1
|
Santamaría-Gómez J, Rubio MÁ, López-Igual R, Romero-Losada AB, Delgado-Chaves FM, Bru-Martínez R, Romero-Campero FJ, Herrero A, Ibba M, Ochoa de Alda JAG, Luque I. Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Res 2021; 49:8757-8776. [PMID: 34379789 PMCID: PMC8421152 DOI: 10.1093/nar/gkab661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando M Delgado-Chaves
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante E- 03690, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Jesús A G Ochoa de Alda
- Didáctica de las Ciencias Experimentales, Facultad de Formación del Profesorado, Universidad de Extremadura, Cáceres E-10003, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| |
Collapse
|
2
|
Rietmeyer L, Fix-Boulier N, Le Fournis C, Iannazzo L, Kitoun C, Patin D, Mengin-Lecreulx D, Ethève-Quelquejeu M, Arthur M, Fonvielle M. Partition of tRNAGly isoacceptors between protein and cell-wall peptidoglycan synthesis in Staphylococcus aureus. Nucleic Acids Res 2021; 49:684-699. [PMID: 33367813 PMCID: PMC7826273 DOI: 10.1093/nar/gkaa1242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified. Here, we show that these ‘non-proteogenic’ tRNAs are preferentially recognized by FmhB based on kinetic analyses and on synthesis of stable aminoacyl-tRNA analogues acting as inhibitors. Synthesis of chimeric tRNAs and of helices mimicking the tRNA acceptor arms revealed that this discrimination involves identity determinants exclusively present in the D and T stems and loops of non-proteogenic tRNAs, which belong to an evolutionary lineage only present in the staphylococci. EF-Tu•GTP competitively inhibited FmhB by sequestration of ‘proteogenic’ aminoacyl-tRNAs in vitro. Together, these results indicate that competition for the Gly-tRNAGly pool is restricted by both limited recognition of non-proteogenic tRNAs by EF-Tu•GTP and limited recognition of proteogenic tRNAs by FmhB.
Collapse
Affiliation(s)
- Lauriane Rietmeyer
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Nicolas Fix-Boulier
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Chloé Le Fournis
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Camelia Kitoun
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Delphine Patin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS UMR 8601, Paris F-75006 France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| |
Collapse
|
3
|
Willing S, Dyer E, Schneewind O, Missiakas D. FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. J Biol Chem 2020; 295:13664-13676. [PMID: 32759309 PMCID: PMC7521636 DOI: 10.1074/jbc.ra120.014371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.
Collapse
Affiliation(s)
- Stephanie Willing
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Emma Dyer
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
4
|
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol Biol 2019; 19:124. [PMID: 31215393 PMCID: PMC6582537 DOI: 10.1186/s12862-019-1447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacteria occupy various ecological niches and can be isolated from soil, tap water and ground water. Several cause diseases in humans and animals. To get deeper insight into our understanding of mycobacterial evolution focusing on tRNA and non-coding (nc)RNA, we conducted a comparative genome analysis of Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clade members. Results Genome sizes for Mmuc- and Mneo-clade members vary between 5.4 and 6.5 Mbps with the complete MmucT (type strain) genome encompassing 6.1 Mbp. The number of tRNA genes range between 46 and 79 (including one pseudo tRNA gene) with 39 tRNA genes common among the members of these clades, while additional tRNA genes were probably acquired through horizontal gene transfer. Selected tRNAs and ncRNAs (RNase P RNA, tmRNA, 4.5S RNA, Ms1 RNA and 6C RNA) are expressed, and the levels for several of these are higher in stationary phase compared to exponentially growing cells. The rare tRNAIleTAT isoacceptor and two for mycobacteria novel ncRNAs: the Lactobacillales-derived GOLLD RNA and a homolog to the antisense Salmonella typhimurium phage Sar RNA, were shown to be present and expressed in certain Mmuc-clade members. Conclusions Phages, IS elements, horizontally transferred tRNA gene clusters, and phage-derived ncRNAs appears to have influenced the evolution of the Mmuc- and Mneo-clades. While the number of predicted coding sequences correlates with genome size, the number of tRNA coding genes does not. The majority of the tRNA genes in mycobacteria are transcribed mainly from single genes and the levels of certain ncRNAs, including RNase P RNA (essential for the processing of tRNAs), are higher at stationary phase compared to exponentially growing cells. We provide supporting evidence that Ms1 RNA represents a mycobacterial 6S RNA variant. The evolutionary routes for the ncRNAs RNase P RNA, tmRNA and Ms1 RNA are different from that of the core genes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
5
|
Morgado SM, Vicente ACP. Beyond the Limits: tRNA Array Units in Mycobacterium Genomes. Front Microbiol 2018; 9:1042. [PMID: 29867913 PMCID: PMC5966550 DOI: 10.3389/fmicb.2018.01042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022] Open
Abstract
tRNA array unit, a genomic region presenting an intriguing high tRNA gene number and density, was supposed to occur only in few bacteria phyla, particularly Firmicutes. Here, we identified and characterized an abundance and diversity of tRNA array units in Mycobacterium associated genomes. These genomes comprised chromosome, bacteriophages and plasmids from mycobacteria. Firstly, we had identified 32 tRNA genes organized in an array unit within a mycobacteria plasmid genome and therefore, we hypothesized the presence of such structures in Mycobacterium genus. However, at the time, bioinformatics tools only predict tRNA genes, not characterizing their arrangement as arrays. In order to test our hypothesis, we developed and applied an in-house Perl script that identified tRNA genes organization as an array unit. This survey included a total of 7,670 complete and drafts genomes of Mycobacterium genus, 4312 mycobacteriophage genomes and 40 mycobacteria plasmids. We showed that tRNA array units are abundant in genomes associated to the Mycobacterium genus, mainly in Mycobacterium abscessus complex species, being spread in chromosome, prophage, and plasmid genomes. Moreover, other non-coding RNA species (tmRNA and structured RNA) were also identified in these regions. Our results revealed that tRNA array units are not restrict, as previously assumed, to few bacteria phyla and genomes being present in one of the most diverse bacteria genus. We also provide a bioinformatics tool that allows further exploration of this issue in huge genomic databases. The presence of tRNA array units in plasmids and bacteriophages, associated with horizontal gene transfer, and in a bacteria genus that explores diverse niches, are indicatives that tRNA array units have impact in the bacteria biology.
