1
|
Sawers RG. How FocA facilitates fermentation and respiration of formate by Escherichia coli. J Bacteriol 2025; 207:e0050224. [PMID: 39868885 PMCID: PMC11841067 DOI: 10.1128/jb.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g., by enterobacteria like Escherichia coli. As such, formic acid shares many features in common with dihydrogen, explaining perhaps why their metabolism and physiology show considerable overlap. At physiological pH, formic acid is mainly present as the dissociated formate anion and therefore cannot diffuse freely across the cytoplasmic membrane. Specific and bidirectional translocation of formate across the cytoplasmic membrane is, however, achieved in E. coli by the homopentameric membrane protein, FocA. Formic acid translocation from the cytoplasm into the periplasm (efflux) serves to maintain a near-neutral cytosolic pH and to deliver formate to the periplasmically-oriented respiratory formate dehydrogenases, Fdh-N and Fdh-O. These enzymes oxidize formate, with the electrons being used to reduce nitrate, oxygen, or other acceptors. In the absence of exogenous electron acceptors, formate is re-imported into the cytoplasm by FocA, where it is sensed by the transcriptional regulator FhlA, resulting in induction of the formate regulon. The genes and operons of the formate regulon encode enzymes necessary to assemble the formate hydrogenlyase complex, which disproportionates formic acid into H2 and CO2. Combined, these mechanisms of dealing with formate help to maintain cellular pH homeostasis and are suggested to maintain the proton gradient during growth and in stationary phase cells. This review highlights our current understanding of how formate metabolism helps balance cellular pH, how it responds to the redox status, and how it helps conserve energy.
Collapse
Affiliation(s)
- R. Gary Sawers
- Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany
| |
Collapse
|
2
|
Fardan AAA, Koestler BJ. FhlA is a Formate Binding Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604796. [PMID: 39091852 PMCID: PMC11291172 DOI: 10.1101/2024.07.24.604796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Escherichia coli uses glycolysis and mixed acid fermentation and produces formate as by product. One system E. coli uses for formate oxidation is formate hydrogen lyase complex (FHL). The expression of the FHL complex is dependent on formate and regulated by the transcriptional regulator FhlA. The structure of FhlA is composed of three domains. The N-terminal domain is putatively responsible for formate binding and FhlA oligomerization as a tetramer, the central portion of FhlA contains a AAA+ domain that hydrolyzes ATP, and the C-terminal domain binds DNA. Formate enhances FhlA-mediated expression of FHL; however, FhlA direct interaction with formate has never been demonstrated. Formate-protein interactions are challenging to assess, due to the small and ubiquitous nature of the molecule. Here, we have developed three techniques to assess formate-protein interaction. We use these techniques to confirm that FhlA binds formate in the N-terminal domain in vitro, and that this interaction is partially dependent on residues E183 and E363, consistent with previous reports. This study is a proof of concept that these techniques can be used to assess other formate-protein interactions.
Collapse
|
3
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
4
|
Hasnat MA, Zupok A, Gorka M, Iobbi-Nivol C, Skirycz A, Jourlin-Castelli C, Bier F, Agarwal S, Irefo E, Leimkühler S. Iron limitation indirectly reduces the Escherichia coli torCAD operon expression by a reduction of molybdenum cofactor availability. Microbiol Spectr 2024; 12:e0348023. [PMID: 38193660 PMCID: PMC10845959 DOI: 10.1128/spectrum.03480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine-N-oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O2-dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase.IMPORTANCEIn bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine-N-oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.
Collapse
Affiliation(s)
- Muhammad Abrar Hasnat
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Arkadiusz Zupok
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Chantal Iobbi-Nivol
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | | | - Cécile Jourlin-Castelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Frank Bier
- Department of Molecular Bioanalytics and Bioelectronics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Saloni Agarwal
- Department of Molecular Bioanalytics and Bioelectronics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ehizode Irefo
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
6
|
Qian J, Fan L, Yang J, Feng J, Gao N, Cheng G, Pu W, Zhou W, Cai T, Li S, Zheng P, Sun J, Wang D, Wang Y. Directed evolution of a neutrophilic and mesophilic methanol dehydrogenase based on high-throughput and accurate measurement of formaldehyde. Synth Syst Biotechnol 2023; 8:386-395. [PMID: 37342805 PMCID: PMC10277290 DOI: 10.1016/j.synbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/23/2023] Open
Abstract
Methanol is a promising one-carbon feedstock for biomanufacturing, which can be sustainably produced from carbon dioxide and natural gas. However, the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (Mdh) that oxidizes methanol to formaldehyde. Herein, the neutrophilic and mesophilic NAD+-dependent Mdh from Bacillus stearothermophilus DSM 2334 (MdhBs) was subjected to directed evolution for enhancing the catalytic activity. The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants. MdhBs variants with up to 6.5-fold higher Kcat/KM value for methanol were screened from random mutation libraries. The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity. The beneficial T153P mutation changes the interaction network of this residue and breaks the α-helix important for substrate binding into two short α-helices. Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve MdhBs, and this study provides an efficient strategy for directed evolution of Mdh.
