1
|
Farahani MF, Esmaelizad M, Jabbari AR. Investigation of iron uptake and virulence gene factors ( fur, tonB, exbD, exbB, hgbA, hgbB1, hgbB2 and tbpA) among isolates of Pasteurella multocida from Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:191-197. [PMID: 31523401 PMCID: PMC6711875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Iron is an essential compound in metabolic pathway of wide range of organisms. Because of limited free iron supply in mammalian and avian hosts, bacteria have applied various ways to acquire iron. MATERIALS AND METHODS In this study, the frequency of 8 iron acquisition factors was examined among 63 avian and ovine Pasteurella multocida field isolates and their vaccine strains using PCR method. RESULTS Five candidate genes (fur, tonB, exbD, exbB and hgbA) were identified among all isolates. For the first time, 2 loci (hgbB1 and hgbB2) of the hgbB gene were identified, which were previously reported as 1 gene. Also, it was found that 5 ovine and 1 avian isolates possessed all the virulence factors, which could also be considered for evaluating the frequency of other virulence factors. CONCLUSION More studies need to be conducted on the frequency of all other virulence factors among these isolates, which can provide basic information for improvement or substitution of current vaccinal strains. Overall, as the new designed sets of primers showed more potential in detecting the corresponded genes, researchers can consider them in further studies.
Collapse
Affiliation(s)
- Motahare Feizabadi Farahani
- Department of Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Majid Esmaelizad
- Department of Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran,Corresponding author: Majid Esmaelizad, Ph.D, Department of Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran. Tel: +982634502899, Fax: +982634552194,
| | - Ahmad Reza Jabbari
- Department of Pasteurella National Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| |
Collapse
|
2
|
Abd El-Hamid MI, El-Sayed ME, Ali AR, Abdallah HM, Arnaout MI, El-Mowalid GA. Marjoram extract down-regulates the expression of Pasteurella multocida adhesion, colonization and toxin genes: A potential mechanism for its antimicrobial activity. Comp Immunol Microbiol Infect Dis 2018; 62:101-108. [PMID: 30711039 DOI: 10.1016/j.cimid.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/16/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Due to the emergence of virulent and antibiotic-resistant microbes, natural antimicrobials from herbal origins have been given more attention as an alternative therapy. This study provides an in vitro research framework to investigate the antibacterial activities of 5 herbal (marjoram, garlic, onion, cinnamon and black seed) oil extracts against 16 multidrug-resistant (MDR) and virulent P. multocida serogroup A isolates recovered from dead and clinically diseased rabbits. Pathogenicity of the screened isolates was further proven experimentally and was verified by PCR analyses of 5 randomly selected virulence genes encoding attachment and colonization proteins (ptfA, pfhA, and omp87), sialidases (nanB) and dermonecrotoxin (toxA). A total of 12 P. multocida isolates were highly pathogenic with the possession of all examined virulence genes, while the other 4 isolates were of lower pathogenicity with expression of the target genes except toxA. In vitro anti-P. multocida activities of the 5 extracts and their synergism rates with 4 antibiotic drugs revealed that marjoram and cinnamon extracts had the highest antibacterial activities and the highest synergism rates against the screened isolates. Pasteurella multocida virulence gene expression profiles were assessed via real-time quantitative reverse transcription PCR (qRT-PCR) in response to marjoram extract. The quantitative analyses showed less than five-fold reduction in the targeted virulence genes expression in presence of marjoram extract compared with the control. The findings from this study document a novel molecular inhibitory activity of marjoram against P. multocida multiple virulence genes and provide a proof of concept for its implementation as an alternative candidate for the treatment of pasteurellosis in farm animals in future.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M E El-Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aisha R Ali
- Department of Serology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - H M Abdallah
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I Arnaout
- Department of Serology, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Gamal A El-Mowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
Chitarra CS, Oliveira Filho JXD, Morés N, Silva MIVD, Cândido SL, Cezarino PG, Nakazato L, Dutra V. Identification of Pasteurella multocida transcribed genes in porcine lungs through RNAseq. Microb Pathog 2018; 122:180-183. [PMID: 29890333 DOI: 10.1016/j.micpath.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/11/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
Pasteurella multocida is one of the most important pathogen that causes pneumonia in swine. Although several virulence factors are known, the pathogenesis of this bacterium is not well-studied. Therefore, to study the pathogenesis of P. multocida infection in porcine lung, next-generation RNA sequencing was used to compare the transcriptomes of P. multocida grown in vivo and in vitro, respectively. After P. multocida infection a total of 704 genes were expressed in vitro, 1422 genes were expressed in vivo, and 237 genes were differentially expressed based on statistical analyses, padj of ≤0.1. Genes encoding ribosomal proteins or other products that function in the regulation of transcription and translation were downregulated, whereas genes whose products affected cellular processes (protein transport and RNA degradation) and metabolic pathways, such as those of amino acid metabolism and nucleotide metabolism, were upregulated in vitro compared with in vivo. This study shows that differentially expressed genes in P. multocida regulate pathways that operate during stress, iron capture, heat shock, and nitrogen regulation. However, extensive investigation of the pathogenic mechanism of P. multocida is still required.
