1
|
Pan Y, Yang J, Wu J, Yang L, Fang H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Front Microbiol 2022; 13:1059777. [PMID: 36504810 PMCID: PMC9730254 DOI: 10.3389/fmicb.2022.1059777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pichia pastoris (syn. Komagataella spp.) has attracted extensive attention as an efficient platform for recombinant protein (RP) production. For obtaining a higher protein titer, many researchers have put lots of effort into different areas and made some progress. Here, we summarized the most recent advances of the last 5 years to get a better understanding of its future direction of development. The appearance of innovative genetic tools and methodologies like the CRISPR/Cas9 gene-editing system eases the manipulation of gene expression systems and greatly improves the efficiency of exploring gene functions. The integration of novel pathways in microorganisms has raised more ideas of metabolic engineering for enhancing RP production. In addition, some new opportunities for the manufacture of proteins have been created by the application of novel mathematical models coupled with high-throughput screening to have a better overview of bottlenecks in the biosynthetic process.
Collapse
Affiliation(s)
- Yingjie Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiao Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lirong Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
2
|
Gómez S, Navas-Yuste S, Payne AM, Rivera W, López-Estepa M, Brangbour C, Fullà D, Juanhuix J, Fernández FJ, Vega MC. Peroxisomal catalases from the yeasts Pichia pastoris and Kluyveromyces lactis as models for oxidative damage in higher eukaryotes. Free Radic Biol Med 2019; 141:279-290. [PMID: 31238127 DOI: 10.1016/j.freeradbiomed.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
Catalases are among the main scavengers of reactive oxygen species (ROS) present in the peroxisome, thereby preventing oxidative cellular and tissular damage. In human, multiple diseases are associated with malfunction of these organelles, which causes accumulation of ROS species and consequently the inefficient detoxification of cells. Despite intense research, much remains to be clarified about the precise molecular role of catalase in cellular homeostasis. Yeast peroxisomes and their peroxisomal catalases have been used as eukaryotic models for oxidative metabolism, ROS generation and detoxification, and associated pathologies. In order to provide reliable models for oxidative metabolism research, we have determined the high-resolution crystal structures of peroxisomal catalase from two important biotechnology and basic biology yeast models, Pichia pastoris and Kluyveromyces lactis. We have performed an extensive functional, biochemical and stability characterization of both enzymes in order to establish their differential activity profiles. Furthermore, we have analyzed the role of the peroxisomal catalase under study in the survival of yeast to oxidative burst challenges combining methanol, water peroxide, and sodium chloride. Interestingly, whereas catalase activity was induced 200-fold upon challenging the methylotrophic P. pastoris cells with methanol, the increase in catalase activity in the non-methylotrophic K. lactis was only moderate. The inhibitory effect of sodium azide and β-mercaptoethanol over both catalases was analyzed, establishing IC50 values for both compounds that are consistent with an elevated resistance of both enzymes toward these inhibitors. Structural comparison of these two novel catalase structures allows us to rationalize the differential susceptibility to inhibitors and oxidative bursts. The inherent worth and validity of the P. pastoris and K. lactis yeast models for oxidative damage will be strengthened by the availability of reliable structural-functional information on these enzymes, which are central to our understanding of peroxisomal response toward oxidative stress.
Collapse
Affiliation(s)
- Sara Gómez
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sergio Navas-Yuste
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Asia M Payne
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Wilmaris Rivera
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Miguel López-Estepa
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Clotilde Brangbour
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | | | | | - Francisco J Fernández
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - M Cristina Vega
- Structural and Chemical Biology Department, Center for Biological Research (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Joshi AS, Cohen S. Lipid Droplet and Peroxisome Biogenesis: Do They Go Hand-in-Hand? Front Cell Dev Biol 2019; 7:92. [PMID: 31214588 PMCID: PMC6554619 DOI: 10.3389/fcell.2019.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
All eukaryotic cells contain membrane bound structures called organelles. Each organelle has specific composition and function. Some of the organelles are generated de novo in a cell. The endoplasmic reticulum (ER) is a major contributor of proteins and membranes for most of the organelles. In this mini review, we discuss de novo biogenesis of two such organelles, peroxisomes and lipid droplets (LDs), that are formed in the ER membrane. LDs and peroxisomes are highly conserved ubiquitously present membrane-bound organelles. Both these organelles play vital roles in lipid metabolism and human health. Here, we discuss the current understanding of de novo biogenesis of LDs and peroxisomes, recent advances on how biogenesis of both the organelles might be linked, physical interaction between LDs and peroxisomes and other organelles, and their physiological importance.
Collapse
Affiliation(s)
- Amit S. Joshi
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah Cohen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
5
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
6
|
FUJIKI Y. Peroxisome biogenesis and human peroxisome-deficiency disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:463-477. [PMID: 27941306 PMCID: PMC5328784 DOI: 10.2183/pjab.92.463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function.
