1
|
Galea D, Herzberg M, Nies DH. The metal-binding GTPases CobW2 and CobW3 are at the crossroads of zinc and cobalt homeostasis in Cupriavidus metallidurans. J Bacteriol 2024; 206:e0022624. [PMID: 39041725 PMCID: PMC11340326 DOI: 10.1128/jb.00226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
The metal-resistant beta-proteobacterium Cupriavidus metallidurans is also able to survive conditions of metal starvation. We show that zinc-starved cells can substitute some of the required zinc with cobalt but not with nickel ions. The zinc importer ZupT was necessary for this process but was not essential for either zinc or cobalt import. The cellular cobalt content was also influenced by the two COG0523-family proteins, CobW2 and CobW3. Pulse-chase experiments with radioactive and isotope-enriched zinc demonstrated that both proteins interacted with ZupT to control the cellular flow-equilibrium of zinc, a central process of zinc homeostasis. Moreover, an antagonistic interplay of CobW2 and CobW3 in the presence of added cobalt caused a growth defect in mutant cells devoid of the cobalt efflux system DmeF. Full cobalt resistance also required a synergistic interaction of ZupT and DmeF. Thus, the two transporters along with CobW2 and CobW3 interact to control cobalt homeostasis in a process that depends on zinc availability. Because ZupT, CobW2, and CobW3 also direct zinc homeostasis, this process links the control of cobalt and zinc homeostasis, which subsequently protects C. metallidurans against cadmium stress and general metal starvation.IMPORTANCEIn bacterial cells, zinc ions need to be allocated to zinc-dependent proteins without disturbance of this process by other transition metal cations. Under zinc-starvation conditions, C. metallidurans floods the cell with cobalt ions, which protect the cell against cadmium toxicity, help withstand metal starvation, and provide cobalt to metal-promiscuous paralogs of essential zinc-dependent proteins. The number of cobalt ions needs to be carefully controlled to avoid a toxic cobalt overload. This is accomplished by an interplay of the zinc importer ZupT with the COG0523-family proteins, CobW3, and CobW2. At high external cobalt concentrations, this trio of proteins additionally interacts with the cobalt efflux system, DmeF, so that these four proteins form an inextricable link between zinc and cobalt homeostasis.
Collapse
Affiliation(s)
- Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Siroheme synthase orients substrates for dehydrogenase and chelatase activities in a common active site. Nat Commun 2020; 11:864. [PMID: 32054833 PMCID: PMC7018833 DOI: 10.1038/s41467-020-14722-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
Siroheme is the central cofactor in a conserved class of sulfite and nitrite reductases that catalyze the six-electron reduction of sulfite to sulfide and nitrite to ammonia. In Salmonella enterica serovar Typhimurium, siroheme is produced by a trifunctional enzyme, siroheme synthase (CysG). A bifunctional active site that is distinct from its methyltransferase activity catalyzes the final two steps, NAD+-dependent dehydrogenation and iron chelation. How this active site performs such different chemistries is unknown. Here, we report the structures of CysG bound to precorrin-2, the initial substrate; sirohydrochlorin, the dehydrogenation product/chelation substrate; and a cobalt-sirohydrochlorin product. We identified binding poses for all three tetrapyrroles and tested the roles of specific amino acids in both activities to give insights into how a bifunctional active site catalyzes two different chemistries and acts as an iron-specific chelatase in the final step of siroheme synthesis. Siroheme is an essential bacterial iron tetrapyrrole used by siroheme-dependent sulfite and nitrite reductases. Here the authors shed light on the catalytic mechanisms of siroheme synthase through the structures of the bifunctional dehydrogenase/chelatase CysG module bound to its substrate, precorrin-2, the product/substrate sirohydrochlorin, and cobalt-sirohydrochlorin.