Collapse
Affiliation(s)
- Cristiane Silva Chitarra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil.
| | | | - Nelson Morés
- Rodovia BR-153, Km 110, Distrito de Tamanduá Caixa Postal: 321, Concórdia, Santa Catarina, CEP: 89715-899, Brazil
| | | | - Stefhano Luis Cândido
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Paula Gabriela Cezarino
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Luciano Nakazato
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Valéria Dutra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| |
Collapse
|
4
|
AKONDI SIVARAMAKRISHNA, ARORA AK, SHARMA NS. Studies on expression of different virulence genes of Pasteurella multocida. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i2.67687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Pasteurella multocida is the causative agent of a wide range of diseases in avian and mammalian hosts. Different adhesin and membrane proteins play role in the pathogenesis of the disease. In the present study, the relative expression of 5 different virulence genes (plpE, ptfA, tbpA, hgbA and fhaB1) from Pasteurella multocida B:2 grown in iron rich and iron limiting media was measured using real time PCR employing SYBR green chemistry. The expression of tbpA, hgbA, plpE and fhaB1 was found to be significantly upregulated by 4, 2.3, 1.3, 2.3 folds, respectively, under iron limiting conditions. In contrast, the expression of gene ptfA was significantly down regulated (0.4 fold) as compared to organism grown in normal medium.
Collapse
|
5
|
Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity. Int J Mol Sci 2015; 17:ijms17010012. [PMID: 26703595 PMCID: PMC4730259 DOI: 10.3390/ijms17010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.
Collapse
|
6
|
Okay S, Kurt Kızıldoğan A. Comparative genome analysis of five Pasteurella multocida strains to decipher the diversification in pathogenicity and host specialization. Gene 2015; 567:58-72. [DOI: 10.1016/j.gene.2015.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/15/2023]
|
7
|
Abstract
The first complete genome sequence of the P. multocida avian isolate Pm70 was reported in 2001. Analysis of the genome identified many predicted virulence genes, including two encoding homologues of the Bordetella pertussis filamentous haemagluttinins, and genes involved in iron transport and metabolism. Availability of the genome sequence allowed for a range of whole-genome transcriptomic and proteomic analyses and these have helped us understand how P. multocida responds to growth in the presence of antibiotics, under low iron conditions and in the host. Unfortunately, no new P. multocida genome sequences were determined during the rest of the decade, limiting any possible comparative genomic analyses until recently, when several new genome sequences have become available. Here we use the available data to identify a number of important similarities and differences between the strains and determine their phylogenetic relationships. Interestingly, based on the current data there is no clear correlation between phylogenetic relatedness and host predilection or disease.
