1
|
Khojasteh SC, Argikar UA, Chatzopoulou M, Cheruzel L, Cho S, Dhaware D, Johnson KM, Kalgutkar AS, Liu J, Ma B, Maw H, Rowley JA, Seneviratne HK, Wang S. Biotransformation research advances - 2023 year in review. Drug Metab Rev 2024:1-33. [PMID: 38989688 DOI: 10.1080/03602532.2024.2370330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
This annual review marks the eighth in the series starting with Baillie et al. (2016) Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation. Its format is to highlight important aspects captured in synopsis followed by a commentary with relevant figure and references.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Maria Chatzopoulou
- Early Clinical Development and Translational Science, UCB Biopharma UK, Slough, UK
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | | | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, MD Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Hlaing Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Jessica A Rowley
- Early Clinical Development and Translational Science, UCB Biopharma UK, Slough, UK
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
London RE. The aminosalicylate - folate connection. Drug Metab Rev 2024; 56:80-96. [PMID: 38230664 PMCID: PMC11305456 DOI: 10.1080/03602532.2024.2303507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Two aminosalicylate isomers have been found to possess useful pharmacological behavior: p-aminosalicylate (PAS, 4AS) is an anti-tubercular agent that targets M. tuberculosis, and 5-aminosalicylate (5AS, mesalamine, mesalazine) is used in the treatment of ulcerative colitis (UC) and other inflammatory bowel diseases (IBD). PAS, a structural analog of pABA, is biosynthetically incorporated by bacterial dihydropteroate synthase (DHPS), ultimately yielding a dihydrofolate (DHF) analog containing an additional hydroxyl group in the pABA ring: 2'-hydroxy-7,8-dihydrofolate. It has been reported to perturb folate metabolism in M. tuberculosis, and to selectively target M. tuberculosis dihydrofolate reductase (mtDHFR). Studies of PAS metabolism are reviewed, and possible mechanisms for its mtDHFR inhibition are considered. Although 5AS is a more distant structural relative of pABA, multiple lines of evidence suggest a related role as a pABA antagonist that inhibits bacterial folate biosynthesis. Structural data support the likelihood that 5AS is recognized by the DHPS pABA binding site, and its effects probably range from blocking pABA binding to formation of a dead-end dihydropterin-5AS adduct. These studies suggest that mesalamine acts as a gut bacteria-directed antifolate, that selectively targets faster growing, more folate-dependent species.
Collapse
Affiliation(s)
- Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| |
Collapse
|
4
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
6
|
van de Meeberg MM, Verheij ER, Fidder HH, Bouma G, Huitema ADR, Oldenburg B. Potential of Mesalazine Therapeutic Drug Monitoring by Measuring Fecal Excretion in Patients With Ulcerative Colitis. Ther Drug Monit 2023; 45:668-675. [PMID: 36823707 DOI: 10.1097/ftd.0000000000001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Therapeutic drug monitoring of mesalazine (5-ASA) in patients with ulcerative colitis is unavailable. Mucosal 5-ASA concentrations are assumed to be higher during remission, but biopsy is not practical. Therefore, we investigated the feasibility of measuring mesalazine levels in feces. To explore the potential role of fecal mesalazine measurements in therapeutic drug monitoring, we compared the dry fecal concentration and daily fecal excretion of 5-ASA and its metabolite N-acetyl-5-ASA in patients with ulcerative colitis with active and quiescent disease. METHODS Adults with ulcerative colitis on oral mesalazine and scheduled for colonoscopy were eligible for inclusion in this cross-sectional study. Stool and urine samples were collected for 48 and 24 hours, respectively, and rectal biopsies were performed. (N-acetyl-)5-ASA was measured using mass spectrometry. Biochemically active disease was defined as a fecal calprotectin level above 100 mcg/g and endoscopically active disease as any activity following the endoscopic Mayo score (≥1). RESULTS Approximately 28 patients were included in the study. Daily fecal excretion of (N-acetyl-)5-ASA did not differ between patients with (n = 13) and without (n = 15) endoscopically active disease [median 572 mg/d versus 597 mg/d ( P = 0.86) for 5-ASA and 572 mg/d versus 554 mg/d ( P = 0.86) for N-acetyl-5-ASA]. The same applied to the fecal concentration [median 9.7 mcg/mg dry weight versus 10.3 ( P = 0.53) and 12.0 versus 9.9 ( P = 0.89)]. The results were comparable when the biochemical disease activity definition was used. The mucosal concentrations and urinary excretion of (N-acetyl-)5-ASA did not differentiate between quiescent and active activity. CONCLUSIONS Fecal (N-acetyl-)5-ASA measurements do not correlate with disease activity, which renders it an unsuitable tool for therapeutic drug monitoring of mesalazine.
Collapse
Affiliation(s)
- Maartje M van de Meeberg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Utrecht
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM Research Institute, Amsterdam
| | | | - Herma H Fidder
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM Research Institute, Amsterdam
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam ; and
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Utrecht
| |
Collapse
|
7
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
9
|
O’Reilly C, Mills S, Rea MC, Lavelle A, Ghosh S, Hill C, Ross RP. Interplay between inflammatory bowel disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. MICROBIOME RESEARCH REPORTS 2023; 2:35. [PMID: 37849974 PMCID: PMC7615213 DOI: 10.20517/mrr.2023.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut microbiome, and we present this information here. Many of these therapeutics are associated with alterations to gut microbiome composition and functionality, often driving it toward a "healthier profile" and preclinical studies have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.
