1
|
Chen F, Guo S, Li Y, Lu Y, Liu L, Chen S, An J, Zhang G. Fusobacterium nucleatum-driven CX3CR1 + PD-L1 + phagocytes route to tumor tissues and reshape tumor microenvironment. Gut Microbes 2025; 17:2442037. [PMID: 39710592 DOI: 10.1080/19490976.2024.2442037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songhe Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongfan Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengxin Chen
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Franklin DS, Chen YW, Chen Y, Wittchen M, Agnew A, Luu A, Whitelegge JP, Zhou ZH, Tauch A, Das A, Ton-That H. Ethanolamine-induced assembly of microcompartments is required for Fusobacterium nucleatum virulence. mBio 2025; 16:e0340524. [PMID: 39714188 DOI: 10.1128/mbio.03405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Many bacteria metabolize ethanolamine as a nutrient source through cytoplasmic organelles named bacterial microcompartments (BMCs). Here we investigated the molecular assembly, regulation, and function of BMCs in Fusobacterium nucleatum-a Gram-negative oral pathobiont that is associated with adverse pregnancy outcomes. The F. nucleatum genome harbors a conserved ethanolamine utilization (eut) locus with 21 genes that encode several putative BMC shell proteins and a two-component signal transduction system (TCS), in addition to the enzymes for ethanolamine transport and catabolism. We show that the expression of most of these genes and BMC formation are highly increased in wild-type fusobacteria when cultured in the presence of ethanolamine as a nutrient source. Deletion of the response regulator EutV eliminated this induction of eut mRNAs and BMCs, thus demonstrating that BMC formation is transcriptionally regulated by the TCS EutV-EutW in response to ethanolamine. Mass spectrometry of isolated BMCs unveiled the identity of the constituent proteins EutL, EutM1, EutM2, and EutN. Consistent with the role of these proteins in BMC assembly and metabolism, deletion of eutN, eutL/eutM1/eutM2, or eutL/eutM1/eutM2/eutN not only affected BMC formation but also ethanolamine utilization, causing cell growth defects with ethanolamine as a nutrient. BMCs are also assembled in fusobacteria cultured with placental cells or the culture media, a process that is dependent on the BMC shell proteins. Significantly, we show that the eutN mutant is defective in inducing preterm birth in a mouse model. Together, these results establish that the BMC-mediated metabolism of ethanolamine is critical for fusobacterial virulence. IMPORTANCE The oral anaerobe Fusobacterium nucleatum can spread to distal internal organs, such as the colon and placenta, thereby promoting the development of colorectal cancer and inducing preterm birth, respectively. Yet, how this opportunistic pathogen adapts to the various metabolically distinct host cellular niches remains poorly understood. We demonstrated here that this microbe assembles specialized metabolic organelles, termed bacterial microcompartments (BMCs), to utilize environmental ethanolamine (EA) as a key environmental nutrient source. The formation of F. nucleatum BMCs, containing BMC shell proteins EutLM1M2N, is controlled by a two-component system, EutV-EutW, responsive to EA. Significantly, this ability of F. nucleatum to form BMCs in response to EA is crucial for its pathogenicity evidenced by the fact that the genetic disruption of BMC formation reduces fusobacterial virulence in a mouse model of preterm birth.
Collapse
Affiliation(s)
- Dana S Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Manuel Wittchen
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Angela Agnew
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Alexis Luu
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Li X, Zhang S, Sheng H, Zhen Y, Wu B, Li Z, Chen D, Zhou H. Oral Fusobacterium nucleatum resists the acidic pH of the stomach due to membrane erucic acid synthesized via enoyl-CoA hydratase-related protein FnFabM. J Oral Microbiol 2025; 17:2453964. [PMID: 39845704 PMCID: PMC11753016 DOI: 10.1080/20002297.2025.2453964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Background and Objective Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease. Methods To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established. This model was used to simulate the acidic conditions encountered by bacteria during their translocation from the mouth to the intestine. Results Fusobacterium nucleatum exhibited the highest survival rate in an acidified fluid mimicking the stomach pH (pH 1.5). The survival was significantly increased in the presence of erucic acid C22:1(n9) in cell membranes. Phylogenetic tree analysis revealed that C22:1(n9) synthesis was significantly associated with FnFabM gene expression in F. nucleatum at pH 1.5. Inhibition of FnFabM expression by cerulenin reduced the C22:1(n9) content and decreased the colonization efficiency of F. nucleatum in the stomach and jejunum of mice. Conclusions Oral F. nucleatum translocate to the intestine by resisting the acidic environment owing to the presence of erucic acid in its cell membrane, which is regulated by FnFabM. These results provide novel insights into the mechanisms underlying the oral bacteria survival in acidic environments and their potential to colonize the intestine; thus, shedding light on the oral-gut axis and its implications on human health.
Collapse
Affiliation(s)
- Xiaocong Li
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Shipeng Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Huafang Sheng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Yan Zhen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Dingqiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| | - Hongwei Zhou
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen City, Guangdong, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong, China
| |
Collapse
|
4
|
McGregor AK, Wolthers KR. HutZ from Aliivibrio fischeri Inhibits HutW-Mediated Anaerobilin Formation by Sequestering Heme. Biochemistry 2024; 63:3357-3368. [PMID: 39642050 DOI: 10.1021/acs.biochem.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Anaerobilin synthase catalyzes the decyclization of the heme protoporphyrin ring, an O2-independent reaction that liberates iron and produces the linear tetrapyrrole, anaerobilin. The marine bacterium Aliivibrio fischeri, the enteric pathogen Escherichia coli O157:H7, and the opportunistic oral pathogen Fusobacterium nucleatum encode anaerobilin synthase as part of their heme uptake/utilization operons, designated chu (E. coli O157:H7), hmu (F. nucleatum), and hut (A. fischeri). F. nucleatum and E. coli O157:H7 contain accessory proteins (ChuS, ChuY, and HmuF) encoded in their respective operons that mitigate against the cytotoxicity of labile heme and anaerobilin by functioning in heme trafficking and anaerobilin reduction. However, the hut operon of A. fischeri and other members of the Vibrionaceae family including the enteric pathogen Vibrio cholerae do not contain homologues to these accessory proteins, raising questions as to how members of this family mitigate against anaerobilin and heme toxicity. Herein, we show that HutW (anaerobilin synthase) from A. fischeri produces anaerobilin, but that HutX and HutZ, encoded downstream of HutW, do not catalyze anaerobilin reduction in the presence of excess NAD(P)H, FAD, and FMN. However, we show that HutZ prevents labile heme and anaerobilin cytotoxicity by binding tightly to heme, sequestering it from HutW, and preventing anaerobilin formation. Thus, A. fischeri is seemingly unable to extract iron from heme using the hutWXZ gene products. Our results further suggest that the structurally distinct chu, hmu, and hut operons have functionally converged to protect the cell from anaerobilin accumulation and heme cytotoxicity.
Collapse
Affiliation(s)
- Alexandra K McGregor
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
5
|
Ohsawa M, Nishi H, Emi M, Yoshikawa T, Hamai Y, Ibuki Y, Kurokawa T, Hirohata R, Kitasaki N, Kawada-Matsuo M, Komatsuzawa H, Kawaguchi H, Okada M. Impact of Fusobacterium nucleatum in the treatment of cancer, including radiotherapy and its future potential in esophageal cancer. JOURNAL OF RADIATION RESEARCH 2024; 65:i126-i134. [PMID: 39679879 DOI: 10.1093/jrr/rrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/09/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in multimodality therapy, including surgery, chemotherapy, radiation therapy and chemoradiation, the fatality rate for esophageal cancer remains high. Specifically, Fusobacterium nucleatum, due to its aggregation capacity, has shown a tendency to form biofilms. The biofilm-forming capabilities of microbial communities are of utmost importance in the context of cancer treatment, as they have been shown to drive significant losses in the efficaciousness of various cancer treatments. Therefore, elucidating the dynamics of F. nucleatum will be important for the development of effective treatments for esophageal cancer. Therefore, this review summarizes the current knowledge of F. nucleatum, its involvement in cancer and its impact on chemotherapy and radiation therapy. In conclusion, further research on the role of F. nucleatum is essential for the continued advancement of the treatment of esophageal cancer and patient care.