Collapse
Affiliation(s)
- Yukio FUJIKI
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Correspondence should be addressed: Y. Fujiki, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
7
|
Role of Pex11p in Lipid Homeostasis in Yarrowia lipolytica. EUKARYOTIC CELL 2015; 14:511-25. [PMID: 25820522 DOI: 10.1128/ec.00051-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/17/2023]
Abstract
Peroxisomes are essential organelles in the cells of most eukaryotes, from yeasts to mammals. Their role in β-oxidation is particularly essential in yeasts; for example, in Saccharomyces cerevisiae, fatty acid oxidation takes place solely in peroxisomes. In this species, peroxisome biogenesis occurs when lipids are present in the culture medium, and it involves the Pex11p protein family: ScPex11p, ScPex25p, ScPex27p, and ScPex34p. Yarrowia lipolytica has three Pex11p homologues, which are YALI0C04092p (YlPex11p), YALI0C04565p (YlPex11C), and YALI0D25498p (Pex11/25p). We found that these genes are regulated by oleic acid, and as has been observed in other organisms, YlPEX11 deletion generated giant peroxisomes when mutant yeast were grown in oleic acid medium. Moreover, ΔYlpex11 was unable to grow on fatty acid medium and showed extreme dose-dependent sensitivity to oleic acid. Indeed, when the strain was grown in minimum medium with 0.5% glucose and 3% oleic acid, lipid body lysis and cell death were observed. Cell death and lipid body lysis may be partially explained by an imbalance in the expression of the genes involved in lipid storage, namely, DGA1, DGA2, and LRO1, as well as that of TGL4, which is involved in lipid remobilization. TGL4 deletion and DGA2 overexpression resulted in decreased oleic acid sensitivity and delayed cell death of ΔYlpex11, which probably stemmed from the release of free fatty acids into the cytoplasm. All these results show that YlPex11p plays an important role in lipid homeostasis in Y. lipolytica.
Collapse
|
8
|
Rumjantsev AM, Bondareva OV, Padkina MV, Sambuk EV. Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris. ScientificWorldJournal 2014; 2014:743615. [PMID: 25610912 PMCID: PMC4290030 DOI: 10.1155/2014/743615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022] Open
Abstract
Methylotrophic yeast Pichia pastoris has proved to be especially useful for production of various heterologous proteins. In biotechnology it is very important to maintain the balance between high levels of heterologous gene expression and cell viability. Decisive understanding of gene regulation mechanisms is essential for reaching this goal. In this study, we investigated the effect of different nitrogen sources and phosphate concentration in media on methanol utilization. It was shown that expression levels of main genes, which are involved in methanol utilization (MUT genes) and in functioning of peroxisomes (PEX genes), are maximal when ammonium sulphate is used as a nitrogen source. Expression of these genes is decreased in media with poor nitrogen sources, such as proline. Addition of rapamycin to the media completely removed repression of AOX1 promoter in media with proline, which allows proposing that Tor-kinase is involved in establishing of nitrogen regulation of this gene. It was also shown that MUT genes expression levels get higher, when the phosphate concentration in media is increased.
Collapse
Affiliation(s)
- A. M. Rumjantsev
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - O. V. Bondareva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - M. V. Padkina
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - E. V. Sambuk
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S. Peroxisome biogenesis in mammalian cells. Front Physiol 2014; 5:307. [PMID: 25177298 PMCID: PMC4133648 DOI: 10.3389/fphys.2014.00307] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022] Open
Abstract
To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated and established as a model research system. Successful gene-cloning studies by a forward genetic approach utilized a rapid functional complementation assay of CHO cell mutants led to isolation of human peroxin (PEX) genes. Search for pathogenic genes responsible for PBDs of all 14 CGs is now completed together with the homology search by screening the human expressed sequence tag database using yeast PEX genes. Peroxins are divided into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately function. In membrane assembly, Pex19p forms complexes in the cytosol with newly synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In matrix protein import, newly synthesized proteins harboring peroxisome targeting signal type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p and Pex13p and then translocates to a 500-kDa RING translocation complex. At the terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where Cys-ubiquitination of Pex5p is essential for the Pex5p exit.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| |
Collapse
|
10
|
Koleva D, Petrova V, Hristozova T, Kujumdzieva A. Study of Catalase Enzyme in Methylotrophic Yeasts. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
12
|
Dimitrov L, Lam SK, Schekman R. The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb Perspect Biol 2013; 5:a013243. [PMID: 23637287 DOI: 10.1101/cshperspect.a013243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis.
Collapse
Affiliation(s)
- Lazar Dimitrov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
13
|
Parua PK, Ryan PM, Trang K, Young ET. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol Microbiol 2012; 85:282-98. [PMID: 22625429 DOI: 10.1111/j.1365-2958.2012.08112.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The zinc-finger transcription factor, Mxr1 activates methanol utilization and peroxisome biogenesis genes in the methylotrophic yeast, Pichia pastoris. Expression of Mxr1-dependent genes is regulated in response to various carbon sources by an unknown mechanism. We show here that this mechanism involves the highly conserved 14-3-3 proteins. 14-3-3 proteins participate in many biological processes in different eukaryotes. We have characterized a putative 14-3-3 binding region at Mxr1 residues 212-225 and mapped the major activation domain of Mxr1 to residues 246-280, and showed that phenylalanine residues in this region are critical for its function. Furthermore, we report that a unique and previously uncharacterized 14-3-3 family protein in P. pastoris complements Saccharomyces cerevisiae 14-3-3 functions and interacts with Mxr1 through its 14-3-3 binding region via phosphorylation of Ser215 in a carbon source-dependent manner. Indeed, our in vivo results suggest a carbon source-dependent regulation of expression of Mxr1-activated genes by 14-3-3 in P. pastoris. Interestingly, we observed 14-3-3-independent binding of Mxr1 to the promoters, suggesting a post-DNA binding function of 14-3-3 in regulating transcription. We provide the first molecular explanation of carbon source-mediated regulation of Mxr1 activity, whose mechanism involves a post-DNA binding role of 14-3-3.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011; 2011:101298. [PMID: 21754936 PMCID: PMC3132611 DOI: 10.1155/2011/101298] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic methylotrophs, which are able to obtain all the carbon and energy needed for growth from methanol, are restricted to a limited number of yeast species. When these yeasts are grown on methanol as the sole carbon and energy source, the enzymes involved in methanol metabolism are strongly induced, and the membrane-bound organelles, peroxisomes, which contain key enzymes of methanol metabolism, proliferate massively. These features have made methylotrophic yeasts attractive hosts for the production of heterologous proteins and useful model organisms for the study of peroxisome biogenesis and degradation. In this paper, we describe recent insights into the molecular basis of yeast methylotrophy.