Collapse
Affiliation(s)
- Catherine O’Reilly
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Mary C. Rea
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Colin Hill
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| |
Collapse
|
10
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Mehta RS, Mayers JR, Zhang Y, Bhosle A, Glasser NR, Nguyen LH, Ma W, Bae S, Branck T, Song K, Sebastian L, Pacheco JA, Seo HS, Clish C, Dhe-Paganon S, Ananthakrishnan AN, Franzosa EA, Balskus EP, Chan AT, Huttenhower C. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat Med 2023; 29:700-709. [PMID: 36823301 PMCID: PMC10928503 DOI: 10.1038/s41591-023-02217-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
For decades, variability in clinical efficacy of the widely used inflammatory bowel disease (IBD) drug 5-aminosalicylic acid (5-ASA) has been attributed, in part, to its acetylation and inactivation by gut microbes. Identification of the responsible microbes and enzyme(s), however, has proved elusive. To uncover the source of this metabolism, we developed a multi-omics workflow combining gut microbiome metagenomics, metatranscriptomics and metabolomics from the longitudinal IBDMDB cohort of 132 controls and patients with IBD. This associated 12 previously uncharacterized microbial acetyltransferases with 5-ASA inactivation, belonging to two protein superfamilies: thiolases and acyl-CoA N-acyltransferases. In vitro characterization of representatives from both families confirmed the ability of these enzymes to acetylate 5-ASA. A cross-sectional analysis within the discovery cohort and subsequent prospective validation within the independent SPARC IBD cohort (n = 208) found three of these microbial thiolases and one acyl-CoA N-acyltransferase to be epidemiologically associated with an increased risk of treatment failure among 5-ASA users. Together, these data address a longstanding challenge in IBD management, outline a method for the discovery of previously uncharacterized gut microbial activities and advance the possibility of microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Raaj S Mehta
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jared R Mayers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nathaniel R Glasser
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenjie Ma
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sena Bae
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tobyn Branck
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Hyuk-Soo Seo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily P Balskus
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Immunology & Infectious Disease, T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
12
|
Macpherson AJ, Sauer U. Secrets of microbiota drug metabolism. Nat Med 2023; 29:537-538. [PMID: 36823300 DOI: 10.1038/s41591-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
14
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
15
|
Lazarević S, Đanic M, Al-Salami H, Mooranian A, Mikov M. Gut Microbiota Metabolism of Azathioprine: A New Hallmark for Personalized Drug-Targeted Therapy of Chronic Inflammatory Bowel Disease. Front Pharmacol 2022; 13:879170. [PMID: 35450035 PMCID: PMC9016117 DOI: 10.3389/fphar.2022.879170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the growing number of new drugs approved for the treatment of inflammatory bowel disease (IBD), the long-term clinical use of thiopurine therapy and the well-known properties of conventional drugs including azathioprine have made their place in IBD therapy extremely valuable. Despite the fact that thiopurine S-methyltransferase (TPMT) polymorphism has been recognized as a major cause of the interindividual variability in the azathioprine response, recent evidence suggests that there might be some yet unknown causes which complicate dosing strategies causing either failure of therapy or toxicity. Increasing evidence suggests that gut microbiota, with its ability to release microbial enzymes, affects the pharmacokinetics of numerous drugs and subsequently drastically alters clinical effectiveness. Azathioprine, as an orally administered drug which has a complex metabolic pathway, is the prime illustrative candidate for such microbial metabolism of drugs. Comprehensive databases on microbial drug-metabolizing enzymes have not yet been generated. This study provides insights into the current evidence on microbiota-mediated metabolism of azathioprine and systematically accumulates findings of bacteria that possess enzymes required for the azathioprine biotransformation. Additionally, it proposes concepts for the identification of gut bacteria species responsible for the metabolism of azathioprine that could aid in the prediction of dose-response effects, complementing pharmacogenetic approaches already applied in the optimization of thiopurine therapy of IBD. It would be of great importance to elucidate to what extent microbiota-mediated metabolism of azathioprine contributes to the drug outcomes in IBD patients which could facilitate the clinical implementation of novel tools for personalized thiopurine treatment of IBD.
Collapse
Affiliation(s)
- Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Đanic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
Mikrobiota jelitowa a leki. Interakcje wpływające na skuteczność i bezpieczeństwo farmakoterapii. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Mikrobiota jelitowa stanowi nieodłączny element organizmu umożliwiający jego prawidłowe funkcjonowanie. Dzięki mikroorganizmom jelitowym możliwa jest stymulacja układu odpornościowego, synteza witamin czy poprawa wchłaniania składników odżywczych. Jednak jej aktywność może również niekorzystnie działać na organizm, m.in. z powodu przetwarzania treści jelitowej. Opisywana w artykule interakcja mikrobiota–lek uwzględnia pozytywny i negatywny wpływ mikroorganizmów jelitowych na farmakoterapię poprzez bezpośrednie i pośrednie oddziaływanie na lek w organizmie. Ze względu na to, że mikrobiom stanowi nieodłączny element organizmu, ingerencja nawet w jego niewielką część może doprowadzić do wystąpienia daleko idących, czasami niespodziewanych skutków. Stąd w celu poprawy skuteczności i bezpieczeństwa farmakoterapii konieczne jest wyjaśnienie mechanizmów oddziaływania mikrobioty na lek w organizmie.
W artykule podsumowano obecną wiedzę na temat biologicznej aktywności mikrobioty jelitowej, a zwłaszcza oddziaływań mikrobiota–leki determinujących skuteczność i bezpieczeństwo farmakoterapii. Wyszukiwanie przeprowadzono we wrześniu 2020 r. w bazach danych PubMed, Scopus, Web of Science, Cochrane Library i powszechnie dostępnej literaturze z użyciem terminów: „mikrobiota jelitowa”, „mikrobiom”, „metabolizm leku”, „interakcje mikrobiota–lek”. W artykule omówiono interakcje między mikrobiotą a lekami m.in. z grupy antybiotyków, inhibitorów pompy protonowej, sulfonamidów, pochodnych kwasu 5-aminosalicylowego, niesteroidowych leków przeciwzapalnych, przeciwnowotworowych, statyn czy metforminą.
