1
|
Nakamura S, Kurata R, Miyazaki T. Structural insights into α-(1→6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. FEBS J 2024; 291:3267-3282. [PMID: 38661728 DOI: 10.1111/febs.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Glycoside hydrolase family 97 (GH97) comprises enzymes like anomer-inverting α-glucoside hydrolases (i.e., glucoamylase) and anomer-retaining α-galactosidases. In a soil bacterium, Flavobacterium johnsoniae, we previously identified a GH97 enzyme (FjGH97A) within the branched dextran utilization locus. It functions as an α-glucoside hydrolase, targeting α-(1→6)-glucosidic linkages in dextran and isomaltooligosaccharides (i.e., glucodextranase). FjGH97A exhibits a preference for α-(1→6)-glucoside linkages over α-(1→4)-linkages, while Bacteroides thetaiotaomicron glucoamylase SusB (with 69% sequence identity), which is involved in the starch utilization system, exhibits the highest specificity for α-(1→4)-glucosidic linkages. Here, we examined the crystal structures of FjGH97A in complexes with glucose, panose, or isomaltotriose, and analyzed the substrate preferences of its mutants to identify the amino acid residues that determine the substrate specificity for α-(1→4)- and α-(1→6)-glucosidic linkages. The overall structure of FjGH97A resembles other GH97 enzymes, with conserved catalytic residues similar to anomer-inverting GH97 enzymes. A comparison of active sites between FjGH97A and SusB revealed differences in amino acid residues at subsites +1 and +2 (specifically Ala195 and Ile378 in FjGH97A). Among the three mutants (A195S, I378F, and A195S-I378F), A195S and A195S-I378F exhibited increased activity toward α-(1→4)-glucoside bonds compared to α-(1→6)-glucoside bonds. This suggests that Ala195, located on the Gly184-Thr203 loop (named loop-N) conserved within the GH97 subgroup, including FjGH97A and SusB, holds significance in determining linkage specificity. The conservation of alanine in the active site of the GH97 enzymes, within the same gene cluster as the putative dextranase, indicates its crucial role in determining the specificity for α-(1→6)-glucoside linkage.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
2
|
Brown HA, Morris AL, Pudlo NA, Hopkins AE, Martens EC, Golob JL, Koropatkin NM. Acarbose Impairs Gut Bacteroides Growth by Targeting Intracellular GH97 Enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595031. [PMID: 38826241 PMCID: PMC11142093 DOI: 10.1101/2024.05.20.595031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Acarbose is a type-2 diabetes medicine that inhibits dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt). Bt growth is severely impaired by acarbose whereas Bo growth is not. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the Sus beta-barrel proteins and binds to the Sus transcriptional regulators. Further, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Further, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.
Collapse
Affiliation(s)
- Haley A. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Adeline L. Morris
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ashley E. Hopkins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan L. Golob
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Wong JPH, Chillier N, Fischer-Stettler M, Zeeman SC, Battin TJ, Persat A. Bacteroides thetaiotaomicron metabolic activity decreases with polysaccharide molecular weight. mBio 2024; 15:e0259923. [PMID: 38376161 PMCID: PMC10936149 DOI: 10.1128/mbio.02599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.
Collapse
Affiliation(s)
- Jeremy P. H. Wong
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Noémie Chillier
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Tom J. Battin
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Nakamura S, Kurata R, Tonozuka T, Funane K, Park EY, Miyazaki T. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. J Biol Chem 2023:104885. [PMID: 37269952 PMCID: PMC10316084 DOI: 10.1016/j.jbc.2023.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Dextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1→2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1→2)- and α-(1→3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL gene was significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL GHs synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1→2)- and α-(1→3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1→2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1→2)- and α-(1→3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazumi Funane
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37, Takeda-cho, Kofu, Yamanashi, 400-8510, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Zhantlessova S, Savitskaya I, Kistaubayeva A, Ignatova L, Talipova A, Pogrebnjak A, Digel I. Advanced "Green" Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers (Basel) 2022; 14:3224. [PMID: 35956737 PMCID: PMC9371109 DOI: 10.3390/polym14153224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.