Collapse
Affiliation(s)
- Manato Ohsawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Manabu Emi
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Toru Yoshikawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yoichi Hamai
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yuta Ibuki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Tomoaki Kurokawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Nao Kitasaki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| |
Collapse
|
6
|
Jones L, Salta M, Skovhus TL, Thomas K, Illson T, Wharton J, Webb J. Dual anaerobic reactor model to study biofilm and microbiologically influenced corrosion interactions on carbon steel. NPJ MATERIALS DEGRADATION 2024; 8:125. [PMID: 39649128 PMCID: PMC11621017 DOI: 10.1038/s41529-024-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024]
Abstract
Continual challenges due to microbial corrosion are faced by the maritime, offshore renewable and energy sectors. Understanding the biofilm and microbiologically influenced corrosion interaction is hindered by the lack of robust and reproducible physical models that reflect operating environments. A novel dual anaerobic biofilm reactor, using a complex microbial consortium sampled from marine littoral sediment, allowed the electrochemical performance of UNS G10180 carbon steel to be studied simultaneously in anaerobic abiotic and biotic artificial seawater. Critically, DNA extraction and 16S rRNA amplicon sequencing demonstrated the principal biofilm activity was due to electroactive bacteria, specifically sulfate-reducing and iron-reducing bacteria.
Collapse
Affiliation(s)
- Liam Jones
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Salta
- Endures, MIC and Biofilm Department, Bevesierweg 1, DC002, 1781 AT Den Helder, The Netherlands
- School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Torben Lund Skovhus
- Research Centre for Built Environment, Climate and Water Technology, VIA University College, Horsens, Denmark
| | | | | | - Julian Wharton
- School of Engineering, University of Southampton, Southampton, UK
| | - Jeremy Webb
- School of Biological Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, Southampton, UK
| |
Collapse
|
7
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
8
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
9
|
Franklin DS, Chen YW, Chen Y, Wittchen M, Agnew A, Luu A, Whitelegge JP, Hong Zhou Z, Tauch A, Das A, Ton-That H. Ethanolamine-induced assembly of microcompartments is required for Fusobacterium nucleatum virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623001. [PMID: 39605705 PMCID: PMC11601286 DOI: 10.1101/2024.11.11.623001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Many bacteria metabolize ethanolamine as a nutrient source through cytoplasmic organelles named bacterial microcompartments (BMCs). Here we investigated the molecular assembly, regulation, and function of BMCs in Fusobacterium nucleatum - a Gram-negative oral pathobiont that is associated with adverse pregnancy outcomes. The F. nucleatum genome harbors a conserved ethanolamine utilization (eut) locus with 21 genes that encode several putative BMC shell proteins and a two-component signal transduction system (TCS), in addition to the enzymes for ethanolamine transport and catabolism. We show that the expression of most of these genes as well as BMC formation is highly increased in wild type fusobacteria when cultured in the presence of ethanolamine as a nutrient source. Deletion of the response regulator EutV eliminated this induction of eut mRNAs and BMCs, thus demonstrating that BMC formation is transcriptionally regulated by the TCS EutV-EutW in response to ethanolamine. Mass spectrometry of isolated BMCs unveiled the identity of the constituent proteins EutL, EutM1, EutM2, and EutN. Consistent with the role of these proteins in BMC assembly and metabolism, deletion of eutN, eutL/eutM 1 /eutM 2 , or eutL/eutM 1 /eutM 2 /eutN not only affected BMC formation, but also ethanolamine utilization, causing cell growth defects with ethanolamine as nutrient. BMCs also assembled in fusobacteria cultured with placental cells or the culture media, a process that is dependent on the BMC shell proteins. Significantly, we show that the eutN mutant is defective in inducing preterm birth in a mouse model. Together, these results establish that BMC-mediated metabolism of ethanolamine is critical for fusobacterial virulence.
Collapse
Affiliation(s)
- Dana S. Franklin
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Yi-Wei Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yimin Chen
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Manuel Wittchen
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Angela Agnew
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexis Luu
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Lamer T, Chen P, Venter MJ, van Belkum MJ, Wijewardane A, Wu C, Lemieux MJ, Vederas JC. Discovery, characterization, and structure of a cofactor-independent histidine racemase from the oral pathogen Fusobacterium nucleatum. J Biol Chem 2024; 300:107896. [PMID: 39424140 PMCID: PMC11602996 DOI: 10.1016/j.jbc.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Fusobacterium nucleatum is an oral commensal bacterium that can act as an opportunistic pathogen and is implicated in diseases such as periodontitis, adverse pregnancy outcomes, colorectal cancer, and Alzheimer's disease. F. nucleatum synthesizes lanthionine for its peptidoglycan, rather than meso-2,6-diaminopimelic acid (DAP) used by most Gram-negative bacteria. Despite lacking the biosynthetic pathway for DAP, the genome of F. nucleatum ATCC 25586 encodes a predicted DAP epimerase. A recent study hypothesized that this enzyme may act as a lanthionine epimerase, but the authors found a very low turnover rate, suggesting that this enzyme likely has another more favored substrate. Here, we characterize this enzyme as a histidine racemase (HisR), and found that catalytic turnover is ∼10,000× faster with L-histidine than with L,L-lanthionine. Kinetic experiments suggest that HisR functions as a cofactor-independent racemase and that turnover is specific for histidine, while crystal structures of catalytic cysteine to serine mutants (C67S or C209S) reveal this enzyme in its substrate-unbound, open conformation. Currently, the only other reported cofactor-independent histidine racemase is CntK from Staphylococcus aureus, which is used in the biosynthesis of staphylopine, a broad-spectrum metallophore that increases virulence of S. aureus. However, CntK shares only 28% sequence identity with HisR, and their genes exist in different genomic contexts. Knockout of hisR in F. nucleatum results in a small but reproducible lag in growth compared to WT during exponential phase, suggesting that HisR may play a role in growth of this periodontal pathogen.
Collapse
Affiliation(s)
- Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pu Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Marie J Venter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Wang X, Fang Y, Liang W, Wong CC, Qin H, Gao Y, Liang M, Song L, Zhang Y, Fan M, Liu C, Lau HCH, Xu L, Li X, Song W, Wang J, Wang N, Yang T, Mo M, Zhang X, Fang J, Liao B, Sung JJY, Yu J. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 2024; 42:1729-1746.e8. [PMID: 39303724 DOI: 10.1016/j.ccell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, Fusobacterium nucleatum (Fn), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with Fn-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from Fn-low counterparts. Single Fn administration also potentiates anti-PD-1 efficacy in murine allografts and CD34+-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral Fn generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8+ T cells, inducing Tbx21 promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8+ T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in Fn abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral Fn predicts favorable response to anti-PD-1 therapy, indicating Fn as a potential biomarker of immunotherapy response in MSS CRC.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Song
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao Fan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuanfa Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengmiao Mo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Yu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Hussain N, Muccee F, Ashraf NM, Afsar T, Husain FM, Hamid A, Razak S. Comparative analysis of adhesion virulence protein FadA from gut-associated bacteria of colorectal cancer patients ( F. nucleatum) and healthy individuals ( E. cloacae). J Cancer 2024; 15:5492-5505. [PMID: 39308684 PMCID: PMC11414602 DOI: 10.7150/jca.98951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Colorectal cancer (CRC) is a gastrointestinal disease linked with GIT microbial dysbiosis. The present study has targeted the comparative analysis of virulent factor FadA from gut-associated bacteria of CRC patients (F. nucleatum) and healthy individuals (E. cloacae). Methods: For this purpose, FadA protein sequences of fifteen strains of F. nucleatum and four strains of E. cloacae, were retrieved from the UniProt database. These sequences were analysed through VirulentPred, PSLpred, ProtParam, PFP-FunDSeqE, PROTEUS Structure Prediction Server, SWISS-MODEL, SAVES validation server, MEME suite 5.5.0, CAVER Web tool, Webserver VaxinPAD, HPEPDOCK and HDOCK servers. Results: FadA protein from F. nucleatum was found to exhibit significant differences as compared to E. nucleatum i.e. it exhibited helical configuration, cytoplasmic, periplasmic, outer-membrane and extracellular localisation, 2D structure comprising of 70-96% helix, 0% beta-sheet, 4-30% coils and 17-20 signal peptide residues, hydrophilicity, strongly acidic character and smaller number of antigenic epitopes. In contrast, FadA protein from E. nucleatum was found to have globular 3D configuration, cytoplasmic localisation, 2D structure (30-56% helix, 12-21% beta-sheet, 33-50% coils and 43 signal peptide residues), highly hydrophobic, slightly acidic and more number of antigenic epitopes. Docking analyses of virulent factors revealed their high binding affinities with previously reported inhibitory peptide and FAD-approved drug COX2. Conclusion: The wide range of differences not only provided us the reason for the role of FadA protein as a virulent factor in F. nucleatum but also might help us in designing virulent FadA protein inhibiting strategies including peptide-based vaccine adjuvants and drugs designing, modification of tunnels and catalytic pockets to reduce substrate binding and FAD approved drugs selection. Inhibition of this virulent factor in CRC patients' gut bacteria might result in oncogenesis regression and reduced death rate.
