicidal action of NIM-76, a fraction isolated from neem oil. The spermicidal activity of NIM-76 was confirmed using a fluorescent staining technique. NIM-76 was found to affect the motility of the sperm in a dose-dependent manner. Supplementation of pentoxifylline, which is known to enhance the motility of the sperm, could not prevent the spermicidal action of NIM-76. There was a gradual leakage of cytosolic LDH from the sperm in the presence of NIM-76. Electron microscopic studies revealed the formation of pores and vesicles over the sperm head, indicating the damage to the cell membrane. Membrane fluidization studies did not reveal any significant change in the fluidity of sperm cell membrane structure.
Collapse
Affiliation(s)
- S K Sharma
- Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
50
|
|