Collapse
Affiliation(s)
- Sergio M Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana C P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Abstract
Mediator Complex Subunit 12 (MED12) is part of the transcriptional preinitiation machinery. Mutations of its gene predominantly occur in two types of highly frequent benign tumors, uterine leiomyomas and fibroadenomas of the breast, where they apparently act as driver mutations. Nevertheless, their presence is not restricted to benign tumors having been found at considerable frequencies in uterine leiomyosarcomas, malignant phyllodes tumors, and chronic lymphocytic leukemia also. Most of the mutations are located within exon 2 of the gene but in rare cases the intron 1/exon 2 boundary or exon 1 are affected. As to their type, predominantly single nucleotide exchanges with a hotspot in one codon are found, but small deletions clustering around that hotspot also are not uncommon. These latter deletions are leaving the open reading frame intact. As to the types of mutations, so far no apparent differences between the tumor entities affected have emerged. Interestingly, this pattern with small deletions clustered around the hotspot of single nucleotide exchanges resembles that seen as a result of targeted gene editing. In contrast to other driver mutations the percentage of
MED12-mutation positive tumors of independent clonal origin increases with the number of tumors per patient suggesting unknown etiological factors supporting site specific mutagenesis. These factors may act by inducing simultaneous site-specific double strand breaks the erroneous repair of which may lead to corresponding mutations. As inducers of DNA damage and its repair such as foreign nucleic acids of the microbiome displaying sequence homology to the putative target site might play a role. Interestingly, a 16 base pair homology of the hotspot to a putative terminator base-paired hairpin sequence of a Staphylococcus aureus tRNA gene cluster has been noted which might form R-loop like structures with its target sequence thus inducing said changes.
Collapse
Affiliation(s)
- Jörn Bullerdiek
- Institute of Medical Genetics, Medical Center, University of Rostock, Rostock, D-18057, Germany.,Human Genetics, University of Bremen, Bremen, D-28359 , Germany
| | - Birgit Rommel
- Human Genetics, University of Bremen, Bremen, D-28359 , Germany
| |
Collapse
|
7
|
Genome Analysis of the Fruiting Body-Forming Myxobacterium Chondromyces crocatus Reveals High Potential for Natural Product Biosynthesis. Appl Environ Microbiol 2016; 82:1945-1957. [PMID: 26773087 DOI: 10.1128/aem.03011-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/10/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of the type strain of the myxobacterial genus Chondromyces, Chondromyces crocatus Cm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr-) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family, Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.
Collapse
|
8
|
Tran TTT, Belahbib H, Bonnefoy V, Talla E. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes. Genome Biol Evol 2015; 8:282-95. [PMID: 26710853 PMCID: PMC4758250 DOI: 10.1093/gbe/evv254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 01/12/2023] Open
Abstract
Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270(T) genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| | | | | | - Emmanuel Talla
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| |
Collapse
|
9
|
Analysis of the genome of Mycobacterium abscessus strain M94 reveals an uncommon cluster of tRNAs. J Bacteriol 2012; 194:5724. [PMID: 23012295 DOI: 10.1128/jb.01407-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a species of rapidly growing nontuberculous mycobacteria that is frequently associated with opportunistic infections in humans. Here, we report the annotated genome sequence of M. abscessus strain M94, which showed an unusual cluster of tRNAs.
Collapse
|
10
|
Dare K, Ibba M. Roles of tRNA in cell wall biosynthesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2012; 3:247-64. [PMID: 22262511 PMCID: PMC3873719 DOI: 10.1002/wrna.1108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes they impart on the bacterium differ greatly.
Collapse
Affiliation(s)
- Kiley Dare
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
SmaI restriction site-based multiplex PCR for typing of hospital- and community-acquired Staphylococcus aureus. J Clin Microbiol 2011; 49:3820-8. [PMID: 21940477 DOI: 10.1128/jcm.00857-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen, and morbidity and mortality rates associated with this pathogen have increased markedly in recent years. MRSA strains are generally resistant to several classes of antibiotics and are therefore difficult and costly to treat. A major issue is to identify the sources of MRSA infections and to monitor their epidemic spread. In this study, we report the development of a typing technique for S. aureus, based on single-nucleotide polymorphism (SNP) variations in and around SmaI-restriction sites (CCCGGG). An assessment of the SmaI restriction site-based multiplex PCR (SmaI-multiplex PCR) typing (SMT) with respect to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) revealed a high level of concordance in the clustering of the test strains. The SmaI-multiplex PCR was found to be more discriminatory than MLST/staphylococcal cassette chromosome mec (SCCmec) typing but less discriminatory than PFGE. SMT can provide real-time information for the investigation of ongoing S. aureus hospital outbreaks. SMT meets the criteria of a practical typing method: it is simple, reproducible, and highly discriminatory and does not require expensive equipment or specialist expertise. Consequently, SmaI-multiplex PCR has the potential to be used in routine clinical microbiology laboratories.