Collapse
Affiliation(s)
- Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, Abu Dhabi P. O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Arslan Hamid
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Ghalandarzadeh A, Ganjali M, Hosseini M. Tailoring zirconia surface topography via femtosecond laser-induced nanoscale features: effects on osteoblast cells and antibacterial properties. Biomed Mater 2024; 19:055017. [PMID: 39016135 DOI: 10.1088/1748-605x/ad606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1βsecretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated usingFusobacterium nucleatum, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1βin the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, includingStreptococcus mutans, Pseudomonas aeruginosa, andEscherichia coli.
Collapse
Affiliation(s)
- Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, PO Box: 16846, Tehran, Iran
| | - Monireh Ganjali
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, PO Box: 31787-316, Karaj, Iran
| | - Milad Hosseini
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
14
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
16
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
17
|
Cornejo Ulloa P, van der Veen MH, Brandt BW, Buijs MJ, Krom BP. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023; 6:100139. [PMID: 37621393 PMCID: PMC10447177 DOI: 10.1016/j.bioflm.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Sex steroid hormones (SSH) such as oestrogen, progesterone and testosterone are cholesterol derived molecules that regulate various physiological processes. They are present in both blood and saliva, where they come in contact with oral tissues and oral microorganisms. Several studies have confirmed the effect of these hormones on different periodontal-disease-associated bacteria, using single-species models. Bacteria can metabolize SSH, use them as alternative for vitamin K and also use them to induce the expression of virulence factors. However, it is still unclear what the effects of SSH are on the oral microbiome. In this study, we investigated the effects of four SSH on commensal in vitro oral biofilms. Saliva-derived oral biofilms were grown in Mc Bain medium without serum or menadione using the Amsterdam Active-Attachment model. After initial attachment in absence of SSH, the biofilms were grown in medium containing either oestradiol, oestriol, progesterone or testosterone at a 100-fold physiological concentration. Menadione or ethanol were included as positive control and negative control, respectively. After 12 days with daily medium refreshments, biofilm formation, biofilm red fluorescence and microbial composition were determined. The supernatants were tested for proteolytic activity using the Fluorescence Resonance Energy Transfer Analysis (FRET). No significant differences were found in biofilm formation, red fluorescence or microbial composition in any of the tested groups. Samples grown in presence of progesterone and oestradiol showed proteolytic activity comparable to biofilms supplemented with menadione. In contrast, testosterone and oestriol showed a decreased proteolytic activity compared to biofilms grown in presence of menadione. None of the tested SSH had large effects on the ecology of in vitro oral biofilms, therefore a direct translation of our results into in vivo effects is not possible. Future experiments should include other host factors such as oral tissues, immune cells and combinations of SSH as present in saliva, in order to have a more accurate picture of the phenomena taking place in both males and females.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Monique H. van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki A, Afkhami H. Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: wound healing and infection recovery. Front Microbiol 2023; 14:1251956. [PMID: 37869672 PMCID: PMC10586055 DOI: 10.3389/fmicb.2023.1251956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, are a type of multipotent stem cells that are typically extracted from adipose tissue and bone marrow. In the field of tissue engineering and regenerative medicine, MSCs and their exosomes have emerged as revolutionary tools. Researchers are now devoting greater attention to MSCs because of their ability to generate skin cells like fibroblasts and keratinocytes, as well as their distinctive potential to decrease inflammation and emit pro-angiogenic molecules at the site of wounds. More recent investigations revealed that MSCs can exert numerous direct and indirect antimicrobial effects that are immunologically mediated. Collectively, these antimicrobial properties can remove bacterial infections when the MSCs are delivered in a therapeutic setting. Regardless of the positive therapeutic potential of MSCs for a multitude of conditions, transplanted MSC cell retention continues to be a major challenge. Since MSCs are typically administered into naturally hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs is crucial. Hypoxia has been postulated to be among the factors determining the differentiation of MSCs, resulting in the production of inflammatory cytokines throughout the process of tissue regeneration and wound repair. This has opened new horizons in developing MSC-based systems as a potent therapeutic tool in oxygen-deprived regions, including anaerobic wound infection sites. This review sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial wound infection in terms of both their regenerative and antimicrobial activities.
Collapse
Affiliation(s)
- Elahe Andalib
- Department of Microbiology, School of Basic Sciences, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Elaheh Rezaei
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Torki
- Department of Medical Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
19
|
Takeda K, Koi M, Okita Y, Sajibu S, Keku TO, Carethers JM. Fusobacterium nucleatum Load Correlates with KRAS Mutation and Sessile Serrated Pathogenesis in Colorectal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1940-1951. [PMID: 37772997 PMCID: PMC10530411 DOI: 10.1158/2767-9764.crc-23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Fusobacterium nucleatum (Fn) has been frequently detected in colorectal cancer. A high load of Fn has been associated with subtypes of colorectal cancers, located in the proximal colon, exhibiting microsatellite instability-high (MSI-H), MLH1 promoter hypermethylation, the CpG island hypermethylation phenotype-high, or BRAF mutation in some studies. Although these features characterize the sessile serrated pathway (SSP) of colon cancers, other studies have shown that Fn infection is associated with KRAS mutations mainly characteristic of non-serrated neoplasia. It is also not clear at what point the association of Fn infection with these genomic alterations is established during colorectal carcinogenesis. Here we show that MSI-H, MLH1 hypermethylation, BRAF mutation or KRAS mutations were independently associated with Fn infection in colorectal cancer. On the other hand, increasing Fn copy number in tissues was associated with increased probability to exhibit MSI-H, MLH1 hypermethylation or BRAF mutations but not KRAS mutations in colorectal cancer. We also show that Fn load was significantly less than that of colorectal cancer and no association was detected between BRAF/KRAS mutations or MLH1 hypermethylation and Fn infection in adenomas. Our combined data suggest that increasing loads of Fn during and/or after adenomacarcinoma transition might promote SSP but not KRAS-driven colorectal carcinogenesis. Alternatively, Fn preferentially colonizes colorectal cancers with SSP and KRAS mutations but can expand more in colorectal cancers with SSP. SIGNIFICANCE The authors demonstrated that Fn is enriched in colorectal cancers exhibiting the SSP phenotype, and in colorectal cancers carrying KRAS mutations. Fn infection should be considered as a candidate risk factor specific to colorectal cancers with the SSP phenotype and with KRAS mutations.