Collapse
Affiliation(s)
- Sirina Zhantlessova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Irina Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aida Kistaubayeva
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Ludmila Ignatova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aizhan Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, Ryms’koho-Korsakova St. 2, 40000 Sumy, Ukraine
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany
| |
Collapse
|
6
|
Jafari F, Kiani-Ghaleh F, Eftekhari S, Razzaghshoar Razlighi M, Nazari N, Hajirajabi M, Masoomi Sarvestani F, Sharafieh G. Cloning, overexpression, and structural characterization of a novel archaeal thermostable neopullulanase from Desulfurococcus mucosus DSM 2162. Prep Biochem Biotechnol 2022; 52:1190-1201. [PMID: 35234088 DOI: 10.1080/10826068.2022.2033996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The main purpose of the present study is to introduce the biochemical characteristics of the industrial valuable thermostable pullulan degrading enzyme from Desulfurococcus mucosus DSM2162. Recombinant protein was purified by a combination of thermal treatment and affinity chromatography, with a yield of 15.94% and 7.69-fold purity. Purified enzyme showed the molecular mass of 55,787 Da with optimum activity at 70 °C and a broad range of pH (5.0-9.0) with kcat of 2150 min-1 and Km of 6.55 mg.mL-1, when using starch as substrate. The enzyme activity assay on various polysaccharide substrates revealed the substrate preference of pullulan > amylopectin > β cyclodextrin > starch > glycogen; therefore, it classified as a neopullulanase. The neopullulanase structural analysis by spectrofluorometer, FT-IR, and circular dichroism spectroscopy indicated the corporation of α-helix (47.3%) and β-sheet (31.6%) in its secondary structure. The melting temperature and specific heat capacity calculations using differential scanning calorimetry confirmed its extreme thermal stability. Further, salt-elevated concentrations resulted in oligomeric state dominancy without any significant influence on the starch-degrading ability. The newly cloned archaeal neopullulanase was with broad activity on polysaccharide substrates, with thermal and salt stability. Thus, the Desulfurococcus mucosus DSM2162 neopullulanase can be introduced as a good candidate to be used in carbohydrate industry.
Collapse
Affiliation(s)
- Farzaneh Jafari
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Farid Kiani-Ghaleh
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Shahrzad Eftekhari
- Medical Laboratory Sciences Department, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Nazanin Nazari
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hajirajabi
- Department of Microbiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatima Masoomi Sarvestani
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnoosh Sharafieh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V, Ray J, Hern KE, Petzold CJ, Turnbaugh PJ, Huang KC, Arkin AP, Deutschbauer AM. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 2021; 34:108789. [PMID: 33657378 PMCID: PMC8121099 DOI: 10.1016/j.celrep.2021.108789] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.
Collapse
Affiliation(s)
- Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veronica Escalante
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kelsey E Hern
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Erden-Karaoğlan F, Karakaş-Budak B, Karaoğlan M, Inan M. Cloning and expression of pullulanase from Bacillus subtilis BK07 and PY22 in Pichia pastoris. Protein Expr Purif 2019; 162:83-88. [DOI: 10.1016/j.pep.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
|
9
|
Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics 2019; 111:24-33. [DOI: 10.1016/j.ygeno.2017.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023]
|
10
|
Transglycosylation Properties of a Novel α-1,4-Glucanotransferase from Bacteroides thetaiotaomicron and Its Application in Developing an α-Glucosidase-Specific Inhibitor. J CHEM-NY 2018. [DOI: 10.1155/2018/2981596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, α-glucanotransferase from Bacteroides thetaiotaomicron was expressed in Escherichia coli and characterized. Conserved amino-acid sequence alignment showed that Bacteroides thetaiotaomicron α-glucanotransferase (BtαGTase) belongs to the glycoside hydrolase family 77. The enzyme exhibited optimal catalytic activity at 60°C and pH 3.0. BtαGTase catalyzed transglycosylation reactions that produced only glycosyl or maltosyl transfer products, which are preferable for the generation of transglycosylated products with high yield. The 1-deoxynojirimycin (DNJ) glycosylation product G1-DNJ was generated using BtαGTase, and the inhibitory effect of G1-DNJ was analyzed. A kinetic study of inhibition revealed that G1-DNJ inhibited α-glucosidase to a greater extent than did DNJ but did not show any inhibitory effects towards α-amylase, suggesting that G1-DNJ is a potential candidate for the prevention of diabetes.