Collapse
|
12
|
Giannouli S, Kyritsis A, Malissovas N, Becker HD, Stathopoulos C. On the role of an unusual tRNAGly isoacceptor in Staphylococcus aureus. Biochimie 2008; 91:344-51. [PMID: 19014993 DOI: 10.1016/j.biochi.2008.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/16/2008] [Indexed: 11/17/2022]
Abstract
In the available Staphylococcus aureus genomes, four different genes have been annotated to encode tRNA(Gly) isoacceptors. Besides their prominent role in protein synthesis, some of them also participate in the formation of pentaglycine bridges during cell wall synthesis. However, until today, it is not known how many and which of them are actually involved in this essential procedure. In the present study we identified, apart from the four annotated tRNA(Gly) genes, a putative pseudogene which encodes and expresses an unusual fifth tRNA(Gly) isoacceptor in S. aureus (as detected via RT-PCR and subsequent direct sequencing analysis). All the in vitro transcribed tRNA(Gly) molecules (including the "pseudogene-encoded" tRNA(Gly)) can be efficiently aminoacylated by the recombinant S. aureus glycyl-tRNA synthetase. Furthermore, bioinformatic analysis suggests that the "pseudo"-tRNA(Gly(UCC)) identified in the present study and two of the annotated isoacceptors bearing the same anticodon carry specific sequence elements that do not favour the strong interaction with EF-Tu that proteinogenic tRNAs would promote. This observation was verified by the differential capacity of Gly-tRNA(Gly) molecules to form ternary complexes with activated S. aureus EF-Tu.GTP. These tRNA(Gly) molecules display high sequence similarities with their S. epidermidis orthologs which also actively participate in cell wall synthesis. Both bioinformatic and biochemical data suggest that in S. aureus these three glycylated tRNA(Gly) isoacceptors that are weak EF-Tu binders, possibly escape protein synthesis and serve as glycine donors for the formation of pentaglycine bridges that are essential for stabilization of the staphylococcal cell wall.
Collapse
Affiliation(s)
- Stamatina Giannouli
- Department of Biochemistry & Biotechnology, University of Thessaly, 26 Ploutonos St, 41221 Larissa, Greece
| | | | | | | | | |
Collapse
|
13
|
Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:386-408. [PMID: 18266857 DOI: 10.1111/j.1574-6976.2007.00097.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | |
Collapse
|
14
|
Freyhult E, Moulton V, Ardell DH. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos. Nucleic Acids Res 2006; 34:905-16. [PMID: 16473848 PMCID: PMC1363773 DOI: 10.1093/nar/gkj478] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies.
Collapse
Affiliation(s)
| | - Vincent Moulton
- School of Computing Sciences, University of East AngliaNorwich NR4 7TJ, UK
| | - David H. Ardell
- To whom correspondence should be addressed at David Ardell, Linnaeus Centre for Bioinformatics, Box 598, 751 24 Uppsala, Sweden. Tel: +46 18 471 6694; Fax: +46 18 471 6698; E-mail:
| |
Collapse
|
15
|
|
16
|
de Vries MC, Siezen RJ, Wijman JGE, Zhao Y, Kleerebezem M, de Vos WM, Vaughan EE. Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria. Syst Appl Microbiol 2005; 29:358-67. [PMID: 16338113 DOI: 10.1016/j.syapm.2005.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Indexed: 10/25/2022]
Abstract
The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5'-16S-23S-5S-3' structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three -10 and -35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.
Collapse
|
17
|
Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 2005; 53:675-85. [PMID: 15228543 DOI: 10.1111/j.1365-2958.2004.04149.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Tanja Schneider
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Arbeloa A, Hugonnet JE, Sentilhes AC, Josseaume N, Dubost L, Monsempes C, Blanot D, Brouard JP, Arthur M. Synthesis of Mosaic Peptidoglycan Cross-bridges by Hybrid Peptidoglycan Assembly Pathways in Gram-positive Bacteria. J Biol Chem 2004; 279:41546-56. [PMID: 15280360 DOI: 10.1074/jbc.m407149200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.
Collapse
Affiliation(s)
- Ana Arbeloa
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, 15 rue de l'Ecole de Médecine, 75270 Paris, cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
A growing number of peptide hormones and growth factors have been shown to operate in the intracellular space after either internalization or retention in their cells of synthesis. These factors, called intracrines, in many cases are expressed as multiple isoforms, traffic to nucleus or nucleolus, and regulate gene transcription. Some intracrines are angiogenic. It is here argued that intracrine action is the modern analogue of a biologically ancient mechanism for regulating message translation and ribosome synthesis. The implications of this view for research and therapeutics are discussed.
Collapse
Affiliation(s)
- Richard N Re
- Division of Research, Alton Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA.