Collapse
|
3
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
5
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
6
|
Poehlein A, Daniel R, Schink B, Simeonova DD. Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics 2013; 14:753. [PMID: 24180241 PMCID: PMC4046663 DOI: 10.1186/1471-2164-14-753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/30/2013] [Indexed: 12/02/2022] Open
Abstract
Background The Delta-Proteobacterium Desulfotignum phosphitoxidans is a type strain of the genus Desulfotignum, which comprises to date only three species together with D. balticum and D. toluenicum. D. phosphitoxidans oxidizes phosphite to phosphate as its only source of electrons, with either sulfate or CO2 as electron acceptor to gain its metabolic energy, which is of exclusive interest. Sequencing of the genome of this bacterium was undertaken to elucidate the genomic basis of this so far unique type of energy metabolism. Results The genome contains 4,998,761 base pairs and 4646 genes of which 3609 were assigned to a function, and 1037 are without function prediction. Metabolic reconstruction revealed that most biosynthetic pathways of Gram negative, autotrophic sulfate reducers were present. Autotrophic CO2 assimilation proceeds through the Wood-Ljungdahl pathway. Additionally, we have found and confirmed the ability of the strain to couple phosphite oxidation to dissimilatory nitrate reduction to ammonia, which in itself is a new type of energy metabolism. Surprisingly, only two pathways for uptake, assimilation and utilization of inorganic and organic phosphonates were found in the genome. The unique for D. phosphitoxidans Ptx-Ptd cluster is involved in inorganic phosphite oxidation and an atypical C-P lyase-coding cluster (Phn) is involved in utilization of organophosphonates. Conclusions We present the whole genome sequence of the first bacterium able to gain metabolic energy via phosphite oxidation. The data obtained provide initial information on the composition and architecture of the phosphite–utilizing and energy-transducing systems needed to live with phosphite as an unusual electron donor.
Collapse
Affiliation(s)
| | | | | | - Diliana D Simeonova
- Laboratory of Microbial Ecology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
7
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
8
|
Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 2012; 13:723. [PMID: 23259483 PMCID: PMC3551663 DOI: 10.1186/1471-2164-13-723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO(2) in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility of this pathway in this organism is of specific interest since syntrophic acetate oxidation operates close to the energetic limitations of microbial life. RESULTS The genome of Th. phaeum is organized on a single circular chromosome and has a total size of 2,939,057 bp. It comprises 3.215 open reading frames of which 75% could be assigned to a gene function. The G+C content is 53.88 mol%. Many CRISPR sequences were found, indicating heavy phage attack in the past. A complete gene set for a phage was found in the genome, and indications of phage action could also be observed in culture. The genome contained all genes required for CO(2) reduction through the Wood-Ljungdahl pathway, including two formyl tetrahydrofolate ligases, three carbon monoxide dehydrogenases, one formate hydrogenlyase complex, three further formate dehydrogenases, and three further hydrogenases. The bacterium contains a menaquinone MQ-7. No indications of cytochromes or Rnf complexes could be found in the genome. CONCLUSIONS The information obtained from the genome sequence indicates that Th. phaeum differs basically from the three homoacetogenic bacteria sequenced so far, i.e., the sodium ion-dependent Acetobacterium woodii, the ethanol-producing Clostridium ljungdahlii, and the cytochrome-containing Moorella thermoacetica. The specific enzyme outfit of Th. phaeum obviously allows ATP formation both in acetate formation and acetate oxidation.
Collapse
Affiliation(s)
- Dirk Oehler
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Andreas Leimbach
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
- Department of Microbiology and Institute for Genomic Biology, University of Illinois, 601 S. Goodwin, Urbana, IL, 61801, USA
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Gerhard Gottschalk
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
9
|
Cloning and heterologous expression of Lactobacillus reuteri uroporphyrinogen III synthase/methyltransferase gene (cobA/hemD): preliminary characterization. Biotechnol Lett 2011; 33:1625-32. [PMID: 21484341 DOI: 10.1007/s10529-011-0609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE OF WORK To clone, express and characterize uroporphyrinogen III synthase/methyltransferase gene (cobA/hemD) from Lactobacillus reuteri. Some strains of Lb. reuteri produce cobalamin (vitamin B(12)). Cobalamin biosynthesis relies on the sequential action of more than 25 enzymes in a complex metabolic pathway. We have cloned, expressed and characterized the gene in Lb. reuteri that codes for the S-adenosy L: -methionine uroprophyrinogen III methyltransferase/synthase (CobA/HemD), a key bifunctional enzyme in the biosynthesis of cobalamin and other tetrapyrrols.
Collapse
|
10
|
An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol 2011; 193:1710-7. [PMID: 21296962 DOI: 10.1128/jb.01218-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.