Collapse
Affiliation(s)
- Jin Qian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinxing Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guimin Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Cai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Yu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Du Q, Xu Q, Pan F, Shi Y, Yu F, Zhang T, Jiang J, Liu W, Pan X, Han D, Zhang H. Association between Intestinal Colonization and Extraintestinal Infection with Carbapenem-Resistant Klebsiella pneumoniae in Children. Microbiol Spectr 2023; 11:e0408822. [PMID: 36916927 PMCID: PMC10100809 DOI: 10.1128/spectrum.04088-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a critical public health threat. However, the association between intestinal colonization and parenteral infection among pediatric patients has not been elucidated. We collected 8 fecal CRKP strains and 10 corresponding CRKP strains responsible for extraintestinal infection from eight patients who did not manifest infection upon admission to the hospital. Paired isolates showed identical resistance to antimicrobials and identical virulence in vitro and in vivo. wzi capsule typing, multilocus sequence typing, and whole-genome sequencing (WGS) indicated high similarity between paired colonizing and infecting isolates. Mutations between colonizing and infecting isolate pairs found by WGS had a distinctive molecular signature of a high proportion of complex structural variants. The mutated genes were involved in pathways associated with infection-related physiological and pathogenic functions, including antibiotic resistance, virulence, and response to the extracellular environment. The latter is important for bacterial infection of environmental niches. Various mutations related to antibiotic resistance, virulence, and colonization that were not associated with any particular mutational hot spot correlated with an increased risk of extraintestinal infection. Notably, novel subclone carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) KL19-ST15 exhibited hypervirulence in experimental assays that reflected the severe clinical symptoms of two patients infected with the clonal strains. Taken together, our findings indicate the association between CRKP intestinal colonization and extraintestinal infection, suggesting that active screening for colonization on admission could decrease infection risk in children. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes an increasing number of nosocomial infections, which can be life-threatening, as carbapenems are last-resort antibiotics. K. pneumoniae is part of the healthy human microbiome, and this provides a potential advantage for infection. This study demonstrated that CRKP intestinal colonization is strongly linked to extraintestinal infection, based on the evidence given by whole-genome sequencing data and phenotypic assays of antimicrobial resistance and virulence. Apart from these findings, our in-depth analysis of point mutations and chromosome structural variants in patient-specific infecting isolates compared with colonizing isolates may contribute insights into bacterial adaptation underlying CRKP infection. In addition, a novel subclone of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) was observed in the study. This finding highlights the importance of CRKP active surveillance among children, targeting in particular the novel high-risk CR-hvKP clone.
Collapse
Affiliation(s)
- Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Xu
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Jiang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Coronel-Tellez RH, Pospiech M, Barrault M, Liu W, Bordeau V, Vasnier C, Felden B, Sargueil B, Bouloc P. sRNA-controlled iron sparing response in Staphylococci. Nucleic Acids Res 2022; 50:8529-8546. [PMID: 35904807 PMCID: PMC9410917 DOI: 10.1093/nar/gkac648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus, a human opportunist pathogen, adjusts its metabolism to cope with iron deprivation within the host. We investigated the potential role of small non-coding RNAs (sRNAs) in dictating this process. A single sRNA, named here IsrR, emerged from a competition assay with tagged-mutant libraries as being required during iron starvation. IsrR is iron-repressed and predicted to target mRNAs expressing iron-containing enzymes. Among them, we demonstrated that IsrR down-regulates the translation of mRNAs of enzymes that catalyze anaerobic nitrate respiration. The IsrR sequence reveals three single-stranded C-rich regions (CRRs). Mutational and structural analysis indicated a differential contribution of these CRRs according to targets. We also report that IsrR is required for full lethality of S. aureus in a mouse septicemia model, underscoring its role as a major contributor to the iron-sparing response for bacterial survival during infection. IsrR is conserved among staphylococci, but it is not ortholog to the proteobacterial sRNA RyhB, nor to other characterized sRNAs down-regulating mRNAs of iron-containing enzymes. Remarkably, these distinct sRNAs regulate common targets, illustrating that RNA-based regulation provides optimal evolutionary solutions to improve bacterial fitness when iron is scarce.