Collapse
|
8
|
Vogel AR, Szelestey BR, Raffel FK, Sharpe SW, Gearinger RL, Justice SS, Mason KM. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus. Front Cell Infect Microbiol 2012; 2:42. [PMID: 22919633 PMCID: PMC3417626 DOI: 10.3389/fcimb.2012.00042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/14/2012] [Indexed: 01/28/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a common commensal bacterium that resides in the human upper respiratory tract of healthy individuals. NTHI is also a known causative agent of multiple diseases including sinusitis, otitis media, as well as exacerbates disease severity of patients with cystic fibrosis and chronic obstructive pulmonary disease. We have previously shown that the Sap transporter mediates resistance to host antimicrobial peptides (AMPs) and import of the iron-containing compound heme. Here, we analyzed the contribution of the Sap structural ATPase protein, SapF, in these essential functions. In contrast to SapD, SapF was dispensable for NTHI survival when exposed to AMPs in vitro. SapF was responsible for heme utilization and recovery of depleted internal heme-iron stores. Further, a loss of SapF resulted in morphological plasticity and enhanced community development and biofilm architecture, suggesting the potential role of heme-iron availability in coordinating the complexity of NTHI biofilm architecture. SapF was required for colonization of the nasopharynx and acute infection of the middle ear, as SapF deficiency correlated with a statistically significant decrease in NTHI persistence in vivo. These data suggest that SapF is required for proper heme utilization which directly impacts NTHI survival. Thus, these studies further support a role for the Sap complex in the transport of multiple substrates and further defines substrate specificity for the two ATPase subunits. Given the multiple essential functions provided by the Sap transporter, this complex could prove to be an effective therapeutic target for the treatment of NTHI diseases.
Collapse
Affiliation(s)
- Andrew R Vogel
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University School of Medicine, Columbus OH, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Wilkie IW, Harper M, Boyce JD, Adler B. Pasteurella multocida: diseases and pathogenesis. Curr Top Microbiol Immunol 2012; 361:1-22. [PMID: 22643916 DOI: 10.1007/82_2012_216] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pasteurella multocida is an enigmatic pathogen. It is remarkable both for the number and range of specific disease syndromes with which it is associated, and the wide range of host species affected. The pathogenic mechanisms involved in causing the different syndromes are, for the most part, poorly understood or completely unknown. The biochemical and serological properties of some organisms responsible for quite different syndromes appear to be similar. Thus, the molecular basis for host predilection remains unknown. The recent development of genetic manipulation systems together with the availability of multiple genome sequences should help to explain the association of particular pathological conditions with particular hosts as well as helping to elucidate pathogenic mechanisms.
Collapse
Affiliation(s)
- I W Wilkie
- Department of Microbiology, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
10
|
Outer membrane proteins of Pasteurella multocida. Vet Microbiol 2010; 144:1-17. [DOI: 10.1016/j.vetmic.2010.01.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/23/2010] [Accepted: 01/28/2010] [Indexed: 02/05/2023]
|
11
|
Herath C, Kumar P, Singh M, Kumar D, Ramakrishnan S, Goswami TK, Singh A, Ram G. Experimental iron-inactivated Pasteurella multocida A: 1 vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl cholera. Vaccine 2010; 28:2284-9. [DOI: 10.1016/j.vaccine.2009.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 10/30/2009] [Accepted: 12/29/2009] [Indexed: 11/26/2022]
|
12
|
Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 2010; 6:e1000750. [PMID: 20140235 PMCID: PMC2816674 DOI: 10.1371/journal.ppat.1000750] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/06/2010] [Indexed: 02/02/2023] Open
Abstract
P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors. Pasteurella multocida is an animal pathogen of worldwide economic significance. It causes fowl cholera in wild birds and poultry, hemorrhagic septicemia in ungulates, and atrophic rhinitis in swine. The major virulence factor in fowl cholera-causing isolates is the polysaccharide capsule, which is composed of hyaluronic acid. Although there have been reports of spontaneous capsule loss in some strains, to date there has been no systematic investigation into the molecular mechanisms of this phenomenon. In this study, we describe for the first time the underlying transcriptional mechanisms required for the expression of capsule in P. multocida, and identify a transcriptional regulator required for capsule production.
Collapse
|
13
|
Bioinformatics annotation of the hypothetical proteins found by omics techniques can help to disclose additional virulence factors. Curr Microbiol 2009; 59:451-6. [PMID: 19636617 DOI: 10.1007/s00284-009-9459-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023]
Abstract
The advent of genomics should have facilitated the identification of microbial virulence factors, a key objective for vaccine design. When the bacterial pathogen infects the host it expresses a set of genes, a number of them being virulence factors. Among the genes identified by techniques as microarrays, in vivo expression technology, signature-tagged mutagenesis and differential fluorescence induction there are many related to cellular stress, basal metabolism, etc., which cannot be directly involved in virulence, or at least cannot be considered useful candidates to be deleted for designing a live attenuated vaccine. Among the genes disclosed by these methodologies there are a number of hypothetical or unknown proteins. As they can hide some true virulence factors, we have reannotated all of these hypothetical proteins from several respiratory pathogens by a careful and in-depth analysis of each one. Although some of the re-annotations match with functions that can be related to microbial virulence, the identification of virulence factors remains difficult.