Collapse
|
17
|
Comparative Investigation of Fifteen Xenobiotic Metabolizing N-Acetyltransferase (NAT) Homologs from Bacteria. Appl Environ Microbiol 2021; 87:e0081921. [PMID: 34288706 DOI: 10.1128/aem.00819-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arylamines constitute a large group of industrial chemicals detoxified by certain bacteria through conjugation reactions catalyzed by N-acetyltransferase (NAT) enzymes. NAT homologs, mostly from pathogenic bacteria, have been the subject of individual studies that do not facilitate direct comparisons. By implementing a practicable pipeline, we present comparative investigation of fifteen NAT homologs from ten bacteria, mainly bacilli, streptomycetes, and one alphaproteobacterium. The new homologs were characterized for their sequence, phylogeny, predicted structural features, substrate specificity, thermal stability, and interaction with components of the enzymatic reaction. Bacillus NATs demonstrated the characteristics of xenobiotic metabolizing N-acetyltransferases, with the majority of homologs generating high activities. Non-pathogenic bacilli are thus proposed as suitable mediators of arylamine bioremediation. Of the Streptomyces homologs, the NAT2 isoenzyme of S. venezuelae efficiently transformed highly toxic arylamines, while the remaining homologs were inactive or generated low activities suggesting that xenobiotic metabolism may not be their primary role. The functional divergence of Streptomyces NATs was consistent with their observed sequence, phylogenetic, and structural variability. These and previous findings support classification of microbial NATs into three groups. The first includes xenobiotic metabolizing enzymes with dual acetyl-/propionyl-CoA selectivity. Homologs of the second group are more rarely encountered, acting as malonyltransferases mediating specialized ecological interactions. Homologs of the third group effectively lack acyltransferase activity and their study may represent an interesting research area. Comparative NAT enzyme screens from a broad microbial spectrum may guide rational selection of homologs likely to share similar biological functions, allowing their combined investigation and use in biotechnological applications. IMPORTANCE Arylamines are encountered as industrial chemicals or byproducts of agrochemicals that may constitute highly toxic contaminants of soils and groundwaters. Although such chemicals may be recalcitrant to biotransformation, they can be enzymatically converted into less toxic forms by some bacteria. Therefore, exploitation of the arylamine detoxification capabilities of microorganisms is investigated as an effective approach for bioremediation. Among microbial biotransformations of arylamines, enzymatic conjugation reactions have been reported, including NAT-mediated N-acetylation. Comparative investigations of NAT enzymes across a range of microorganisms can be laborious and expensive, so here we present a streamlined methodology for implementing such work. We compare fifteen NAT homologs from non-pathogenic, free-living bacteria of potential biotechnological utility, mainly Terrabacteria known for their rich secondary and xenobiotic metabolism. The analysis allowed insights into the evolutionary and functional divergence of bacterial NAT homologs, combined with assessment of their fundamental structural and enzymatic differences and similarities.
Collapse
|
18
|
Brandl C, Bucci L, Schett G, Zaiss MM. Crossing the barriers: Revisiting the gut feeling in rheumatoid arthritis. Eur J Immunol 2021; 51:798-810. [PMID: 33594693 DOI: 10.1002/eji.202048876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
To avoid autoimmunity, it is essential to keep the balance between the defence against pathogens and the maintenance of tolerance to self-antigens. Mucosal inflammation may lead to breakdown of tolerance and activation of autoreactive cells. Growing evidence suggests a major contribution of gut microbiota to the onset of chronic, autoimmune inflammatory diseases including rheumatoid arthritis (RA). RA patients show significant differences in the composition of gut microbiota compared to healthy controls, and in murine arthritis models certain bacteria can induce inflammatory Th17 responses or autoantibody production. The gut microbiota plays an important role in regulating the balance between immunogenic and tolerogenic immune responses. The intestinal barrier is the site of the body where most host-microbiota interaction takes place. Certain microbiota or their metabolites can cause a break in homeostasis by affecting the intestinal barrier integrity and permeability. However, an intact intestinal barrier is essential to separate the intestinal epithelium from toxins, microorganisms, and antigens in the gut lumen. This review will focus on the correlation between a leaky gut and the onset of arthritis. Furthermore, it will be discussed how targeting the intestinal barrier function by dietary changes might provide an opportunity to modulate the development of RA.
Collapse
Affiliation(s)
- Carolin Brandl
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, University della Campania L. Vanvitelli, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Franzin M, Stefančič K, Lucafò M, Decorti G, Stocco G. Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens 2021; 10:211. [PMID: 33669168 PMCID: PMC7919657 DOI: 10.3390/pathogens10020211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in the treatment of IBD can be either beneficial or disadvantageous.
Collapse
Affiliation(s)
- Martina Franzin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Katja Stefančič
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| |
Collapse
|
20
|
Liu X, Liu Y, Zhao G, Zhang Y, Liu L, Wang J, Wang Y, Zhang S, Li X, Guo D, Wang P, Xu X. Biochemical Characterization of Arylamine N-acetyltransferases From Vibrio vulnificus. Front Microbiol 2021; 11:595083. [PMID: 33537010 PMCID: PMC7847940 DOI: 10.3389/fmicb.2020.595083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
Vibrio vulnificus is a zoonotic bacterium that is capable of causing highly lethal diseases in humans; this pathogen is responsible for 95% of all seafood-related deaths in the United States. Arylamine N-acetyltransferases (NAT, E.C. 2.3.1.5) is a major family of xenobiotic-metabolizing enzymes that can biotransform aromatic amine chemicals. In this research, to evaluate the effect of NAT on acetyl group transformation in arylamine antibiotics, we first used sequence alignment to study the structure of V. vulnificus NAT [(VIBVN)NAT]. The nat gene encodes a protein of 260 amino acids, which has an approximate molecular mass of 30 kDa. Then we purified recombinant (VIBVN)NAT and determined the enzyme activity by PNPA and DTNB methods. The DTNB method indicates that this prokaryotic NAT has a particular substrate specificity towards aromatic substrates. However, (VIBVN)NAT lost most of its activity after treatment with high concentrations of urea and H2O2. In addition, we also explored the stability of the enzyme at different temperatures and pH values. In analyzing the influence of metal ions, the enzyme activity was significantly inhibited by Zn2+ and Cu2+. The kinetic parameters Km and Vmax were determined using hydralazine, isoniazid, 4-amino salicylic acid, and 4-chloro-3-methylaniline as substrates, and the Tm, Tagg and size distribution of (VIBVN)NAT were observed. In particular, a molecular docking study on the structure of (VIBVN)NAT was conducted to understand its biochemical traits. These results showed that (VIBVN)NAT could acetylate various aromatic amine substrates and contribute to arylamine antibiotic resistance in V. vulnificus.