Collapse
|
11
|
Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiol 2009; 9:172. [PMID: 19695095 PMCID: PMC2741471 DOI: 10.1186/1471-2180-9-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 08/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Huazhong Agricultural University, Hubei, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Thorgersen MP, Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. MICROBIOLOGY-SGM 2009; 155:295-304. [PMID: 19118370 DOI: 10.1099/mic.0.020727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A yggX gshA cyaY mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe-S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Thorgersen MP, Downs DM. Cobalt targets multiple metabolic processes in Salmonella enterica. J Bacteriol 2007; 189:7774-81. [PMID: 17720790 PMCID: PMC2168735 DOI: 10.1128/jb.00962-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/12/2007] [Indexed: 11/20/2022] Open
Abstract
Cobalt is essential for growth of Salmonella enterica and other organisms, yet this metal can be toxic when present in excess. Wild-type Salmonella exhibits several metabolic defects when grown in the presence of cobalt, some of which generate visible growth consequences. Work herein identifies sulfur assimilation, iron homeostasis, and Fe-S cluster metabolism as targets for cobalt toxicity. In each case it is proposed that cobalt exerts its effect by one of two mechanisms: direct competition with iron or indirectly through a mechanism that involves the status of reduced thiols in the cell. Cobalt toxicity results in decreased siroheme production, increased expression of the Fur regulon, and decreased activity of Fe-S cluster proteins. The consequences of reduced sulfite reductase activity in particular are exacerbated by the need for glutathione in cobalt resistance. Significantly, independent metabolic perturbations could be detected at cobalt concentrations below those required to generate a detectable growth defect.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Anjum MF, Marooney C, Fookes M, Baker S, Dougan G, Ivens A, Woodward MJ. Identification of core and variable components of the Salmonella enterica subspecies I genome by microarray. Infect Immun 2006; 73:7894-905. [PMID: 16299280 PMCID: PMC1307019 DOI: 10.1128/iai.73.12.7894-7905.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S.enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hampshire T, Soneji S, Bacon J, James BW, Hinds J, Laing K, Stabler RA, Marsh PD, Butcher PD. Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis (Edinb) 2004; 84:228-38. [PMID: 15207492 PMCID: PMC3195342 DOI: 10.1016/j.tube.2003.12.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/19/2022]
Abstract
The majority of individuals infected with TB develop a latent infection, in which organisms survive within the body while evading the host immune system. Such persistent bacilli are capable of surviving several months of combinatorial antibiotic treatment. Evidence suggests that stationary phase bacteria adapt to increase their tolerance to environmental stresses. We have developed a unique in vitro model of dormancy based on the characterization of a single, large volume fermenter culture of M. tuberculosis, as it adapts to stationary phase. Cells are maintained in controlled and defined aerobic conditions (50% dissolved oxygen tension), using probes that measure dissolved oxygen tension, temperature, and pH. Microarray analysis has been used in conjunction with viability and nutrient depletion assays to dissect differential gene expression. Following exponential phase growth the gradual depletion of glucose/glycerol resulted in a small population of survivors that were characterized for periods in excess of 100 days. Bacilli adapting to nutrient depletion displayed characteristics associated with persistence in vivo, including entry into a non-replicative state and the up-regulation of genes involved in beta-oxidation of fatty acids and virulence. A reduced population of non-replicating bacilli went on to adapt sufficiently to re-initiate cellular division.
Collapse
Affiliation(s)
- Tobias Hampshire
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stroupe ME, Leech HK, Daniels DS, Warren MJ, Getzoff ED. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Mol Biol 2003; 10:1064-73. [PMID: 14595395 DOI: 10.1038/nsb1007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 09/08/2003] [Indexed: 11/09/2022]
Abstract
Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B(12)) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways.
Collapse
Affiliation(s)
- M Elizabeth Stroupe
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The chronology of the discoveries along the pathway of vitamin B(12) biosynthesis is reviewed from a personal perspective, including discussion of the most recent finding that two pathways to B(12) exist-one aerobic and one anaerobic-which differ mainly in the ring contraction mechanisms that convert porphyrin to corrin.
