1
|
Singh S, Gola C, Singh B, Agrawal V, Chaba R. D-galactonate metabolism in enteric bacteria: a molecular and physiological perspective. Curr Opin Microbiol 2024; 81:102524. [PMID: 39137493 DOI: 10.1016/j.mib.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
D-galactonate, a widely prevalent sugar acid, was first reported as a nutrient source for enteric bacteria in the 1970s. Since then, decades of research enabled a description of the modified Entner-Doudoroff pathway involved in its degradation and reported the structural and biochemical features of its metabolic enzymes, primarily in Escherichia coli K-12. However, only in the last few years, the D-galactonate transporter has been characterized, and the regulation of the dgo operon, encoding the structural genes for the transporter and enzymes of D-galactonate metabolism, has been detailed. Notably, in recent years, multiple evolutionary studies have identified the dgo operon as a dominant target for adaptation of E. coli in the mammalian gut. Despite considerable research on dgo operon, numerous fundamental questions remain to be addressed. The emerging relevance of the dgo operon in host-bacterial interactions further necessitates the study of D-galactonate metabolism in other enterobacterial strains.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Chetna Gola
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Vishal Agrawal
- Amity School of Biological Sciences, Amity University Punjab, Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Teixeira AP, Xue S, Huang J, Fussenegger M. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Nucleic Acids Res 2023; 51:e85. [PMID: 37497781 PMCID: PMC10450161 DOI: 10.1093/nar/gkad600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
Synthetic biology holds great promise to improve the safety and efficacy of future gene and engineered cell therapies by providing new means of endogenous or exogenous control of the embedded therapeutic programs. Here, we focused on gluconate as a clinically licensed small-molecule inducer and engineered gluconate-sensitive molecular switches to regulate transgene expression in human cell cultures and in mice. Several switch designs were assembled based on the gluconate-responsive transcriptional repressor GntR from Escherichia coli. Initially we assembled OFF- and ON-type switches by rewiring the native gluconate-dependent binding of GntR to target DNA sequences in mammalian cells. Then, we utilized the ability of GntR to dimerize in the presence of gluconate to activate gene expression from a split transcriptional activator. By means of random mutagenesis of GntR combined with phenotypic screening, we identified variants that significantly enhanced the functionality of the genetic devices, enabling the construction of robust two-input logic gates. We also demonstrated the potential utility of the synthetic switch in two in vivo settings, one employing implantation of alginate-encapsulated engineered cells and the other involving modification of host cells by DNA delivery. Then, as proof-of-concept, the gluconate-actuated genetic switch was connected to insulin secretion, and the components encoding gluconate-induced insulin production were introduced into type-1 diabetic mice as naked DNA via hydrodynamic tail vein injection. Normoglycemia was restored, thereby showcasing the suitability of oral gluconate to regulate in situ production of a therapeutic protein.
Collapse
Affiliation(s)
- Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058Basel, Switzerland
| |
Collapse
|
3
|
Schuller A, Cserjan-Puschmann M, Köppl C, Grabherr R, Wagenknecht M, Schiavinato M, Dohm JC, Himmelbauer H, Striedner G. Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable Escherichia coli Production Hosts for Continuous Bioprocessing. Biotechnol J 2020; 16:e2000376. [PMID: 33084246 DOI: 10.1002/biot.202000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Christoph Köppl
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1120, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
4
|
Sathesh-Prabu C, Kim D, Lee SK. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. BIORESOURCE TECHNOLOGY 2020; 309:123361. [PMID: 32305846 DOI: 10.1016/j.biortech.2020.123361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 05/12/2023]
Abstract
A glucose-inducible gene expression system has been developed using HexR-Pzwf1 of Pseudomonas putida to induce the metabolic pathways. Since the system is controlled by an Entner-Doudoroff pathway (EDP) intermediate, the EDP of Escherichia coli was activated by deleting pfkA and gntR genes. Growth experiment with green fluorescent protein as a reporter indicated that the induction of this system was tightly controlled over a wide range of glucose in E. coli without adding any inducer. 2,3-butanediol (BDO) synthetic pathway genes were expressed by this system in the pfkA-gntR-deleted strain. The resultant engineered strain harbouring this system efficiently produced BDO with a 71% increased titer than the control strain. The strain was also able to produce BDO from a mixture of glucose and xylose which is comparable to glucose alone. Further, the strain produced 11 g/L of BDO at a yield of 0.48 g/g from the hydrolysate of empty palm fruit bunches. This system can also be applied in many other bio-production processes from lignocellulosic biomass.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Knorr S, Sinn M, Galetskiy D, Williams RM, Wang C, Müller N, Mayans O, Schleheck D, Hartig JS. Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Nat Commun 2018; 9:5071. [PMID: 30498244 PMCID: PMC6265302 DOI: 10.1038/s41467-018-07563-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Lysine degradation has remained elusive in many organisms including Escherichia coli. Here we report catabolism of lysine to succinate in E. coli involving glutarate and L-2-hydroxyglutarate as intermediates. We show that CsiD acts as an α-ketoglutarate-dependent dioxygenase catalysing hydroxylation of glutarate to L-2-hydroxyglutarate. CsiD is found widespread in bacteria. We present crystal structures of CsiD in complex with glutarate, succinate, and the inhibitor N-oxalyl-glycine, demonstrating strong discrimination between the structurally related ligands. We show that L-2-hydroxyglutarate is converted to α-ketoglutarate by LhgO acting as a membrane-bound, ubiquinone-linked dehydrogenase. Lysine enters the pathway via 5-aminovalerate by the promiscuous enzymes GabT and GabD. We demonstrate that repression of the pathway by CsiR is relieved upon glutarate binding. In conclusion, lysine degradation provides an important link in central metabolism. Our results imply the gut microbiome as a potential source of glutarate and L-2-hydroxyglutarate associated with human diseases such as cancer and organic acidurias.
Collapse
Affiliation(s)
- Sebastian Knorr
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany
| | - Malte Sinn
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany
| | - Dmitry Galetskiy
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany
| | - Rhys M Williams
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Changhao Wang
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Olga Mayans
- Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - David Schleheck
- Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.