Collapse
Affiliation(s)
- Koki Takeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Minoru Koi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Graduate School of Medicine, Mie University, Mie, Japan
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Temitope O. Keku
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John M. Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|
20
|
Darbyshire AL, Wolthers KR. Expanding the β-substitution reactions of serine synthase through mutagenesis of aromatic active site residues. Arch Biochem Biophys 2023; 746:109727. [PMID: 37625767 DOI: 10.1016/j.abb.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The Gram-negative bacterium, Fusobacterium nucleatum, possesses a fold II type pyridoxal 5'-phosphate-dependent enzyme that catalyzes the reversible β-replacement of l-cysteine and l-serine, generating H2S and H2O, respectively. This enzyme, termed serine synthase (FN1055), contains an active site Asp232 that serves as a general base in the activation of a water molecule for nucleophilic attack of the ⍺-aminoacrylate intermediate. A network of hydrophobic residues surrounding Asp232 are key to catalysis as they increase the basicity of the side chain. However, these residues severely restrict the range of nucleophilic substrates that can react with the ⍺-aminoacrylate, making the enzyme an ineffective biocatalyst for noncanonical amino acid biosynthesis. Herein, we systematically substituted four aromatic active residues (Trp99, Phe125, Phe148 and Phe234) to an alanine to determine their catalytic importance in serine/cysteine synthase reactions and if their substitution could broaden the scope of nucleophiles that could react with the ⍺-aminoacrylate intermediate. All four single site mutants W99A, F125A, F148A, and F234A could form the ⍺-aminoacrylate intermediate upon reaction with either l-cysteine or l-serine; however, the rate constant associated with the elimination of the β-hydroxyl group from l-serine was 150 to 200-fold lower in the F125A and F148A variants. Substitution of Phe125 and Phe148, situated ∼3-4 Å from the general base, also abolished the serine synthase reaction due to their inability to activate a water molecule for nucleophilic attack of the ⍺-aminoacrylate. Overall, the mutational studies indicate that the clustering of aromatic residues disproportionately benefits the serine synthase reaction as they increase the binding affinity for l-cysteine, decrease the binding of the product, l-serine, and promote the activation of a water molecule. Notably, the aminoacrylate species present in F125A and F148A was able to react with thiophenol, signifying that serine synthase has biocatalytic potential in the synthesis of noncanonical amino acids.
Collapse
Affiliation(s)
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, Canada.
| |
Collapse
|
21
|
Frates ES, Spietz RL, Silverstein MR, Girguis P, Hatzenpichler R, Marlow JJ. Natural and anthropogenic carbon input affect microbial activity in salt marsh sediment. Front Microbiol 2023; 14:1235906. [PMID: 37744927 PMCID: PMC10512730 DOI: 10.3389/fmicb.2023.1235906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Salt marshes are dynamic, highly productive ecosystems positioned at the interface between terrestrial and marine systems. They are exposed to large quantities of both natural and anthropogenic carbon input, and their diverse sediment-hosted microbial communities play key roles in carbon cycling and remineralization. To better understand the effects of natural and anthropogenic carbon on sediment microbial ecology, several sediment cores were collected from Little Sippewissett Salt Marsh (LSSM) on Cape Cod, MA, USA and incubated with either Spartina alterniflora cordgrass or diesel fuel. Resulting shifts in microbial diversity and activity were assessed via bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Both Spartina and diesel amendments resulted in initial decreases of microbial diversity as well as clear, community-wide shifts in metabolic activity. Multi-stage degradative frameworks shaped by fermentation were inferred based on anabolically active lineages. In particular, the metabolically versatile Marinifilaceae were prominent under both treatments, as were the sulfate-reducing Desulfovibrionaceae, which may be attributable to their ability to utilize diverse forms of carbon under nutrient limited conditions. By identifying lineages most directly involved in the early stages of carbon processing, we offer potential targets for indicator species to assess ecosystem health and highlight key players for selective promotion of bioremediation or carbon sequestration pathways.
Collapse
Affiliation(s)
- Erin S. Frates
- Department of Biology, Boston University, Boston, MA, United States
| | - Rachel L. Spietz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | | | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
| | | |
Collapse
|
22
|
Feng Q, Zakaria S, Morrison D, Tram K, Gu J, Salena BJ, Li Y. A Fluorogenic DNAzyme for A Thermally Stable Protein Biomarker from Fusobacterium nucleatum, a Human Bacterial Pathogen. Angew Chem Int Ed Engl 2023; 62:e202306272. [PMID: 37404195 DOI: 10.1002/anie.202306272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Fusobacterium nucleatum has been correlated to many poor human conditions including oral infections, adverse pregnancies and cancer, and thus molecular tools capable of detecting this human pathogen can be used to develop diagnostic tests for them. Using a new selection method targeting thermally stable proteins without a counter-selection step, we derived an fluorogenic RNA-cleaving DNAzyme, named RFD-FN1, that can be activated by a thermally stable protein target that is unique to F. nucleatum subspecies. High thermal stability of protein targets is a very desirable attribute for DNAzyme-based biosensing directly with biological samples because nucleases found inherently in these samples can be heat-inactivated. We further demonstrate that RFD-FN1 can function as a fluorescent sensor in both human saliva and human stool samples. The discovery of RFD-FN1 paired with a highly thermal stable protein target presents opportunities for developing simpler diagnostic tests for this important pathogen.
Collapse
Affiliation(s)
- Qian Feng
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Sandy Zakaria
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Kha Tram
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Jim Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|
23
|
Kamada S, Wakabayashi R, Naganuma T. Phylogenetic Revisit to a Review on Predatory Bacteria. Microorganisms 2023; 11:1673. [PMID: 37512846 PMCID: PMC10385382 DOI: 10.3390/microorganisms11071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory bacteria, along with the biology of their predatory behavior, have attracted interest in terms of their ecological significance and industrial applications, a trend that has been even more pronounced since the comprehensive review in 2016. This mini-review does not cover research trends, such as the role of outer membrane vesicles in myxobacterial predation, but provides an overview of the classification and newly described taxa of predatory bacteria since 2016, particularly with regard to phylogenetic aspects. Among them, it is noteworthy that in 2020 there was a major phylogenetic reorganization that the taxa hosting Bdellovibrio and Myxococcus, formerly classified as Deltaproteobacteria, were proposed as the new phyla Bdellovibrionota and Myxococcota, respectively. Predatory bacteria have been reported from other phyla, especially from the candidate divisions. Predatory bacteria that prey on cyanobacteria and predatory cyanobacteria that prey on Chlorella have also been found. These are also covered in this mini-review, and trans-phylum phylogenetic trees are presented.
Collapse
Affiliation(s)
- Saki Kamada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ryoka Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| |
Collapse
|
24
|
Ma X, Sun T, Zhou J, Zhi M, Shen S, Wang Y, Gu X, Li Z, Gao H, Wang P, Feng Q. Pangenomic Study of Fusobacterium nucleatum Reveals the Distribution of Pathogenic Genes and Functional Clusters at the Subspecies and Strain Levels. Microbiol Spectr 2023; 11:e0518422. [PMID: 37042769 PMCID: PMC10269558 DOI: 10.1128/spectrum.05184-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Fusobacterium nucleatum is a prevalent periodontal pathogen and is associated with many systemic diseases. Our knowledge of the genomic characteristics and pathogenic effectors of different F. nucleatum strains is limited. In this study, we completed the whole genome assembly of the 4 F. nucleatum strains and carried out a comprehensive pangenomic study of 30 strains with their complete genome sequences. Phylogenetic analysis revealed that the F. nucleatum strains are mainly divided into 4 subspecies, while 1 of the sequenced strains was classified into a new subspecies. Gene composition analysis revealed that a total of 517 "core/soft-core genes" with housekeeping functions widely distributed in almost all the strains. Each subspecies had a unique gene cluster shared by strains within the subspecies. Analysis of the virulence factors revealed that many virulence factors were widely distributed across all the strains, with some present in multiple copies. Some virulence genes showed no consistent occurrence rule at the subspecies level and were specifically distributed in certain strains. The genomic islands mainly revealed strain-specific characteristics instead of subspecies level consistency, while CRISPR types and secondary metabolite biosynthetic gene clusters were identically distributed in F. nucleatum strains from the same subspecies. The variation in amino acid sites in the adhesion protein FadA did not affect the monomer and dimer 3D structures, but it may affect the binding surface and the stability of binding to host receptors. This study provides a basis for the pathogenic study of F. nucleatum at the subspecies and strain levels. IMPORTANCE We used F. nucleatum as an example to analyze the genomic characteristics of oral pathogens at the species, subspecies, and strain levels and elucidate the similarities and differences in functional genes and virulence factors among different subspecies/strains of the same oral pathogen. We believe that the unique biological characteristics of each subspecies/strain can be attributed to the differences in functional gene clusters or the presence/absence of certain virulence genes. This study showed that F. nucleatum strains from the same subspecies had similar functional gene compositions, CRISPR types, and secondary metabolite biosynthetic gene clusters, while pathogenic genes, such as virulence genes, antibiotic resistance genes, and GIs, had more strain level specificity. The findings of this study suggest that, for microbial pathogenicity studies, we should carefully consider the subspecies/strains being used, as different strains may vary greatly.