Collapse
|
14
|
Nanduri B, Shack LA, Burgess SC, Lawrence ML. The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009; 10 Suppl 2:S4. [PMID: 19607655 PMCID: PMC2966327 DOI: 10.1186/1471-2164-10-s2-s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pasteurella multocida is a gram-negative bacterial pathogen that has a broad host range. One of the diseases it causes is fowl cholera in poultry. The availability of the genome sequence of avian P. multocida isolate Pm70 enables the application of functional genomics for observing global gene expression in response to a given stimulus. We studied the effects of three classes of antibiotics on the P. multocida transcriptome using custom oligonucleotide microarrays from NimbleGen Systems. Hybridizations were conducted with RNA isolated from three independent cultures of Pm70 grown in the presence or absence of sub-minimum inhibitory concentration (sub-MIC) of antibiotics. Differentially expressed (DE) genes were identified by ANOVA and Dunnett's test. Biological modeling of the differentially expressed genes (DE) was conducted based on Clusters of Orthologous (COG) groups and network analysis in Pathway Studio. RESULTS The three antibiotics used in this study, amoxicillin, chlortetracycline, and enrofloxacin, collectively influenced transcription of 25% of the P. multocida Pm70 genome. Some DE genes identified were common to more than one antibiotic. The overall transcription signatures of the three antibiotics differed at the COG level of the analysis. Network analysis identified differences in the SOS response of P. multocida in response to the antibiotics. CONCLUSION This is the first report of the transcriptional response of an avian strain of P. multocida to sub-lethal concentrations of three different classes of antibiotics. We identified common adaptive responses of P. multocida to antibiotic stress. The observed changes in gene expression of known and putative P. multocida virulence factors establish the molecular basis for the therapeutic efficacy of sub-MICs. Our network analysis demonstrates the feasibility and limitations of applying systems modeling to high throughput datasets in 'non-model' bacteria.
Collapse
Affiliation(s)
- Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
15
|
Jordan PW, Saunders NJ. Host iron binding proteins acting as niche indicators for Neisseria meningitidis. PLoS One 2009; 4:e5198. [PMID: 19352437 PMCID: PMC2662411 DOI: 10.1371/journal.pone.0005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/09/2009] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays. Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators. Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also underlie the lethal features of meningococcal septicaemia, when haemoglobin may become a major source of iron.
Collapse
Affiliation(s)
- Philip W. Jordan
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nigel J. Saunders
- The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Cases I, Velázquez F, de Lorenzo V. The ancestral role of the phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 2007; 158:666-70. [PMID: 17913467 DOI: 10.1016/j.resmic.2007.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/19/2022]
Abstract
The normal role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) is phosphorylation and subsequent uptake of specific sugars. However, analysis of the distribution of PTS proteins in 206 genomes covering major bacterial groups indicates that the conventional function of PTS proteins as devices for carbohydrate phosphorylation and transport is an exception found in Enterobacteriacea, Vibrionales and Firmicutes, rather than a rule for all bacteria. Instead, available evidence suggests that a core set of C-responsive phosphotransferases have been evolutionarily drafted towards diversity of regulatory functions in response inter alia to the global economy of the C and N pools.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | |
Collapse
|
17
|
Pflüger K, de Lorenzo V. Growth-dependent Phosphorylation of the PtsN (EIINtr) Protein of Pseudomonas putida. J Biol Chem 2007; 282:18206-18211. [PMID: 17478425 DOI: 10.1074/jbc.m611110200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitrogen-related branch of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) of Pseudomonas putida includes the ptsN gene encoding the EIINtr (PtsN) enzyme. Although the implication of this protein in a variety of cellular functions has been observed in diverse bacteria, the physiological signals that bring about phosphorylation/dephosphorylation of the PtsN protein are not understood. This work documents the phosphorylation status of the EIINtr enzyme of P. putida at various growth stages in distinct media. Culture conditions were chosen to include fructose (the uptake of which is controlled by the PTS) or glucose (a non-PTS sugar in P. putida) in minimal medium with casamino acids, ammonia, or nitrate as alternative nitrogen sources. To quantify the relative ratio of PtsN/PtsN approximately P in live cells, we resorted to the in situ electrophoresis of whole bacteria expressing an E-epitope-tagged EIINtr followed by the fractionation of the thereby released native proteome in a non-denaturing gel. Although the PtsN species phosphorylated in amino acid His68 was detected under virtually all growth scenarios, the relative levels of the non-phosphorylated form varied dramatically depending on the growth phase and the nutrients available in the medium. The share of phosphorylated PtsN increased along growth in a fashion apparently independent of any trafficking of sugars. The large variations of non-phosphorylated PtsN in different growth conditions, in contrast to the systematic excess of the phosphorylated PtsN form, suggested that the P-free PtsN is the predominant signaling species of the protein.