Collapse
|
16
|
Lünsdorf H, Gurramkonda C, Adnan A, Khanna N, Rinas U. Virus-like particle production with yeast: ultrastructural and immunocytochemical insights into Pichia pastoris producing high levels of the hepatitis B surface antigen. Microb Cell Fact 2011; 10:48. [PMID: 21703024 PMCID: PMC3142206 DOI: 10.1186/1475-2859-10-48] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A protective immune response against Hepatitis B infection can be obtained through the administration of a single viral polypeptide, the Hepatitis B surface antigen (HBsAg). Thus, the Hepatitis B vaccine is generated through the utilization of recombinant DNA technology, preferentially by using yeast-based expression systems. However, the polypeptide needs to assemble into spherical particles, so-called virus-like particles (VLPs), to elicit the required protective immune response. So far, no clear evidence has been presented showing whether HBsAg assembles in vivo inside the yeast cell into VLPs or later in vitro during down-stream processing and purification. RESULTS High level production of HBsAg was carried out with recombinant Pichia pastoris using the methanol inducible AOX1 expression system. The recombinant vaccine was isolated in form of VLPs after several down-stream steps from detergent-treated cell lysates. Search for the intracellular localization of the antigen using electron microscopic studies in combination with immunogold labeling revealed the presence of HBsAg in an extended endoplasmic reticulum where it was found to assemble into defined multi-layered, lamellar structures. The distance between two layers was determined as ~6 nm indicating that these lamellas represent monolayers of well-ordered HBsAg subunits. We did not find any evidence for the presence of VLPs within the endoplasmic reticulum or other parts of the yeast cell. CONCLUSIONS It is concluded that high level production and intrinsic slow HBsAg VLP assembly kinetics are leading to retention and accumulation of the antigen in the endoplasmic reticulum where it assembles at least partly into defined lamellar structures. Further transport of HBsAg to the Golgi apparatus is impaired thus leading to secretory pathway disfunction and the formation of an extended endoplasmic reticulum which bulges into irregular cloud-shaped formations. As VLPs were not found within the cells it is concluded that the VLP assembly process must take place during down-stream processing after detergent-mediated disassembly of HBsAg lamellas and subsequent reassembly of HBsAg into spherical VLPs.
Collapse
Affiliation(s)
- Heinrich Lünsdorf
- Helmholtz Centre for Infection Research (VAM), Braunschweig, Germany
| | | | | | | | | |
Collapse
|
17
|
Girzalsky W, Platta HW, Erdmann R. Protein transport across the peroxisomal membrane. Biol Chem 2009; 390:745-51. [PMID: 19558328 DOI: 10.1515/bc.2009.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The maintenance of peroxisome function depends on the formation of the peroxisomal membrane and the subsequent import of both membrane and matrix proteins. Without exception, peroxisomal matrix proteins are nuclear encoded, synthesized on free ribosomes and subsequently imported post-translationally. In contrast to other translocation systems that transport unfolded polypeptide chains, the peroxisomal import apparatus can facilitate the transport of folded and oligomeric proteins across the peroxisomal membrane. The peroxisomal protein import is mediated by cycling receptors that shuttle between the cytosol and peroxisomal lumen and depends on ATP and ubiquitin. In this brief review, we will summarize our current knowledge on the import of soluble proteins into the peroxisomal matrix.
Collapse
Affiliation(s)
- Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
18
|
Expression of Recombinant Proteins in Pichia Pastoris. Appl Biochem Biotechnol 2007; 142:105-24. [PMID: 18025573 DOI: 10.1007/s12010-007-0003-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 10/23/2022]
|
19
|
Abstract
A significant advantage of Pichia pastoris as an experimental system is the ability to readily bring to bear both classical and molecular genetic approaches to a research problem. Although the advent of yeast molecular genetics has introduced new and exciting capabilities, classical genetics remains the approach of choice in many instances. These include the generation of mutations in previously unidentified genes (mutagenesis), the removal of unwanted secondary mutations (backcrossing), the assignment of mutations to specific genes (complementation analysis), and the construction of strains with new combinations of mutant alleles. This chapter describes these genetic manipulation methods for P. pastoris. In addition, certain yeast genes are essential for survival of the organism. However, determining whether a newly cloned gene is essential or not can be difficult with P. pastoris. In this chapter, we also describe a series of experiments to investigate the potential essential nature of a cloned gene in this yeast.
Collapse
Affiliation(s)
- Ilya Tolstorukov
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | |
Collapse
|
20
|
Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K. Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1374-81. [PMID: 17045664 DOI: 10.1016/j.bbamcr.2006.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
21
|
Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 2006; 18:106-18. [PMID: 17079731 PMCID: PMC1751328 DOI: 10.1091/mbc.e06-06-0554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.