Collapse
Affiliation(s)
- Xiaomei Ma
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tianyong Sun
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiannan Zhou
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengfan Zhi
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Song Shen
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yushang Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiufeng Gu
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zixuan Li
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Haiting Gao
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Pingping Wang
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
25
|
Rauthan K, Joshi S, Kumar L, Goel D, Kumar S. Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors. Genomics Inform 2023; 21:e21. [PMID: 37415454 PMCID: PMC10326533 DOI: 10.5808/gi.22065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.
Collapse
Affiliation(s)
- Kanchan Rauthan
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Saranya Joshi
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Lokesh Kumar
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Divya Goel
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| | - Sudhir Kumar
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhnd 246174, India
| |
Collapse
|
26
|
Smiline Girija AS. Moonlighting proteins [ML proteins]: The pandora's box of insidious oro-dental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119435. [PMID: 36738892 DOI: 10.1016/j.bbamcr.2023.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Oral pathogens survive in the harsh niche of the oral microbiome on account of a plethora of moonlighting [ML] proteins that can multitask in the oro-mucosal layers. ML proteins are considered as the complex protein hyperspace expressed in many oral bacterial pathogens and encompass many hypothetical and experimentally evidenced proteins that can efficiently assist in the initiation and progression of various oro-dental infections. With the propensity of multi-drug resistance and biofilm formation, unravelling the mysterious functions associated with the oral ML proteins could be essential in targeting the vital oral bacteria and their associated infections. This commentary thus throws insights onto the key clues on various ML proteins that can be considered for the development of therapeutic versatility to curtail the complications caused by various oral bacterial species.
Collapse
Affiliation(s)
- A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences [SIMATS], Chennai 600077, Tamilnadu, India.
| |
Collapse
|
27
|
Musiał N, Bogucka A, Tretiakow D, Skorek A, Ryl J, Czaplewska P. Proteomic analysis of sialoliths from calcified, lipid and mixed groups as a source of potential biomarkers of deposit formation in the salivary glands. Clin Proteomics 2023; 20:11. [PMID: 36949424 PMCID: PMC10035263 DOI: 10.1186/s12014-023-09402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.
Collapse
Affiliation(s)
- Natalia Musiał
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Aleksandra Bogucka
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
- Institute of Biochemistry, Medical Faculty, Justus Liebig University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
28
|
2 Hydroxybutyric Acid-Producing Bacteria in Gut Microbiome and Fusobacterium nucleatum Regulates 2 Hydroxybutyric Acid Level In Vivo. Metabolites 2023; 13:metabo13030451. [PMID: 36984891 PMCID: PMC10059959 DOI: 10.3390/metabo13030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
2-hydroxybutyric acid (2HB) serves as an important regulatory factor in a variety of diseases. The circulating level of 2HB in serum is significantly higher in multiple diseases, such as cancer and type 2 diabetes (T2D). However, there is currently no systematic study on 2HB-producing bacteria that demonstrates whether gut bacteria contribute to the circulating 2HB pool. To address this question, we used BLASTP to reveal the taxonomic profiling of 2HB-producing bacteria in the human microbiome, which are mainly distributed in the phylum Proteobacteria and Firmicutes. In vitro experiments showed that most gut bacteria (21/32) have at least one path to produce 2HB, which includes Aspartic acid, methionine, threonine, and 2-aminobutyric acid. Particularly, Fusobacterium nucleatum has the strongest ability to synthesize 2HB, which is sufficient to alter colon 2HB concentration in mice. Nevertheless, neither antibiotic (ABX) nor Fusobacterium nucleatum gavage significantly affected mouse serum 2HB levels during the time course of this study. Taken together, our study presents the profiles of 2HB-producing bacteria and demonstrates that gut microbiota was a major contributor to 2HB concentration in the intestinal lumen but a relatively minor contributor to serum 2HB concentration.
Collapse
|
29
|
Bai X, Lan J, He S, Bu T, Zhang J, Wang L, Jin X, Mao Y, Guan W, Zhang L, Lu M, Piao H, Jo I, Quan C, Nam KH, Xu Y. Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum. Int J Mol Sci 2023; 24:ijms24032994. [PMID: 36769315 PMCID: PMC9917632 DOI: 10.3390/ijms24032994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Butanol dehydrogenase (BDH) plays a significant role in the biosynthesis of butanol in bacteria by catalyzing butanal conversion to butanol at the expense of the NAD(P)H cofactor. BDH is an attractive enzyme for industrial application in butanol production; however, its molecular function remains largely uncharacterized. In this study, we found that Fusobacterium nucleatum YqdH (FnYqdH) converts aldehyde into alcohol by utilizing NAD(P)H, with broad substrate specificity toward aldehydes but not alcohols. An in vitro metal ion substitution experiment showed that FnYqdH has higher enzyme activity in the presence of Co2+. Crystal structures of FnYqdH, in its apo and complexed forms (with NAD and Co2+), were determined at 1.98 and 2.72 Å resolution, respectively. The crystal structure of apo- and cofactor-binding states of FnYqdH showed an open conformation between the nucleotide binding and catalytic domain. Key residues involved in the catalytic and cofactor-binding sites of FnYqdH were identified by mutagenesis and microscale thermophoresis assays. The structural conformation and preferred optimal metal ion of FnYqdH differed from that of TmBDH (homolog protein of FnYqdH). Overall, we proposed an alternative model for putative proton relay in FnYqdH, thereby providing better insight into the molecular function of BDH.
Collapse
Affiliation(s)
- Xue Bai
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Shanru He
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Tingting Bu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jie Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuanchao Mao
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Wanting Guan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang 35398, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 35398, Republic of Korea
- Correspondence: (K.H.N.); (Y.X.)
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Correspondence: (K.H.N.); (Y.X.)
| |
Collapse
|
30
|
Shahoumi LA, Saleh MHA, Meghil MM. Virulence Factors of the Periodontal Pathogens: Tools to Evade the Host Immune Response and Promote Carcinogenesis. Microorganisms 2023; 11:115. [PMID: 36677408 PMCID: PMC9860638 DOI: 10.3390/microorganisms11010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is the most common chronic, inflammatory oral disease that affects more than half of the population in the United States. The disease leads to destruction of the tooth-supporting tissue called periodontium, which ultimately results in tooth loss if uncured. The interaction between the periodontal microbiota and the host immune cells result in the induction of a non-protective host immune response that triggers host tissue destruction. Certain pathogens have been implicated periodontal disease formation that is triggered by a plethora of virulence factors. There is a collective evidence on the impact of periodontal disease progression on systemic health. Of particular interest, the role of the virulence factors of the periodontal pathogens in facilitating the evasion of the host immune cells and promotion of carcinogenesis has been the focus of many researchers. The aim of this review is to examine the influence of the periodontal pathogens Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) in the modulation of the intracellular signaling pathways of the host cells in order to evade the host immune response and interfere with normal host cell death and the role of their virulence factors in this regard.
Collapse
Affiliation(s)
- Linah A. Shahoumi
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Muhammad H. A. Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Mohamed M. Meghil
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
31
|
Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria. Commun Biol 2022; 5:725. [PMID: 35869172 PMCID: PMC9307755 DOI: 10.1038/s42003-022-03681-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractSpecific bacteria of the human microbiome influence carcinogenesis at diverse anatomical sites. Bacterial vaginosis (BV) is the most common vaginal disorder in premenopausal women that is associated with gynecologic sequelae, including cervical cancer. BV-associated microorganisms, such as Fusobacterium, Lancefieldella, Peptoniphilus, and Porphyromonas have been associated with gynecologic and other cancers, though the pro-oncogenic mechanisms employed by these bacteria are poorly understood. Here, we integrated a multi-omics approach with our three-dimensional (3-D) cervical epithelial cell culture model to investigate how understudied BV-associated bacteria linked to gynecologic neoplasia influence hallmarks of cancer in vitro. Lancefieldella parvulum and Peptoniphilus lacrimalis elicited robust proinflammatory responses in 3-D cervical cells. Fusobacterium nucleatum and Fusobacterium gonidiaformans modulated metabolic hallmarks of cancer corresponding to accumulation of 2-hydroxyglutarate, pro-inflammatory lipids, and signs of oxidative stress and genotoxic hydrogen sulfide. This study provides mechanistic insights into how gynecologic cancer-associated bacteria might facilitate a tumor-promoting microenvironment in the human cervix.