Collapse
Affiliation(s)
- Rodrigo H Coronel-Tellez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Mateusz Pospiech
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Maxime Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Wenfeng Liu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| | - Valérie Bordeau
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | | | - Brice Felden
- Université de Rennes 1, BRM (Bacterial regulatory RNAs and Medicine) UMR_S 1230 35000, Rennes, France
| | - Bruno Sargueil
- CNRS UMR 8038, CitCoM, Université Paris Cité 75006, Paris, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Spring S, Rohde M, Bunk B, Spröer C, Will SE, Neumann-Schaal M. New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environ Microbiol 2022; 24:2543-2575. [PMID: 35415868 DOI: 10.1111/1462-2920.15999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Strain L21-Ace-BEST , isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and DMSO, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
10
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
11
|
Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K. The role of Escherichia coli FhlA transcriptional activator in generation of proton motive force and F O F 1 -ATPase activity at pH 7.5. IUBMB Life 2021; 73:883-892. [PMID: 33773019 DOI: 10.1002/iub.2470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
Escherichia coli is able to utilize the mixture of carbon sources and produce molecular hydrogen (H2 ) via formate hydrogen lyase (FHL) complexes. In current work role of transcriptional activator of formate regulon FhlA in generation of fermentation end products and proton motive force, N'N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity at 20 and 72 hr growth during utilization of mixture of glucose, glycerol, and formate were investigated. It was shown that in fhlA mutant specific growth rate was ~1.5 fold lower compared to wt, while addition of DCCD abolished the growth in fhlA but not in wt. Formate was not utilized in fhlA mutant but wt cells simultaneously utilized formate with glucose. Glycerol utilization started earlier (from 2 hr) in fhlA than in wt. The DCCD-sensitive ATPase activity in wt cells membrane vesicles increased ~2 fold at 72 hr and was decreased 70% in fhlA. Addition of formate in the assays increased proton ATPase activity in wt and mutant strain. FhlA absence mainly affected the ΔpH but not ΔΨ component of Δp in the cells grown at 72 hr but not in 24 hr. The Δp in wt cells decreased from 24 to 72 hr of growth ~40 mV while in fhlA mutant it was stable. Taken together, it is suggested that FhlA regulates the concentration of fermentation end products and via influencing FO F1 -ATPase activity contributes to the proton motive force generation.
Collapse
Affiliation(s)
- Heghine Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Faculty of Biology, Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia
| | - Satenik Khalatyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia.,Laboratory of Neuroscience, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Vassilian
- Department of Ecology and Nature Protection, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Faculty of Biology, Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
12
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
13
|
Genome engineering of E. coli for improved styrene production. Metab Eng 2020; 57:74-84. [DOI: 10.1016/j.ymben.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
|
14
|
Aigle A, Bonin P, Fernandez-Nunez N, Loriod B, Guasco S, Bergon A, Armougom F, Iobbi-Nivol C, Imbert J, Michotey V. The nature of the electron acceptor (MnIV/NO3) triggers the differential expression of genes associated with stress and ammonium limitation responses in Shewanella algae C6G3. FEMS Microbiol Lett 2019; 365:4939474. [PMID: 29566166 DOI: 10.1093/femsle/fny068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/15/2018] [Indexed: 01/05/2023] Open
Abstract
Shewanella algae C6G3 can dissimilatively reduce nitrate into ammonium and manganese oxide (MnIV) into MnII. It has the unusual ability to anaerobically produce nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources, and with either MnIV or nitrate as electron acceptors. Genes exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. The comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of a non-limiting concentration of ammonium under both culture conditions. In addition, in the presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine-dependent genes were over-represented. Under the nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, the expression level of genes associated with the general stress response was also amplified in both conditions and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a median value relatively higher in the MnIV condition.
Collapse
Affiliation(s)
- Axel Aigle
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Patricia Bonin
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | | | - Béatrice Loriod
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Sophie Guasco
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Aurélie Bergon
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Fabrice Armougom
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Jean Imbert
- UMR_S 1090, TGML/TAGC, Aix-Marseille Université, Marseille F-13009, France
| | - Valérie Michotey
- Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, Marseille, France
| |
Collapse
|
15
|
Russ L, van Alen TA, Jetten MSM, Op den Camp HJM, Kartal B. Interactions of anaerobic ammonium oxidizers and sulfide-oxidizing bacteria in a substrate-limited model system mimicking the marine environment. FEMS Microbiol Ecol 2019; 95:5555569. [DOI: 10.1093/femsec/fiz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTIn nature anaerobic ammonium oxidation (anammox) and denitrification processes convert fixed nitrogen to gaseous nitrogen compounds, which are then released to the atmosphere. While anammox bacteria produce N2 from ammonium and nitrite, in the denitrification process nitrate and nitrite are converted to N2 and the greenhouse gas nitrous oxide (N2O). Furthermore, nitrite needed by the anammox bacteria can be supplied by nitrate reduction to nitrite. Consequently, the interplay between nitrogen-transforming microorganisms control the amount of harmless N2 or the greenhouse gas N2O released to the atmosphere. Therefore, it is important to understand the interactions of these microorganisms in the natural environment, where dynamic conditions result in fluctuating substrate concentrations. Here, we studied the interactions between the sulfide-oxidizing denitrifier Sedimenticola selenatireducens and the anammox bacterium Scalindua brodae in a bioreactor mimicking the marine environment by creating sulfide, ammonium and nitrate limitation in distinct operational phases. Through a microbial interaction, Se. selenatireducens reduced nitrate to nitrite, which together with the supplied ammonium was converted to N2 by Sc. Brodae. Using comparative transcriptomics, we determined that Sc. Brodae and Se. selenatireducens had significant responses to ammonium and nitrate limitation, respectively, indicating that the activities of these microorganisms are regulated by different nitrogen compounds.