Collapse
Affiliation(s)
- Xinning Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yuanchang Liu
- Quality Control Department, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Guangjian Zhao
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lu Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Juan Wang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Siyu Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dongliang Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ximing Xu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
21
|
DMARDs-Gut Microbiota Feedback: Implications in the Response to Therapy. Biomolecules 2020; 10:biom10111479. [PMID: 33114390 PMCID: PMC7692063 DOI: 10.3390/biom10111479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Due to its immunomodulatory effects and the limitation in the radiological damage progression, disease-modifying antirheumatic drugs (DMARDs) work as first-line rheumatoid arthritis (RA) treatment. In recent years, numerous research projects have suggested that the metabolism of DMARDs could have a role in gut dysbiosis, which indicates that the microbiota variability could modify the employment of direct and indirect mechanisms in the response to treatment. The main objective of this review was to understand the gut microbiota bacterial variability in patients with RA, pre and post-treatment with DMARDs, and to identify the possible mechanisms through which microbiota can regulate the response to pharmacological therapy.
Collapse
|
22
|
Scher JU, Nayak RR, Ubeda C, Turnbaugh PJ, Abramson SB. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat Rev Rheumatol 2020; 16:282-292. [PMID: 32157196 PMCID: PMC11221369 DOI: 10.1038/s41584-020-0395-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
In the past three decades, extraordinary advances have been made in the understanding of the pathogenesis of, and treatment options for, inflammatory arthritides, including rheumatoid arthritis and spondyloarthritis. The use of methotrexate and subsequently biologic therapies (such as TNF inhibitors, among others) and oral small molecules have substantially improved clinical outcomes for many patients with inflammatory arthritis; for others, however, these agents do not substantially improve their symptoms. The emerging field of pharmacomicrobiomics, which investigates the effect of variations within the human gut microbiome on drugs, has already provided important insights into these therapeutics. Pharmacomicrobiomic studies have demonstrated that human gut microorganisms and their enzymatic products can affect the bioavailability, clinical efficacy and toxicity of a wide array of drugs through direct and indirect mechanisms. This discipline promises to facilitate the advent of microbiome-based precision medicine approaches in inflammatory arthritis, including strategies for predicting response to treatment and for modulating the microbiome to improve response to therapy or reduce drug toxicity.
Collapse
Affiliation(s)
- Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, USA.
| | - Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Carles Ubeda
- Centro Superior de Investigacion en Salud Publica - FISABIO, Valencia, Spain
- CIBER en Epidemiologia y Salud Publica, Madrid, Spain
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Steven B Abramson
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
23
|
Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front Pharmacol 2020; 11:390. [PMID: 32372951 PMCID: PMC7179069 DOI: 10.3389/fphar.2020.00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The harmful impact of xenobiotics on the environment and human health is being more widely recognized; yet, inter- and intraindividual genetic variations among humans modulate the extent of harm, mostly through modulating the outcome of xenobiotic metabolism and detoxification. As the Human Genome Project revealed that host genetic, epigenetic, and regulatory variations could not sufficiently explain the complexity of interindividual variability in xenobiotics metabolism, its sequel, the Human Microbiome Project, is investigating how this variability may be influenced by human-associated microbial communities. Xenobiotic-microbiome relationships are mutual and dynamic. Not only does the human microbiome have a direct metabolizing potential on xenobiotics, but it can also influence the expression of the host metabolizing genes and the activity of host enzymes. On the other hand, xenobiotics may alter the microbiome composition, leading to a state of dysbiosis, which is linked to multiple diseases and adverse health outcomes, including increased toxicity of some xenobiotics. Toxicomicrobiomics studies these mutual influences between the ever-changing microbiome cloud and xenobiotics of various origins, with emphasis on their fate and toxicity, as well the various classes of microbial xenobiotic-modifying enzymes. This review article discusses classic and recent findings in toxicomicrobiomics, with examples of interactions between gut, skin, urogenital, and oral microbiomes with pharmaceutical, food-derived, and environmental xenobiotics. The current state and future prospects of toxicomicrobiomic research are discussed, and the tools and strategies for performing such studies are thoroughly and critically compared.
Collapse
Affiliation(s)
| | - Ahmed Tarek Ramadan
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Marwa Tarek ElRakaiby
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy Karam Aziz
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Xie Y, Hu F, Xiang D, Lu H, Li W, Zhao A, Huang L, Wang R. The metabolic effect of gut microbiota on drugs. Drug Metab Rev 2020; 52:139-156. [PMID: 32116054 DOI: 10.1080/03602532.2020.1718691] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuan Xie
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dawei Xiang
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Wenbin Li
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Longji Huang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Key Laboratory of the Plateau Medicial, The 940 Hospital of Joint Logistics Support, PLA, Lanzhou, China
| |
Collapse
|
25
|
Sun C, Chen L, Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm J 2019; 27:1146-1156. [PMID: 31885474 PMCID: PMC6921184 DOI: 10.1016/j.jsps.2019.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
Considered as an essential "metabolic organ", intestinal microbiota plays a key role in human health and the predisposition to diseases. It is an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract. Since the 20th century, researches have showed that intestinal microbiome possesses a variety of metabolic activities that are able to modulate the fate of more than 30 approved drugs and immune checkpoint inhibitors. These drugs are transformed to bioactive, inactive, or toxic metabolites by microbial direct action or host-microbial co-metabolism. These metabolites are responsible for therapeutic effects exerted by these drugs or side effects induced by these drugs, even for death. In view of the significant effect on the drugs metabolism by the gut microbiota, it is pivotal for personalized medicine to explore additional drugs affected by gut microbiota and their involved strains for further making mechanism clear through suitable animal models. This review mainly focus on specific mechanisms involved, with reference to the current literature about drugs metabolism by related bacteria or its enzymes available.