Collapse
Affiliation(s)
- Taras Y. Nazarko
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Andriy S. Polupanov
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
| | - Ravi R. Manjithaya
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Suresh Subramani
- *Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; and
- Department of Metabolic Engineering, Rzeszow University, Cwiklinskiej 2, Rzeszow 3-601, Poland
| |
Collapse
|
22
|
van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1453-62. [PMID: 17023065 DOI: 10.1016/j.bbamcr.2006.07.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 07/26/2006] [Indexed: 11/22/2022]
Abstract
The capacity to use methanol as sole source of carbon and energy is restricted to relatively few yeast species. This may be related to the low efficiency of methanol metabolism in yeast, relative to that of prokaryotes. This contribution describes the details of methanol metabolism in yeast and focuses on the significance of compartmentalization of this metabolic pathway in peroxisomes.
Collapse
Affiliation(s)
- Ida J van der Klei
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
23
|
Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 2006; 26:883-97. [PMID: 16428444 PMCID: PMC1347016 DOI: 10.1128/mcb.26.3.883-897.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/26/2005] [Accepted: 10/24/2005] [Indexed: 11/20/2022] Open
Abstract
Growth of the yeast Pichia pastoris on methanol induces the expression of genes whose products are required for its metabolism. Three of the methanol pathway enzymes are located in an organelle called the peroxisome. As a result, both methanol pathway enzymes and proteins involved in peroxisome biogenesis (PEX proteins) are induced in response to this substrate. The most highly regulated of these genes is AOX1, which encodes alcohol oxidase, the first enzyme of the methanol pathway, and a peroxisomal enzyme. To elucidate the molecular mechanisms responsible for methanol regulation, we identify genes required for the expression of AOX1. Mutations in one gene, named MXR1 (methanol expression regulator 1), result in strains that are unable to (i) grow on the peroxisomal substrates methanol and oleic acid, (ii) induce the transcription of AOX1 and other methanol pathway and PEX genes, and (iii) form normal-appearing peroxisomes in response to methanol. MXR1 encodes a large protein with a zinc finger DNA-binding domain near its N terminus that has similarity to Saccharomyces cerevisiae Adr1p. In addition, Mxr1p is localized to the nucleus in cells grown on methanol or other gluconeogenic substrates. Finally, Mxr1p specifically binds to sequences upstream of AOX1. We conclude that Mxr1p is a transcription factor that is necessary for the activation of many genes in response to methanol. We propose that MXR1 is the P. pastoris homologue of S. cerevisiae ADR1 but that it has gained new functions and lost others through evolution as a result of changes in the spectrum of genes that it controls.
Collapse
Affiliation(s)
- Geoffrey Paul Lin-Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 2000 N.W. Walker Road, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thor D, Xiong S, Orazem CC, Kwan AC, Cregg JM, Lin-Cereghino J, Lin-Cereghino GP. Cloning and characterization of the gene as a selectable marker. FEMS Yeast Res 2005; 5:935-42. [PMID: 15996626 DOI: 10.1016/j.femsyr.2005.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/26/2005] [Accepted: 03/31/2005] [Indexed: 11/24/2022] Open
Abstract
We describe the isolation and characterization of a new biosynthetic gene, MET2, from the methylotrophic yeast Pichia pastoris. The predicted product of PpMET2 is significantly similar to its Saccharomyces cerevisiae counterpart, ScMET2, which encodes homoserine-O-transacetylase. The ScMET2 was able to complement the P. pastoris met2 strain; however, the converse was not true. Expression vectors based on PpMET2 for the intracellular and secreted production of foreign proteins and corresponding auxotrophic strains were constructed and tested for use in heterologous expression. The expression vectors and corresponding strains provide greater flexibility when using P. pastoris for recombinant protein expression.
Collapse
Affiliation(s)
- Der Thor
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sumita T, Iida T, Hirata A, Horiuchi H, Takagi M, Ohta A. Peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1 in Yarrowia lipolytica. FEMS Microbiol Lett 2002; 214:31-8. [PMID: 12204369 DOI: 10.1111/j.1574-6968.2002.tb11321.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Among the eight genes (YlALK1-YlALK8) encoding P450 cytochromes of the CYP52 family of the n-alkane-assimilating yeast Yarrowia lipolytica, Y1ALK1 is most highly induced by n-alkanes with short hydrocarbon chains, such as n-decane, and involved in the initial hydroxylation of n-alkane. To determine the factors regulating YlALK1 expression, we isolated an n-decane assimilation-deficient mutant, B0-6-1, whose YlALK1 expression level was lower than that of the wild-type. By complementation of the mutation of B0-6-1, we cloned a gene having an open reading frame of 1062 bp. The putative gene product is a protein of 354 amino acids and has significant homology to Pex10ps of other organisms. We named this gene YlPEX10. YlPex10p has a C(3)HC(4) ring finger motif common among Pex10ps in its C-terminal region. This motif was also essential for the function of YlPex10p. Both B0-6-1 and a null mutant of YlPEX10 failed to form peroxisome and showed low-level transcription of YlALK1 after the change of carbon source to n-decane. Furthermore, YlPEX5 and YlPEX6 disruptants also showed low-level transcription of YlALK1 like the YlPEX10 disruptant and B0-6-1 mutant. We propose that in this organism peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1.