| |
Collapse
|
20
|
Kraus J, Geller BL. Cloning of genomic DNA of Lactococcus lactis that restores phage sensitivity to an unusual bacteriophage sk1-resistant mutant. Appl Environ Microbiol 2001; 67:791-8. [PMID: 11157245 PMCID: PMC92649 DOI: 10.1128/aem.67.2.791-798.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 10/20/2000] [Indexed: 11/20/2022] Open
Abstract
An unusual, spontaneous, phage sk1-resistant mutant (RMSK1/1) of Lactococcus lactis C2 apparently blocks phage DNA entry into the host. Although no visible plaques formed on RMSK1/1, this host propagated phage at a reduced efficiency. This was evident from center-of-infection experiments, which showed that 21% of infected RMSK1/1 formed plaques when plated on its phage-sensitive parental strain, C2. Moreover, viable cell counts 0 and 4 h after infection were not significantly different from those of an uninfected culture. Further characterization showed that phage adsorption was normal, but burst size was reduced fivefold and the latent period was increased from 28.5 to 36 min. RMSK1/1 was resistant to other, but not all, similar phages. Phage sensitivity was restored to RMSK1/1 by transformation with a cloned DNA fragment from a genomic library of a phage-sensitive strain. Characterization of the DNA that restored phage sensitivity revealed an open reading frame with similarity to sequences encoding lysozymes (beta-1,4-N-acetylmuramidase) and lysins from various bacteria, a fungus, and phages of Lactobacillus and Streptococcus and also revealed DNA homologous to noncoding sequences of temperate phage of L. lactis, DNA similar to a region of phage sk1, a gene with similarity to tRNA genes, a prophage attachment site, and open reading frames with similarities to sun and to sequences encoding phosphoprotein phosphatases and protein kinases. Mutational analyses of the cloned DNA showed that the region of homology with lactococcal temperate phage was responsible for restoring the phage-sensitive phenotype. The region of homology with DNA of lactococcal temperate phage was similar to DNA from a previously characterized lactococcal phage that suppresses an abortive infection mechanism of phage resistance. The region of homology with lactococcal temperate phage was deleted from a phage-sensitive strain, but the strain was not phage resistant. The results suggest that the cloned DNA with homology to lactococcal temperate phage was not mutated in the phage-resistant strain. The cloned DNA apparently suppressed the mechanism of resistance, and it may do so by mimicking a region of phage DNA that interacts with components of the resistance mechanism.
Collapse
Affiliation(s)
- J Kraus
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | |
Collapse
|
21
|
Alexander SM, Grayson TH, Chambers EM, Cooper LF, Barker GA, Gilpin ML. Variation in the spacer regions separating tRNA genes in Renibacterium salmoninarum distinguishes recent clinical isolates from the same location. J Clin Microbiol 2001; 39:119-28. [PMID: 11136759 PMCID: PMC87690 DOI: 10.1128/jcm.39.1.119-128.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Accepted: 09/24/2000] [Indexed: 11/20/2022] Open
Abstract
A means for distinguishing between clinical isolates of Renibacterium salmoninarum that is based on the PCR amplification of length polymorphisms in the tRNA intergenic spacer regions (tDNA-ILPs) was investigated. The method used primers specific to nucleotide sequences of R. salmoninarum tRNA genes and tRNA intergenic spacer regions that had been generated by using consensus tRNA gene primers. Twenty-one PCR products were sequenced from five isolates of R. salmoninarum from the United States, England, and Scotland, and four complete tRNA genes and spacer regions were identified. Sixteen specific PCR primers were designed and tested singly and in all possible pairwise combinations for their potential to discriminate between isolates from recent clinical outbreaks of bacterial kidney disease (BKD) in the United Kingdom. Fourteen of the isolates were cultured from kidney samples taken from fish displaying clinical signs of BKD on five farms, and some of the isolates came from the same farm and at the same time. The tDNA-ILP profiles separated 22 clinical isolates into nine groups and highlighted that some farms may have had more than one source of infection. The grouping of isolates improved on the discriminatory power of previously reported typing methods based on randomly amplified polymorphic DNA analysis and restriction fragment length profiles developed using insertion sequence IS994. Our method enabled us to make divisions between closely related clinical isolates of R. salmoninarum that have identical exact tandem repeat (ETR-A) loci, rRNA intergenic spacer sequences, and IS994 profiles.
Collapse
Affiliation(s)
- S M Alexander
- Department of Biological Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Kopp U, Roos M, Wecke J, Labischinski H. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Microb Drug Resist 2000; 2:29-41. [PMID: 9158720 DOI: 10.1089/mdr.1996.2.29] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In staphylococci, crosslinking of the peptide moiety of peptidoglycan is mediated via an additional spacer, the interpeptide bridge, consisting of five glycine residues. The femAB operon, coding for two approximately 50-kDa proteins is known to be involved in pentaglycine bridge formation. Using chemical mutagenesis of the beta-lactam-resistant strain BB270 and genetic, biochemical, and biophysical characterization of mutants selected for loss of beta-lactam resistance and reduced lysostaphin sensitivity it is shown that peptide bridge formation proceeds via three intermediate bridge lengths (cell wall peptides with no, one, three, and five glycine units). To proceed from one intermediate to the next, three genes appear necessary: femX, femA, and femB. The drastic loss of beta-lactam resistance after inactivation of FemA or partial impairment of FemX even beyond the level of the sensitive wild-type strains renders these proteins attractive antistaphylococcal targets.
Collapse
Affiliation(s)
- U Kopp
- Bayer AG, Pharma Research Antiinfectives I, Wuppertal, Germany
| | | | | | | |
Collapse
|
23
|
Rohrer S, Ehlert K, Tschierske M, Labischinski H, Berger-Bächi B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc Natl Acad Sci U S A 1999; 96:9351-6. [PMID: 10430946 PMCID: PMC17786 DOI: 10.1073/pnas.96.16.9351] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The factor catalyzing the first step in the synthesis of the characteristic pentaglycine interpeptide in Staphylococcus aureus peptidoglycan was found to be encoded by the essential gene fmhB. We have analyzed murein composition and structure synthesized when fmhB expression is reduced. The endogenous fmhB promoter was substituted with the xylose regulon from Staphylococcus xylosus, which allowed glucose-controlled repression of fmhB transcription. Repression of fmhB reduced growth and triggered a drastic accumulation of uncrosslinked, unmodified muropeptide monomer precursors at the expense of the oligomeric fraction, leading to a substantial decrease in overall peptidoglycan crosslinking. The composition of the predominant muropeptide was confirmed by MS to be N-acetylglucosamine-(beta-1,4)-N-acetylmuramic acid(-L-Ala-D-iGln-L-Lys-D-Ala-D-Ala), proving that FmhB is involved in the attachment of the first glycine to the pentaglycine interpeptide. This interpeptide plays an important role in crosslinking and stability of the S. aureus cell wall, acts as an anchor for cell wall-associated proteins, determinants of pathogenicity, and is essential for the expression of methicillin resistance. Any shortening of the pentaglycine side chain reduces or even abolishes methicillin resistance, as occurred with fmhB repression. Because of its key role FmhB is a potential target for novel antibacterial agents that could control the threat of emerging multiresistant S. aureus.