| |
Collapse
|
6
|
Udaondo Z, Ramos JL, Segura A, Krell T, Daddaoua A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb Biotechnol 2018; 11:442-454. [PMID: 29607620 PMCID: PMC5902321 DOI: 10.1111/1751-7915.13263] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023] Open
Abstract
Bacteria of the genus Pseudomonas are widespread in nature. In the last decades, members of this genus, especially Pseudomonas aeruginosa and Pseudomonas putida, have acquired great interest because of their interactions with higher organisms. Pseudomonas aeruginosa is an opportunistic pathogen that colonizes the lung of cystic fibrosis patients, while P. putida is a soil bacterium able to establish a positive interaction with the plant rhizosphere. Members of Pseudomonas genus have a robust metabolism for amino acids and organic acids as well as aromatic compounds; however, these microbes metabolize a very limited number of sugars. Interestingly, they have three-pronged metabolic system to generate 6-phosphogluconate from glucose suggesting an adaptation to efficiently consume this sugar. This review focuses on the description of the regulatory network of glucose utilization in Pseudomonas, highlighting the differences between P. putida and P. aeruginosa. Most interestingly, It is highlighted a functional link between glucose assimilation and exotoxin A production in P. aeruginosa. The physiological relevance of this connection remains unclear, and it needs to be established whether a similar relationship is also found in other bacteria.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 782, Little Rock, AR, 72205, USA
| | - Juan-Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Ana Segura
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, Granada University, Granada, Spain
| |
Collapse
|
7
|
Daddaoua A, Corral-Lugo A, Ramos JL, Krell T. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ Microbiol 2017; 19:3721-3733. [PMID: 28752954 DOI: 10.1111/1462-2920.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
In contrast to Escherichia coli, glucose metabolism in pseudomonads occurs exclusively through the Entner-Doudoroff (ED) pathway. This pathway, as well as the three routes to generate the initial ED pathway substrate, 6-phosphogluconate, is regulated by the PtxS, HexR and GtrS/GltR systems. With GntR (PA2320) we report here the identification of an additional regulator in Pseudomonas aeruginosa PAO1. GntR repressed its own expression as well as that of the GntP gluconate permease. In contrast to PtxS and GtrS/GltR, GntR did not modulate expression of the toxA gene encoding the exotoxin A virulence factor. GntR was found to bind to promoters PgntR and PgntP and the consensus sequence of its operator was defined as 5'-AC-N-AAG-N-TAGCGCT-3'. Both operator sites overlapped with the RNA polymerase binding site and we show that GntR employs an effector mediated de-repression mechanism. The release of promoter bound GntR is induced by gluconate and 6-phosphogluconate that bind with similar apparent affinities to the GntR/DNA complex. GntR and PtxS are paralogous and may have evolved from a common ancestor. The concerted action of four regulatory systems in the regulation of glucose metabolism in Pseudomonas can be considered as a model to understand complex regulatory circuits in bacteria.
Collapse
Affiliation(s)
- A Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - A Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - J-L Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Meinert C, Senger J, Witthohn M, Wübbeler JH, Steinbüchel A. Carbohydrate uptake in Advenella mimigardefordensis strain DPN7 T is mediated by periplasmic sugar oxidation and a TRAP-transport system. Mol Microbiol 2017; 104:916-930. [PMID: 28407382 DOI: 10.1111/mmi.13692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
In this study, we investigated an SBP (DctPAm ) of a tripartite ATP-independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T . Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T , if cultivated on mineral salt medium supplemented with d-glucose, d-galactose, l-arabinose, d-fucose, d-xylose or d-gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS-5::dctPAm . Furthermore, an uptake assay with radiolabeled [14 C(U)]-d-glucose clearly showed that the deletion of dctPAm , dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d-gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above-mentioned carbohydrates d-galactonate (KD 10.72 ± 1.4 µM), d-fuconic acid (KD 13.50 ± 1.6 µM) and d-xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jana Senger
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Marco Witthohn
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Pathoadaptive Mutations of Escherichia coli K1 in Experimental Neonatal Systemic Infection. PLoS One 2016; 11:e0166793. [PMID: 27861552 PMCID: PMC5115809 DOI: 10.1371/journal.pone.0166793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 12/04/2022] Open
Abstract
Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation.
Collapse
|
10
|
Roy S, Patra T, Golder T, Chatterjee S, Koley H, Nandy RK. Characterization of the gluconate utilization system ofVibrio choleraewith special reference to virulence modulation. Pathog Dis 2016; 74:ftw085. [DOI: 10.1093/femspd/ftw085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
|
11
|
Oh YH, Eom GT, Kang KH, Joo JC, Jang YA, Choi JW, Song BK, Lee SH, Park SJ. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess Biosyst Eng 2016; 39:555-63. [DOI: 10.1007/s00449-016-1537-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
|
12
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
13
|
Abstract
Following elucidation of the regulation of the lactose operon in Escherichia coli, studies on the metabolism of many sugars were initiated in the early 1960s. The catabolic pathways of D-gluconate and of the two hexuronates, D-glucuronate and D-galacturonate, were investigated. The post genomic era has renewed interest in the study of these sugar acids and allowed the complete characterization of the D-gluconate pathway and the discovery of the catabolic pathways for L-idonate, D-glucarate, galactarate, and ketogluconates. Among the various sugar acids that are utilized as sole carbon and energy sources to support growth of E. coli, galacturonate, glucuronate, and gluconate were shown to play an important role in the colonization of the mammalian large intestine. In the case of sugar acid degradation, the regulators often mediate negative control and are inactivated by interaction with a specific inducer, which is either the substrate or an intermediate of the catabolism. These regulators coordinate the synthesis of all the proteins involved in the same pathway and, in some cases, exert crosspathway control between related catabolic pathways. This is particularly well illustrated in the case of hexuronide and hexuronate catabolism. The structural genes encoding the different steps of hexuronate catabolism were identified by analysis of numerous mutants affected for growth with galacturonate or glucuronate. E. coli is able to use the diacid sugars D-glucarate and galactarate (an achiral compound) as sole carbon source for growth. Pyruvate and 2-phosphoglycerate are the final products of the D-glucarate/galactarate catabolism.
Collapse
|
14
|
Aburaya S, Esaka K, Morisaka H, Kuroda K, Ueda M. Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express 2015; 5:29. [PMID: 26020016 PMCID: PMC4441647 DOI: 10.1186/s13568-015-0115-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/08/2015] [Indexed: 02/04/2023] Open
Abstract
Clostridium cellulovorans is an anaerobic, cellulolytic bacterium, capable of effectively degrading and metabolizing various types of substrates, including cellulose, hemicellulose (xylan and galactomannan), and pectin. Among Clostridia, this ability to degrade and metabolize a wide range of hemicellulose and pectin substrates is a unique feature; however, the mechanisms are currently unknown. To clarify the mechanisms of hemicelluloses and pectin recognition and metabolism, we carried out a quantitative proteome analysis of C. cellulovorans cultured with these substrates. C. cellulovorans was cultured in the medium of glucose (control), xylan, galactomannan (Locus bean gum, LBG), or pectin for 36 h. Xylan and galactomannan were used to search for the common recognition mechanisms of hemicellulose, and pectin was used to search for unique recognition systems in C. cellulovorans. Using an isobaric tag method and liquid chromatograph/mass spectrometer equipped with a long monolithic silica capillary column, we identified 734 intracellular proteins from all substrates. We performed KEGG analyses and cluster analyses of the resulting proteins. In the KEGG analyses, we found common degradation mechanisms for hemicellulose and pectin. In the cluster analysis corresponding to the genome analysis, we detected substrate-specific clusters that include genes involved in substrate recognition, substrate degradation, and metabolism. Combining the results of the KEGG analyses and cluster analyses, we propose the mechanisms involved in the recognition and metabolism of hemicellulose and pectin in C. cellulovorans.