Collapse
Affiliation(s)
- Toru Sumita
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002; 7:75-90. [PMID: 11856375 DOI: 10.1046/j.1356-9597.2001.00499.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded through direct engulfment by the vacuole in a process known as micropexophagy, but the mechanism of micropexophagy is not known. RESULTS To gain molecular insights into micropexophagy, we used fluorescence time-lapse microscopy, coupled with gene-tagging mutagenesis to isolate P. pastoris mutants defective in micropexophagy. The relevant genes have been designated PAZ genes. Morphological and genetic analyses enabled us to postulate a schematic model for micropexophagy. This new model invokes the generation of new vacuolar compartments as an intermediate structure during micropexophagy. Different classes of paz mutants arrest micropexophagy at distinct stages of the process. Most of APG-related paz mutants ceased micropexophagy at Stage 1c and that GCN-family paz mutants ceased micropexophagy at Stage 2. The paz2Delta strain shows a unique phenotype. Paz2 is the homologue of Saccharomyces cerevisiae Apg8, which is necessary for macroautophagy in that yeast. Our analysis revealed that in P. pastoris, Paz2 plays a key role in repressing the engulfment of peroxisomes by the vacuole before the onset of micropexophagy. Paz2 is proteolytically processed by another autophagy-related Paz protein Paz8, but this processing is not required for the ability of Paz2 to suppress aberrant micropexophagy. CONCLUSION Micropexophagy has been dissected into a multistep reaction that involves 14 identified Paz gene products. Our studies indicate that Paz2 controls the engulfment of peroxisomes by the vacuole, pointing to a novel early function of this protein.
Collapse
Affiliation(s)
- Hiroyuki Mukaiyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnson MA, Snyder WB, Cereghino JL, Veenhuis M, Subramani S, Cregg JM. Pichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins. Yeast 2001; 18:621-41. [PMID: 11329173 DOI: 10.1002/yea.711] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The peroxisomal protein import machinery plays a central role in the assembly of this organelle in all eukaryotes. Genes encoding components of this machinery, termed peroxins or Pex proteins, have been isolated and characterized in several yeast species and in mammals, including humans. Here we report on one of these components, Pex14p, from the methylotrophic yeast Pichia pastoris. Work in other organisms has shown that Pex14p is located on the cytoplasmic surface of the peroxisomal membrane and binds peroxisomal targeting signal (PTS) receptors carrying proteins bound for the peroxisomal matrix, results that have led to the hypothesis that Pex14p is a receptor-docking protein. P. pastoris Pex14p (PpPex14p) behaves like an integral membrane protein, with its C-terminus exposed on the cytosolic side of the peroxisomal membrane. PpPex14p complexes with many peroxins, including Pex3p (Snyder et al., 1999b), Pex5p, Pex7p, Pex13p, Pex17p, itself, and a previously unreported peroxin, Pex8p. A portion of Pex14p is phosphorylated, but both phosphorylated and unphosphorylated forms of Pex14p interact with several peroxins. The interactions between Pex14p and other peroxins provide clues regarding the function of Pex14p in peroxisomal protein import.
Collapse
Affiliation(s)
- M A Johnson
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The segregation of metabolic functions within discrete organelles is a hallmark of eukaryotic cells. These compartments allow for the concentration of related metabolic functions, the separation of competing metabolic functions, and the formation of unique chemical microenvironments. However, such organization is not spontaneous and requires an array of genes that are dedicated to the assembly and maintenance of these structures. In this review we focus on the genetics of peroxisome biogenesis and on how defects in this process cause human disease.
Collapse
Affiliation(s)
- K A Sacksteder
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Lin Cereghino GP, Lin Cereghino J, Sunga AJ, Johnson MA, Lim M, Gleeson MA, Cregg JM. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 2001; 263:159-69. [PMID: 11223254 DOI: 10.1016/s0378-1119(00)00576-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe the isolation and characterization of three new biosynthetic genes-ARG4, ADE1, and URA3-from the methylotrophic yeast Pichia pastoris. The predicted products of the genes share significant sequence similarity to their Saccharomyces cerevisiae counterparts, namely argininosuccinate lyase, PR-aminoimidazolesuccinocarboxamide synthase, and orotidine-5'-phosphate decarboxylase, respectively. Along with the previously described HIS4 gene, each gene was incorporated as the yeast selectable marker into a set of shuttle vectors designed to express foreign genes in P. pastoris. In addition, we have constructed a series of host strains containing all possible combinations of ade1, arg4, his4, and ura3 auxotrophies to be used with these new vectors.
Collapse
Affiliation(s)
- G P Lin Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hayashi Y, Hayashi M, Hayashi H, Hara-Nishimura I, Nishimura M. Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant. PROTOPLASMA 2001; 218:83-94. [PMID: 11732324 DOI: 10.1007/bf01288364] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid beta-oxidation and the glyoxylate cycle. The Arabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid beta-oxidation. The ped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of the ped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in the ped1 mutant, we examined the morphology of the ped1 mutant. The glyoxysomes in etiolated cotyledons of the ped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in the ped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid beta-oxidation.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
31
|
Payne WE, Kaiser CA, Bevis BJ, Soderholm J, Fu D, Sears IB, Glick BS. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Yeast 2000; 16:979-93. [PMID: 10923020 DOI: 10.1002/1097-0061(200008)16:11<979::aid-yea594>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pichia pastoris has discrete transitional ER sites and coherent Golgi stacks, making this yeast an ideal system for studying the organization of the early secretory pathway. To provide molecular tools for this endeavour, we isolated P. pastoris homologues of the SEC12, SEC13, SEC17, SEC18 and SAR1 genes. The P. pastoris SEC12, SEC13, SEC17 and SEC18 genes were shown to complement the corresponding S. cerevisiae mutants. The SEC17 and SAR1 genes contain introns at the same relative positions in both P. pastoris and S. cerevisiae, whereas the SEC13 gene contains an intron in P. pastoris but not in S. cerevisiae. Intron structure is similar in the two yeasts, although the favoured 5' splice sequence appears to be GTAAGT in P. pastoris vs. GTATGT in S. cerevisiae. The predicted amino acid sequences of Sec13p, Sec17p, Sec18p and Sar1p show strong conservation in the two yeasts. By contrast, the predicted lumenal domain of Sec12p is much larger in P. pastoris, suggesting that this domain may help localize Sec12p to transitional ER sites. A comparison of the SEC12 loci in various budding yeasts indicates that the SEC12-related gene SED4 is probably unique to the Saccharomyces lineage.