Collapse
Affiliation(s)
- S Rohrer
- Institute of Medical Microbiology, University of Zürich, Gloriastr. 32, Postfach, CH-8028 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
25
|
Brännvall M, Mattsson JG, Svärd SG, Kirsebom LA. RNase P RNA structure and cleavage reflect the primary structure of tRNA genes. J Mol Biol 1998; 283:771-83. [PMID: 9790839 DOI: 10.1006/jmbi.1998.2135] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of RNase P RNA depends on its folding in space. A majority of RNase P RNAs from various bacteria show a similar secondary structure to that of Escherichia coli (M1 RNA). However, there are exceptions as exemplified by the RNase P RNA derived from the low GC-content Gram-positive bacteria Bacillus subtilis and Mycoplasma hyopneumoniae (Hyo P RNA). Previous studies using M1 RNA and Hyo P RNA suggest differences both with respect to the kinetics of cleavage as well as to cleavage site recognition. Here we have studied cleavage by these two structurally different RNase P RNAs as a function of changes in the 5' leader and the 3'-terminal CCA motif in the substrate. Our data suggest that the nucleotide at the -2 position in the 5' leader plays a role both for cleavage site recognition and for the rate of cleavage. However, depending on the identity of the -2 residue differences in the cleavage pattern comparing these two types of RNase P RNAs were observed. The results also suggest that the identity of the -1/+73 base-pair in the substrate influences the cleavage site recognition process. These findings will be related to differences in structure comparing these types of RNase P RNAs and the "RCCA-RNase P RNA" interaction. In addition, our findings will be discussed with respect to the primary structure of the tRNA genes in different bacteria.
Collapse
Affiliation(s)
- M Brännvall
- Biomedical Centre, Uppsala, SE-751 23, Sweden
| | | | | | | |
Collapse
|
26
|
Ton-That H, Labischinski H, Berger-Bächi B, Schneewind O. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. J Biol Chem 1998; 273:29143-9. [PMID: 9786923 DOI: 10.1074/jbc.273.44.29143] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface proteins of Staphylococcus aureus are covalently linked to the bacterial cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. Cleavage between the threonine and the glycine of the LPXTG motif liberates the carboxyl of threonine to form an amide bond with the pentaglycyl cross-bridge in the staphylococcal peptidoglycan. Here, we asked whether altered peptidoglycan cross-bridges interfere with the sorting reaction and investigated surface protein anchoring in staphylococcal fem mutants. S. aureus strains carrying mutations in the femA, femB, femAB, or the femAX genes synthesize altered cross-bridges, and each of these strains displayed decreased sorting activity. Characterization of cell wall anchor structures purified from the fem mutants revealed that surface proteins were linked to cross-bridges containing one, three, or five glycyl residues, but not to the epsilon-amino of lysyl in muropeptides without glycine. When tested in a femAB strain synthesizing cross-bridges with mono-, tri-, and pentaglycyl as well as tetraglycyl-monoseryl, surface proteins were found anchored mostly to the five-residue cross-bridges (pentaglycyl or tetraglycyl-monoseryl). Thus, although wild-type peptidoglycan appears to be the preferred substrate for the sorting reaction, altered cell wall cross-bridges can be linked to the COOH-terminal end of surface proteins.
Collapse
Affiliation(s)
- H Ton-That
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
27
|
Alvarez MA, Herrero M, Suárez JE. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in gram-positive and gram-negative bacteria. Virology 1998; 250:185-93. [PMID: 9770432 DOI: 10.1006/viro.1998.9353] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region of the bacteriophage A2 genome involved in site-specific recombination with the DNA of Lactobacillus spp. has been identified. Two orfs, transcribed from the same strand, have been found immediately upstream of the phage attachment site (attP). The orf adjacent to attP predicts a 385-amino-acid protein that presents significant similarity with site-specific recombinases of the integrase family. The other orf encodes a basic polypeptide of 76 amino acid residues. The junctions of the prophage with the genomes of its hosts have been determined, allowing the identification of the host attachment site (attB), which has a common 19-nucleotide core region with attP. The attB site is located at the 3' end of the transfer RNALeu gene (anticodon CAA). Nonreplicative plasmids containing the A2-specific recombination cassette integrate into different lactobacilli but also into unrelated Gram-positive bacteria such as Lactococcus lactis and even into Escherichia coli. In Lc. lactis, integration occurs in a previously unknown intergenic region, whereas in E. coli, it maps within the rrnD operon, 5' of rrsD gene. Comparison of the integration sites in the different hosts indicates that some flexibility is permitted in the attB sequence, since Lc. lactis and E. coli only share 13 and 11 nucleotides, respectively, with the 19-nucleotide core sequence of the lactobacilli.