Collapse
Affiliation(s)
- Chaonan Sun
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 410042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
26
|
The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 2019; 35:174. [PMID: 31673919 DOI: 10.1007/s11274-019-2755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.
Collapse
|
27
|
Zhang J, Zhang J, Wang R, Jia Z. Effects of Gut Microbiota on Drug Metabolism and Guidance for Rational Drug Use Under Hypoxic Conditions at High Altitudes. Curr Drug Metab 2019; 20:155-165. [PMID: 30338735 DOI: 10.2174/1389200219666181019145159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/11/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Modern features of drug development such as low permeability, low solubility, and improved release affect the interplay of the gut microbiota and drug metabolism. In recent years, studies have established the impact of plateau hypoxia on gut microbiota, where drug use by plateau populations is affected by hypoxia- induced changes in intestinal microflora-mediated drug metabolism. METHODS In this review, we summarized the effects of gut microbiota on drug metabolism, and of plateau hypoxia on the intestinal flora, with the aim of providing guidance for the rational use of drugs in high-altitude populations. RESULTS The evidence clearly shows that alterations in gut microbiota can affect pro-drug activation, drug inactivation, and the biotransformation of xenobiotics. Additionally, plateau hypoxia alters drug metabolism by affecting intestinal flora. CONCLUSION This review provides an overview of the effects of gut microbiota on drug metabolism and provides guidance for rational drug use under hypoxic conditions at high altitudes.
Collapse
Affiliation(s)
- Juanhong Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, Lanzhou, General Hospital, Lanzhou, 730000, Gansu, China
| | - Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, Lanzhou, General Hospital, Lanzhou, 730000, Gansu, China
| | - Zhengping Jia
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, Lanzhou, General Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
28
|
Zhang Z, Ordonez AA, Wang H, Li Y, Gogarty KR, Weinstein EA, Daryaee F, Merino J, Yoon GE, Kalinda AS, Mease RC, Iuliano JN, Smith-Jones PM, Jain SK, Tonge PJ. Positron Emission Tomography Imaging with 2-[ 18F]F- p-Aminobenzoic Acid Detects Staphylococcus aureus Infections and Monitors Drug Response. ACS Infect Dis 2018; 4:1635-1644. [PMID: 30067329 PMCID: PMC6226330 DOI: 10.1021/acsinfecdis.8b00182] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Staphylococcus aureus is the leading cause of life-threatening
infections, frequently originating from unknown or deep-seated foci.
Source control and institution of appropriate antibiotics remain challenges,
especially with infections due to methicillin-resistant S. aureus (MRSA). In this study, we developed a radiofluorinated analog of para-aminobenzoic acid (2-[18F]F-PABA) and demonstrate
that it is an efficient alternative substrate for the S. aureus dihydropteroate synthase (DHPS). 2-[18F]F-PABA rapidly
accumulated in vitro within laboratory and clinical
(including MRSA) strains of S. aureus but not
in mammalian cells. Biodistribution in murine and rat models demonstrated
localization at infection sites and rapid renal elimination. In a
rat model, 2-[18F]F-PABA positron emission tomography (PET)
rapidly differentiated S. aureus infection from
sterile inflammation and could also detect therapeutic failures associated
with MRSA. These data suggest that 2-[18F]F-PABA has the
potential for translation to humans as a rapid, noninvasive diagnostic
tool to identify, localize, and monitor S. aureus infections.
Collapse
Affiliation(s)
- Zhuo Zhang
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Wang
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Yong Li
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Kayla R. Gogarty
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Edward A. Weinstein
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Fereidoon Daryaee
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Jonathan Merino
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Grace E. Yoon
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alvin S. Kalinda
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - James N. Iuliano
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| | - Peter M. Smith-Jones
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Radiology, Stony Brook University, 100 Nicolls Road, 633 Chemistry, Stony Brook, New York 11794, United States
| |
Collapse
|
29
|
Abstract
Gut microbiota, one of the determinants of pharmacokinetics, has long been underestimated. It is now generally accepted that the gut microbiota plays an important role in drug metabolism during enterohepatic circulation either before drug absorption or through various microbial enzymatic reactions in the gut. In addition, some drugs are metabolized by the intestinal microbiota to specific metabolites that cannot be formed in the liver. More importantly, metabolizing drugs through the gut microbiota prior to absorption can alter the systemic bioavailability of certain drugs. Therefore, understanding intestinal flora-mediated drug metabolism is critical to interpreting changes in drug pharmacokinetics. Here, we summarize the effects of gut microbiota on drug pharmacokinetics, and propose that the influence of intestinal flora on pharmacokinetics should be organically related to the therapeutic effects and side effects of drugs. More importantly, we could rationally perform the strategy of intestinal microflora-mediated metabolism to design drugs.