Collapse
Affiliation(s)
- W E Payne
- Department of Biology, 68-533, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
During the past 15 years, the methylotrophic yeast Pichia pastoris has developed into a highly successful system for the production of a variety of heterologous proteins. The increasing popularity of this particular expression system can be attributed to several factors, most importantly: (1) the simplicity of techniques needed for the molecular genetic manipulation of P. pastoris and their similarity to those of Saccharomyces cerevisiae, one of the most well-characterized experimental systems in modern biology; (2) the ability of P. pastoris to produce foreign proteins at high levels, either intracellularly or extracellularly; (3) the capability of performing many eukaryotic post-translational modifications, such as glycosylation, disulfide bond formation and proteolytic processing; and (4) the availability of the expression system as a commercially available kit. In this paper, we review the P. pastoris expression system: how it was developed, how it works, and what proteins have been produced. We also describe new promoters and auxotrophic marker/host strain combinations which extend the usefulness of the system.
Collapse
Affiliation(s)
- J L Cereghino
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 N.W. Walker Road, Beaverton, OR, USA
| | | |
Collapse
|
33
|
Abstract
Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. Much has been learned in recent years about these functions and many of the enzymes involved have been characterized, purified and their cDNAs cloned. This has allowed resolution of the enzymatic and molecular basis of many of the single peroxisomal enzyme deficiencies. Similarly, the molecular basis of the peroxisome biogenesis disorders is also being resolved rapidly thanks to the successful use of CHO as well as yeast mutants. In this paper we will provide an overview of the peroxisomal disorders with particular emphasis on their clinical, biochemical and molecular characteristics.
Collapse
Affiliation(s)
- R J Wanders
- University of Amsterdam, Academic Medical Centre, Dept. Pediatrics, Emma Children's Hospital and Clinical Biochemistry, The Netherlands.
| |
Collapse
|
34
|
Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM. Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris. Genetics 1999; 151:1379-91. [PMID: 10101164 PMCID: PMC1460572 DOI: 10.1093/genetics/151.4.1379] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.
Collapse
Affiliation(s)
- M A Johnson
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Olsen LJ. The surprising complexity of peroxisome biogenesis. PLANT MOLECULAR BIOLOGY 1998; 38:163-189. [PMID: 9738966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.
Collapse
Affiliation(s)
- L J Olsen
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| |
Collapse
|
36
|
Affiliation(s)
- J M Cregg
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, USA
| | | | | | | |
Collapse
|
37
|
Faber KN, Elgersma Y, Heyman JA, Koller A, Lüers GH, Nuttley WM, Terlecky SR, Wenzel TJ, Subramani S. Use of Pichia pastoris as a model eukaryotic system. Peroxisome biogenesis. Methods Mol Biol 1998; 103:121-47. [PMID: 9680638 DOI: 10.1385/0-89603-421-6:121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- K N Faber
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Banerjee H, Kopvak C, Curley D. Identification of linear DNA plasmids of the yeast Pichia pastoris. Plasmid 1998; 40:58-60. [PMID: 9657934 DOI: 10.1006/plas.1998.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two DNA plasmids, approximately 11 and 8 kb in size, have been identified in a strain of the yeast Pichia pastoris (Northern Regional Research Laboratories No. Y4290). The plasmids are resistant to RNase A and lambda exonuclease, but are sensitive to digestion by DNase I, suggesting that they are linear and double-stranded DNA with 5'-protected ends. A restriction map has been constructed for the 11-kb plasmid, confirming that it is linear.
Collapse
Affiliation(s)
- H Banerjee
- Department of Biology, Long Island University, Brooklyn Campus, New York, USA
| | | | | |
Collapse
|
39
|
Abstract
The budding yeast Pichia pastoris is an attractive system for exploring certain questions in cell biology, but experimental use of this organism has been limited by a lack of convenient expression vectors. Here we describe a set of compact vectors that should allow for the expression of a wide range of endogenous or foreign genes in P. pastoris. A gene of interest is inserted into a modified pUC19 polylinker; targeted integration into the genome then results in stable and uniform expression of this gene. The utility of these vectors was illustrated by expressing the bacterial beta-glucuronidase (GUS) gene. Constitutive GUS expression was obtained with the strong GAP promoter or the moderate YPT1 promoter. The regulatable AOX1 promoter yielded very strong GUS expression in methanol-grown cells, negligible expression in glucose-grown cells, and intermediate expression in mannitol-grown cells. GenBank Accession Numbers are: pIB1, AF027958; pIB2, AF0279959; pIB3, AF027960; pIB4, AF027961.