Collapse
Affiliation(s)
- M A Alvarez
- Area de Microbiología, Universidad de Oviedo, Oviedo, E-33006, Spain
| | | | | |
Collapse
|
28
|
Ehlert K, Schröder W, Labischinski H. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J Bacteriol 1997; 179:7573-6. [PMID: 9393725 PMCID: PMC179711 DOI: 10.1128/jb.179.23.7573-7576.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The femAB operon codes for two nearly identical approximately 50-kDa proteins involved in the formation of the staphylococcal pentaglycine interpeptide bridge. Sequencing and analysis of the femA region of mutants isolated by chemical mutagenesis and selection for lysostaphin resistance revealed point mutations leading to the expression of truncated FemA proteins. These femA mutants, although still producing an intact FemB, exhibited a phenotype identical as that described for femAB double mutants. Thus, FemA seems to be essential for the addition of glycine residues 2 and 3 only, whereas FemB is involved in the attachment of exclusively glycine residues 4 and 5. Although FemB has 39% identity with FemA, it cannot substitute for FemA. The FemA and FemB proteins seem to be highly specific in regard to the position of the glycine residues that they attach.
Collapse
Affiliation(s)
- K Ehlert
- PH-Research Antiinfectives I, Bayer AG, Wuppertal, Germany
| | | | | |
Collapse
|
29
|
Novák J, Shah GR, Zhu Y, Caufield PW. Ribosomal RNA (rrn) operons in Streptococcus mutans and nucleotide sequence of tRNA(Pro) gene associated with rrnB. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:227-30. [PMID: 9467391 DOI: 10.1111/j.1399-302x.1997.tb00383.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using a cloned 0.5-kb probe containing an internal fragment of 23S ribosomal RNA from the rrnB operon of Streptococcus mutans, we analyzed various endonuclease digests of the chromosomal DNA isolated from human-derived strains of mutans streptococci. Thus far, the examined S. mutans strains exhibited five ribosomal operons. Here, we describe a ribotyping technique for S. mutans based on restriction and Southern blot analyses with the biotin-labeled homologous probe and chemiluminescence detection. We cloned and sequenced a unique gene encoding tRNA(Pro) downstream from 23S rRNA gene at the 3' end of the operon. Primers designed to the 3' end of the rrnB operon PCR-amplified a 2.3-kb DNA fragment in all tested strains. Restriction fragment length polymorphism analysis of the amplicon revealed a diversity of the single locus among S. mutans isolates, thus establishing a potential use of the technique for the molecular epidemiology of mutans streptococci.
Collapse
Affiliation(s)
- J Novák
- University of Alabama at Birmingham, School of Dentistry 35294, USA
| | | | | | | |
Collapse
|
30
|
Trepanier NK, Nguyen GD, Leedell PJ, Leskiw BK. Use of polymerase chain reaction to identify a leucyl tRNA in Streptomyces coelicolor. Gene X 1997; 193:59-63. [PMID: 9249067 DOI: 10.1016/s0378-1119(97)00077-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polymerase chain reaction (PCR) was used to amplify a fragment of DNA encoding a tRNA that recognizes the abundant CUC leucine codon from the chromosome of Streptomyces coelicolor. Sequence analysis of the gene, designated leuU, indicated that it codes for a tRNA 88 nucleotides in length that shares 75% identity with the Escherichia coli tRNA(Leu)CUC, while it shares only 65% identity with the only other sequenced leucyl tRNA from S. coelicolor, the bldA encoded tRNA(Leu)UUA. Accumulation of the leuU tRNA was examined by Northern blot analysis and shown to be present at constant levels throughout growth in contrast to the bldA-encoded tRNA which shows a temporal pattern of accumulation [Leskiw et al., 1993. J. Bacteriol., 175, 1995-2005].
Collapse
Affiliation(s)
- N K Trepanier
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
31
|
Grundy FJ, Haldeman MT, Hornblow GM, Ward JM, Chalker AF, Henkin TM. The Staphylococcus aureus ileS gene, encoding isoleucyl-tRNA synthetase, is a member of the T-box family. J Bacteriol 1997; 179:3767-72. [PMID: 9171428 PMCID: PMC179176 DOI: 10.1128/jb.179.11.3767-3772.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Staphylococcus aureus ileS gene, encoding isoleucyl-tRNA synthetase (IleRS), contains a long mRNA leader region. This region exhibits many of the features of the gram-positive synthetase gene family, including the T box and leader region terminator and antiterminator. The terminator was shown to be functional in vivo, and readthrough increased during growth in the presence of mupirocin, an inhibitor of IleRS activity. The S. aureus ileS leader structure includes several critical differences from the other members of the T-box family, suggesting that regulation of this gene in S. aureus may exhibit unique features.
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997. [PMID: 9023104 DOI: 10.1093/nar/25.5.0955] [Citation(s) in RCA: 3187] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work represents a practical application of RNA covariance models, which are general, probabilistic secondary structure profiles based on stochastic context-free grammars. tRNAscan-SE searches at approximately 30 000 bp/s. Additional extensions to tRNAscan-SE detect unusual tRNA homologues such as selenocysteine tRNAs, tRNA-derived repetitive elements and tRNA pseudogenes.
Collapse
Affiliation(s)
- T M Lowe
- Department of Genetics, Washington University School of Medicine, 660 South Euclid, Box 8232, St Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955-64. [PMID: 9023104 PMCID: PMC146525 DOI: 10.1093/nar/25.5.955] [Citation(s) in RCA: 7528] [Impact Index Per Article: 278.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work represents a practical application of RNA covariance models, which are general, probabilistic secondary structure profiles based on stochastic context-free grammars. tRNAscan-SE searches at approximately 30 000 bp/s. Additional extensions to tRNAscan-SE detect unusual tRNA homologues such as selenocysteine tRNAs, tRNA-derived repetitive elements and tRNA pseudogenes.