Collapse
|
32
|
Ponath F, Zhu Y, Cosi V, Vogel J. Expanding the genetic toolkit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum. Proc Natl Acad Sci U S A 2022; 119:e2201460119. [PMID: 36161895 PMCID: PMC9546586 DOI: 10.1073/pnas.2201460119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| |
Collapse
|
33
|
Mothersole RG, Kolesnikov M, Chan ACK, Oduro E, Murphy MEP, Wolthers KR. Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in Fusobacteriacea Leads to Loss of Function in Oral Associated Species. Biochemistry 2022; 61:1378-1391. [PMID: 35732022 DOI: 10.1021/acs.biochem.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A number of species within the Fusobacteriaceae family of Gram-negative bacteria uniquely encode for an ornithine decarboxylase/arginase (ODA) that ostensibly channels l-ornithine generated by hydrolysis of l-arginine to putrescine formation. However, two aspartate residues required for coordination to a catalytically obligatory manganese cluster of arginases are substituted for a serine and an asparagine. Curiously, these natural substitutions occur only in a clade of Fusobacterium species that inhabit the oral cavity. Herein, we expressed and isolated full-length ODA from the opportunistic oral pathogen Fusobacterium nucleatum along with the individual arginase and ornithine decarboxylase components. The crystal structure of the arginase domain reveals that it adopts the classical α/β arginase-fold, but metal ions are absent in the active site. As expected, the ureohydrolase activity with l-arginine was not detected for wild-type ODA or the isolated arginase domain. However, engineering of the complete metal coordination environment through site-directed mutagenesis restored Mn2+ binding capacity and arginase activity, although the catalytic efficiency for l-arginine was low (60-100 M-1 s-1). Full-length ODA and the isolated ODC component were able to decarboxylate both l-ornithine and l-arginine to form putrescine and agmatine, respectively, but kcat/KM of l-ornithine was ∼20-fold higher compared to l-arginine. We discuss environmental conditions that may have led to the natural selection of an inactive arginase in the oral associated species of Fusobacterium.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Emmanuella Oduro
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
34
|
Staphylococcus aureus Overcomes Anaerobe-Derived Short-Chain Fatty Acid Stress via FadX and the CodY Regulon. J Bacteriol 2022; 204:e0006422. [PMID: 35389253 DOI: 10.1128/jb.00064-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is characterized by immune dysfunction, mucus hypersecretion, and persistent infection of the paranasal sinuses. While Staphylococcus aureus is a primary CRS pathogen, recent sequence-based surveys have found increased relative abundances of anaerobic bacteria, suggesting that S. aureus may experience altered metabolic landscapes in CRS relative to healthy airways. To test this possibility, we characterized the growth kinetics and transcriptome of S. aureus in supernatants of the abundant CRS anaerobe Fusobacterium nucleatum. While growth was initially delayed, S. aureus ultimately grew to similar levels as in the control medium. The transcriptome was significantly affected by F. nucleatum metabolites, with the agr quorum sensing system notably repressed. Conversely, expression of fadX, encoding a putative propionate coenzyme A (CoA)-transferase, was significantly increased, leading to our hypothesis that short-chain fatty acids (SCFAs) produced by F. nucleatum could mediate S. aureus growth behavior and gene expression. Supplementation with propionate and butyrate, but not acetate, recapitulated delayed growth phenotypes observed in F. nucleatum supernatants. A fadX mutant was found to be more sensitive than wild type to propionate, suggesting a role for FadX in the S. aureus SCFA stress response. Interestingly, spontaneous resistance to butyrate, but not propionate, was observed frequently. Whole-genome sequencing and targeted mutagenesis identified codY mutants as resistant to butyrate inhibition. Together, these data show that S. aureus physiology is dependent on its cocolonizing microbiota and metabolites they exchange and indicate that propionate and butyrate may act on different targets in S. aureus to suppress its growth. IMPORTANCE Staphylococcus aureus is an important CRS pathogen, and yet it is found in the upper airways of 30% to 50% of people without complications. The presence of strict and facultative anaerobic bacteria in CRS sinuses has recently spurred research into bacterial interactions and how they influence S. aureus physiology and pathogenesis. We show here that propionate and butyrate produced by one such CRS anaerobe, namely, Fusobacterium nucleatum, alter the growth and gene expression of S. aureus. We show that fadX is important for S. aureus to resist propionate stress and that the CodY regulon mediates growth in inhibitory concentrations of butyrate. This work highlights the possible complexity of S. aureus-anaerobe interactions and implicates membrane stress as a possible mechanism influencing S. aureus behavior in CRS sinuses.
Collapse
|
35
|
Idrissi Janati A, Karp I, Von Renteln D, Bouin M, Liu Y, Tran SD, Emami E. Investigation of Fusobacterium Nucleatum in saliva and colorectal mucosa: a pilot study. Sci Rep 2022; 12:5622. [PMID: 35379861 PMCID: PMC8979950 DOI: 10.1038/s41598-022-09587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
As evidence has been linking the oral bacterium Fusobacterium nucleatum (F. nucleatum) to colorectal tumorigenesis, we aimed to produce preliminary data on the expression of F. nucleatum in both oral and colorectal body sites in cases diagnosed with colorectal neoplasms (CRN) and CRN-free controls. We conducted a pilot hospital-based case-control study among patients who underwent colonoscopy examination. Saliva samples and biopsies from healthy colon mucosa from CRN cases and CRN-free controls, and from tumors in cases, were collected, as well as data on periodontal condition and potential CRN risk factors. A total of 22 CRN cases and 21 CRN-free controls participated in this study, with a total of 135 biospecimens collected and analyzed by qPCR for detection and quantification of F. nucleatum. The detection rate of F. nucleatum was 95% in saliva samples and 18% in colorectal mucosa specimens. The median (95% CI) salivary F. nucleatum level was 0.35 (0.15-0.82) and 0.12 (0.05-0.65) in case and control groups, respectively, with a Spearman correlation of 0.64 (95% CI 0.2-0.94) between F. nucleatum level in saliva and healthy colorectal mucosa in controls. Our study results support the need for and the feasibility of further studies that aim to investigate the association between oral and colorectal levels of F. nucleatum in CRN cases and controls.Clinical Relevance: Considering the current evidence linking F. nucleatum to colorectal carcinogenesis, investigating the role of oral F. nucleatum expression in its colorectal enrichment is crucial for colorectal cancer screening and prevention avenues.
Collapse
Affiliation(s)
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Von Renteln
- Department of Gastroenterology, University of Montreal Hospital Centre, Montreal, QC, Canada
| | - Mickael Bouin
- Department of Gastroenterology, University of Montreal Hospital Centre, Montreal, QC, Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Elham Emami
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
36
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
37
|
Stokowa-Sołtys K, Wojtkowiak K, Dzyhovskyi V, Wieczorek R. Effect of Copper(II) Ion Binding by Porin P1 Precursor Fragments from Fusobacterium nucleatum on DNA Degradation. Int J Mol Sci 2021; 22:ijms222212541. [PMID: 34830424 PMCID: PMC8623562 DOI: 10.3390/ijms222212541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Fusobacterium nucleatum is one of the most notorious species involved in colorectal cancer. It was reported that numerous outer membrane proteins (OMP) are actively involved in carcinogenesis. In this paper, the structure and stability of certain complexes, as well as DNA cleavage and ROS generation by fragments of OMP, were investigated using experimental and theoretical methods. Mass spectrometry, potentiometry, UV-Vis, CD, EPR, gel electrophoresis and calculations at the density functional theory (DFT) level were applied. Two consecutive model peptides, Ac-AKGHEHQLE-NH2 and Ac-FGEHEHGRD-NH2, were studied. Both of these were rendered to form a variety of thermodynamically stable complexes with copper(II) ions. All of the complexes were stabilized, mainly due to interactions of metal with nitrogen and oxygen donor atoms, as well as rich hydrogen bond networks. It was also concluded that these complexes in the presence of hydrogen peroxide or ascorbic acid can effectively produce hydroxyl radicals and have an ability to cleave the DNA strands. Surprisingly, the second studied ligand at the micromolar concentration range causes overall DNA degradation.