Collapse
|
15
|
Sekar K, Tyo KE. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metab Eng 2015; 28:180-189. [DOI: 10.1016/j.ymben.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
16
|
Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J Bacteriol 2014; 196:3472-81. [PMID: 25049090 DOI: 10.1128/jb.01965-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains.
Collapse
|
17
|
Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS One 2013; 8:e84398. [PMID: 24391951 PMCID: PMC3877293 DOI: 10.1371/journal.pone.0084398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Protein families might evolve paralogous functions on their common tertiary scaffold in two ways. First, the locations of functionally-important sites might be "hard-wired" into the structure, with novel functions evolved by altering the amino acid (e.g. Ala vs Ser) at these positions. Alternatively, the tertiary scaffold might be adaptable, accommodating a unique set of functionally important sites for each paralogous function. To discriminate between these possibilities, we compared the set of functionally important sites in the six largest paralogous subfamilies of the LacI/GalR transcription repressor family. LacI/GalR paralogs share a common tertiary structure, but have low sequence identity (≤ 30%), and regulate a variety of metabolic processes. Functionally important positions were identified by conservation and co-evolutionary sequence analyses. Results showed that conserved positions use a mixture of the "hard-wired" and "accommodating" scaffold frameworks, but that the co-evolution networks were highly dissimilar between any pair of subfamilies. Therefore, the tertiary structure can accommodate multiple networks of functionally important positions. This possibility should be included when designing and interpreting sequence analyses of other protein families. Software implementing conservation and co-evolution analyses is available at https://sourceforge.net/projects/coevolutils/.
Collapse
Affiliation(s)
- Daniel J. Parente
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact 2013; 12:103. [PMID: 24209782 PMCID: PMC3831814 DOI: 10.1186/1475-2859-12-103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Whole-cell redox biocatalysis has been intensively explored for the production of valuable compounds because excellent selectivity is routinely achieved. Although the cellular cofactor level, redox state and the corresponding enzymatic activity are expected to have major effects on the performance of the biocatalysts, our ability remains limited to predict the outcome upon variation of those factors as well as the relationship among them. Results In order to investigate the effects of cofactor availability on whole-cell redox biocatalysis, we devised recombinant Escherichia coli strains for the production of dihydroxyacetone (DHA) catalyzed by the NAD+-dependent glycerol dehydrogenase (GldA). In this model system, a water-forming NAD+ oxidase (NOX) and a NAD+ transporter (NTT4) were also co-expressed for cofactor regeneration and extracellular NAD+ uptake, respectively. We found that cellular cofactor level, NAD+/NADH ratio and NOX activity were not only strain-dependent, but also growth condition-dependent, leading to significant differences in specific DHA titer among different whole-cell biocatalysts. The host E. coli DH5α had the highest DHA specific titer of 0.81 g/gDCW with the highest NAD+/NADH ratio of 6.7 and NOX activity of 3900 U. The biocatalyst had a higher activity when induced with IPTG at 37°C for 8 h compared with those at 30°C for 8 h and 18 h. When cells were transformed with the ntt4 gene, feeding NAD+ during the cell culture stage increased cellular NAD(H) level by 1.44 fold and DHA specific titer by 1.58 fold to 2.13 g/gDCW. Supplementing NAD+ during the biotransformation stage was also beneficial to cellular NAD(H) level and DHA production, and the highest DHA productivity reached 0.76 g/gDCW/h. Cellular NAD(H) level, NAD+/NADH ratio, and NOX and GldA activity dropped over time during the biotransformation process. Conclusions High NAD+/NADH ratio driving by NOX was very important for DHA production. Once cofactor was efficiently cycled, high cellular NAD(H) level was also beneficial for whole-cell redox biocatalysis. Our results indicated that NAD+ transporter could be applied to manipulate redox cofactor level for biocatalysis. Moreover, we suggested that genetically designed redox transformation should be carefully profiled for further optimizing whole-cell biocatalysis.
Collapse
|
19
|
Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keleş S, Landick R, Kiley PJ. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 2013; 9:e1003565. [PMID: 23818864 PMCID: PMC3688515 DOI: 10.1371/journal.pgen.1003565] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/29/2013] [Indexed: 01/05/2023] Open
Abstract
FNR is a well-studied global regulator of anaerobiosis, which is widely conserved across bacteria. Despite the importance of FNR and anaerobiosis in microbial lifestyles, the factors that influence its function on a genome-wide scale are poorly understood. Here, we report a functional genomic analysis of FNR action. We find that FNR occupancy at many target sites is strongly influenced by nucleoid-associated proteins (NAPs) that restrict access to many FNR binding sites. At a genome-wide level, only a subset of predicted FNR binding sites were bound under anaerobic fermentative conditions and many appeared to be masked by the NAPs H-NS, IHF and Fis. Similar assays in cells lacking H-NS and its paralog StpA showed increased FNR occupancy at sites bound by H-NS in WT strains, indicating that large regions of the genome are not readily accessible for FNR binding. Genome accessibility may also explain our finding that genome-wide FNR occupancy did not correlate with the match to consensus at binding sites, suggesting that significant variation in ChIP signal was attributable to cross-linking or immunoprecipitation efficiency rather than differences in binding affinities for FNR sites. Correlation of FNR ChIP-seq peaks with transcriptomic data showed that less than half of the FNR-regulated operons could be attributed to direct FNR binding. Conversely, FNR bound some promoters without regulating expression presumably requiring changes in activity of condition-specific transcription factors. Such combinatorial regulation may allow Escherichia coli to respond rapidly to environmental changes and confer an ecological advantage in the anaerobic but nutrient-fluctuating environment of the mammalian gut. Regulation of gene expression by transcription factors (TFs) is key to adaptation to environmental changes. Our comprehensive, genome-scale analysis of a prototypical global TF, the anaerobic regulator FNR from Escherichia coli, leads to several novel and unanticipated insights into the influences on FNR binding genome-wide and the complex structure of bacterial regulons. We found that binding of NAPs restricts FNR binding at a subset of sites, suggesting that the bacterial genome is not freely accessible for FNR binding. Our finding that less than half of the predicted FNR binding sites were occupied in vivo further challenges the utility of using bioinformatic searches alone to predict regulon structure, reinforcing the need for experimental determination of TF binding. By correlating the occupancy data with transcriptomic data, we confirm that FNR serves as a global signal of anaerobiosis but expression of some operons in the FNR regulon require other regulators sensitive to alternative environmental stimuli. Thus, FNR binding and regulation appear to depend on both the nucleoprotein structure of the chromosome and on combinatorial binding of FNR with other regulators. Both of these phenomena are typical of TF binding in eukaryotes; our results establish that they are also features of bacterial TF binding.