Collapse
|
11
|
Kappelmann L, Krüger K, Hehemann JH, Harder J, Markert S, Unfried F, Becher D, Shapiro N, Schweder T, Amann RI, Teeling H. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME JOURNAL 2018; 13:76-91. [PMID: 30111868 PMCID: PMC6298971 DOI: 10.1038/s41396-018-0242-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Marine algae convert a substantial fraction of fixed carbon dioxide into various polysaccharides. Flavobacteriia that are specialized on algal polysaccharide degradation feature genomic clusters termed polysaccharide utilization loci (PULs). As knowledge on extant PUL diversity is sparse, we sequenced the genomes of 53 North Sea Flavobacteriia and obtained 400 PULs. Bioinformatic PUL annotations suggest usage of a large array of polysaccharides, including laminarin, α-glucans, and alginate as well as mannose-, fucose-, and xylose-rich substrates. Many of the PULs exhibit new genetic architectures and suggest substrates rarely described for marine environments. The isolates’ PUL repertoires often differed considerably within genera, corroborating ecological niche-associated glycan partitioning. Polysaccharide uptake in Flavobacteriia is mediated by SusCD-like transporter complexes. Respective protein trees revealed clustering according to polysaccharide specificities predicted by PUL annotations. Using the trees, we analyzed expression of SusC/D homologs in multiyear phytoplankton bloom-associated metaproteomes and found indications for profound changes in microbial utilization of laminarin, α-glucans, β-mannan, and sulfated xylan. We hence suggest the suitability of SusC/D-like transporter protein expression within heterotrophic bacteria as a proxy for the temporal utilization of discrete polysaccharides.
Collapse
Affiliation(s)
| | - Karen Krüger
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Zentrum für Marine Umweltwissenschaften, Bremen, Germany
| | - Jens Harder
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, University Greifswald, Greifswald, Germany
| | | | - Thomas Schweder
- Pharmaceutical Biotechnology, University Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
12
|
Foley MH, Martens EC, Koropatkin NM. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol Microbiol 2018; 108:551-566. [PMID: 29528148 PMCID: PMC5980745 DOI: 10.1111/mmi.13949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch-binding protein, the precise role(s) of the partially homologous starch-binding proteins SusE and SusF has remained elusive. We previously reported that a non-binding version of SusD (SusD*) supports growth on starch when other members of the multi-protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.
Collapse
Affiliation(s)
- Matthew H. Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Classic Spotlight: Bacteroides thetaiotaomicron, Starch Utilization, and the Birth of the Microbiome Era. J Bacteriol 2016; 198:2763. [PMID: 27660335 DOI: 10.1128/jb.00615-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 2016; 73:2603-17. [PMID: 27137179 PMCID: PMC4924478 DOI: 10.1007/s00018-016-2242-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-uptake system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex.
Collapse
Affiliation(s)
- Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Expression and characterisation of neopullulanase from Lactobacillus mucosae. Biotechnol Lett 2016; 38:1753-60. [DOI: 10.1007/s10529-016-2152-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
16
|
Nisha M, Satyanarayana T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol 2016; 100:5661-79. [DOI: 10.1007/s00253-016-7572-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
|
17
|
Yin X, Ma L, Pei X, Du P, Li C, Xie T, Yu L, Yu L, Wang Q. Creation of Functionally Diverse Chimerical α-Glucosidase Enzymes by Swapping Homologous Gene Fragments Retrieved from Soil DNA. Indian J Microbiol 2014. [DOI: 10.1007/s12088-014-0493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012; 2012:921362. [PMID: 22991654 PMCID: PMC3443597 DOI: 10.1155/2012/921362] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 11/21/2022] Open
Abstract
The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase.
Collapse
|
19
|
Wang J, Sheng X, Zhao Y, Liu Y, Liu C. QM/MM investigation on the catalytic mechanism of Bacteroides thetaiotaomicron α-glucosidase BtGH97a. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:750-8. [DOI: 10.1016/j.bbapap.2012.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/28/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
|
20
|
Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 2009; 191:4835-44. [PMID: 19465663 DOI: 10.1128/jb.00176-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and beta-cyclodextrin (beta-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and beta-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched beta-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the alpha-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.
Collapse
|
21
|
Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, Yao M. Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J Biol Chem 2008; 283:36328-37. [PMID: 18981178 PMCID: PMC2662298 DOI: 10.1074/jbc.m806115200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/03/2008] [Indexed: 11/06/2022] Open
Abstract
SusB, an 84-kDa alpha-glucoside hydrolase involved in the starch utilization system (sus) of Bacteroides thetaiotaomicron, belongs to glycoside hydrolase (GH) family 97. We have determined the enzymatic characteristics and the crystal structures in free and acarbose-bound form at 1.6A resolution. SusB hydrolyzes the alpha-glucosidic linkage, with inversion of anomeric configuration liberating the beta-anomer of glucose as the reaction product. The substrate specificity of SusB, hydrolyzing not only alpha-1,4-glucosidic linkages but also alpha-1,6-, alpha-1,3-, and alpha-1,2-glucosidic linkages, is clearly different from other well known glucoamylases belonging to GH15. The structure of SusB was solved by the single-wavelength anomalous diffraction method with sulfur atoms as anomalous scatterers using an in-house x-ray source. SusB includes three domains as follows: the N-terminal, catalytic, and C-terminal domains. The structure of the SusB-acarbose complex shows a constellation of carboxyl groups at the catalytic center; Glu532 is positioned to provide protonic assistance to leaving group departure, with Glu439 and Glu508 both positioned to provide base-catalyzed assistance for inverting nucleophilic attack by water. A structural comparison with other glycoside hydrolases revealed significant similarity between the catalytic domain of SusB and those of alpha-retaining glycoside hydrolases belonging to GH27, -36, and -31 despite the differences in catalytic mechanism. SusB and the other retaining enzymes appear to have diverged from a common ancestor and individually acquired the functional carboxyl groups during the process of evolution. Furthermore, sequence comparison of the active site based on the structure of SusB indicated that GH97 included both retaining and inverting enzymes.