Collapse
Affiliation(s)
- Lina Russ
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| |
Collapse
|
16
|
Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli. J Bacteriol 2019; 201:JB.00382-19. [PMID: 31235512 DOI: 10.1128/jb.00382-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 01/15/2023] Open
Abstract
Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the l-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the l-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production.IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.
Collapse
|
17
|
Identification of a Formate-Dependent Uric Acid Degradation Pathway in Escherichia coli. J Bacteriol 2019; 201:JB.00573-18. [PMID: 30885932 DOI: 10.1128/jb.00573-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 01/31/2023] Open
Abstract
Purine is a nitrogen-containing compound that is abundant in nature. In organisms that utilize purine as a nitrogen source, purine is converted to uric acid, which is then converted to allantoin. Allantoin is then converted to ammonia. In Escherichia coli, neither urate-degrading activity nor a gene encoding an enzyme homologous to the known urate-degrading enzymes had previously been found. Here, we demonstrate urate-degrading activity in E. coli We first identified aegA as an E. coli gene involved in oxidative stress tolerance. An examination of gene expression revealed that both aegA and its paralog ygfT are expressed under both microaerobic and anaerobic conditions. The ygfT gene is localized within a chromosomal gene cluster presumably involved in purine catabolism. Accordingly, the expression of ygfT increased in the presence of exogenous uric acid, suggesting that ygfT is involved in urate degradation. Examination of the change of uric acid levels in the growth medium with time revealed urate-degrading activity under microaerobic and anaerobic conditions in the wild-type strain but not in the aegA ygfT double-deletion mutant. Furthermore, AegA- and YgfT-dependent urate-degrading activity was detected only in the presence of formate and formate dehydrogenase H. Collectively, these observations indicate the presence of urate-degrading activity in E. coli that is operational under microaerobic and anaerobic conditions. The activity requires formate, formate dehydrogenase H, and either aegA or ygfT We also identified other putative genes which are involved not only in formate-dependent but also in formate-independent urate degradation and may function in the regulation or cofactor synthesis in purine catabolism.IMPORTANCE The metabolic pathway of uric acid degradation to date has been elucidated only in aerobic environments and is not understood in anaerobic and microaerobic environments. In the current study, we showed that Escherichia coli, a facultative anaerobic organism, uses uric acid as a sole source of nitrogen under anaerobic and microaerobic conditions. We also showed that formate, formate dehydrogenase H, and either AegA or YgfT are involved in uric acid degradation. We propose that formate may act as an electron donor for a uric acid-degrading enzyme in this bacterium.
Collapse
|
18
|
C1 Compound Biosensors: Design, Functional Study, and Applications. Int J Mol Sci 2019; 20:ijms20092253. [PMID: 31067766 PMCID: PMC6540204 DOI: 10.3390/ijms20092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023] Open
Abstract
The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C–C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell–level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0–250 mM), formaldehyde (1.0–50 μM), and methanol (5–400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.