Collapse
Affiliation(s)
- Juanhong Zhang
- a School of Pharmacy, Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| | - Junmin Zhang
- a School of Pharmacy, Lanzhou University , Lanzhou , China
| | - Rong Wang
- a School of Pharmacy, Lanzhou University , Lanzhou , China.,b Key Laboratory for Prevention and Remediation of Plateau Environmental Damage , Lanzhou General Hospital , Lanzhou , China
| |
Collapse
|
30
|
Bornemann V, Werness SC, Buslinger L, Schiffman SS. Intestinal Metabolism and Bioaccumulation of Sucralose In Adipose Tissue In The Rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:913-923. [PMID: 30130461 DOI: 10.1080/15287394.2018.1502560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to (1) determine if the organochlorine artificial sweetener sucralose is metabolized in rat intestine with repeated dosing and (2) examine whether sucralose might bioaccumulate in rat adipose tissue. Sucralose was administered to 10 rats by gavage daily for 40 days at an average dosage of 80.4 mg/kg/day. The dosages were within the range utilized in historical toxicology studies submitted for regulatory approval in North America, Europe, and Asia. Feces and urine were collected individually from each animal for every 24-hr period during the 40-day dosing period. Analysis of the urine and fecal extracts by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) revealed two new biotransformation products that have not previously been reported. These two metabolites are both acetylated forms of sucralose that are less polar and hence more lipophilic than sucralose itself. These metabolites were present in urine and feces throughout the sucralose dosing period and still detected at low levels in the urine 11 days after discontinuation of sucralose administration and 6 days after sucralose was no longer detected in the urine or feces. The finding of acetylated sucralose metabolites in urine and feces do not support early metabolism studies, on which regulatory approval was based, that claimed ingested sucralose is excreted unchanged (i.e. not metabolized). The historical metabolic studies apparently failed to detect these metabolites in part because investigators used a methanol fraction from feces for analysis along with thin layer chromatography and a low-resolution linear radioactivity analyzer. Further, sucralose was found in adipose tissue in rats two weeks after cessation of the 40-day feeding period even though this compound had disappeared from the urine and feces. Thus, depuration of sucralose which accumulated in fatty tissue requires an extended period of time after discontinuation of chemical ingestion. These new findings of metabolism of sucralose in the gastrointestinal tract (GIT) and its accumulation in adipose tissue were not part of the original regulatory decision process for this agent and indicate that it now may be time to revisit the safety and regulatory status of this organochlorine artificial sweetener.
Collapse
Affiliation(s)
| | | | - Lauren Buslinger
- b College of Veterinary Medicine , North Carolina State University , Raleigh , North Carolina , USA
| | - Susan S Schiffman
- c Department of Electrical and Computer Engineering , College of Engineering, North Carolina State University , Raleigh , North Carolina , USA
| |
Collapse
|
31
|
Walsh J, Griffin BT, Clarke G, Hyland NP. Drug-gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 2018; 175:4415-4429. [PMID: 29782640 DOI: 10.1111/bph.14366] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the effects that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed to guide the development of microbiome-targeted dietary or pharmacological interventions, which may have the potential to enhance drug efficacy or reduce drug side effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. LINKED ARTICLES: This article is part of a themed section on When Pharmacology Meets the Microbiome: New Targets for Therapeutics? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.24/issuetoc.
Collapse
Affiliation(s)
- Jacinta Walsh
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niall P Hyland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Ostrov BE, Amsterdam D. Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases. Immunol Invest 2018; 46:769-792. [PMID: 29058546 DOI: 10.1080/08820139.2017.1373828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modulation of the immune system by microbes, especially from the gastrointestinal tract, is increasingly considered a key factor in the onset, course and outcome of rheumatic diseases. The interplay of the microbiome, along with genetic predisposition and environmental exposure, is thought to be an important trigger for rheumatic diseases. Improved identification of the relationship of disease-specific genetic alterations and rheumatic diseases has potential diagnostic and therapeutic applications. Treatment of rheumatic disorders is influenced by microbial actions but this interplay can be challenging due to variable and unpredictable responses to therapies. Expanded knowledge of the microbiome now allows clinicians to more precisely select ideal medication regimens and to predict response to and toxicity from drugs. Rheumatic diseases and associated therapies were among the earliest microbiome interactions investigated, yet it is notable that current research is focused on clinical and immunological associations but, in comparison, a limited number of studies regarding the microbiome's impact on treatment for rheumatic diseases have been published. In the coming years, further knowledge of immunomodulating interactions between the microbiome and the immune system will aid our understanding of autoimmunity and will be increasingly important in selection of therapeutic agents for patients with autoimmune and rheumatic diseases. In this review, recent literature regarding the bidirectional immunomodulatory effects of the microbiome with rheumatic diseases and current understanding and gaps regarding the drug-microbiome interface in the management of these disorders is presented.
Collapse
Affiliation(s)
- Barbara E Ostrov
- a Pediatrics and Medicine, Pediatric Rheumatology, Department of Pediatrics, Rheumatology, Department of Medicine , Penn State College of Medicine , Hershey , PA , USA
| | - Daniel Amsterdam
- b Microbiology and Immunology, Pathology and Medicine , Jacobs School of Medicine and Biomedical Sciences, Chief of Service, Laboratory Medicine, Erie County Medical Center , Buffalo , NY , USA
| |
Collapse
|
33
|
The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol Res 2018; 130:164-171. [DOI: 10.1016/j.phrs.2018.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/29/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022]
|
34
|
Abstract
The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Vayu Maini Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Gimenez-Bastida JA, Martinez Carreras L, Moya-Pérez A, Laparra Llopis JM. Pharmacological Efficacy/Toxicity of Drugs: A Comprehensive Update About the Dynamic Interplay of Microbes. J Pharm Sci 2017; 107:778-784. [PMID: 29107046 PMCID: PMC6712421 DOI: 10.1016/j.xphs.2017.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Oral ingestion is a common, easy to access, route for therapeutic drugs to be delivered. The conception of the gastrointestinal tract as a passive physiological compartment has evolved toward a dynamic perspective of the same. Thus, microbiota plays an important role in contributing with additional metabolic capacities to its host as well as to its phenotypic heterogeneity. These adaptations in turn influence the efficacy and toxicity of a broad range of drugs. Notwithstanding, xenobiotics and therapeutic drugs affecting the microbiome's activity also significantly impact metabolism affecting different organs and tissues, and thereby drugs' toxicity/efficacy effects. Other physiological interfaces (i.e., gut, lungs, and skin) also represent complex media with features about microbiota's composition. In addition, there have been described key regulatory effects of microbes on immunotherapy, because of its potential harnessing the host immune system, mental disorders by modulating neuroendocrine systems and cancer. These alterations are responsible of physiological variations in the response(s) between individuals and populations. However, the study of population-based differences in intestinal microbial-related drug metabolism has been largely inferential. This review outlines major reciprocal implications between drugs and microbes regulatory capacities in pharmacotherapy.