Collapse
Affiliation(s)
- Momoyo Kitamura
- Faculty of Advanced Life Science, Graduate School of Agriculture, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gloster TM, Turkenburg JP, Potts JR, Henrissat B, Davies GJ. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. ACTA ACUST UNITED AC 2008; 15:1058-67. [PMID: 18848471 PMCID: PMC2670981 DOI: 10.1016/j.chembiol.2008.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/01/2008] [Accepted: 09/11/2008] [Indexed: 11/26/2022]
Abstract
Enzymatic cleavage of the glycosidic bond yields products in which the anomeric configuration is either retained or inverted. Each mechanism reflects the dispositions of the enzyme functional groups; a facet of which is essentially conserved in 113 glycoside hydrolase (GH) families. We show that family GH97 has diverged significantly, as it contains both inverting and retaining α-glycosidases. This reflects evolution of the active center; a glutamate acts as a general base in inverting members, exemplified by Bacteroides thetaiotaomicron α-glucosidase BtGH97a, whereas an aspartate likely acts as a nucleophile in retaining members. The structure of BtGH97a and its complexes with inhibitors, coupled to kinetic analysis of active-site variants, reveals an unusual calcium ion dependence. 1H NMR analysis shows an inversion mechanism for BtGH97a, whereas another GH97 enzyme from B. thetaiotaomicron, BtGH97b, functions as a retaining α-galactosidase.
Collapse
Affiliation(s)
- Tracey M Gloster
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, UK.
| | | | | | | | | |
Collapse
|
23
|
Naumoff DG. GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily. BMC Genomics 2005; 6:112. [PMID: 16131397 PMCID: PMC1249566 DOI: 10.1186/1471-2164-6-112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 08/30/2005] [Indexed: 11/29/2022] Open
Abstract
Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20). Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α)8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.
Collapse
Affiliation(s)
- Daniil G Naumoff
- State Institute for Genetics and Selection of Industrial Microorganisms, I-Dorozhny proezd, 1, Moscow 117545, Russia.
| |
Collapse
|
24
|
Anderson KL. Purification and Analysis of a Membrane-associated Starch-degrading Enzyme from Ruminobacter amylophilus. Anaerobe 2002. [DOI: 10.1006/anae.2002.0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Kamasaka H, Sugimoto K, Takata H, Nishimura T, Kuriki T. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Appl Environ Microbiol 2002; 68:1658-64. [PMID: 11916682 PMCID: PMC123897 DOI: 10.1128/aem.68.4.1658-1664.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 10(8) to 10(7) Da. Furthermore, this neopullulanase selectively hydrolyzed amylose when starch was used as a substrate. This phenomenon, efficient hydrolysis of amylose but not amylopectin, was also observed with cyclomaltodextrinase from alkaliphilic Bacillus sp. strain A2-5a and maltogenic amylase from Bacillus licheniformis ATCC 27811. These three enzymes hydrolyzed cyclomaltodextrins and amylose much faster than pullulan. Other amylolytic enzymes, such as bacterial saccharifying alpha-amylase, bacterial liquefying alpha-amylase, beta-amylase, and neopullulanase from Bacillus megaterium, did not exhibit this distinct substrate specificity at all, i.e., the preference of amylose to amylopectin.