Collapse
|
19
|
Niks D, Hille R. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Sci 2019; 28:111-122. [PMID: 30120799 PMCID: PMC6295890 DOI: 10.1002/pro.3498] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
An overview is provided of the molybdenum- and tungsten-containing enzymes that catalyze the interconversion of formate and CO2 , focusing on common structural and mechanistic themes, as well as a consideration of the manner in which the mature Mo- or W-containing cofactor is inserted into apoprotein.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of BiochemistryUniversity of CaliforniaRiverside
| | - Russ Hille
- Department of BiochemistryUniversity of CaliforniaRiverside
| |
Collapse
|
20
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
21
|
Abstract
Shigella is an intracellular pathogen that invades the human host cell cytosol and exploits intracellular nutrients for growth, enabling the bacterium to create its own metabolic niche. For Shigella to effectively invade and replicate within the host cytoplasm, it must sense and adapt to changing environmental conditions; however, the mechanisms and signals sensed by S. flexneri are largely unknown. We have found that the secreted Shigella metabolism by-product formate regulates Shigella intracellular virulence gene expression and its ability to spread among epithelial cells. We propose that Shigella senses formate accumulation in the host cytosol as a way to determine intracellular Shigella density and regulate secreted virulence factors accordingly, enabling spatiotemporal regulation of effectors important for dampening the host immune response. The intracellular human pathogen Shigella flexneri invades the colon epithelium, replicates to high cell density within the host cell, and then spreads to adjacent epithelial cells. When S. flexneri gains access to the host cytosol, the bacteria metabolize host cytosolic carbon using glycolysis and mixed acid fermentation, producing formate as a by-product. We show that S. flexneri infection results in the accumulation of formate within the host cell. Loss of pyruvate formate lyase (PFL; ΔpflB), which converts pyruvate to acetyl coenzyme A (CoA) and formate, eliminates S. flexneri formate production and reduces the ability of S. flexneri to form plaques in epithelial cell monolayers. This defect in PFL does not decrease the intracellular growth rate of S. flexneri; rather, it affects cell-to-cell spread. The S. flexneri ΔpflB mutant plaque defect is complemented by supplying exogenous formate; conversely, deletion of the S. flexneri formate dehydrogenase gene fdnG increases host cell formate accumulation and S. flexneri plaque size. Furthermore, exogenous formate increases plaque size of the wild-type (WT) S. flexneri strain and promotes S. flexneri cell-to-cell spread. We also demonstrate that formate increases the expression of S. flexneri virulence genes icsA and ipaJ. Intracellular S. flexneriicsA and ipaJ expression is dependent on the presence of formate, and ipaJ expression correlates with S. flexneri intracellular density during infection. Finally, consistent with elevated ipaJ, we show that formate alters S. flexneri-infected host interferon- and tumor necrosis factor (TNF)-stimulated gene expression. We propose that Shigella-derived formate is an intracellular signal that modulates virulence in response to bacterial metabolism.
Collapse
|
22
|
Iwadate Y, Funabasama N, Kato JI. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli. FEMS Microbiol Lett 2018; 364:4243112. [PMID: 29044403 DOI: 10.1093/femsle/fnx193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Previously, we constructed a series of reduced-genome strains of Escherichia coli by combining large-scale chromosome deletions and then tested the sensitivity of these strains to the redox-cycling drug menadione. In this study, we analyzed a deletion that increased menadione sensitivity and discovered that loss of selenocysteine synthase genes was responsible for the strain's reduced tolerance to oxidative stress. Mutants of formate dehydrogenases, which are selenocysteine-containing enzymes, were also sensitive to menadione, indicating that these enzymes are involved in oxidative stress during stationary phase, specifically under microaerobic conditions in the presence of glucose. Among three formate dehydrogenases encoded by the E. coli genome, two were responsible for the observed phenotypes: formate dehydrogenase-H and -O. In a mutant of fdhD, which encodes a sulfur transferase that is essential for formate dehydrogenase activity, formate dehydrogenase-O could still contribute to oxidative stress tolerance, revealing a novel role for this protein. Consistent with this, overproduction of the electron transfer subunits of this enzyme, FdoH and FdoI, increased menadione tolerance and supported survival in stationary phase. These results suggested that formate dehydrogenase-O serves as an electron transfer element in glucose metabolism to promote oxidative stress tolerance and survival in stationary phase.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Noriyuki Funabasama
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jun-Ichi Kato
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
23
|
Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Büttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe 2017; 21:208-219. [PMID: 28182951 DOI: 10.1016/j.chom.2017.01.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.
Collapse
Affiliation(s)
- Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Breck A Duerkop
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiane Furtado de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 Brazil
| | - Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caroline C Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Büttner
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Madeline P Smoot
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 Brazil
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Jung HM, Kim YH, Oh MK. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Biotechnol J 2017; 12. [PMID: 28731532 DOI: 10.1002/biot.201700121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Indexed: 11/07/2022]
Abstract
Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L-1 , 0.23 g g-1 glucose, 0.18 g L-1 h-1 ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
25
|
Zobel S, Kuepper J, Ebert B, Wierckx N, Blank LM. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng Life Sci 2016; 17:47-57. [PMID: 32624728 DOI: 10.1002/elsc.201600072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas putida efficiently utilizes many different carbon sources without the formation of byproducts even under conditions of stress. This implies a high degree of flexibility to cope with conditions that require a significantly altered distribution of carbon to either biomass or energy in the form of NADH. In the literature, co-feeding of the reduced C1 compound formate to Escherichia coli heterologously expressing the NAD+-dependent formate dehydrogenase of the yeast Candida boidinii was demonstrated to boost various NADH-demanding applications. Pseudomonas putida as emerging biotechnological workhorse is inherently equipped with an NAD+-dependent formate dehydrogenase encouraging us to investigate the use of formate and its effect on P. putida's metabolism. Hence, this study provides a detailed insight into the co-utilization of formate and glucose by P. putida. Our results show that the addition of formate leads to a high increase in the NADH regeneration rate resulting in a very high biomass yield on glucose. Metabolic flux analysis revealed a significant flux rerouting from catabolism to anabolism. These metabolic insights argue further for P. putida as a host for redox cofactor demanding bioprocesses.