Collapse
Affiliation(s)
- Katharina Pflüger
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
18
|
Velázquez F, Pflüger K, Cases I, De Eugenio LI, de Lorenzo V. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol 2007; 189:4529-33. [PMID: 17416664 PMCID: PMC1913348 DOI: 10.1128/jb.00033-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Pseudomonas putida KT2440 encodes five proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Two of these (FruA and FruB) form a dedicated system for fructose intake, while enzyme I(Ntr) (EI(Ntr); encoded by ptsP), NPr (ptsO), and EII(Ntr) (ptsN) act in concert to control the intracellular accumulation of polyhydroxyalkanoates, a typical product of carbon overflow.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
19
|
Krushkal J, Yan B, DiDonato LN, Puljic M, Nevin KP, Woodard TL, Adkins RM, Methé BA, Lovley DR. Genome-wide expression profiling in Geobacter sulfurreducens: identification of Fur and RpoS transcription regulatory sites in a relGsu mutant. Funct Integr Genomics 2007; 7:229-55. [PMID: 17406915 DOI: 10.1007/s10142-007-0048-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/10/2007] [Accepted: 02/19/2007] [Indexed: 01/06/2023]
Abstract
Rel(Gsu) is the single Geobacter sulfurreducens homolog of RelA and SpoT proteins found in many organisms. These proteins are involved in the regulation of levels of guanosine 3', 5' bispyrophosphate, ppGpp, a molecule that signals slow growth and stress response under nutrient limitation in bacteria. We used information obtained from genome-wide expression profiling of the rel(Gsu) deletion mutant to identify putative regulatory sites involved in transcription networks modulated by Rel(Gsu) or ppGpp. Differential gene expression in the rel(Gsu) deletion mutant, as compared to the wild type, was available from two growth conditions, steady state chemostat cultures and stationary phase batch cultures. Hierarchical clustering analysis of these two datasets identified several groups of operons that are likely co-regulated. Using a search for conserved motifs in the upstream regions of these co-regulated operons, we identified sequences similar to Fur- and RpoS-regulated sites. These findings suggest that Fur- and RpoS-dependent gene expression in G. sulfurreducens is affected by Rel(Gsu)-mediated signaling.
Collapse
Affiliation(s)
- Julia Krushkal
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 N. Pauline, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mason KM, Bruggeman ME, Munson RS, Bakaletz LO. The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 2006; 62:1357-72. [PMID: 17064364 DOI: 10.1111/j.1365-2958.2006.05460.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have shown that non-typeable Haemophilus influenzae (NTHI) resists killing by antimicrobial peptides (APs). A mutant defective in expression of the sap (sensitivity to antimicrobial peptides) gene cluster product SapA is sensitive to killing by APs and is significantly attenuated in its ability to survive in a chinchilla model of otitis media compared with the parent strain. In NTHI, SapA is believed to function as the periplasmic solute binding protein of an ABC transporter. Here, we demonstrated that recombinant chinchilla beta defensin-1 specifically interacted with recombinant SapA and that AP exposure increased expression of the sap operon. We further demonstrated that the putative Sap transporter ATPase protein, SapD, was required for AP resistance as well as potassium uptake in NTHI strain 86-028NP. Loss of SapD additionally abrogated NTHI survival in vivo. Complementation of the sapD mutation restored the ability to grow in potassium-limited medium, resistance to AP-mediated killing and survival in vivo. Collectively, these data support a mechanism of Sap system-mediated resistance to APs that depends on Sap-dependent transport of APs and a Sap-dependent restoration of potassium homeostasis. Thus, NTHI required a functional Sap system to mediate bacterial survival and pathogenesis in vivo.