Collapse
Affiliation(s)
- Hiroshi Kamasaka
- Biochemical Research Laboratory, Ezaki Glico Co., Ltd., Nishiyodogawa-ku, Osaka 555-8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Cho KH, Cho D, Wang GR, Salyers AA. New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. J Bacteriol 2001; 183:7198-205. [PMID: 11717279 PMCID: PMC95569 DOI: 10.1128/jb.183.24.7198-7205.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides thetaiotaomicron uses starch as a source of carbon and energy. Early steps in the pathway of starch utilization, such as starch binding and starch hydrolysis, are encoded by sus genes, which have been characterized previously. The sus structural genes are expressed only if cells are grown in medium containing maltose or higher oligomers of glucose. Regulation of the sus structural genes is mediated by SusR, an activator that is encoded by a gene located next to the sus structural genes. A strain with a disruption in susR cannot grow on starch but can still grow on maltose and maltotriose. A search for transposon-generated mutants that could not grow on maltose and maltotriose unexpectedly located a gene, designated malR, which regulates expression of an alpha-glucosidase not controlled by SusR. Although a disruption in susR did not affect expression of the malR controlled gene, a disruption in malR reduced expression of the sus structural genes. Thus, MalR appears to participate with SusR in regulation of the sus genes. Results of transcriptional fusion assays and reverse transcription-PCR experiments showed that malR is expressed constitutively. Moreover, multiple copies of malR provided on a plasmid (5 to 10 copies per cell) more than doubled the amount of alpha-glucosidase activity in cell extracts. Our results demonstrate that the starch utilization system of B. thetaiotaomicron is controlled on at least two levels by the regulatory proteins SusR and MalR.
Collapse
Affiliation(s)
- K H Cho
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
27
|
Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:165-85. [PMID: 10825529 DOI: 10.1016/s0167-4838(00)00041-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclomaltodextrinase (CDase, EC 3.2.1.54), maltogenic amylase (EC 3. 2.1.133), and neopullulanase (EC 3.2.1.135) are reported to be capable of hydrolyzing all or two of the following three types of substrates: cyclomaltodextrins (CDs); pullulan; and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. The present review surveys the biochemical, enzymatic, and structural properties of three types of such enzymes as defined based on the substrate specificity toward the CDs: type I, cyclomaltodextrinase and maltogenic amylase that hydrolyze CDs much faster than pullulan and starch; type II, Thermoactinomyces vulgaris amylase II (TVA II) that hydrolyzes CDs much less efficiently than pullulan; and type III, neopullulanase that hydrolyzes pullulan efficiently, but remains to be reported to hydrolyze CDs. These three types of enzymes exhibit 40-60% amino acid sequence identity. They occur in the cytoplasm of bacteria and have molecular masses from 62 to 90 kDa which are slightly larger than those of most alpha-amylases. Multiple amino acid sequence alignment and crystal structures of maltogenic amylase and TVA II reveal the presence of an N-terminal extension of approximately 130 residues not found in alpha-amylases. This unique N-terminal domain as seen in the crystal structures apparently contributes to the active site structure leading to the distinct substrate specificity through a dimer formation. In aqueous solution, most of these enzymes show a monomer-dimer equilibrium. The present review discusses the multiple specificity in the light of the oligomerization and the molecular structures arriving at a clarified enzyme classification. Finally, a physiological role of the enzymes is proposed.
Collapse
Affiliation(s)
- K H Park
- Research Center for New Bio-Materials in Agriculture and Department of Food Science and Technology, Seoul National University, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
This review is concerned with inhibition of amylases by cyclodextrins (cyclic maltooligosaccharides), the interaction that occurs between amylases and cyclodextrins and the application of cyclodextrin affinity chromatography in the purification of amylases. In many cases, amylases that are competitively inhibited by cyclodextrins can be purified by cyclodextrin affinity chromatography with the cyclodextrins interacting with the active site on such enzymes. Interestingly amylases that are not competitively inhibited by cyclodextrins may also be purified by cyclodextrin affinity chromatography. Therefore, cyclodextrin affinity chromatography can function in the purification of such amylolytic enzymes with the interaction occurring at a site removed from the active site. In such cases it appears that the cyclodextrin is interacting with an affinity site or binding site that is present on some amylolytic enzymes. It seems that certain similarities occur among the binding sites of such enzymes. Literature concerning amylases, and their subsequent purification using cyclodextrin affinity chromatography is reviewed and the fundamental basis of the interaction of the cyclodextrin with amylolytic enzymes is discussed here.