Collapse
Affiliation(s)
- Sebastian Zobel
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Jannis Kuepper
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Birgitta Ebert
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| |
Collapse
|
26
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
27
|
Mienda BS, Shamsir MS, Md. Illias R. Model-assisted formate dehydrogenase-O (fdoH) gene knockout for enhanced succinate production in Escherichia coli from glucose and glycerol carbon sources. J Biomol Struct Dyn 2016; 34:2305-16. [DOI: 10.1080/07391102.2015.1113387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Rosli Md. Illias
- Faculty of Chemical Engineering, Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia
| |
Collapse
|
28
|
Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol 2015; 6:987. [PMID: 26441916 PMCID: PMC4584990 DOI: 10.3389/fmicb.2015.00987] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
In this study we characterized and sequenced the genome of Arcobacter anaerophilus strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In addition, the strain grew organoheterotrophically on yeast extract, peptone, and various organic acids. We show for the first time that Arcobacter could grow on the complex organic substrate tryptone and oxidize acetate with elemental sulfur as electron acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen, nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the free-living strains had a wider metabolic range and more genes in common compared to the pathogen strain. The presence of genes for NAD(+)-reducing hydrogenase (hox) and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway where the end product was nitrite, which is different from other Arcobacter strains where the end product is ammonia. Altogether, our study shows that traditional characterization in combination with a modern genomics approach can expand our knowledge on free-living Arcobacter, and that this complementary approach could also provide invaluable knowledge about the physiology and metabolic pathways in other Epsilonproteobacteria from various environments.
Collapse
Affiliation(s)
- Irene Roalkvam
- Centre for Geobiology, University of Bergen Bergen, Norway ; Department of Biology, University of Bergen Bergen, Norway
| | - Karine Drønen
- UniResearch, Centre for Integrated Petroleum Research Bergen, Norway
| | - Runar Stokke
- Centre for Geobiology, University of Bergen Bergen, Norway ; Department of Biology, University of Bergen Bergen, Norway
| | - Frida L Daae
- Centre for Geobiology, University of Bergen Bergen, Norway ; Department of Biology, University of Bergen Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen Bergen, Norway ; Department of Biology, University of Bergen Bergen, Norway
| | - Ida H Steen
- Centre for Geobiology, University of Bergen Bergen, Norway ; Department of Biology, University of Bergen Bergen, Norway
| |
Collapse
|
29
|
Hartmann T, Schwanhold N, Leimkühler S. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1090-100. [PMID: 25514355 DOI: 10.1016/j.bbapap.2014.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
Abstract
The global carbon cycle depends on the biological transformations of C1 compounds, which include the reductive incorporation of CO₂into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO₂from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO₂and H⁺. However, selected enzymes were identified to act as CO₂reductases, which are able to reduce CO₂to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H₂for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Tobias Hartmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Nadine Schwanhold
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany.
| |
Collapse
|
30
|
Ravcheev DA, Thiele I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front Microbiol 2014; 5:674. [PMID: 25538694 PMCID: PMC4257093 DOI: 10.3389/fmicb.2014.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg ; Division 6: Comparative Genomics of Regulation System, A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
31
|
Karunakar P, Girija CR, Krishnamurthy V, Krishna V, Shivakumar KV. In silico antitubercular activity analysis of benzofuran and naphthofuran derivatives. Tuberc Res Treat 2014; 2014:697532. [PMID: 25302118 PMCID: PMC4180635 DOI: 10.1155/2014/697532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023] Open
Abstract
For the human health, Mycobacterium tuberculosis (MTB) is the deadliest enemy since decades due to its multidrug resistant strains. During latent stage of tuberculosis infection, MTB consumes nitrate as the alternate mechanism of respiration in the absence of oxygen, thus increasing its survival and virulence. NarL is a nitrate/nitrite response transcriptional regulatory protein of two-component signal transduction system which regulates nitrate reductase and formate dehydrogenase for MTB adaptation to anaerobic condition. Phosphorylation by sensor kinase (NarX) is the primary mechanism behind the activation of NarL although many response regulators get activated by small molecule phospho-donors in the absence of sensor kinase. Using in silico approach, the molecular docking of benzofuran and naphthofuran derivatives and dynamic study of benzofuran derivative were performed. It was observed that compound Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate could be stabilized at the active site for over 10 ns of simulation. Here we suggest that derivatives of benzofuran moiety can lead to developing novel antituberculosis drugs.