Collapse
Affiliation(s)
- Juan Antonio Gimenez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Lucia Martinez Carreras
- Nutrition Precision in Cancer Unit, Madrid Institute for Advanced Studies in Food (IMDEA Food), Madrid 28049, Spain
| | - Angela Moya-Pérez
- Department of Developmental and Cell Biology, University of California, Irvine, California 92617
| | - José Moisés Laparra Llopis
- Nutrition Precision in Cancer Unit, Madrid Institute for Advanced Studies in Food (IMDEA Food), Madrid 28049, Spain.
| |
Collapse
|
36
|
Turroni S, Brigidi P, Cavalli A, Candela M. Microbiota–Host Transgenomic Metabolism, Bioactive Molecules from the Inside. J Med Chem 2017; 61:47-61. [DOI: 10.1021/acs.jmedchem.7b00244] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Silvia Turroni
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
- Compunet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco Candela
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| |
Collapse
|
37
|
Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Appl Microbiol Biotechnol 2017; 101:3743-3758. [PMID: 28050635 DOI: 10.1007/s00253-016-8061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.
Collapse
|
38
|
Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 2017; 179:204-222. [PMID: 27591027 PMCID: PMC5718288 DOI: 10.1016/j.trsl.2016.08.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
The gut microbiota has both direct and indirect effects on drug and xenobiotic metabolisms, and this can have consequences for both efficacy and toxicity. Indeed, microbiome-driven drug metabolism is essential for the activation of certain prodrugs, for example, azo drugs such as prontosil and neoprontosil resulting in the release of sulfanilamide. In addition to providing a major source of reductive metabolizing capability, the gut microbiota provides a suite of additional reactions including acetylation, deacylation, decarboxylation, dehydroxylation, demethylation, dehalogenation, and importantly, in the context of certain types of drug-related toxicity, conjugates hydrolysis reactions. In addition to direct effects, the gut microbiota can affect drug metabolism and toxicity indirectly via, for example, the modulation of host drug metabolism and disposition and competition of bacterial-derived metabolites for xenobiotic metabolism pathways. Also, of course, the therapeutic drugs themselves can have effects, both intended and unwanted, which can impact the health and composition of the gut microbiota with unforeseen consequences.
Collapse
Affiliation(s)
- Ian D Wilson
- Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.
| | - Jeremy K Nicholson
- Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
39
|
Stompor M. 6-Acetamidoflavone obtained by microbiological and chemical methods and its antioxidant activity. J Biotechnol 2016; 237:25-34. [DOI: 10.1016/j.jbiotec.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
40
|
Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:317-26. [PMID: 27485182 DOI: 10.5507/bp.2016.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. METHODS Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. RESULTS AND CONCLUSIONS Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry and Faculty Hospital Olomouc, Palacky University Olomouc, Czech Republic
| |
Collapse
|
41
|
Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2016; 14:273-87. [PMID: 26972811 PMCID: PMC5243131 DOI: 10.1038/nrmicro.2016.17] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the importance of human genetic polymorphisms in therapeutic outcomes is well established, the role of our 'second genome' (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that have shed light on the mechanisms that link the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and for the development of a new generation of therapeutics based on, or targeted at, the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within.
Collapse
Affiliation(s)
- Peter Spanogiannopoulos
- Department of Microbiology & Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Elizabeth N. Bess
- Department of Microbiology & Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Rachel N. Carmody
- Department of Microbiology & Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, G.W. Hooper Foundation, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
42
|
Yip LY, Chan ECY. Investigation of Host-Gut Microbiota Modulation of Therapeutic Outcome. Drug Metab Dispos 2015; 43:1619-31. [PMID: 25979259 DOI: 10.1124/dmd.115.063750] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
A broader understanding of factors underlying interindividual variation in pharmacotherapy is important for our pursuit of "personalized medicine." Based on knowledge gleaned from the investigation of human genetics, drug-metabolizing enzymes, and transporters, clinicians and pharmacists are able to tailor pharmacotherapies according to the genotype of patients. However, human host factors only form part of the equation that accounts for heterogeneity in therapeutic outcome. Notably, the gut microbiota possesses wide-ranging metabolic activities that expand the metabolic functions of the human host beyond that encoded by the human genome. In this review, we first illustrate the mechanisms in which gut microbes modulate pharmacokinetics and therapeutic outcome. Second, we discuss the application of metabonomics in deciphering the complex host-gut microbiota interaction in pharmacotherapy. Third, we highlight an integrative approach with particular mention of the investigation of gut microbiota using culture-based and culture-independent techniques to complement the investigation of the host-gut microbiota axes in pharmaceutical research.
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| |
Collapse
|
43
|
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171:2705-25. [PMID: 24467436 PMCID: PMC4158862 DOI: 10.1111/bph.12598] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic drug-metabolizing enzymes, acetylating arylamine carcinogens and drugs including hydralazine and sulphonamides. The slow NAT phenotype increases susceptibility to hydralazine and isoniazid toxicity and to occupational bladder cancer. The two polymorphic human NAT loci show linkage disequilibrium. All mammalian Nat genes have an intronless open reading frame and non-coding exons. The human gene products NAT1 and NAT2 have distinct substrate specificities: NAT2 acetylates hydralazine and human NAT1 acetylates p-aminosalicylate (p-AS) and the folate catabolite para-aminobenzoylglutamate (p-abaglu). Human NAT2 is mainly in liver and gut. Human NAT1 and its murine homologue are in many adult tissues and in early embryos. Human NAT1 is strongly expressed in oestrogen receptor-positive breast cancer and may contribute to folate and acetyl CoA homeostasis. NAT enzymes act through a catalytic triad of Cys, His and Asp with the architecture of the active site-modulating specificity. Polymorphisms may cause unfolded protein. The C-terminus helps bind acetyl CoA and differs among NATs including prokaryotic homologues. NAT in Salmonella typhimurium supports carcinogen activation and NAT in mycobacteria metabolizes isoniazid with polymorphism a minor factor in isoniazid resistance. Importantly, nat is in a gene cluster essential for Mycobacterium tuberculosis survival inside macrophages. NAT inhibitors are a starting point for novel anti-tuberculosis drugs. Human NAT1-specific inhibitors may act in biomarker detection in breast cancer and in cancer therapy. NAT inhibitors for co-administration with 5-aminosalicylate (5-AS) in inflammatory bowel disease has prompted ongoing investigations of azoreductases in gut bacteria which release 5-AS from prodrugs including balsalazide.