Collapse
Affiliation(s)
- A Ian Scott
- Center for Biological NMR, Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, USA.
| |
Collapse
|
18
|
Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). MICROBIOLOGY (READING, ENGLAND) 2002; 148:1845-1853. [PMID: 12055304 DOI: 10.1099/00221287-148-6-1845] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A search for genes encoding enzymes involved in cobalamin (vitamin B12) production in the commercially important organism Propionibacterium freudenreichii (P. shermanii) has resulted in the isolation of an additional 14 genes encoding enzymes responsible for 17 steps of the anaerobic B12 pathway in this organism. All of the genes believed to be necessary for the biosynthesis of adenosylcobinamide from uroporphyrinogen III have now been isolated except two (cbiA and an as yet unidentified gene encoding cobalt reductase). Most of the genes are contained in two divergent operons, one of which, in turn, is closely linked to the operon encoding the B12-dependent enzyme methylmalonyl-CoA mutase. The close linkage of the three genes encoding the subunits of transcarboxylase to the hemYHBXRL gene cluster is reported. The functions of the P. freudenreichii B12 pathway genes are discussed, and a mechanism for the regulation of cobalamin and propionic acid production by oxygen in this organism is proposed.
Collapse
Affiliation(s)
- Charles A Roessner
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Ke-Xue Huang
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| | - Martin J Warren
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK2
| | - A Ian Scott
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA1
| |
Collapse
|
19
|
Jenkins C, Kedar V, Fuerst JA. Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries. Genome Biol 2002; 3:RESEARCH0031. [PMID: 12093378 PMCID: PMC116728 DOI: 10.1186/gb-2002-3-6-research0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Revised: 04/15/2002] [Accepted: 04/17/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The planctomycetes comprise a distinct group of the domain Bacteria, forming a separate division by phylogenetic analysis. The organization of their cells into membrane-defined compartments including membrane-bounded nucleoids, their budding reproduction and complete absence of peptidoglycan distinguish them from most other Bacteria. A random sequencing approach was applied to the genomes of two planctomycete species, Gemmata obscuriglobus and Pirellula marina, to discover genes relevant to their cell biology and physiology. RESULTS Genes with a wide variety of functions were identified in G. obscuriglobus and Pi. marina, including those of metabolism and biosynthesis, transport, regulation, translation and DNA replication, consistent with established phenotypic characters for these species. The genes sequenced were predominantly homologous to those in members of other divisions of the Bacteria, but there were also matches with nuclear genomic genes of the domain Eukarya, genes that may have appeared in the planctomycetes via horizontal gene transfer events. Significant among these matches are those with two genes atypical for Bacteria and with significant cell-biology implications - integrin alpha-V and inter-alpha-trypsin inhibitor protein - with homologs in G. obscuriglobus and Pi. marina respectively. CONCLUSIONS The random-sequence-tag approach applied here to G. obscuriglobus and Pi. marina is the first report of gene recovery and analysis from members of the planctomycetes using genome-based methods. Gene homologs identified were predominantly similar to genes of Bacteria, but some significant best matches to genes from Eukarya suggest that lateral gene transfer events between domains may have involved this division at some time during its evolution.
Collapse
Affiliation(s)
- Cheryl Jenkins
- Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
20
|
Abstract
The chronology of the discoveries along the pathway of vitamin B12 biosynthesis is reviewed from a personal perspective, including discussion of the most recent finding that two pathways to B12 exist--one aerobic and one anaerobic--which differ mainly in the ring contraction mechanisms which convert porphyrin to corrin.
Collapse
Affiliation(s)
- A I Scott
- Center for Biological NMR, Chemistry Department, Texas A&M University, College Station 77843-3255, USA.
| |
Collapse
|
21
|
Roessner CA, Santander PJ, Scott AI. Multiple biosynthetic pathways for vitamin B12: variations on a central theme. VITAMINS AND HORMONES 2001; 61:267-97. [PMID: 11153269 DOI: 10.1016/s0083-6729(01)61009-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The manner in which vitamin B12 is synthesized is detailed with emphasis on the different mechanisms for ring contraction encountered in aerobic and anaerobic organisms. The aerobic process utilizes two enzymes and is dependent on molecular oxygen, in stark contrast to the anaerobic mechanism which is controlled by cobalt and requires only one enzyme.
Collapse
Affiliation(s)
- C A Roessner
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
22
|
Kolko MM, Kapetanovich LA, Lawrence JG. Alternative pathways for siroheme synthesis in Klebsiella aerogenes. J Bacteriol 2001; 183:328-35. [PMID: 11114933 PMCID: PMC94882 DOI: 10.1128/jb.183.1.328-335.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented.