Collapse
Affiliation(s)
- Kevin S. Myers
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Huihuang Yan
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dongjun Chung
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kun Liang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Frances Tran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RL); (PJK)
| |
Collapse
|
20
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
21
|
Lin HH, Lin CH, Hwang SM, Tseng CP. High growth rate downregulates fumA mRNA transcription but is dramatically compensated by its mRNA stability in Escherichia coli. Curr Microbiol 2012; 64:412-7. [PMID: 22302452 DOI: 10.1007/s00284-012-0087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/09/2012] [Indexed: 11/29/2022]
Abstract
Little is known about the association among the transcription, post-transcription, and protein production of the fumA gene. This study demonstrates that increasing growth rate (k) from 0.24/h to 0.96/h causes a marked eightfold reduction in fumA transcription as assessed using the β-galactosidase activity from fumA promoter fused with a lacZ reporter. It was further confirmed using Northern blot analysis. Most interestingly, the FumA protein levels remained unchanged over the growth rate, as indicated by Western blot analysis. Therefore, whether the reduced fumA mRNA expression under the high growth rate can be overcome by increasing the stability of the fumA mRNA was tested. The half-life of fumA mRNA was established to significantly increase by fivefold when the growth rate was increased to 0.96/h. This finding suggests that the cells could turn down the expression of fumA mRNA because of increased stability of its mRNA under the high growth rate. This notion indicates that mRNA stability plays an essential role in maintaining a critical cellular level of a given protein when the mRNA transcript is downregulated by a metabolic event.
Collapse
Affiliation(s)
- Hsiao-Hsien Lin
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
| | | | | | | |
Collapse
|
22
|
Chen YP, Lin HH, Yang CD, Huang SH, Tseng CP. Regulatory role of cAMP receptor protein over Escherichia coli fumarase genes. J Microbiol 2012; 50:426-33. [PMID: 22752906 DOI: 10.1007/s12275-012-1542-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
Escherichia coli expresses three fumarase genes, namely, fumA, fumB, and fumC. In the present study, catabolite repression was observed in the fumA-lacZ and fumC-lacZ fusion strains, but not in the fumB-lacZ fusion strain. The Crp-binding sites in fumA and fumC were identified using an electrophoretic mobility shift assay and footprint analysis. However, the electrophoretic mobility shift assay did not detect band shifts in fumB. Fnr and ArcA serve as transcription regulators of fumarase gene expression. In relation to this, different mutants, including Δcya, Δcrp, Δfnr, and ΔarcA, were used to explore the regulatory role of Crp over fumA and fumC. The results show that Crp is an activator of fumA and fumC gene expression under various oxygen conditions and growth rates. ArcA was identified as the dominant repressor, with the major repression occurring at 0-4% oxygen. In addition, Fnr was confirmed as a repressor of fumC for the first time. This study elucidates the effects of Crp on fumarase gene expression.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan
| | | | | | | | | |
Collapse
|
23
|
The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J Bacteriol 2012; 194:3377-85. [PMID: 22544275 DOI: 10.1128/jb.06379-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Entner-Doudoroff (ED) pathway has recently been shown to play an important role in sugar catabolism for many organisms although very little information is available on the functionality of this pathway in Vibrio cholerae, the causative agent of cholera. In this study, activation of the genes edd and eda, encoding 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase, was used as a marker of a functional ED pathway in V. cholerae. Transcriptional activation analyses and gene silencing experiments with cells grown in sugar-supplemented M9 medium demonstrated that the ED pathway is functional in V. cholerae and is obligatory for gluconate catabolism. Importantly, selective activation of the ED pathway led to concurrent elevation of transcripts of prime virulence genes (ctxA and tcpA) and their regulator (toxT). Further, lowering of these transcript levels and cholera toxin production in vitro by an ED pathway-defective mutant (strain N16961 with a Δedd mutation [Δedd(N16961) strain]) suggested the importance of this pathway in regulating V. cholerae virulence. The in vivo relevance of these data was established as the mutant failed to colonize in suckling mice intestine or to induce fluid accumulation in ligated rabbit ileal loops. Activation of the ED pathway in V. cholerae was shown to inhibit biofilm formation in vitro that could be reversed in the mutant. As further support for these results, comparative transcriptome analysis with cells grown in the presence of glucose or gluconate revealed that a functional ED pathway led to activation of a subset of previously reported in vivo expressed genes. All of these results suggest the importance of the ED pathway in V. cholerae pathogenesis.
Collapse
|
24
|
Negative effect of glucose on ompA mRNA stability: a potential role of cyclic AMP in the repression of hfq in Escherichia coli. J Bacteriol 2011; 193:5833-40. [PMID: 21840983 DOI: 10.1128/jb.05359-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose is a carbon source that is capable of modulating the level of cyclic AMP (cAMP)-regulated genes. In the present study, we found that the stability of ompA mRNA was reduced in Escherichia coli when glucose (40 mM) was present in Luria-Bertani (LB) medium. This effect was associated with a low level of cAMP induced by the glucose. The results were confirmed with an adenylyl cyclase mutant with low levels of cAMP that are not modulated by glucose. Northern blot and Western blot analyses revealed that the host factor I (Hfq) (both mRNA and protein) levels were downregulated in the presence of cAMP. Furthermore, we showed that a complex of cAMP receptor protein (CRP) and cAMP binds to a specific P3(hfq) promoter region of hfq and regulates hfq expression. The regulation of the hfq gene was confirmed in vivo using an hfq-deficient mutant transformed with an exogenous hfq gene containing the promoter. These results demonstrated that expression of hfq was repressed by the CRP-cAMP complex. The presence of glucose resulted in increased Hfq protein levels, which decreased ompA mRNA stability. An additional experiment showed that cAMP also increased the stability of fur mRNA. Taken together, these results suggested that the repression of Hfq by cAMP may contribute to the stability of other mRNA in E. coli.
Collapse
|
25
|
CRP binding and transcription activation at CRP-S sites. J Mol Biol 2008; 383:313-23. [PMID: 18761017 DOI: 10.1016/j.jmb.2008.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 12/27/2022]
Abstract
In Haemophilus influenzae, as in Escherichia coli, the cAMP receptor protein (CRP) activates transcription from hundreds of promoters by binding symmetrical DNA sites with the consensus half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11). We have previously identified 13 H. influenzae CRP sites that differ from canonical (CRP-N) sites in the following features: (1) Both half-sites of these noncanonical (CRP-S) sites have C(6) instead of T(6), although they otherwise have an unusually high level of identity with the binding site consensus. (2) Only promoters with CRP-S sites require both the CRP and Sxy proteins for transcription activation. To study the functional significance of CRP-S site sequences, we purified H. influenzae (Hi)CRP and compared its DNA binding properties to those of the well-characterized E. coli (Ec)CRP. All EcCRP residues that contact DNA are conserved in HiCRP, and both proteins demonstrated a similar high affinity for the CRP-N consensus sequence. However, whereas EcCRP bound specifically to CRP-S sites in vitro, HiCRP did not. By systematically substituting base pairs in native promoters and in the CRP-N consensus sequence, we confirmed that HiCRP is highly specific for the perfect core sequence T(4)G(5)T(6)G(7)A(8) and is more selective than EcCRP at other positions in CRP sites. Even though converting C(6)-->T(6) greatly enhanced HiCRP binding to a CRP-S site, this had the unexpected effect of nearly abolishing promoter activity. A+T-rich sequences upstream of CRP-S sites were also found to be required for promoter activation, raising the possibility that Sxy binds these A+T sequences to simultaneously enable CRP-DNA binding and assist in RNA polymerase recruitment.