Collapse
Affiliation(s)
- Kevin M Mason
- Columbus Children's Research Institute and The Ohio State University College of Medicine and Public Health, Columbus, OH, USA
| | | | | | | |
Collapse
|
21
|
Ehrenreich A. DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 2006; 73:255-73. [PMID: 17043830 DOI: 10.1007/s00253-006-0584-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
DNA microarrays have found widespread use as a flexible tool to investigate bacterial metabolism. Their main advantage is the comprehensive data they produce on the transcriptional response of the whole genome to an environmental or genetic stimulus. This allows the microbiologist to monitor metabolism and to define stimulons and regulons. Other fields of application are the identification of microorganisms or the comparison of genomes. The importance of this technology increases with the number of sequenced genomes and the falling prices for equipment and oligonucleotides. Knowledge of DNA microarrays is of rising relevance for many areas in microbiological research. Much literature has been published on various specific aspects of this technique that can be daunting to the casual user and beginner. This article offers a comprehensive outline of microarray technology for transcription analysis in microbiology. It shortly discusses the types of DNA microarrays available, the printing of custom arrays, common labeling strategies for targets, hybridization, scanning, normalization, and clustering of expression data.
Collapse
Affiliation(s)
- Armin Ehrenreich
- Institute of Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| |
Collapse
|
22
|
Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 2006; 73:8167-78. [PMID: 16299312 PMCID: PMC1307094 DOI: 10.1128/iai.73.12.8167-8178.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of iron uptake and utilization is critical for bacterial growth and for prevention of iron toxicity. In many bacterial species, this regulation depends on the iron-responsive master regulator Fur. In this study we report the effects of iron and Fur on gene expression in Vibrio cholerae. We show that Fur has both positive and negative regulatory functions, and we demonstrate Fur-independent regulation of gene expression by iron. Nearly all of the known iron acquisition genes were repressed by Fur under iron-replete conditions. In addition, genes for two newly identified iron transport systems, Feo and Fbp, were found to be negatively regulated by iron and Fur. Other genes identified in this study as being induced in low iron and in the fur mutant include those encoding superoxide dismutase (sodA), fumarate dehydratase (fumC), bacterioferritin (bfr), bacterioferritin-associated ferredoxin (bfd), and multiple genes of unknown function. Several genes encoding iron-containing proteins were repressed in low iron and in the fur mutant, possibly reflecting the need to reserve available iron for the most critical functions. Also repressed in the fur mutant, but independently of iron, were genes located in the V. cholerae pathogenicity island, encoding the toxin-coregulated pilus (TCP), and genes within the V. cholerae mega-integron. The fur mutant exhibited very weak autoagglutination, indicating a possible defect in expression or assembly of the TCP, a major virulence factor of V. cholerae. Consistent with this observation, the fur mutant competed poorly with its wild-type parental strain for colonization of the infant mouse gut.
Collapse
Affiliation(s)
- Alexandra R Mey
- The University of Texas, Section of Molecular Genetics and Microbiology, Austin, TX 78712-1095, USA
| | | | | | | | | |
Collapse
|
23
|
Boyce JD, Adler B. How does Pasteurella multocida respond to the host environment? Curr Opin Microbiol 2006; 9:117-22. [PMID: 16406771 DOI: 10.1016/j.mib.2005.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Pasteurella multocida is a Gram-negative bacterial pathogen, which causes diseases of economic importance in a wide range of animal species. The response of P. multocida to the host environment has been analysed at the transcription level, using DNA microarrays, and at the protein-expression level, using proteomics techniques. Furthermore, a growing number of P. multocida-directed mutants have been assessed for their ability to cause disease. Although technical impediments mean that it is currently difficult to analyse bacterial responses at the earliest stages of infection, it is clear that during later stages of infection the bacteria encounter host niches that require them to modify the expression of genes involved in central energy metabolism and in the uptake of various nutrients such as iron and amino acids. Furthermore, in vitro experiments have defined the varying bacterial responses to low iron and to different iron sources, including haemoglobin and transferrin. To date, most P. multocida genes shown to be upregulated during infection are involved in nutrient acquisition and metabolic processes, indicating that true virulence genes might be constitutively expressed, upregulated only during initial stages of infection or upregulated at levels below current detection limits.