Collapse
Affiliation(s)
- M M Kolko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
23
|
Jones SE, Naik RR, Stone MO. Use of small fluorescent molecules to monitor channel activity. Biochem Biophys Res Commun 2000; 279:208-12. [PMID: 11112440 DOI: 10.1006/bbrc.2000.3921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). The amino acid sequence encoding for this MscL exhibits a high degree of similarity to Escherichia coli MscL (Eco-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. These fluorophores are synthesized by a cotransformed gene, cobA. In addition, we observe that thermal stimulation, i.e., heat shock, can induce efflux through MscL.
Collapse
Affiliation(s)
- S E Jones
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433, USA
| | | | | |
Collapse
|
24
|
Thomas MG, Escalante-Semerena JC. Identification of an alternative nucleoside triphosphate: 5'-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum delta H. J Bacteriol 2000; 182:4227-33. [PMID: 10894731 PMCID: PMC101920 DOI: 10.1128/jb.182.15.4227-4233.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5'-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea. The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum Delta H (MTH1152; referred to as cobY) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica. NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum Delta H cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY, however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis.
Collapse
Affiliation(s)
- M G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706-1567, USA
| | | |
Collapse
|
25
|
Koyama M, Katayama S, Kaji M, Taniguchi Y, Matsushita O, Minami J, Morita S, Okabe A. A Clostridium perfringens hem gene cluster contains a cysG(B) homologue that is involved in cobalamin biosynthesis. Microbiol Immunol 2000; 43:947-57. [PMID: 10585141 DOI: 10.1111/j.1348-0421.1999.tb03355.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hem gene cluster, which consists of hemA, cysG(B), hemC, hemD, hemB, and hemL genes, and encodes enzymes involved in the biosynthetic pathway from glutamyl-tRNA to uroporphyrinogen III, has been identified by the cloning and sequencing of two overlapping DNA fragments from Clostridium perfringens NCTC8237. The deduced amino acid sequence of the N-terminal region of C. perfringens HemD is homologous to those reported for the C-terminal region of Salmonella typhimurium CysG and Clostridium josui HemD. C. perfringens CysG(B) is a predicted 220-residue protein which shows homology to the N-terminal region of S. typhimurium CysG. Disruption of the cysG(B) gene in C. perfringens strain 13 by homologous recombination reduced cobalamin (vitamin B12) levels by a factor of 200. When grown in vitamin B12-deficient medium, the mutant strain showed a four-fold increase in its doubling time compared with that of the wild-type strain, and this effect was counteracted by supplementing the medium with vitamin B12. These results suggest that C. perfringens CysG(B) is involved in the chelation of cobalt to precorrin II as suggested for the CysG(B) domain of S. typhimurium CysG, enabling the synthesis of cobalamin.
Collapse
Affiliation(s)
- M Koyama
- Department of Pharmacy, Kagawa Medical University, Kita-gun, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Roessner CA, Park JH, Scott AI. Genetic engineering of Escherichia coli for the production of precorrin-3 in vivo and in vitro. Bioorg Med Chem 1999; 7:2215-9. [PMID: 10579529 DOI: 10.1016/s0968-0896(99)00154-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The construction of a new recombinant strain of Escherichia coli in which two vitamin B12 biosynthetic genes, cobA and cobI, from Pseudomonas denitrificans are simultaneously overexpressed has resulted in the in vivo synthesis and accumulation of Factor III, an isobacteriochlorin not normally synthesized in E. coli. A lysate of the new strain can take the place of two lysates normally required to provide uroporphyrinogen III methyltransferase (cobA) and precorrin-2 methyltransferase (cobI) in an anaerobic five-enzyme synthesis of the early B12 intermediate, precorrin-3 (the reduced form of Factor III) from delta-aminolevulinic acid.
Collapse
Affiliation(s)
- C A Roessner
- Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | | | |
Collapse
|
27
|
Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 1999; 445:27-30. [PMID: 10069368 DOI: 10.1016/s0014-5793(99)00091-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of the cop operon which effects copper homeostasis in Enterococcus hirae is controlled by the copper responsive repressor CopY. Purified Zn(II)CopY binds to a synthetic cop promoter fragment in vitro. Here we show that the 8 kDa protein CopZ acts as a copper chaperone by specifically delivering copper(I) to Zn(II)CopY and releasing CopY from the DNA. As shown by gel filtration and luminescence spectroscopy, two copper(I) are thereby quantitatively transferred from Cu(I)CopZ to Zn(II)CopY, with displacement of the zinc(II) and transfer of copper from a non-luminescent, exposed, binding site in CopZ to a luminescent, solvent shielded, binding site in CopY.