Collapse
|
26
|
Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli. J Bacteriol 2008; 190:2997-3005. [PMID: 18263722 DOI: 10.1128/jb.02013-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lldPRD operon of Escherichia coli, involved in L-lactate metabolism, is induced by growth in this compound. We experimentally identified that this system is transcribed from a single promoter with an initiation site located 110 nucleotides upstream of the ATG start codon. On the basis of computational data, it had been proposed that LldR and its homologue PdhR act as regulators of the lldPRD operon. Nevertheless, no experimental data on the function of these regulators have been reported so far. Here we show that induction of an lldP-lacZ fusion by L-lactate is lost in an Delta lldR mutant, indicating the role of LldR in this induction. Expression analysis of this construct in a pdhR mutant ruled out the participation of PdhR in the control of lldPRD. Gel shift experiments showed that LldR binds to two operator sites, O1 (positions -105 to -89) and O2 (positions +22 to +38), with O1 being filled at a lower concentration of LldR. L-Lactate induced a conformational change in LldR that did not modify its DNA binding activity. Mutations in O1 and O2 enhanced the basal transcriptional level. However, only mutations in O1 abolished induction by L-lactate. Mutants with a change in helical phasing between O1 and O2 behaved like O2 mutants. These results were consistent with the hypothesis that LldR has a dual role, acting as a repressor or an activator of lldPRD. We propose that in the absence of L-lactate, LldR binds to both O1 and O2, probably leading to DNA looping and the repression of transcription. Binding of L-lactate to LldR promotes a conformational change that may disrupt the DNA loop, allowing the formation of the transcription open complex.
Collapse
|
28
|
A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 2008; 190:2331-9. [PMID: 18245293 DOI: 10.1128/jb.01726-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism.
Collapse
|
29
|
Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 2008; 67:305-22. [PMID: 18047570 PMCID: PMC2230225 DOI: 10.1111/j.1365-2958.2007.06020.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2007] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is a Gram-positive soil bacterium that prefers the simultaneous catabolism of different carbon sources rather than their sequential utilization. This type of metabolism requires an adaptation of the utilization rates to the overall metabolic capacity. Here we show how two functionally redundant GntR-type transcriptional regulators, designated GntR1 and GntR2, co-ordinately regulate gluconate catabolism and glucose uptake. GntR1 and GntR2 strongly repress the genes encoding gluconate permease (gntP), gluconate kinase (gntK), and 6-phosphogluconate dehydrogenase (gnd) and weakly the pentose phosphate pathway genes organized in the tkt-tal-zwf-opcA-devB cluster. In contrast, ptsG encoding the EII(Glc) permease of the glucose phosphotransferase system (PTS) is activated by GntR1 and GntR2. Gluconate and glucono-delta-lactone interfere with binding of GntR1 and GntR2 to their target promoters, leading to a derepression of the genes involved in gluconate catabolism and reduced ptsG expression. To our knowledge, this is the first example for gluconate-dependent transcriptional control of PTS genes. A mutant lacking both gntR1 and gntR2 shows a 60% lower glucose uptake rate and growth rate than the wild type when cultivated on glucose as sole carbon source. This growth defect can be complemented by plasmid-encoded GntR1 or GntR2.
Collapse
Affiliation(s)
- Julia Frunzke
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | - Verena Engels
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | | | - Cornelia Gätgens
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | - Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| |
Collapse
|
30
|
Wang IN, Dykhuizen DE. VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00607.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Cameron ADS, Redfield RJ. Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma-proteobacteria. Nucleic Acids Res 2006; 34:6001-14. [PMID: 17068078 PMCID: PMC1635313 DOI: 10.1093/nar/gkl734] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli's cAMP receptor protein (CRP), the archetypal bacterial transcription factor, regulates over a hundred promoters by binding 22 bp symmetrical sites with the consensus core half-site TGTGA. However, Haemophilus influenzae has two types of CRP sites, one like E.coli's and one with the core sequence TGCGA that regulates genes required for DNA uptake (natural competence). Only the latter 'CRP-S' sites require both CRP and the coregulator Sxy for activation. To our knowledge, the TGTGA and TGCGA motifs are the first example of one transcription factor having two distinct binding-site motifs. Here we show that CRP-S promoters are widespread in the gamma-proteobacteria and demonstrate their Sxy-dependence in E.coli. Orthologs of most H.influenzae CRP-S-regulated genes are ubiquitous in the five best-studied gamma-proteobacteria families, Enterobacteriaceae, Pasteurellaceae, Pseudomonadaceae, Vibrionaceae and Xanthomonadaceae. Phylogenetic footprinting identified CRP-S sites in the promoter regions of the Enterobacteriaceae, Pasteurellaceae and Vibrionaceae orthologs, and canonical CRP sites in orthologs of genes known to be Sxy-independent in H.influenzae. Bandshift experiments confirmed that E.coli CRP-S sequences are low affinity binding sites for CRP, and mRNA analysis showed that they require CRP, cAMP (CRP's allosteric effector) and Sxy for gene induction. This work suggests not only that the gamma-proteobacteria share a common DNA uptake mechanism, but also that, in the three best studied families, their competence regulons share both CRP-S specificity and Sxy dependence.
Collapse
Affiliation(s)
- Andrew D. S. Cameron
- Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| | - Rosemary J. Redfield
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- To whom correspondence should be addressed at Life Sciences Centre (Zoology), 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3. Tel: +604 822 3744; Fax: +604 827 4135;
| |
Collapse
|
32
|
Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H. Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol 2006; 188:4158-62. [PMID: 16707710 PMCID: PMC1482903 DOI: 10.1128/jb.00006-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel regulatory gene, trh, which is involved in hrp gene expression, is identified in the plant pathogen Xanthomonas oryzae pv. oryzae. In the trh mutant, expression of HrpG, which is a key regulator for hrp gene expression, is reduced both under the in vitro hrp-inducing condition and in planta.