Collapse
Affiliation(s)
- I B Sears
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
40
|
Elgersma Y, Elgersma-Hooisma M, Wenzel T, McCaffery JM, Farquhar MG, Subramani S. A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J Cell Biol 1998; 140:807-20. [PMID: 9472033 PMCID: PMC2141746 DOI: 10.1083/jcb.140.4.807] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a new screening procedure for the isolation of peroxisomal import mutants in Pichia pastoris, we have isolated a mutant (pex7) that is specifically disturbed in the peroxisomal import of proteins containing a peroxisomal targeting signal type II (PTS2). Like its Saccharomyces cerevisiae homologue, PpPex7p interacted with the PTS2 in the two-hybrid system, suggesting that Pex7p functions as a receptor. The pex7Delta mutant was not impaired for growth on methanol, indicating that there are no PTS2-containing enzymes involved in peroxisomal methanol metabolism. In contrast, pex7Delta cells failed to grow on oleate, but growth on oleate could be partially restored by expressing thiolase (a PTS2-containing enzyme) fused to the PTS1. Because the subcellular location and mechanism of action of this protein are controversial, we used various methods to demonstrate that Pex7p is both cytosolic and intraperoxisomal. This suggests that Pex7p functions as a mobile receptor, shuttling PTS2-containing proteins from the cytosol to the peroxisomes. In addition, we used PpPex7p as a model protein to understand the effect of the Pex7p mutations found in human patients with rhizomelic chondrodysplasia punctata. The corresponding PpPex7p mutant proteins were stably expressed in P. pastoris, but they failed to complement the pex7Delta mutant and were impaired in binding to the PTS2 sequence.
Collapse
Affiliation(s)
- Y Elgersma
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | | | |
Collapse
|
41
|
Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 1998; 78:171-88. [PMID: 9457172 DOI: 10.1152/physrev.1998.78.1.171] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the decade that has elapsed since the discovery of the first peroxisomal targeting signal (PTS), considerable information has been obtained regarding the mechanism of protein import into peroxisomes. The PTSs responsible for the import of matrix and membrane proteins to peroxisomes, the receptors for several of these PTSs, and docking proteins for the PTS1 and PTS2 receptors are known. Many peroxins involved in peroxisomal protein import and biogenesis have been characterized genetically and biochemically. These studies have revealed important new insights regarding the mechanism of protein translocation across the peroxisomal membrane, the conservation of PEX genes through evolution, the role of peroxins in fatal human peroxisomal disorders, and the biogenesis of the organelle. It is clear that peroxisomal protein import and biogenesis have many features unique to this organelle alone. More recent studies on peroxisome degradation, division, and movement highlight newer aspects of the biology of this organelle that promise to be just as exciting and interesting as import and biogenesis.
Collapse
Affiliation(s)
- S Subramani
- Department of Biology, University of California at San Diego, La Jolla, USA
| |
Collapse
|
42
|
Waterham HR, Russell KA, Vries Y, Cregg JM. Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichia pastoris. J Biophys Biochem Cytol 1997; 139:1419-31. [PMID: 9396748 PMCID: PMC2132610 DOI: 10.1083/jcb.139.6.1419] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX-HA). Coexpression of AOX-HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX-HA present in octameric active AOX, suggesting that newly synthesized AOX-HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins.
Collapse
Affiliation(s)
- H R Waterham
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | |
Collapse
|
43
|
Zhu H, Shi J, de Vries Y, Arvidson DN, Cregg JM, Woldegiorgis G. Functional studies of yeast-expressed human heart muscle carnitine palmitoyltransferase I. Arch Biochem Biophys 1997; 347:53-61. [PMID: 9344464 DOI: 10.1006/abbi.1997.0314] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-chain fatty acids are the primary source of energy production in the heart. Carnitine palmitoyltransferase I (CPT-I) catalyzes the first reaction in the transport of long-chain fatty acids from the cytoplasm to the mitochondrion, a rate-limiting step in beta-oxidation. In this study, we report the functional expression of the human heart/skeletal muscle isoform of CPT-I (M-CPT-I) in the yeast Pichia pastoris. Screening of a human heart cDNA library with cDNA fragments encoding the rat heart M-CPT-I resulted in the isolation of a single full-length human heart M-CPT-I cDNA clone. The clone has an open reading frame of 2316 bp with a 5' untranslated region of 38 bp and a 256-bp 3' untranslated region with the poly(A)+ addition sequence AATAAA. The predicted protein has 772 amino acids and a molecular mass of 88 kDa. Northern blot analysis of mRNAs from different human tissues using the human M-CPT-I cDNA as a probe revealed an abundant transcript of approximately 3.1 kb that was only present in human heart and skeletal muscle tissue. Expression of the human M-CPT-I cDNA in P. pastoris, a yeast with no endogenous CPT activity, produced an 80-kDa protein that was located in the mitochondria. Isolated mitochondria from the M-CPT-I expression strain exhibited a malonyl-coenzyme A (CoA)-sensitive CPT activity that was detergent labile. The I50 for malonyl-CoA inhibition of the yeast-expressed M-CPT-I was 69 nM, and the Kms for carnitine and palmitoyl-CoA were 666 and 42 microM, respectively. The I50 for malonyl-CoA inhibition of the heart enzyme is 30 times lower than that of the yeast-expressed liver CPT-I, and the Km for carnitine is more than 20 times higher than that of the liver CPT-I. This is the first report of the expression of a heart CPT-I in a system devoid of endogenous CPT activity and the functional characterization of a human heart M-CPT-I in the absence of the liver isoform and CPT-II.