Collapse
Affiliation(s)
- P Cobine
- National Research Centre for Environmental Toxicology, University of Queensland, Coopers Plains, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Spencer P, Stolowich NJ, Sumner LW, Scott AI. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium. Biochemistry 1998; 37:14917-27. [PMID: 9778368 DOI: 10.1021/bi981366f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme CbiL from the facultative anaerobe Salmonella typhimurium exhibits a high degree of homology to CobI from the aerobe Pseudomonas denitrificans (29% identity; 51% conservation obtained by a Blastp search of the ncbi database). As CobI catalyzes the third methylation in the aerobic pathway to vitamin B12 it is proposed that CbiL catalyzes the analogous step in the anaerobic pathway. Potential metallo and metal-free substrates were characterized and their redox states defined by a combination of physicochemical techniques (MALDI-MS, NMR, UV/vis, IR, and EPR) and then used to investigate the function of CbiL. CbiL exhibited an absolute requirement for the presence of a metal ion (Co(II), Ni(II), or Zn(II)) within the tetrapyrrole substrate. CbiL had no preference for the redox state of its cobalt tetrapyrrole substrate, methylating both the reduced form, Co(II) 2, 7-dimethyl-dipyrrocorphin (Co(II)-precorrin-2), and the oxidized form, Co(III) 2,7-dimethyl-isobacterioclorin (Co(III)-factor-II). In contrast CbiL had a marked preference for the oxidized Ni(II) and Zn(II)-2,7-dimethyl-isobacteriochlorin (Ni(II) and Zn(II)-factor-II). Removal of the metal ion from a product of CbiL (Zn(II)-factor-III) allowed characterization by 13C NMR, identifying the tetrapyrrole as 2,7,20-trimethyl-isobacteriochlorin (factor-3), indicating that CbiL methylates at C20, the same site as that methylated by CobI. Competition experiments, utilizing isotopic labeling to distinguish otherwise identical mass substrates and products, revealed that oxidized Co(III) or Ni(II)-factor-II were equally good substrates, whereas Co(II)-precorrin-2 was much preferred over Ni(II)-precorrin-2. Excess Ni(II)-precorrin-2 did not decrease CbiL methylation of Co(II)-precorrin-2, implying that CbiL has a low affinity for Ni(II)-precorrin-2. These results are interpreted on the basis of tetrapyrrole ruffling occurring on the optimization of the metallo-N bond distances. The greater flexibility of the reduced precorrin-2 ring system allows greater deformation on accommodating the bound metal ion, the distortions imposed by bound Ni(II) or Zn(II) ions being larger than Co(II). The resulting distortions imposed on the precorrin ring could then decrease catalysis by causing a departure from the optimal substrate conformation required for CbiL. On oxidation of the Ni(II) or Zn(II)-precorrin-2, the increased stiffness of the ring could then constrain the metallo-factor-II conformation toward that of the usual substrate, allowing greater methylation by CbiL. In contrast to its counterpart CobI in the aerobic pathway of B12 biosynthesis, which methylates the metal-free precorrin-2, these studies show CbiL to be the first methylase unique to the anaerobic pathway, methylating a metallo-precorrin-2 substrate. Implications of CbiL specificity for the mechanism of the anaerobic B12 pathway are discussed.