Collapse
|
29
|
Shipman JA, Cho KH, Siegel HA, Salyers AA. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 1999; 181:7206-11. [PMID: 10572122 PMCID: PMC103681 DOI: 10.1128/jb.181.23.7206-7211.1999] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
Results from previous studies had suggested that Bacteroides thetaiotaomicron utilizes starch by binding the polysaccharide to the bacterial surface and subsequently degrading the polymer by using cell-associated enzymes. Most of the starch-degrading activity was localized to the periplasm, but a portion appeared to be membrane associated. This raised the possibility that some breakdown might occur in the outer membrane prior to exposure of the polysaccharide to the periplasmic polysaccharide-degrading enzymes. In this study, we show that SusG, an outer membrane protein which has been shown genetically to be essential for starch utilization, has enzymatic activity. Results of protease accessibility experiments support the hypothesis that SusG is exposed on the cell surface. Results of [(14)C]starch binding assays, however, show that SusG plays a negligible role in binding of starch to the cell surface. Consistent with this, SusG has a relatively high K(m) for starch and by itself is not sufficient to allow cells to grow on starch or to bind starch. Hence, the main role of SusG is to hydrolyze starch, but the binding of starch to the cell surface is evidently mediated by other proteins presumably interacting with SusG.
Collapse
Affiliation(s)
- J A Shipman
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
30
|
Wang X, Conway PL, Brown IL, Evans AJ. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl Environ Microbiol 1999; 65:4848-54. [PMID: 10543795 PMCID: PMC91653 DOI: 10.1128/aem.65.11.4848-4854.1999] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (<66,000). It was concluded that Bifidobacterium spp. and C. butyricum degraded and utilized granules of amylomaize starch.
Collapse
Affiliation(s)
- X Wang
- CRC for Food Industry Innovation at Food Science Australia, Highett, VIC 3190, Australia.
| | | | | | | |
Collapse
|
31
|
Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J Mol Biol 1999; 287:907-21. [PMID: 10222200 DOI: 10.1006/jmbi.1999.2647] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of Thermoactinomyces vulgaris R-47 alpha-Amylase II (TVAII) has been determined by multiple isomorphous replacement at 2.6 A resolution. TVAII was crystallized in an orthorhombic system with the space group P212121 and the cell dimensions a=118.5 A, b=119.5 A, c=114.5 A. There are two molecules in an asymmetric unit, related by the non-crystallographic 2-fold symmetry. Diffraction data were collected at 113 K and the cell dimensions reduced to a=114.6 A, b=117.9 A, c=114.2 A, and the model was refined against 7.0-2.6 A resolution data giving an R-factor of 0.204 (Rfree=0.272). The final model consists of 1170 amino acid residues (two molecules) and 478 water molecules with good chemical geometry. TVAII has three domains, A, B, and C, like other alpha-amylases. Domain A with a (beta/alpha)8 barrel structure and domain C with a beta-sandwich structure are very similar to those found in other alpha-amylases. Additionally, TVAII has an extra domain N composed of 121 amino acid residues at the N-terminal site, which has a beta-barrel-like structure consisting of seven antiparallel beta-strands. Domain N is one of the driving forces in the formation of the dimer structure of TVAII, but its role in the enzyme activity is still not clear. TVAII does not have the Ca2+ binding site that connects domains A and B in other alpha-amylases, rather the NZ atom of Lys299 of TVAII serves as the connector between these domains. TVAII can hydrolyze cyclodextrins and pullulan as well as starch. Based on a structural comparison with the complex between a mutant cyclodextrin glucanotransferase and a beta-cyclodextrin derivative, Phe286 located at domain B is considered the residue most likely to recognize the hydrophobic cavity of cyclodextrins. The active-site cleft of TVAII is wider and shallower than that of other alpha-amylases, and seems to be suitable for the binding of pullulan which is expected not to adopt the helical structure of amylose.
Collapse
Affiliation(s)
- S Kamitori
- Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588,
| | | | | | | | | | | | | |
Collapse
|
32
|
Reeves AR, Wang GR, Salyers AA. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 1997; 179:643-9. [PMID: 9006015 PMCID: PMC178742 DOI: 10.1128/jb.179.3.643-649.1997] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Results of earlier work had suggested that utilization of polysaccharides by Bacteroides spp. did not proceed via breakdown by extracellular polysaccharide-degrading enzymes. Rather, it appeared that the polysaccharide was first bound to a putative outer membrane receptor complex and then translocated into the periplasm, where the degradative enzymes were located. In a recent article, we reported the cloning and sequencing of susC, a gene from Bacteroides thetaiotaomicron that encoded a 115-kDa outer membrane protein. SusC protein proved to be essential for utilization not only of starch but also of intermediate-sized maltooligosaccharides (maltose to maltoheptaose). In this paper, we report the sequencing of a 7-kbp region of the B. thetaiotaomicron chromosome that lies immediately downstream of susC. We found four genes in this region (susD, susE, susF, and susG). Transcription of these genes was maltose inducible, and the genes appeared to be part of the same operon as susC. Western blot (immunoblot) analysis using antisera raised against proteins encoded by each of the four genes showed that all four were outer membrane proteins. Protein database searches revealed that SusE had limited similarity to a glucanohydrolase from Clostridium acetobutylicum and SusG had high similarity to amylases from a variety of sources. SusD and SusF had no significant similarity to any proteins in the databases. Results of 14C-starch binding assays suggested that SusD makes a major contribution to binding. SusE and SusF also appear to contribute to binding but not to the same extent as SusD. SusG is essential for growth on starch but appears to contribute little to starch binding. Our results demonstrate that the binding of starch to the B. thetaiotaomicron surface involves at least four outer membrane proteins (SusC, SusD, SusE, and SusF), which may form a surface receptor complex. The role of SusG in binding is still unclear.