Collapse
Affiliation(s)
- Seiji Tsuge
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 2006; 188:409-23. [PMID: 16385030 PMCID: PMC1347311 DOI: 10.1128/jb.188.2.409-423.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Collapse
Affiliation(s)
- Michal Letek
- Area de Microbiología, Dpto. Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Fineran PC, Everson L, Slater H, Salmond GPC. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology (Reading) 2005; 151:3833-3845. [PMID: 16339930 DOI: 10.1099/mic.0.28251-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biosynthesis of the red, tripyrrole antibiotic prodigiosin (Pig) bySerratiasp. ATCC 39006 (39006) is controlled by a complex regulatory network involving anN-acyl homoserine lactone (N-AHL) quorum-sensing system, at least two separate two-component signal transduction systems and a multitude of other regulators. In this study, a new transcriptional activator, PigT, and a physiological cue (gluconate), which are involved in an independent pathway controlling Pig biosynthesis, have been characterized. PigT, a GntR homologue, activates transcription of thepigA–Obiosynthetic operon in the absence of gluconate. However, addition of gluconate to the growth medium of 39006 repressed transcription ofpigA–O, via a PigT-dependent mechanism, resulting in a decrease in Pig production. Finally, expression of thepigTtranscript was shown to be maximal in exponential phase, preceding the onset of Pig production. This work expands our understanding of both the physiological and genetic factors that impinge on the biosynthesis of the secondary metabolite Pig in 39006.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lee Everson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Holly Slater
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
35
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Wall ME, Dunlop MJ, Hlavacek WS. Multiple functions of a feed-forward-loop gene circuit. J Mol Biol 2005; 349:501-14. [PMID: 15890368 DOI: 10.1016/j.jmb.2005.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/06/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The feed-forward-loop (FFL), a network motif in genetic regulatory networks, involves two transcription factors (TFs): one regulates the expression of the second, and both TFs regulate the expression of an effector gene. Analysis of FFL design principles has been initiated, but the functional significance of the FFL is still unclear. In theoretical studies so far, the TFs are assumed to interact with different signals, which is common. However, we have found examples of FFLs in Escherichia coli in which both TFs interact with the same signal. These examples belong to the type 2 incoherent class of FFLs, in which each TF acts exclusively as a repressor of transcription. Here, we analyze mathematical models of this class of circuits, examining a comprehensive array of subclasses that differ in the way a signal modulates the activities of the TFs. Through parameter variation, we characterize statistically how input/output (I/O) behavior and temporal responsiveness are predicted to depend on the wiring of signal interactions in a circuit. We find that circuits can exhibit any of 13 qualitatively distinct steady-state I/O patterns, including inducible and repressible patterns. Some subclasses exhibit as many as six patterns. Transient pulses are also possible, and the response of a circuit to a signal may be either faster or slower than that of a gene circuit in which there is only one TF. Our results provide a catalog of functions for a class of FFL circuits, whose subclasses have different breadths of possible behaviors and different typical behaviors.
Collapse
Affiliation(s)
- Michael E Wall
- Computer and Computational Sciences Division, Mail Stop B256, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | |
Collapse
|
37
|
Murray EL, Conway T. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J Bacteriol 2005; 187:991-1000. [PMID: 15659677 PMCID: PMC545716 DOI: 10.1128/jb.187.3.991-1000.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli eda gene, which encodes the Entner-Doudoroff aldolase, is central to the catabolism of several sugar acids. Here, we show that Eda synthesis is induced by growth on gluconate, glucuronate, or methyl-beta-D-glucuronide; phosphate limitation; and carbon starvation. Transcription of eda initiates from three promoters, designated P1, P2, and P4, each of which is responsible for induction under different growth conditions. P1 controls eda induction on gluconate and is regulated by GntR. P2 controls eda induction on glucuronate and galacturonate and is regulated by KdgR. P4 is active under conditions of phosphate starvation and is directly controlled by PhoB. In addition, CsrA activates Eda synthesis, apparently by an indirect mechanism that may be involved in the modest changes in expression level that are associated with carbon starvation. The complex regulation of eda is discussed with respect to its several physiological roles, which apparently accommodate not only sugar acid catabolism but also detoxification of metabolites that could accumulate during starvation-induced stress.
Collapse
Affiliation(s)
- Elizabeth L Murray
- Comprehensive Cancer Center and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
38
|
Elshafei AM, Elsayed MA, Abdel-Fatah OM, Ali NH, Mohamed LA. Some properties of two aldolases in extracts ofAspergillus oryzae. J Basic Microbiol 2005; 45:31-40. [PMID: 15678561 DOI: 10.1002/jobm.200410440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fructose 1,6-diphosphate (FDP) aldolase and 2-keto-3-deoxy-D-gluconate (KDG) aldolase the two key enzymes of Embden-Meyerhof-Parnas (EMP) and the nonphosphorolytic Entner-Doudoroff (ED) pathways respectively, were identified in cell-free extracts of four Aspergillus oryzae strains grown on D-glucose as sole source of carbon. A. oryzae NRRL 3435 gave the highest enzymatic activity for the two enzymes and selected for further studies. Studies on the properties of the two key enzymes indicated that the optimum conditions for the activities of FDP aldolase and KDG aldolases occurred at pH 8.5, 45 degrees C and pH 8.0, 55 degrees C, respectively. Tris-acetate buffer and phosphate buffer showed the highest enzymatic activity for these two enzymes respectively. KDG aldolase was stable at 55 degrees C for 60 minutes however FDP aldolase was found to be less stable above 45 degrees C. On the other hand the two aldolases showed a high degree of stability towards frequent freezing and thawing. Dialysis of the extracts caused a decrease in the enzymatic activity of KDG aldolase, and an increase in FDP aldolase activity. The addition of ethylene diamine tetraacetate to the crude extracts caused an inhibition of KDG aldolase, whileas FDP aldolase was not affected. Addition of MnCl(2), CoSO(4), MgCl(2) and ZnSO(4) to the dialyzed extracts increased the activity of KDG aldolase by 67%, 54%, 61% and 37%, respectively. On the other hand the addition of some metal salts caused an inhibition of FDP aldolase. The results obtained indicate the absence of evidence for the involvement of sulfhydryl groups in the catalytic sites of the two aldolases.
Collapse
Affiliation(s)
- Ali M Elshafei
- Department of Microbial Chemistry, National Research Centre, El-Tahrir Street, Dokki, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
39
|
Bates Utz C, Nguyen AB, Smalley DJ, Anderson AB, Conway T. GntP is the Escherichia coli Fructuronic acid transporter and belongs to the UxuR regulon. J Bacteriol 2004; 186:7690-6. [PMID: 15516583 PMCID: PMC524916 DOI: 10.1128/jb.186.22.7690-7696.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli has four gluconate transporters, GntP, GntU, GntT, and IdnT, which are members of the major facilitator superfamily. The physiological function of GntP was previously unknown and is the subject of this study. GntP is not induced by gluconate, and despite being located adjacent to genes involved in glucuronate catabolism, gntP does not encode a glucuronate transporter. Here we identify gntP as the gene which encodes the fructuronate transporter. We show that gntP is induced by fructuronate and is a new member of the UxuR regulon: gntP is derepressed in an uxuR strain, UxuR binds in vitro specifically to an operator site that overlaps the gntP promoter, and UxuR binding is eliminated by fructuronate. Transcription of gntP requires activation by cyclic AMP (cAMP)-cAMP receptor protein. A gntP mutant cannot grow on fructuronate but grows normally on glucuronate and gluconate. Thus, the UxuR regulon is a module of sugar acid catabolism whose physiological role is for growth on fructuronate. Glucuronate, because it proceeds through a fructuronate intermediate, must induce the UxuR regulon and must also induce the ExuR regulon, which encodes the glucuronate transporter, ExuT, and the first step in its catabolism, UxaC. Thus, hexuronate catabolism in E. coli requires both the ExuR and UxuR regulons, while fructuronate catabolism requires only the UxuR regulon.