Collapse
Affiliation(s)
- P Spencer
- Department of Chemistry, Texas A and M University, College Station 77843-3255, USA
| | | | | | | |
Collapse
|
29
|
Woodcock SC, Raux E, Levillayer F, Thermes C, Rambach A, Warren MJ. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem J 1998; 330 ( Pt 1):121-9. [PMID: 9461500 PMCID: PMC1219117 DOI: 10.1042/bj3300121] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Escherichia coli CysG protein (sirohaem synthase) catalyses four separate reactions that are required for the transformation of uroporphyrinogen III into sirohaem, initially two S-adenosyl-l-methionine-dependent transmethylations at positions 2 and 7, mediated through the C-terminal, or CysGA, catalytic domain of the protein, and subsequently a ferrochelation and dehydrogenation, mediated through the N-terminal, or CysGB, catalytic domain of the enzyme. This report describes how the deletion of the NAD+-binding site of CysG, located within the first 35 residues of the N-terminus, is detrimental to the activity of CysGB but does not affect the catalytic activity of CysGA, whereas the mutation of a number of phylogenetically conserved residues within CysGA is detrimental to the transmethylation reaction but does not affect the activity of CysGB. Further studies have shown that CysGB is not essential for cobalamin biosynthesis because the presence of the Salmonella typhimurium CobI operon with either cysGA or the Pseudomonas denitrificans cobA are sufficient for the synthesis of cobyric acid in an E. coli cysG deletion strain. Evidence is also presented to suggest that a gene within the S. typhimurium CobI operon might act as a chelatase that, at low levels of cobalt, is able to aid in the synthesis of sirohaem.
Collapse
Affiliation(s)
- S C Woodcock
- Department of Molecular Genetics, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, U.K
| | | | | | | | | | | |
Collapse
|
30
|
Brushaber KR, O'Toole GA, Escalante-Semerena JC. CobD, a novel enzyme with L-threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem 1998; 273:2684-91. [PMID: 9446573 DOI: 10.1074/jbc.273.5.2684] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cobD gene of Salmonella typhimurium LT2 has been cloned, sequenced, and overexpressed. The overexpressed protein had a molecular mass of approximately 40 kDa, in agreement with the mass predicted by the deduced amino acid sequence (40.8 kDa). Computer analysis of the deduced amino acid sequence of CobD identified a consensus pyridoxal phosphate-binding motif. The role of CobD in cobalamin biosynthesis in this bacterium has been established. CobD was shown to decarboxylate L-threonine O-3-phosphate to yield (R)-1-amino-2-propanol O-2-phosphate. We propose that the latter is a substrate in the reaction catalyzed by the CbiB enzyme proposed to be responsible for the conversion of adenosylcobyric acid to adenosylcobinamide and that the product of the reaction is adenosylcobinamide phosphate, not adenosylcobinamide as previously thought. The implications of these findings are discussed in light of the demonstrated kinase activity of the CobU enzyme (O'Toole, G. A., and Escalante-Semerena, J. C. (1995) J. Biol. Chem. 270, 23560-23569) responsible for the conversion of adenosylcobinamide to adenosylcobinamide phosphate. These findings shed light on the strategy used by this bacterium for the assimilation of exogenous unphosphorylated cobinamide from its environment. To our knowledge, CobD is the first enzyme reported to have L-threonine-O-3-phosphate decarboxylase activity, and computer analysis of its amino acid sequence suggests that it may be a member of a new class of pyridoxal phosphate-dependent decarboxylases.
Collapse
Affiliation(s)
- K R Brushaber
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1521, USA
| | | | | |
Collapse
|
31
|
Tate R, Riccio A, Iaccarino M, Patriarca EJ. A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation. J Bacteriol 1997; 179:7343-50. [PMID: 9393698 PMCID: PMC179684 DOI: 10.1128/jb.179.23.7343-7350.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By its inability to grow on sulfate as the sole sulfur source, a mutant strain (CTNUX8) of Rhizobium etli carrying Tn5 was isolated and characterized. Sequence analysis showed that Tn5 is inserted into a cysG (siroheme synthetase)-homologous gene. By RNase protection assays, it was established that the cysG-like gene had a basal level of expression in thiosulfate- or cysteine-grown cells, which was induced when sulfate or methionine was used. Unlike its wild-type parent (strain CE3), the mutant strain, CTNUX8, was also unable to grow on nitrate as the sole nitrogen source and was unable to induce a high level of nitrite reductase. Despite its pleiotropic phenotype, strain CTNUX8 was able to induce pink, effective (N2-fixing) nodules on the roots of Phaseolus vulgaris plants. However, mixed inoculation experiments showed that strain CTNUX8 is significantly different from the wild type in its ability to nodulate. Our data support the notion that sulfate (or sulfite) is the sulfur source of R. etli in the rhizosphere, while cysteine, methionine, or glutathione is supplied by the root cells to bacteria growing inside the plant.