Collapse
|
38
|
Hsieh YY, Tung SY, Pan HY, Chang TS, Wei KL, Chen WM, Deng YF, Lu CK, Lai YH, Wu CS, Li C. Fusobacterium nucleatum colonization is associated with decreased survival of helicobacter pylori-positive gastric cancer patients. World J Gastroenterol 2021; 27:7311-7323. [PMID: 34876791 PMCID: PMC8611209 DOI: 10.3748/wjg.v27.i42.7311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An increased amount of Fusobacterium nucleatum (F. nucleatum) is frequently detected in the gastric cancer-associated microbiota of the Taiwanese population. F. nucleatum is known to exert cytotoxic effects and play a role in the progression of colorectal cancer, though the impact of F. nucleatum colonization on gastric cancer cells and patient prognosis has not yet been examined.
AIM To identify F. nucleatum-dependent molecular pathways in gastric cancer cells and to determine the impact of F. nucleatum on survival in gastric cancer.
METHODS Coculture of F. nucleatum with a gastric cancer cell line was performed, and changes in gene expression were investigated. Genes with significant changes in expression were identified by RNA sequencing. Pathway analysis was carried out to determine deregulated cellular functions. A cohort of gastric cancer patients undergoing gastrectomy was recruited, and nested polymerase chain reaction was performed to detect the presence of F. nucleatum in resected cancer tissues. Statistical analysis was performed to determine whether F. nucleatum colonization affects patient survival.
RESULTS RNA sequencing and subsequent pathway analysis revealed a drastic interferon response induced by a high colonization load. This response peaked within 24 h and subsided after 72 h of incubation. In contrast, deregulation of actin and its regulators was observed during prolonged incubation under a low colonization load, likely altering the mobility of gastric cancer cells. According to the clinical specimen analysis, approximately one-third of the gastric cancer patients were positive for F. nucleatum, and statistical analysis indicated that the risk for colonization increases in late-stage cancer patients. Survival analysis demonstrated that F. nucleatum colonization was associated with poorer outcomes among patients also positive for Helicobacter pylori (H. pylori).
CONCLUSION F. nucleatum colonization leads to deregulation of actin dynamics and likely changes cancer cell mobility. Cohort analysis demonstrated that F. nucleatum colonization leads to poorer prognosis in H. pylori-positive patients with late-stage gastric cancer. Hence, combined colonization of F. nucleatum and H. pylori is a predictive biomarker for poorer survival in late-stage gastric cancer patients treated with gastrectomy.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shui-Yi Tung
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hung-Yu Pan
- Department of Applied Mathematics, National Chiayi University, Chiayi 60035, Taiwan
| | - Te-Sheng Chang
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuo-Liang Wei
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Ming Chen
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Fang Deng
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Chung-Kuang Lu
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Yu-Hsuan Lai
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
| | - Cheng-Shyong Wu
- Department of Gastroenterology and Hepatology, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chin Li
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62130, Taiwan
| |
Collapse
|
39
|
Ali Mohammed MM, Pettersen VK, Nerland AH, Wiker HG, Bakken V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 2021; 72:102449. [PMID: 34543761 DOI: 10.1016/j.anaerobe.2021.102449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/24/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.
Collapse
Affiliation(s)
| | | | - Audun H Nerland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Vidar Bakken
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
40
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
41
|
Shhadeh A, Galaski J, Alon-Maimon T, Fahoum J, Wiener R, Slade DJ, Mandelboim O, Bachrach G. CEACAM1 Activation by CbpF-Expressing E. coli. Front Cell Infect Microbiol 2021; 11:699015. [PMID: 34395310 PMCID: PMC8358318 DOI: 10.3389/fcimb.2021.699015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies on the oral, anaerobic, gram-negative bacterium Fusobacterium nucleatum revealed its presence and involvement in colorectal, esophageal and breast cancer. We previously demonstrated that F. nucleatum binds and activates the human inhibitory receptors TIGIT and CEACAM1 leading to inhibition of T and NK cell anti-tumor immunity. CEACAM1 was found to be bound and activated by the fusobacterial trimeric autotransporter adhesin CbpF. Here we report the generation of a recombinant E. coli expressing full-length CbpF that efficiently binds and activates CEACAM1.
Collapse
Affiliation(s)
- Amjad Shhadeh
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Johanna Galaski
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel.,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
42
|
Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat Microbiol 2021; 6:1007-1020. [PMID: 34239075 DOI: 10.1038/s41564-021-00927-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Fusobacterium nucleatum, long known as a constituent of the oral microflora, has recently garnered renewed attention for its association with several different human cancers. The growing interest in this emerging cancer-associated bacterium contrasts with a paucity of knowledge about its basic gene expression features and physiological responses. As fusobacteria lack all established small RNA-associated proteins, post-transcriptional networks in these bacteria are also unknown. In the present study, using differential RNA-sequencing, we generate high-resolution global RNA maps for five clinically relevant fusobacterial strains-F. nucleatum subspecies nucleatum, animalis, polymorphum and vincentii, as well as F. periodonticum-for early, mid-exponential growth and early stationary phase. These data are made available in an online browser, and we use these to uncover fundamental aspects of fusobacterial gene expression architecture and a suite of non-coding RNAs. Developing a vector for functional analysis of fusobacterial genes, we discover a conserved fusobacterial oxygen-induced small RNA, FoxI, which serves as a post-transcriptional repressor of the major outer membrane porin FomA. Our findings provide a crucial step towards delineating the regulatory networks enabling F. nucleatum adaptation to different environments, which may elucidate how these bacteria colonize different compartments of the human body.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Franziska Faber
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany. .,Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany. .,Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
43
|
Lo CH, Blot WJ, Teras LR, Visvanathan K, Le Marchand L, Haiman CA, Chen Y, Sesso HD, Wassertheil-Smoller S, Tinker LF, Peek RM, Potter JD, Cover TL, Zeleniuch-Jacquotte A, Berndt SI, Waterboer T, Epplein M, Butt J, Song M. Prediagnostic Antibody Responses to Fusobacterium nucleatum Proteins Are Not Associated with Risk of Colorectal Cancer in a Large U.S. Consortium. Cancer Epidemiol Biomarkers Prev 2021; 30:1279-1282. [PMID: 33737297 DOI: 10.1158/1055-9965.epi-20-1471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The association between prediagnostic antibody responses to Fusobacterium nucleatum (F. nucleatum) and subsequent risk of colorectal cancer is not established. METHODS We conducted a nested case-control study of 8,126 participants in a consortium of 10 prospective cohorts in the United States. RESULTS Higher seroprevalence of any F. nucleatum antibody was observed among non-White participants (51.1%) compared with White participants (31.2%). We did not find any statistically significant association between seropositivity to any of the eight F. nucleatum proteins and colorectal cancer risk. CONCLUSIONS Prediagnostic antibody responses to F. nucleatum proteins were not associated with the risk of colorectal cancer. IMPACT Future studies may consider a more specific detection of the immunoglobulin isotypes or focus on examining F. nucleatum in stool or tissue samples.