Collapse
Affiliation(s)
- T M Lowe
- Department of Genetics, Washington University School of Medicine, 660 South Euclid, Box 8232, St Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Strandén AM, Ehlert K, Labischinski H, Berger-Bächi B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 1997; 179:9-16. [PMID: 8981974 PMCID: PMC178655 DOI: 10.1128/jb.179.1.9-16.1997] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The femAB operon is involved in the formation of the characteristic pentaglycine side chain of the staphylococcal peptidoglycan. Allele replacement of the femAB operon with the tetracycline resistance determinant tetK in a methicillin-resistant Staphylococcus aureus strain resulted in impaired growth, methicillin hypersusceptibility, and lysostaphin resistance. The usual pentaglycine cross-bridges were replaced by monoglycine bridges exclusively, and cross-linking of the peptidoglycan strands was drastically reduced. Complementation of the femAB null mutant by either femA or femAB resulted in the extension of the cross-bridges to a triglycine or a pentaglycine, respectively. This finding suggests that FemA is responsible for the formation of glycines 2 and 3, and FemB is responsible for formation of glycines 4 and 5, of the pentaglycine side chain of the peptidoglycan precursor. Moreover, it can be deduced that addition of the first glycine must occur by a femAB-independent mechanism.
Collapse
Affiliation(s)
- A M Strandén
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
35
|
Abstract
A model is presented whereby the formation of gene clusters in bacteria is mediated by transfer of DNA within and among taxa. Bacterial operons are typically composed of genes whose products contribute to a single function. If this function is subject to weak selection or to long periods with no selection, the contributing genes may accumulate mutations and be lost by genetic drift. From a cell's perspective, once several genes are lost, the function can be restored only if all missing genes were acquired simultaneously by lateral transfer. The probability of transfer of multiple genes increases when genes are physically proximate. From a gene's perspective horizontal transfer provides a way to escape evolutionary loss by allowing colonization of organisms lacking the encoded functions. Since organism bearing clustered genes are more likely to act as successful donors, clustered genes would spread among bacterial genomes. The physical proximity of genes may be considered a selfish property of the operon since it affects the probability of successful horizontal transfer but may provide no physiological benefit to the host. This process predicts a mosaic structure of modern genomes in which ancestral chromosomal material is interspersed with novel, horizontally transferred operons providing peripheral metabolic functions.
Collapse
Affiliation(s)
- J G Lawrence
- Department of Biology, University of Utah, Salt Lake City 84112, USA.
| | | |
Collapse
|
36
|
Herrmann B, Winqvist O, Mattsson JG, Kirsebom LA. Differentiation of Chlamydia spp. by sequence determination and restriction endonuclease cleavage of RNase P RNA genes. J Clin Microbiol 1996; 34:1897-902. [PMID: 8818877 PMCID: PMC229149 DOI: 10.1128/jcm.34.8.1897-1902.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The amplification of DNA from Chlamydia trachomatis by PCR with degenerated primers yielded a 345-bp fragment of the putative RNase P RNA gene. From the deduced DNA sequence of this gene in C. trachomatis, a modified primer pair was designed. The primer pair was subsequently used to obtain the corresponding gene products from Chlamydia pneumoniae and Chlamydia psittaci. Sequence comparisons revealed similarities of 76.6% between C. trachomatis and C. pneumoniae, 79.5% between C. trachomatis and C. psittaci, and 84.7% between C. pneumoniae and C. psittaci. Furthermore, the three species were differentiated by fragment length polymorphism analysis after restriction enzyme cleavage of the PCR products. Sequence variations among 14 serotypes of C. trachomatis were confined to one purine base substitution in the putative RNase P RNA gene of lymphogranuloma venereum strains L1 to L3. Complete sequence similarity was found for nine strains of C. pneumoniae of different geographic origins. Taken together, our results indicate a possibility of the general application of this method in clinical bacteriology. Analysis of the secondary structures of the putative RNase P RNA genes from the different Chlamydia species suggested that a novel structural element in the domain of RNase P RNA is involved in base pairing with the 3'-terminal CCA motif of a tRNA precursor. This structure has not previously been found among RNase P RNAs of members of the division Bacteria.
Collapse
Affiliation(s)
- B Herrmann
- Department of Clinical Microbiology, University Hospital, Uppsala, Sweden.
| | | | | | | |
Collapse
|
37
|
Johansen T, Carlson CR, Kolstø AB. Variable numbers of rRNA gene operons in Bacillus cereus strains. FEMS Microbiol Lett 1996; 136:325-8. [PMID: 8867386 DOI: 10.1111/j.1574-6968.1996.tb08068.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribosomal RNA operon organisation was analysed in two Bacillus cereus strains of different chromosome size, ATCC 10987 (5.4 Mb) and F0837/76 (2.4 Mb). We estimated that there were twelve and nine copies of the rRNA operons in these two strains, respectively. In B. cereus ATCC 10987 six rRNA operons were less than 10 kb apart, while in B. cereus F0837/76 four rRNA operons were similarly clustered. The origin of replication was located in the vicinity of a rRNA operon in both strains.