Collapse
Affiliation(s)
- R Tate
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
32
|
Santander PJ, Roessner CA, Stolowich NJ, Holderman MT, Scott AI. How corrinoids are synthesized without oxygen: nature's first pathway to vitamin B12. CHEMISTRY & BIOLOGY 1997; 4:659-66. [PMID: 9331403 DOI: 10.1016/s1074-5521(97)90221-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During the biosynthesis of vitamin B12, the aerobic bacterium Pseudomonas denitrificans uses two enzymes, CobG and CobJ, to convert precorrin-3 to the ring-contracted intermediate, precorrin-4. CobG is a monooxygenase that adds a hydroxyl group, derived from molecular oxygen, to C-20, whereas CobJ is bifunctional, inserting a methyl group at C-17 of the macrocycle and catalyzing ring contraction. Molecular oxygen is not available to vitamin B12-producing anaerobic bacteria and members of the ancient Archaea, so the question arises of how these microbes accomplish the key ring-contraction process. RESULTS Cloning and overexpression of Salmonella typhimurium genes has led to the discovery that a single enzyme, CbiH, is responsible for ring contraction during anaerobic biosynthesis of vitamin B12. The process occurs when CbiH is incubated with precorrin-3, but only in the presence of cobalt. CbiH functions as a C-17 methyltransferase and mediates ring contraction and lactonization to yield the intermediate, cobalt-precorrin-4, isolated as cobalt-factor IV. 13C labeling studies have proved that cobalt-precorrin-4 is incorporated into cobyrinic acid, thereby confirming that cobalt-precorrin-4 is an intermediate in vitamin B12 biosynthesis. CONCLUSIONS Two distinct mechanisms exist in nature for the ring contraction of porphyrinoids to corrinoids-an ancient anaerobic pathway that requires cobalt complexation prior to nonoxidative rearrangement, and a more recent aerobic route in which molecular oxygen serves as the cofactor. The present results offer a rationale for the main differences between aerobic and anaerobic biosynthesis of vitamin B12. Thus, in anaerobes there is exchange of oxygen at the C-27 acetate site, extrusion of acetaldehyde and early insertion of cobalt, whereas the aerobes show no exchange of oxygen at C-27, extrude acetic acid and insert cobalt very late in the biosynthetic pathway, after ring contraction has occurred. These parallel routes to vitamin B12 have now been clearly distinguished by their differing mechanisms for ring contraction.
Collapse
Affiliation(s)
- P J Santander
- Chemistry Department, Texas A&M University, College Station 77843-3255, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
This review examines deoxyadenosylcobalamin (Ado-B12) biosynthesis, transport, use, and uneven distribution among living forms. We describe how genetic analysis of enteric bacteria has contributed to these issues. Two pathways for corrin ring formation have been found-an aerobic pathway (in P. denitrificans) and an anaerobic pathway (in P. shermanii and S. typhimurium)-that differ in the point of cobalt insertion. Analysis of B12 transport in E. coli reveals two systems: one (with two proteins) for the outer membrane, and one (with three proteins) for the inner membrane. To account for the uneven distribution of B12 in living forms, we suggest that the B12 synthetic pathway may have evolved to allow anaerobic fermentation of small molecules in the absence of an external electron acceptor. Later, evolution of the pathway produced siroheme, (allowing use of inorganic electron acceptors), chlorophyll (O2 production), and heme (aerobic respiration). As oxygen became a larger part of the atmosphere, many organisms lost fermentative functions and retained dependence on newer, B12 functions that did not involve fermentation. Paradoxically, Salmonella spp. synthesize B12 only anaerobically but can use B12 (for degradation of ethanolamine and propanediol) only with oxygen. Genetic analysis of the operons for these degradative functions indicate that anaerobic degradation is important. Recent results suggest that B12 can be synthesized and used during anaerobic respiration using tetrathionate (but not nitrate or fumarate) as an electron acceptor. The branch of enteric taxa from which Salmonella spp. and E. coli evolved appears to have lost the ability to synthesize B12 and the ability to use it in propanediol and glycerol degradation. Salmonella spp., but not E. coli, have acquired by horizontal transfer the ability to synthesize B12 and degrade propanediol. The acquired ability to degrade propanediol provides the selective force that maintains B12 synthesis in this group.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|