Collapse
Affiliation(s)
- A R Reeves
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
33
|
D'Elia JN, Salyers AA. Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 1996; 178:7173-9. [PMID: 8955399 PMCID: PMC178630 DOI: 10.1128/jb.178.24.7173-7179.1996] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteroides thetaiotaomicron, a gram-negative colonic anaerobe, can utilize three forms of starch: amylose, amylopectin, and pullulan. Previously, a neopullulanase, a pullulanase, and an alpha-glucosidase from B. thetaiotaomicron had been purified and characterized biochemically. The neopullulanase and alpha-glucosidase appeared to be the main enzymes involved in the breakdown of starch, because they were responsible for most of the starch-degrading activity detected in B. thetaiotaomicron cell extracts. To determine the importance of these enzymes in the starch utilization pathway, we cloned the genes encoding the neopullulanase and alpha-glucosidase. The gene encoding the neopullulanase (susA) was located upstream of the gene encoding the alpha-glucosidase (susB). Both genes were closely linked to another starch utilization gene, susC, which encodes a 115-kDa outer membrane protein that is essential for growth on starch. The gene encoding the pullulanase, pulI, was not located in this region in the chromosome. Disruption of the neopullulanase gene, susA, reduced the rate of growth on starch by about 30%. Elimination of susA in this strain allowed us to detect a low residual level of enzyme activity, which was localized to the membrane fraction. Previously, we had shown that a disruption in the pulI gene did not affect the rate of growth on pullulan. We have now shown that a double mutant, with a disruption in susA and in the pullulanase gene, pulI, was also able to grow on pullulan. Thus, there is at least one other starch-degrading enzyme besides the neopullulanase and the pullulanase. Disruption of the alpha-glucosidase gene, susB, reduced the rate of growth on starch only slightly. No residual alpha-glucosidase activity was detectable in extracts from this strain. Since this strain could still grow on maltose, maltotriose, and starch, there must be at least one other enzyme capable of degrading the small oligomers produced by the starch-degrading enzymes. Our results show that the starch utilization system of B. thetaiotaomicron is quite complex and contains a number of apparently redundant degradative enzymes.
Collapse
Affiliation(s)
- J N D'Elia
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
34
|
Mellouli L, Ghorbel R, Kammoun A, Mezghani M, Bejar S. Characterization and molecular cloning of thermostable alpha-amylase from Streptomyces sp.To1. Biotechnol Lett 1996. [DOI: 10.1007/bf00127894] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Tonozuka T, Mogi S, Shimura Y, Ibuka A, Sakai H, Matsuzawa H, Sakano Y, Ohta T. Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing alpha-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:35-42. [PMID: 7548164 DOI: 10.1016/0167-4838(95)00101-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thermoactinomyces vulgaris R-47 produces two alpha-amylases, TVA I, an extracellular enzyme, and TVA II, an intracellular enzyme. Both enzymes hydrolyze pullulan to produce panose, and also hydrolyze cyclodextrins. We cloned and sequenced the TVA I gene. The TVA I gene consisted of 1833 base pairs, and the deduced primary structure was composed of 611 amino-acid residues, including an N-terminal signal sequence consisting of 29 amino-acid residues. The similarity between the amino-acid sequence of mature TVA I with those of other pullulan/cyclodextrin-hydrolyzing enzymes, such as TVA II and Bacillus stearothermophilus neopullulanase, was only 30%, although that of TVA II with neopullulanase was 48%. TVA II prefers specific small oligosaccharides and alpha- and beta-cyclodextrins. Whereas kcat/Km values of TVA I for pullulan were larger than that of TVA II, and TVA II could not hydrolyze starch completely. TVA II was inhibited by maltose, the hydrolysate of starch, which seems to be the reason for inefficient hydrolysis of starch. These kinetic properties indicate that TVA I and TVA II have differential physiological roles in sugar metabolism extracellularly and intracellularly, respectively.