Collapse
Affiliation(s)
- E Sim
- Faculty of Science Engineering and Computing, Kingston University, Kingston, UK; Department of Pharmacology, Oxford University, Oxford, UK
| | | | | |
Collapse
|
44
|
Cocaign A, Kubiak X, Xu X, Garnier G, Li de la Sierra-Gallay I, Chi-Bui L, Dairou J, Busi F, Abuhammad A, Haouz A, Dupret JM, Herrmann JL, Rodrigues-Lima F. Structural and functional characterization of an arylamineN-acetyltransferase from the pathogenMycobacterium abscessus: differences from other mycobacterial isoforms and implications for selective inhibition. ACTA ACUST UNITED AC 2014; 70:3066-79. [DOI: 10.1107/s1399004714021282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022]
Abstract
Mycobacterium abscessusis the most pathogenic rapid-growing mycobacterium and is one of the most resistant organisms to chemotherapeutic agents. However, structural and functional studies ofM. abscessusproteins that could modify/inactivate antibiotics remain nonexistent. Here, the structural and functional characterization of an arylamineN-acetyltransferase (NAT) fromM. abscessus[(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significantN-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid andp-aminosalicylate. The enzyme is endogenously expressed and functional in both the rough and smoothM. abscessusmorphotypes. The crystal structure of (MYCAB)NAT1 at 1.8 Å resolution reveals that it is more closely related toNocardia farcinicaNAT than to mycobacterial isoforms. In particular, structural and physicochemical differences from other mycobacterial NATs were found in the active site. Peculiarities of (MYCAB)NAT1 were further supported by kinetic and docking studies showing that the enzyme was poorly inhibited by the piperidinol inhibitor of mycobacterial NATs. This study describes the first structure of an antibiotic-modifying enzyme fromM. abscessusand provides bases to better understand the substrate/inhibitor-binding specificities among mycobacterial NATs and to identify/optimize specific inhibitors. These data should also contribute to the understanding of the mechanisms that are responsible for the pathogenicity and extensive chemotherapeutic resistance ofM. abscessus.
Collapse
|
45
|
Sousa T, Yadav V, Zann V, Borde A, Abrahamsson B, Basit AW. On the Colonic Bacterial Metabolism of Azo-Bonded Prodrugsof 5-Aminosalicylic Acid. J Pharm Sci 2014; 103:3171-5. [DOI: 10.1002/jps.24103] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/07/2022]
|
46
|
|
47
|
Molecular characterization of a novel N-acetyltransferase from Chryseobacterium sp. Appl Environ Microbiol 2013; 80:1770-6. [PMID: 24375143 DOI: 10.1128/aem.03449-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min(-1) · mg protein(-1), respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1).
Collapse
|
48
|
Tsirka T, Boukouvala S, Agianian B, Fakis G. Polymorphism p.Val231Ile alters substrate selectivity of drug-metabolizing arylamine N-acetyltransferase 2 (NAT2) isoenzyme of rhesus macaque and human. Gene 2013; 536:65-73. [PMID: 24333853 DOI: 10.1016/j.gene.2013.11.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/10/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Arylamine N-acetyltransferases (NATs) are polymorphic enzymes mediating the biotransformation of arylamine/arylhydrazine xenobiotics, including pharmaceuticals and environmental carcinogens. The NAT1 and NAT2 genes, and their many polymorphic variants, have been thoroughly studied in humans by pharmacogeneticists and cancer epidemiologists. However, little is known about the function of NAT homologues in other primate species, including disease models. Here, we perform a comparative functional investigation of the NAT2 homologues of the rhesus macaque and human. We further dissect the functional impact of a previously described rhesus NAT2 gene polymorphism, causing substitution of valine by isoleucine at amino acid position 231. Gene constructs of rhesus and human NAT2, bearing or lacking non-synonymous polymorphism c.691G>A (p.Val231Ile), were expressed in Escherichia coli for comparative enzymatic analysis against various NAT1- and NAT2-selective substrates. The results suggest that the p.Val231Ile polymorphism does not compromise the stability or overall enzymatic activity of NAT2. However, substitution of Val231 by the bulkier isoleucine appears to alter enzyme substrate selectivity by decreasing the affinity towards NAT2 substrates and increasing the affinity towards NAT1 substrates. The experimental observations are supported by in silico modelling localizing polymorphic residue 231 close to amino acid loop 125-129, which forms part of the substrate binding pocket wall and determines the substrate binding preferences of the NAT isoenzymes. The p.Val231Ile polymorphism is the first natural polymorphism demonstrated to affect NAT substrate selectivity via this particular mechanism. The study is also the first to thoroughly characterize the properties of a polymorphic NAT isoenzyme in a non-human primate model.
Collapse
Affiliation(s)
- Theodora Tsirka
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Sotiria Boukouvala
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Bogos Agianian
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece
| | - Giannoulis Fakis
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis, Greece.
| |
Collapse
|
49
|
Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 2013; 8:e70803. [PMID: 23940645 PMCID: PMC3735522 DOI: 10.1371/journal.pone.0070803] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated “omics” approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.
Collapse
Affiliation(s)
- Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | |
Collapse
|
50
|
Enantioselective N-acetylation of 2-phenylglycine by an unusual N-acetyltransferase from Chryseobacterium sp. Biotechnol Lett 2013; 35:1053-9. [DOI: 10.1007/s10529-013-1172-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|