Collapse
Affiliation(s)
- H Zhu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fujiki Y. Molecular defects in genetic diseases of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:235-50. [PMID: 9375798 DOI: 10.1016/s0925-4439(97)00051-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Fujiki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
45
|
Kulachkovsky AR, Moroz OM, Sibirny AA. Impairment of peroxisome degradation in Pichia methanolica mutants defective in acetyl-CoA synthetase or isocitrate lyase. Yeast 1997; 13:1043-52. [PMID: 9290208 DOI: 10.1002/(sici)1097-0061(19970915)13:11<1043::aid-yea161>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Single recessive mutations of the methylotrophic yeast Pichia methanolica acs1, acs2, acs3 and icl1 affecting acetyl-CoA synthetase and isocitrate lyase, and growth on ethanol as sole carbon and energy source, caused a defect in autophagic peroxisome degradation during exposure of methanol-grown cells to ethanol. As a control, a mutation in mdd1, which resulted in a defect of the 'malic' enzyme and also prevented ethanol utilization, did not prevent peroxisome degradation. Peroxisome degradation in glucose medium was unimpaired in all strains tested. Addition of ethanol to methanol-grown cells of acs1, acs2, acs3 and icl1 mutants led to an increase in average vacuole size. Thickening of peroxisomal membranes and tight contacts between groups of peroxisomes and vacuoles were rarely observed. These processes proceeded much more slowly than in wild-type or mdd1 mutant cells incubated under similar conditions. No peroxisomal remnants were observed inside vacuoles in the cells of acs1, acs2, acs3 and icl1 mutants after prolonged cultivation in ethanol medium. We hypothesize that the acs and icl mutants are defective in synthesis of the true effector--presumably glyoxylate--of peroxisome degradation in ethanol medium. Lack of the effector suspends peroxisome degradation at an early stage, namely signal transduction or peroxisome/vacuole recognition. Finally, these defects in peroxisome degradation resulted in mutant cells retaining high levels of alcohol oxidase which further led to increased levels of acetaldehyde accumulation upon incubation of mutant cells with ethanol.
Collapse
|
46
|
Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene X 1997; 186:37-44. [PMID: 9047342 DOI: 10.1016/s0378-1119(96)00675-0] [Citation(s) in RCA: 323] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the cloning and sequence of the glyceraldehyde-3-phosphate dehydrogenase gene (GAP) from the yeast Pichia pastoris. The gene is predicted to encode a 35.4-kDa protein with significant sequence similarity to glyceraldehyde-3-phosphate dehydrogenases from other organisms. Promoter studies in P. pastoris using bacterial beta-lactamase as a reporter showed that the GAP promoter (P(GAP)) is constitutively expressed, although its strength varies depending on the carbon source used for cell growth. Expression of beta-lactamase under control of P(GAP) in glucose-grown cells was significantly higher than under control of the commonly employed alcohol oxidase 1 promoter (P(AOX1)) in methanol-grown cells. As an example of the use of P(GAP), we showed that beta-lactamase synthesized under transcriptional control of P(GAP) is correctly targeted to peroxisomes by addition of either a carboxy-terminal or an amino-terminal peroxisomal targeting signal. P(GAP) has been successfully utilized for synthesis of heterologous proteins from bacterial, yeast, insect and mammalian origins, and therefore is an attractive alternative to P(AOX1) in P. pastoris.
Collapse
Affiliation(s)
- H R Waterham
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Peroxisomes are eukaryotic organelles that are the subcellular location of important metabolic reactions. In humans, defects in the organelle's function are often lethal. Yet, relative to other organelles, little is known about how cells maintain and propagate peroxisomes or how they direct specific sets of newly synthesized proteins to these organelles (peroxisome biogenesis/assembly). In recent years, substantial progress has been made in elucidating aspects of peroxisome biogenesis and in identifying PEX genes whose products, peroxins, are essential for one or more of these processes. The most progress has been made in understanding the mechanism by which peroxisome matrix proteins are imported into the organelles. Signal sequences responsible for targeting proteins to the organelle have been defined. Potential signal receptor proteins, a receptor docking protein and other components of the import machinery have been identified, along with insights into how they operate. These studies indicate that multiple peroxisomal protein-import mechanisms exist and that these mechanisms are novel, not simply variations of those described for other organelles.
Collapse
Affiliation(s)
- H R Waterham
- Department of Chemistry, Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- P Rehling
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
49
|
Terlecky SR, Wiemer EA, Nuttley WM, Walton PA, Subramani S. Signals, receptors, and cytosolic factors involved in peroxisomal protein import. Ann N Y Acad Sci 1996; 804:11-20. [PMID: 8993532 DOI: 10.1111/j.1749-6632.1996.tb18604.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles which function in a wide variety of metabolic processes. The many lethal human disorders associated with defects in peroxisomal protein import underscore the importance of this organelle. In recent years, the evolutionarily conserved molecular mechanisms of protein targeting to, and translocation across, peroxisomal membranes have begun to emerge. Signals which route proteins to the organelle have been identified, as have cytosolic, membrane-associated, and lumenal components of the import machinery. The goal of this brief review was to summarize our current knowledge of some of these molecules and to describe several potential mechanisms by which peroxisomes selectively import their constituent proteins. Aspects of these mechanisms that distinguish peroxisomal protein import from protein targeting to other organelles are highlighted.
Collapse
Affiliation(s)
- S R Terlecky
- Department of Biology, University of California, San Diego, La Jolla 92093-0322, USA
| | | | | | | | | |
Collapse
|
50
|
van der Klei IJ, Veenhuis M. Peroxisome biogenesis in the yeast Hansenula polymorpha: a structural and functional analysis. Ann N Y Acad Sci 1996; 804:47-59. [PMID: 8993535 DOI: 10.1111/j.1749-6632.1996.tb18607.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- I J van der Klei
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|