Collapse
Affiliation(s)
- John D Boyce
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Australian Bacterial Pathogenesis Program, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
24
|
Abstract
Iron is an essential element for most organisms, including bacteria. The oxidized form is insoluble, and the reduced form is highly toxic for most macromolecules and, in biological systems, is generally sequestrated by iron- and heme-carrier proteins. Thus, despite its abundance on earth, there is practically no free iron available for bacteria whatever biotope they colonize. To fulfill their iron needs, bacteria have multiple iron acquisition systems, reflecting the diversity of their potential biotopes. The iron/heme acquisition systems in bacteria have one of two general mechanisms. The first involves direct contact between the bacterium and the exogenous iron/heme sources. The second mechanism relies on molecules (siderophores and hemophores) synthesized and released by bacteria into the extracellular medium; these molecules scavenge iron or heme from various sources. Recent genetic, biochemical, and crystallographic studies have allowed substantial progress in describing molecular mechanisms of siderophore and hemophore interactions with the outer membrane receptors, transport through the inner membrane, iron storage, and regulation of genes encoding biosynthesis and uptake proteins.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie Fondamentale et Médicale, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
25
|
Bosch M, Garrido ME, Pérez de Rozas AM, Badiola I, Barbé J, Llagostera M. Pasteurella multocida contains multiple immunogenic haemin- and haemoglobin-binding proteins. Vet Microbiol 2004; 99:103-12. [PMID: 15019101 DOI: 10.1016/j.vetmic.2003.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 11/14/2003] [Accepted: 11/25/2003] [Indexed: 11/25/2022]
Abstract
Iron-dependent outer membrane proteins (IROMPs) play an important role in bacterial pathogenesis and present several attributes of potential vaccine candidates. TBLASTN analysis of the Pasteurella multocida Pm70 genome using the same molecules of other bacterial pathogens as a query identified eight putative haemin and haemoglobin receptors for this organism. Quantitative binding assays have demonstrated that the proteins PM0040, PM0236, PM0741, PM1081, PM1428, PM0592 and HgbA bind both haemin and haemoglobin, whereas PM0576 and PM1282 ORFs only bind either haemoglobin or haemin, respectively. Furthermore, Western blot analysis showed that P. multocida-infected mice generate specific antibodies against PM0040, PM0236, PM0741, PM1081, PM1428, PM0592 and HgbA proteins. Nevertheless, inoculation of mice with any single one of these receptors alone did not protect against P. multocida infection.
Collapse
Affiliation(s)
- Montserrat Bosch
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Bjarnason J, Southward CM, Surette MG. Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 2003; 185:4973-82. [PMID: 12897017 PMCID: PMC166456 DOI: 10.1128/jb.185.16.4973-4982.2003] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of iron to bacteria is shown by the presence of numerous iron-scavenging and transport systems and by many genes whose expression is tightly regulated by iron availability. We have taken a global approach to gene expression analysis of Salmonella enterica serovar Typhimurium in response to iron by combining efficient, high-throughput methods with sensitive, luminescent reporting of gene expression using a random promoter library. Real-time expression profiles of the library were generated under low- and high-iron conditions to identify iron-regulated promoters, including a number of previously identified genes. Our results indicate that approximately 7% of the genome may be regulated directly or indirectly by iron. Further analysis of these clones using a Fur titration assay revealed three separate classes of genes; two of these classes consist of Fur-regulated genes. A third class was Fur independent and included both negatively and positively iron-responsive genes. These may reflect new iron-dependent regulons. Iron-responsive genes included iron transporters, iron storage and mobility proteins, iron-containing proteins (redox proteins, oxidoreductases, and cytochromes), transcriptional regulators, and the energy transducer tonB. By identifying a wide variety of iron-responsive genes, we extend our understanding of the global effect of iron availability on gene expression in the bacterial cell.
Collapse
Affiliation(s)
- Jaime Bjarnason
- Department of Microbiology and Infectious Diseases, Health Sciences Centre, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
27
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2448450 DOI: 10.1002/cfg.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|