Collapse
Affiliation(s)
- T Tonozuka
- Department of Biotechnology, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ruminobacter amylophilus is an obligate anaerobe that uses only alpha-linked glucose molecules (i.e., maltose, maltodextrins, and starch) as a source of energy, making it an excellent model for the study of bacterial starch degradation. Constitutive amylase, amylopectinase, and pullulanase activities were found in intracellular and extracellular fractions of R. amylophilus. However, extracellular activities apparently resulted from cell lysis. Both soluble and membrane-bound polysaccharidase activities were detected. Most of the soluble polysaccharidase activity partitioned with the periplasmic cell fraction. No alpha-glucosidase or maltase activity was detected in either the cellular or extracellular fraction. In addition, intact cells of R. amylophilus bound U-14C-starch. This binding could be saturated and was constitutive and sensitive to proteinase K, indicating protein or protein complex mediation. Competition experiments showed that these starch-binding sites had equally high affinities for starch and maltodextrins larger than maltotriose. The sites had a reduced affinity for maltose and virtually no affinities for glucose and nonstarch polysaccharides. These findings suggest that R. amylophilus binds starch molecules to the cell surface as an initial step in transporting the molecule through the outer membrane and into the periplasmic space. Extracellular polysaccharides do not appear to be involved in starch degradation.
Collapse
Affiliation(s)
- K L Anderson
- Department of Biological Sciences, Mississippi State University, Mississippi 39762, USA
| |
Collapse
|
37
|
Tonozuka T, Sakai H, Ohta T, Sakano Y. A convenient enzymatic synthesis of 4(2)-alpha-isomaltosylisomaltose using Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II). Carbohydr Res 1994; 261:157-62. [PMID: 8087809 DOI: 10.1016/0008-6215(94)80014-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- T Tonozuka
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | |
Collapse
|
38
|
Abe J, Onitsuka N, Nakano T, Shibata Y, Hizukuri S, Entani E. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151. J Bacteriol 1994; 176:3584-8. [PMID: 8206836 PMCID: PMC205547 DOI: 10.1128/jb.176.12.3584-3588.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Xanthomonas campestris K-11151, isolated from soil, produced a periplasmic alpha-amylase of a new type. The enzyme was purified to homogeneity, as shown by several criteria. The purified enzyme showed almost the same activities on alpha-, beta-, and gamma-cyclodextrins, soluble starch, and amylose. Moreover, it was active on branched cyclodextrins, pullulan, and maltose but not on glycogen. Kinetic analysis showed that alpha-cyclodextrin was the best substrate among the cyclodextrins. The substrate specificity suggested that this enzyme had the combined activities of alpha-amylase, cyclodextrinase, and neopullulanase.
Collapse
Affiliation(s)
- J Abe
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Japan
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Tancula E, Feldhaus MJ, Bedzyk LA, Salyers AA. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J Bacteriol 1992; 174:5609-16. [PMID: 1512196 PMCID: PMC206506 DOI: 10.1128/jb.174.17.5609-5616.1992] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous studies of starch utilization by the gram-negative anaerobe Bacteroides thetaiotaomicron have demonstrated that the starch-degrading enzymes are cell associated rather than extracellular, indicating that the first step in starch utilization is binding of the polysaccharide to the bacterial surface. Five transposon-generated mutants of B. thetaiotaomicron which were defective in starch binding (Ms-1 through Ms-5) had been isolated, but initial attempts to identify membrane proteins missing in these mutants were not successful. We report here the use of an immunological approach to identify four maltose-inducible membrane proteins, which were missing in one or more of the starch-binding mutants of B. thetaiotaomicron. Three of the maltose-inducible proteins were outer membrane proteins (115, 65, and 43 kDa), and one was a cytoplasmic membrane protein (80 kDa). The genes encoding these proteins were shown to be clustered in an 8.5-kbp segment of the B. thetaiotaomicron chromosome. Two other loci defined by transposon insertions, which appeared to contain regulatory genes, were located within 7 kbp of the cluster of membrane protein genes. The 115-kDa outer membrane protein was essential for utilization of maltoheptaose (G7), whereas loss of the other proteins affected growth on starch but not on G7. Not all of the proteins missing in the mutants were maltose regulated. We also detected two constitutively produced proteins (32 and 50 kDa) that were less prominent in all of the mutants than in the wild type. Both of these were outer membrane proteins.
Collapse
Affiliation(s)
- E Tancula
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|