Collapse
Affiliation(s)
- Prashantha Karunakar
- Department of Biotechnology, PES Institute of Technology, BSK III Stage, Bangalore 560085, India
| | | | - Venkatappa Krishnamurthy
- Department of Biotechnology, PES Institute of Technology, BSK III Stage, Bangalore 560085, India
| | - Venkatarangaiah Krishna
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta 577451, India
| | | |
Collapse
|
32
|
Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J Bacteriol 2014; 196:2023-9. [PMID: 24659770 DOI: 10.1128/jb.01554-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When carbon sources become limiting for growth, bacteria must choose which of the remaining nutrients should be used first. We have identified a nutrient-sensing signaling network in Escherichia coli that is activated at the transition to stationary phase. The network is composed of the two histidine kinase/response regulator systems YehU/YehT and YpdA/YpdB and their target proteins, YjiY and YhjX (both of which are membrane-integrated transporters). The peptide/amino acid-responsive YehU/YehT system was found to have a negative effect on expression of the target gene, yhjX, of the pyruvate-responsive YpdA/YpdB system, while the YpdA/YpdB system stimulated expression of yjiY, the target of the YehU/YehT system. These effects were confirmed in mutants lacking any of the genes for the three primary components of either system. Furthermore, an in vivo interaction assay based on bacterial adenylate cyclase detected heteromeric interactions between the membrane-bound components of the two systems, specifically, between the two histidine kinases and the two transporters, which is compatible with the formation of a larger signaling unit. Finally, the carbon storage regulator A (CsrA) was shown to be involved in posttranscriptional regulation of both yjiY and yhjX.
Collapse
|
33
|
Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 2014; 98:4757-70. [PMID: 24615384 DOI: 10.1007/s00253-014-5600-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
Glycerol is an attractive carbon source for biofuel production since it is cheap and abundant due to the increasing demand for renewable and clean energy sources, which includes production of biodiesel. This research aims to enhance hydrogen production by Escherichia coli from glycerol by manipulating its metabolic pathways via targeted deletions. Since our past strain, which had been engineered for producing hydrogen from glucose, was not suitable for producing hydrogen from glycerol, we rescreened 14 genes related to hydrogen production and glycerol metabolism. We found that 10 single knockouts are beneficial for enhanced hydrogen production from glycerol, namely, frdC (encoding for furmarate reductase), ldhA (lactate dehydrogenase), fdnG (formate dehydrogenase), ppc (phosphoenolpyruvate carboxylase), narG (nitrate reductase), focA (formate transporter), hyaB (the large subunit of hydrogenase 1), aceE (pyruvate dehydrogenase), mgsA (methylglyoxal synthase), and hycA (a regulator of the transcriptional regulator FhlA). On that basis, we created multiple knockout strains via successive P1 transductions. Simultaneous knockouts of frdC, ldhA, fdnG, ppc, narG, mgsA, and hycA created the best strain that produced 5-fold higher hydrogen and had a 5-fold higher hydrogen yield than the parent strain. The engineered strain also reached the theoretical maximum yield of 1 mol H2/mol glycerol after 48 h. Under low partial pressure fermentation, the strain grew over 2-fold faster, indicating faster utilization of glycerol and production of hydrogen. By combining metabolic engineering and low partial pressure fermentation, hydrogen production from glycerol was enhanced significantly.
Collapse
|
34
|
Toya Y, Nakahigashi K, Tomita M, Shimizu K. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. MOLECULAR BIOSYSTEMS 2013; 8:2593-604. [PMID: 22790675 DOI: 10.1039/c2mb25069a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of practical interest to investigate the effect of nitrates on bacterial metabolic regulation of both fermentation and energy generation, as compared to aerobic and anaerobic growth without nitrates. Although gene level regulation has previously been studied for nitrate assimilation, it is important to understand this metabolic regulation in terms of global regulators. In the present study, therefore, we measured gene expression using DNA microarrays, intracellular metabolite concentrations using CE-TOFMS, and metabolic fluxes using the (13)C-labeling technique for wild-type E. coli and the ΔarcA (a global regulatory gene for anoxic response control, ArcA) mutant to compare the metabolic state under nitrate conditions to that under aerobic and anaerobic conditions without nitrates in continuous culture conditions at a dilution rate of 0.2 h(-1). In wild-type, although the measured metabolite concentrations changed very little among the three culture conditions, the TCA cycle and the pentose phosphate pathway fluxes were significantly different under each condition. These results suggested that the ATP production rate was 29% higher under nitrate conditions than that under anaerobic conditions, whereas the ATP production rate was 10% lower than that under aerobic conditions. The flux changes in the TCA cycle were caused by changes in control at the gene expression level. In ΔarcA mutant, the TCA cycle flux was significantly increased (4.4 times higher than that of the wild type) under nitrate conditions. Similarly, the intracellular ATP/ADP ratio increased approximately two-fold compared to that of the wild-type strain.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.
| | | | | | | |
Collapse
|
35
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Kappler U, Nouwens AS. The molybdoproteome of Starkeya novella – insights into the diversity and functions of molybdenum containing proteins in response to changing growth conditions. Metallomics 2013; 5:325-34. [DOI: 10.1039/c2mt20230a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection. J Bacteriol 2012; 194:3803-13. [PMID: 22636777 DOI: 10.1128/jb.06665-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
Collapse
|
38
|
Abstract
Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain.