Collapse
Affiliation(s)
- Chun-Han Lo
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - William J Blot
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Christopher A Haiman
- University of Southern California Keck School of Medicine and University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John D Potter
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Timothy L Cover
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center and Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | | | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Meira Epplein
- Cancer Control and Population Sciences Program, Duke Cancer Institute and Department of Population Health Sciences, Duke University, Durham, North Carolina
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Cancer Control and Population Sciences Program, Duke Cancer Institute and Department of Population Health Sciences, Duke University, Durham, North Carolina
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
44
|
Darbyshire AL, Mothersole RG, Wolthers KR. A Fold Type II PLP-Dependent Enzyme from Fusobacterium nucleatum Functions as a Serine Synthase and Cysteine Synthase. Biochemistry 2021; 60:524-536. [PMID: 33539704 DOI: 10.1021/acs.biochem.0c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the β-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and β-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
45
|
Ejtahed HS, Angoorani P, Soroush AR, Siadat SD, Shirzad N, Hasani-Ranjbar S, Larijani B. Our Little Friends with Big Roles: Alterations of the Gut Microbiota in Thyroid Disorders. Endocr Metab Immune Disord Drug Targets 2021; 20:344-350. [PMID: 31566142 DOI: 10.2174/1871530319666190930110605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The thyroid gland influences the metabolic processes in our body by producing thyroid hormones, and thyroid disorders can range from a harmless goiter to life-threatening cancer. A growing number of evidence support the link between gut microbiota composition and thyroid homeostasis. Gut dysbiosis can disrupt the normal gut barrier function, leading to immunologic and metabolic disorders. OBJECTIVE The aim of this review was to discuss the main features of gut dysbiosis associated with different thyroid disorders. RESULTS Gut microbiota contributes to thyroid hormone synthesis and hydrolysis of thyroid hormones conjugates. It has been shown that microbial metabolites may play a role in autoimmune thyroid diseases via modulating the immune system. Intestinal microbiota can contribute to the thyroid malignancies via controlling DNA damage and apoptosis and influencing inflammatory reactions by the microbiota- derived metabolites. However, the pathogenic role of altered gut microbiota in different thyroid disorders has not yet fully elucidated. CONCLUSION Further research is needed to assess the role of alterations of the gut microbiota in disease onset and development in order to achieve novel strategies for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Janati AI, Karp I, Laprise C, Sabri H, Emami E. Detection of Fusobaterium nucleatum in feces and colorectal mucosa as a risk factor for colorectal cancer: a systematic review and meta-analysis. Syst Rev 2020; 9:276. [PMID: 33272322 PMCID: PMC7716586 DOI: 10.1186/s13643-020-01526-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. Accumulating evidence suggests a potentially important role of colorectal infection with Fusobacterium nucleatum (F. nucleatum) in colorectal carcinogenesis. We conducted a systematic review, including both a qualitative synthesis and a meta-analysis, to synthesize the evidence from the epidemiological literature on the association between F. nucleatum detection in the colon/rectum and CRC. METHODS A systematic literature search of Ovid MEDLINE(R), Embase, Web of Science Core Collection, EBM Reviews-Cochrane Database of Systematic Reviews, and CINAHL Plus with Full Text was conducted using earliest inclusive dates up to 4 October 2020. Eligible studies were original, comparative observational studies that reported results on colorectal F. nucleatum detection and CRC. Two independent reviewers extracted the relevant information. Odds ratio (OR) estimates were pooled across studies using the random effects model. Newcastle-Ottawa scale was used to critically appraise study quality. RESULTS Twenty-four studies were included in the systematic review, of which 12 were included in the meta-analysis. Studies investigated F. nucleatum in feces, colorectal tissue samples, or both. In most studies included in the systematic review, the load of F. nucleatum was higher, on average, in specimens from CRC patients than in those from CRC-free controls. Meta-analysis showed a positive association between F. nucleatum detection in colorectal specimens and CRC (OR = 8.3; 95% confidence interval (95% CI) 5.2 to 13.0). CONCLUSIONS The results of this systematic review suggest that F. nucleatum in the colon/rectum is associated with CRC. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) on July 10, 2018 (registration number CRD42018095866).
Collapse
Affiliation(s)
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Claudie Laprise
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Hisham Sabri
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
47
|
Mothersole RG, Billett CR, Saini G, Mothersole MK, Darbyshire AL, Wolthers KR. S224 Presents a Catalytic Trade-off in PLP-Dependent l-Lanthionine Synthase from Fusobacterium nucleatum. Biochemistry 2020; 59:4250-4261. [PMID: 33112129 DOI: 10.1021/acs.biochem.0c00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthionine synthase from the oral bacterium Fusobacterium nucleatum is a fold type II pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine by a second molecule of l-cysteine to form H2S and l-lanthionine. The meso-isomer of the latter product is incorporated into the F. nucleatum peptidoglycan layer. Herein, we investigated the catalytic role of S224, which engages in hydrogen-bond contact with the terminal carboxylate of l-lanthionine in the closed conformation of the enzyme. Unexpectedly, the S224A variant elicited a 7-fold increase in the turnover rate for H2S and lanthionine formation and a 70-fold faster rate constant for the formation of the α-aminoacrylate intermediate compared to the wild-type enzyme. Presteady state kinetic analysis further showed that the reaction between S224A and l-cysteine leads to the formation of the more reactive ketoenamine tautomer of the α-aminoacrylate. The α-aminoacrylate with the protonated Schiff base is not an observable intermediate in the analogous reaction with the wild type, which may account for its attenuated kinetic properties. However, the S224A substitution is detrimental to other aspects of the catalytic cycle; it facilitates the α,β-elimination of l-lanthionine, and it weakens the enzyme's catalytic preference for the formation of l-lanthionine over that of l-cystathionine.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Cory R Billett
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Gurpreet Saini
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Mina K Mothersole
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Amanda L Darbyshire
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V1V7, Canada
| |
Collapse
|
48
|
Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front Microbiol 2020; 11:575072. [PMID: 33013813 PMCID: PMC7507897 DOI: 10.3389/fmicb.2020.575072] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many intestinal bacteria are believed to be involved in various inflammatory and immune processes that influence tumor etiology because of their metabolic properties and their ability to alter the microbiota homeostasis. Although many functions of the microbiota are still unclear, there is compelling experimental evidence showing that the intestinal microbiota is able to modulate carcinogenesis and the response to anticancer therapies, both in the intestinal tract and other body sites. Among the wide variety of gut-colonizing microorganisms, various species belonging to the Bifidobacterium genus are believed to elicit beneficial effects on human physiology and on the host-immune system. Recent findings, based on preclinical mouse models and on human clinical trials, have demonstrated the impact of gut commensals including bifidobacteria on the efficacy of tumor-targeting immunotherapy. Although the underlying molecular mechanisms remain obscure, bifidobacteria and other microorganisms have become a promising aid to immunotherapeutic procedures that are currently applied to treat cancer. The present review focuses on strategies to recruit the microbiome in order to enhance anticancer responses and develop therapies aimed at fighting the onset and progression of malignancies.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- Alimentary Pharmabotic Centre (APC) Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
49
|
Kasper SH, Morell-Perez C, Wyche TP, Sana TR, Lieberman LA, Hett EC. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment. Sci Rep 2020; 10:5321. [PMID: 32210258 PMCID: PMC7093526 DOI: 10.1038/s41598-020-62139-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Recent reports show that colorectal tumors contain microbiota that are distinct from those that reside in a 'normal' colon environment, and that these microbiota can contribute to cancer progression. Fusobacterium nucleatum is the most commonly observed species in the colorectal tumor microenvironment and reportedly influences disease progression through numerous mechanisms. However, a detailed understanding of the role of this organism in cancer progression is limited, in part due to challenges in maintaining F. nucleatum viability under standard aerobic cell culture conditions. Herein we describe the development of a 3-dimensional (3D) tumor spheroid model that can harbor and promote the growth of anaerobic bacteria. Bacteria-tumor cell interactions and metabolic crosstalk were extensively studied by measuring the kinetics of bacterial growth, cell morphology and lysis, cancer-related gene expression, and metabolomics. We observed that viable F. nucleatum assembles biofilm-like structures in the tumor spheroid microenvironment, whereas heat-killed F. nucleatum is internalized and sequestered in the cancer cells. Lastly, we use the model to co-culture 28 Fusobacterium clinical isolates and demonstrate that the model successfully supports co-culture with diverse fusobacterial species. This bacteria-spheroid co-culture model enables mechanistic investigation of the role of anaerobic bacteria in the tumor microenvironment.
Collapse
Affiliation(s)
- Stephen H Kasper
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.
| | | | - Thomas P Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Theodore R Sana
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Linda A Lieberman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Erik C Hett
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.
| |
Collapse
|
50
|
Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K. Mechanisms of Oral Bacterial Virulence Factors in Pancreatic Cancer. Front Cell Infect Microbiol 2019; 9:412. [PMID: 31867287 PMCID: PMC6904357 DOI: 10.3389/fcimb.2019.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - ChengLong Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai, China
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|