Collapse
Affiliation(s)
- T Johansen
- Institute of Pharmacy and Biotechnology Centre of Oslo, University of Oslo, Norway
| | | | | |
Collapse
|
38
|
Kirsebom LA, Vioque A. RNase P from bacteria. Substrate recognition and function of the protein subunit. Mol Biol Rep 1996; 22:99-109. [PMID: 8901495 DOI: 10.1007/bf00988713] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNase P recognizes many different precursor tRNAs as well as other substrates and cleaves all of them accurately at the expected position. RNase P recognizes the tRNA structure of the precursor tRNA by a set of interactions between the catalytic RNA subunit and the T- and acceptor-stems mainly, although residues in the 5'-leader sequence as well as the 3'-terminal CCA are important. These conclusions have been reached by several studies on mutant precursor tRNAs as well as cross-linking studies between RNase P RNA and precursor tRNAs. The protein subunit of RNase P seems also to affect the way that the substrate is recognized as well as the range of substrates that can be used by RNase P, although the protein does not seem to interact directly with the substrates. The interaction between the protein and RNA subunits of RNase P has been extensively studied in vitro. The protein subunit sequence is not highly conserved among bacteria, however different proteins are functionally equivalent as heterologous reconstitution of the RNase P holoenzyme can be achieved in many cases.
Collapse
Affiliation(s)
- L A Kirsebom
- Department of Microbiology, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
39
|
Abstract
Mature tRNAs are remarkably similar in all cells. However, the primary transcripts from tRNA genes can vary considerably due to differences in gene organization. RNase P must be able to recognize the elements that are common to all tRNA precursors to accurately remove the 5'-leader sequences.
Collapse
Affiliation(s)
- C J Green
- SRI International, Menlo Park, CA, USA
| |
Collapse
|
40
|
Roussel Y, Pebay M, Guedon G, Simonet JM, Decaris B. Physical and genetic map of Streptococcus thermophilus A054. J Bacteriol 1994; 176:7413-22. [PMID: 8002562 PMCID: PMC197195 DOI: 10.1128/jb.176.24.7413-7422.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The three restriction endonucleases SfiI, BssHII, and SmaI were found to generate fragments with suitable size distributions for mapping the genome of Streptococcus thermophilus A054. A total of 5, 8, and 24 fragments were produced with SfiI, BssHII, and SmaI, respectively. An average genome size of 1,824 kb was determined by summing the total fragment sizes obtained by digestions with these three enzymes. Partial and multiple digestions of genomic DNA in conjunction with Southern hybridization were used to map SfiI, BssHII, and SmaI fragments. All restriction fragments were arranged in a unique circular chromosome. Southern hybridization analysis with specific probes allowed 23 genetic markers to be located on the restriction map. Among them, six rrn loci were precisely located. The area of the chromosome containing the ribosomal operons was further detailed by mapping some of the ApaI and SgrAI sites. Comparison of macrorestriction patterns from three clones derived from strain A054 revealed two variable regions in the chromosome. One was associated with the tandem rrnD and rrnE loci, and the other was mapped in the region of the lactose operon.
Collapse
Affiliation(s)
- Y Roussel
- Laboratoire de Génétique et Microbiologie, Université Henri Poincaré Nancy I, France
| | | | | | | | | |
Collapse
|
41
|
Abstract
Methicillin-resistant staphylococci have an additional low-affinity penicillin-binding protein, PBP2a (PBP2'), encoded by the mecA gene. The typical heterogeneity seen in the expression of resistance to methicillin and in levels of resistance depends on the concerted action of chromosomally encoded genes, including fem and aux, that are also present in the genome of susceptible staphylococci.
Collapse
Affiliation(s)
- B Berger-Bächi
- Dept of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
42
|
Sedlmeier R, Werner T, Kieser HM, Hopwood DA, Schmieger H. tRNA genes of Streptomyces lividans: new sequences and comparison of structure and organization with those of other bacteria. J Bacteriol 1994; 176:5550-3. [PMID: 8071238 PMCID: PMC196748 DOI: 10.1128/jb.176.17.5550-5553.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Three closely linked Streptomyces lividans tRNA genes encoding two tRNA(Lys)s and a tRNA(Gly) were cloned and sequences. The structure of tRNA(Gly) is unusual for eubacterial tRNAs. Including those in previous reports (R. Sedlmeier and H. Schmieger, Nucleic Acids Res. 18:4027, 1990, and R. Sedlmeier, G. Linti, K. Gregor, and H. Schmieger, Gene 132:125-130, 1993), 18 S. lividans tRNA genes were physically mapped on the chromosome of the closely related strain Streptomyces coelicolor A3(2). The structure and organization of tRNA genes of S. lividans and S. coelicolor are compared with those of Escherichia coli and Bacillus subtilis.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Base Sequence
- Chromosome Mapping
- Chromosomes, Bacterial
- Codon/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Genes, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Lys/genetics
- Restriction Mapping
- Species Specificity
- Streptomyces/genetics
Collapse
Affiliation(s)
- R Sedlmeier
- Institut für Genetik und Mikrobiologie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
43
|
Wada A, Ohta H, Kulthanan K, Hiramatsu K. Molecular cloning and mapping of 16S-23S rRNA gene complexes of Staphylococcus aureus. J Bacteriol 1993; 175:7483-7. [PMID: 8226696 PMCID: PMC206896 DOI: 10.1128/jb.175.22.7483-7487.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus aureus BB255, a derivative of NCTC8325, had six rRNA operons, and each operon contained two SmaI sites about 3 kb apart. By molecular cloning and pulsed-field gel electrophoresis, all operons were mapped at the junctions of SmaI fragments in the published map of NCTC8325 except one, which was connected to a previously unidentified 23-kb SmaI fragment.
Collapse
Affiliation(s)
- A Wada
- Department of Bacteriology, Juntendo University, Tokyo, Japan
| | | | | | | |
Collapse
|