Collapse
|
40
|
Metzner M, Germer J, Hengge R. Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 2004; 51:799-811. [PMID: 14731280 DOI: 10.1046/j.1365-2958.2003.03867.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The csiD-ygaF-gabDTP region in the Escherichia coli genome represents a cluster of sigma S-controlled genes. Here, we investigated promoter structures, sigma factor dependencies, potential co-regulation and environmental regulatory patterns for all of these genes. We find that this region constitutes a complex operon with expression being controlled by three differentially regulated promoters: (i) csiDp, which affects the expression of all five genes, is cAMP-CRP/sigma S-dependent and activated exclusively upon carbon starvation and stationary phase; (ii) gabDp1, which is sigma S-dependent and exhibits multiple stress induction like sigma S itself; and (iii) gabDp2[previously suggested by Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002) J. Bacteriol. 184: 6976-6986], which appears to be Nac/sigma 70-controlled and to respond to poor nitrogen sources. In addition, we identify a novel repressor, CsiR, which modulates csiDp activity in a temporal manner during early stationary phase. Finally, we propose a physiological role for sigma S-controlled GabT/D-mediated gamma-aminobutyrate (GABA) catabolism and glutamate accumulation in general stress adaptation. This physiological role is reflected by the activation of the operon-internal gabDp1 promoter under the different conditions that also induce sigma S, which include shifts to acidic pH or high osmolarity as well as starvation or stationary phase.
Collapse
Affiliation(s)
- Martin Metzner
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
41
|
Bausch C, Ramsey M, Conway T. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 2004; 186:1388-97. [PMID: 14973046 PMCID: PMC344402 DOI: 10.1128/jb.186.5.1388-1397.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic organization of the idn genes that encode the pathway for L-idonate catabolism was characterized. The monocistronic idnK gene is transcribed divergently from the idnDOTR genes, which were shown to form an operon. The 215-bp regulatory region between the idnK and idnD genes contains promoters in opposite orientation with transcription start sites that mapped to positions -26 and -29 with respect to the start codons. The regulatory region also contains a single putative IdnR/GntR binding site centered between the two promoters, a CRP binding site upstream of idnD, and an UP element upstream of idnK. The genes of the L-idonate pathway were shown to be under catabolite repression control. Analysis of idnD- and idnK-lacZ fusions in a nonpolar idnD mutant that is unable to interconvert L-idonate and 5-ketogluconate indicated that either compound could induce the pathway. The L-idonate pathway was first characterized as a subsidiary pathway for D-gluconate catabolism (GntII), which is induced by D-gluconate in a GntI (primary gluconate system) mutant. Here we showed that the idnK and idnD operons are induced by D-gluconate in a GntI system mutant, presumably by endogenous formation of 5-ketogluconate from D-gluconate. Thus, the regulation of the GntII system is appropriate for this pathway, which is primarily involved in L-idonate catabolism; the GntII system can be induced by D-gluconate under conditions that block the GntI system.
Collapse
Affiliation(s)
- Christoph Bausch
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | | | | |
Collapse
|
42
|
Park SJ, Park JP, Lee SY, Doi Y. Enrichment of specific monomer in medium-chain-length poly(3-hydroxyalkanoates) by amplification of fadD and fadE genes in recombinant Escherichia coli. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00093-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Tsunedomi R, Izu H, Kawai T, Matsushita K, Ferenci T, Yamada M. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. J Bacteriol 2003; 185:1783-95. [PMID: 12618441 PMCID: PMC150117 DOI: 10.1128/jb.185.6.1783-1795.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconate is one of the preferred carbon sources of Escherichia coli, and two sets of gnt genes (encoding the GntI and GntII systems) are involved in its transport and metabolism. GntR represses the GntI genes gntKU and gntT, whereas GntH was previously suggested to be an activator for the GntII genes gntV and idnDO-gntWH. The helix-turn-helix residues of the two regulators GntR and GntH exhibit extensive homologies. The similarity between the two regulators prompted analysis of the cross-regulation of the GntI genes by GntH. Repression of gntKU and gntT by GntH, as well as GntR, was indeed observed using transcriptional fusions and RNA analysis. High GntH expression, from cloned gntH or induced through 5-ketogluconate, was required to observe repression of GntI genes. Two GntR-binding elements were identified in the promoter-operator region of gntKU and were also shown to be the target sites of GntH by mutational analysis. However, the GntI genes were not induced by gluconate in the presence of enhanced amounts of GntH, whereas repression by GntR was relieved by gluconate. The repression of GntI genes by GntH is thus unusual in that it is not relieved by the availability of substrate. These results led us to propose that GntH activates GntII and represses the GntI genes in the presence of metabolites derived from gluconate, allowing the organism to switch from the GntI to the GntII system. This cross-regulation may explain the progressive changes in gnt gene expression along with phases of cell growth in the presence of gluconate.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Park SJ, Park JP, Lee SY. Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett 2002; 214:217-22. [PMID: 12351234 DOI: 10.1111/j.1574-6968.2002.tb11350.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Escherichia coli fabG(Ec) gene and the Pseudomonas aeruginosa rhlG(Pa) gene, which encode 3-ketoacyl-acyl carrier protein reductase, were expressed in E. coli W3110 and its fadA mutant strain WA101 to examine their roles in medium-chain-length (MCL) polyhydroxyalkanoate (PHA) biosynthesis from fatty acids. When one of these 3-ketoacyl-acyl carrier protein reductase genes was co-expressed with the Pseudomonas sp. 61-3 PHA synthase gene (phaC2(Ps)) in E. coli W3110, MCL-PHA composed mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate was synthesized from sodium decanoate. When the fabG(Ec) gene and the phaC2(Ps) gene were co-expressed in the fadA mutant E. coli strain WA101, MCL-PHA rich in 3-hydroxydecanoate monomer up to 93 mol% was accumulated from sodium decanoate. This was possible by efficiently redirecting 3-ketoacyl-coenzymes A from the beta-oxidation pathway to the PHA biosynthesis pathway without losing two carbon units, the strategy of which can be extended for the production of MCL-PHAs rich in other specific monomers.
Collapse
Affiliation(s)
- Si Jae Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering and BioProcess Engineering Research Center, Daejeon, South Korea
| | | | | |
Collapse
|
45
|
van Nimwegen E, Zavolan M, Rajewsky N, Siggia ED. Probabilistic clustering of sequences: inferring new bacterial regulons by comparative genomics. Proc Natl Acad Sci U S A 2002; 99:7323-8. [PMID: 12032281 PMCID: PMC124229 DOI: 10.1073/pnas.112690399] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide comparisons between enteric bacteria yield large sets of conserved putative regulatory sites on a gene-by-gene basis that need to be clustered into regulons. Using the assumption that regulatory sites can be represented as samples from weight matrices (WMs), we derive a unique probability distribution for assignments of sites into clusters. Our algorithm, "PROCSE" (probabilistic clustering of sequences), uses Monte Carlo sampling of this distribution to partition and align thousands of short DNA sequences into clusters. The algorithm internally determines the number of clusters from the data and assigns significance to the resulting clusters. We place theoretical limits on the ability of any algorithm to correctly cluster sequences drawn from WMs when these WMs are unknown. Our analysis suggests that the set of all putative sites for a single genome (e.g., Escherichia coli) is largely inadequate for clustering. When sites from different genomes are combined and all the homologous sites from the various species are used as a block, clustering becomes feasible. We predict 50-100 new regulons as well as many new members of existing regulons, potentially doubling the number of known regulatory sites in E. coli.
Collapse
Affiliation(s)
- Erik van Nimwegen
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
46
|
Istúriz T, Díaz-Benjumea R, Rodriguez N, Porco A. Involvement of gntS in the control of GntI, the main system for gluconate metabolism in Escherichia coli. J Basic Microbiol 2002; 41:75-83. [PMID: 11441462 DOI: 10.1002/1521-4028(200105)41:2<75::aid-jobm75>3.0.co;2-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The initial steps of gluconate metabolism in E. coli, transport and phosphorylation, occur through duplicate activities. These activities have been included in two systems designated as GntI (main) and GntII (subsidiary), encoded by differently regulated operons located at the 76.4-77 and 95.3-96.9 regions on the map respectively. Despite recent molecular advances related to genetics and physiology of these systems, there is no information about the coordination of their expression when E. coli grows on gluconate. Under these conditions, the subsidiary gluconokinase (gntV gene, min 96.8) as well as the GntI activities are expressed in inducible form. Therefore it was of interest to find out if GntS, the positive regulator of gntV has a similar effect on GntI activities expression. Our results agree with this hypothesis. GntS, in addition to its regulatory action on the gntV gene, seems to assist, direct or indirectly, the expression of the GntI activities. A gntS E. coli mutant does not grow on gluconate but spontaneously pseudoreverts to a gluconate growing phenotype at high rate per cell generation when cultivated in rich media with or without gluconate or mineral medium containing any other suitable carbon source. In the pseudorevertants, the thermosensitive gluconokinase remains repressed while the GntI activities are inducibly expressed. At present, the location and nature of the gntS suppressor mutation are not known. Phage P1Kc mediated transductions have ruled out that it alters the gntT gene. This is the first report on GntI activities alteration due to a lesion located out of the bioH-asd region.
Collapse
Affiliation(s)
- T Istúriz
- Departamento de Biología Celular, Centro de Biología Celular e Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Apartado postal 47557, Caracas 1041-A, Venezuela
| | | | | | | |
Collapse
|
47
|
Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414:454-7. [PMID: 11719807 DOI: 10.1038/35106587] [Citation(s) in RCA: 894] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, several gene families encode peptides with antibacterial activity, such as the beta-defensins and cathelicidins. These peptides are expressed on epithelial surfaces and in neutrophils, and have been proposed to provide a first line of defence against infection by acting as 'natural antibiotics'. The protective effect of antimicrobial peptides is brought into question by observations that several of these peptides are easily inactivated and have diverse cellular effects that are distinct from antimicrobial activity demonstrated in vitro. To investigate the function of a specific antimicrobial peptide in a mouse model of cutaneous infection, we applied a combined mammalian and bacterial genetic approach to the cathelicidin antimicrobial gene family. The mature human (LL-37) and mouse (CRAMP) peptides are encoded by similar genes (CAMP and Cnlp, respectively), and have similar alpha-helical structures, spectra of antimicrobial activity and tissue distribution. Here we show that cathelicidins are an important native component of innate host defence in mice and provide protection against necrotic skin infection caused by Group A Streptococcus (GAS).
Collapse
Affiliation(s)
- V Nizet
- Department of Pediatrics, University of California, San Diego, California 92161, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang IN, Dykhuizen DE. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in Escherichia coli. Evolution 2001; 55:897-908. [PMID: 11430650 DOI: 10.1554/0014-3820(2001)055[0897:voeaaa]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twenty-four strains of Escherichia coli from the ECOR collection were characterized for growth rate in gluconate minimal salts medium and for Vmax and Km of the three enzymes (gluconokinase, 6-phosphogluconate dehydrogenase, and 6-phosphogluconate dehydratase) that form a branch point for the utilization of gluconate. A total of 11 characters--growth rate, three Vmax values, four Km values, and three Vmax/Km values--were determined for these 24 ECOR strains. Most of the characters were normally distributed. Statistical tests showed that growth rate is significantly less variable than enzyme activities. Also, analyses of variance showed significant differences among strains and among the extant five genetic groups of E. coli for the characters measured. A Mantel test showed that, for some characters, closely related strains shared similar character values. Two hypotheses regarding the relationships between growth rate and enzyme activity and between various enzyme activities were tested. None of the expected correlations between growth rate and enzyme activity or between enzyme activities was detected. The results were discussed in terms of metabolic control analysis and neutral theory.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
49
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|
50
|
Rodionov DA, Mironov AA, Rakhmaninova AB, Gelfand MS. Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol 2000; 38:673-83. [PMID: 11115104 DOI: 10.1046/j.1365-2958.2000.02115.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The comparative approach is a powerful tool for the analysis of gene regulation in bacterial genomes. It can be applied to the analysis of regulons that have been studied experimentally as well as that of regulons for which no known regulatory sites are available. It is assumed that the set of co-regulated genes and the regulatory signal itself are conserved in related genomes. Here, we use genomic comparisons to study the regulation of transport and utilization systems for sugar acids in gamma purple bacteria Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, Yersinia pestis, Erwinia chrysanthemi, Haemophilus influenzae and Vibrio cholerae. The variability of the operon structure and the location of the operator sites for the main transcription factors are demonstrated. The common metabolic map is combined with known and predicted regulatory interactions. It includes all known and predicted members of the GntR, UxuR/ExuR, KdgR, UidR and IdnR regulons. Moreover, most members of these regulons seem to be under catabolite repression mediated by CRP. The candidate UxuR/ExuR signal is proposed, the KdgR consensus is extended, and new operators for all transcription factors are identified in all studied genomes. Two new members of the KdgR regulon, a hypothetical ATP-dependent transport system OgtABCD and YjgK protein with unknown function, are detected. The former is likely to be the transport system for the products of pectin degradation, oligogalacturonides.
Collapse
Affiliation(s)
- D A Rodionov
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia.
| | | | | | | |
Collapse
|