Collapse
Affiliation(s)
- Toshinari Maeda
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
39
|
Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 2010; 6:e1001187. [PMID: 21085611 PMCID: PMC2978726 DOI: 10.1371/journal.ppat.1001187] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/11/2010] [Indexed: 01/01/2023] Open
Abstract
Murine models of urinary tract infection (UTI) have provided substantial data identifying uropathogenic E. coli (UPEC) virulence factors and assessing their expression in vivo. However, it is unclear how gene expression in these animal models compares to UPEC gene expression during UTI in humans. To address this, we used a UPEC strain CFT073-specific microarray to measure global gene expression in eight E. coli isolates monitored directly from the urine of eight women presenting at a clinic with bacteriuria. The resulting gene expression profiles were compared to those of the same E. coli isolates cultured statically to exponential phase in pooled, sterilized human urine ex vivo. Known fitness factors, including iron acquisition and peptide transport systems, were highly expressed during human UTI and support a model in which UPEC replicates rapidly in vivo. While these findings were often consistent with previous data obtained from the murine UTI model, host-specific differences were observed. Most strikingly, expression of type 1 fimbrial genes, which are among the most highly expressed genes during murine experimental UTI and encode an essential virulence factor for this experimental model, was undetectable in six of the eight E. coli strains from women with UTI. Despite the lack of type 1 fimbrial expression in the urine samples, these E. coli isolates were generally capable of expressing type 1 fimbriae in vitro and highly upregulated fimA upon experimental murine infection. The findings presented here provide insight into the metabolic and pathogenic profile of UPEC in urine from women with UTI and represent the first transcriptome analysis for any pathogenic E. coli during a naturally occurring infection in humans. Animal models of infection have been used extensively to study how bacteria and other pathogens cause disease. These models provide valuable information and have led to the development of numerous vaccines and antimicrobial therapies. However, it is important to recognize how these animal models compare to human infection and to understand how bacteria cause disease in humans. This study measured gene expression in E. coli, a major cause of urinary tract infection, immediately after collection from the urine of women with bladder infection symptoms. The data showed that E. coli gene expression in the urine from women with urinary tract infection was very often similar to what had been observed in a mouse model, but these studies also identified several potentially important differences, including a bacterial surface structure that is necessary for infection in mice but not detected in most E. coli in human urine. Although more precise measurements are still needed, these findings contribute to our understanding of bacterial infection in humans and will help in the development of vaccines and treatments for urinary tract infection.
Collapse
Affiliation(s)
- Erin C Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | | |
Collapse
|
40
|
Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli. Appl Environ Microbiol 2009; 75:5639-46. [PMID: 19581479 DOI: 10.1128/aem.00638-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli produces H(2) from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H(+), 2e(-), and CO(2) from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H(2) from 2H(+) and 2e(-). FHL protein production is activated by the sigma(54) transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H(2) production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of P(fdhF) and P(hyc) is less sensitive to formate regulation, and with FhlA363 (E363G), P(hyc) transcription increases but P(hyp) transcription decreases and hydrogen production is less affected by the repressor HycA.
Collapse
|
41
|
Competition between NarL-dependent activation and Fis-dependent repression controls expression from the Escherichia coli yeaR and ogt promoters. Biochem J 2009; 420:249-57. [DOI: 10.1042/bj20090183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli NarL protein is a global gene regulatory factor that activates transcription at many target promoters in response to nitrate and nitrite ions. Although most NarL-dependent promoters are also co-dependent on a second transcription factor, FNR protein, two targets, the yeaR and ogt promoters, are activated by NarL alone with no involvement of FNR. Biochemical and genetic studies presented here show that activation of the yeaR promoter is dependent on the binding of NarL to a single target centred at position −43.5, whereas activation at the ogt promoter requires NarL binding to tandem DNA targets centred at position −45.5 and −78.5. NarL-dependent activation at both the yeaR and ogt promoters is decreased in rich medium and this depends on Fis, a nucleoid-associated protein. DNase I footprinting studies identified Fis-binding sites that overlap the yeaR promoter NarL site at position −43.5, and the ogt promoter NarL site at position −78.5, and suggest that Fis represses both promoters by displacing NarL. The ogt gene encodes an O6-alkylguanine DNA alkyltransferase and, hence, this is the first report of expression of a DNA repair function being controlled by nitrate ions.
Collapse
|
42
|
Keilwagen J, Baumbach J, Kohl TA, Grosse I. MotifAdjuster: a tool for computational reassessment of transcription factor binding site annotations. Genome Biol 2009; 10:R46. [PMID: 19409082 PMCID: PMC2718512 DOI: 10.1186/gb-2009-10-5-r46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/17/2009] [Accepted: 05/01/2009] [Indexed: 11/10/2022] Open
Abstract
Valuable binding-site annotation data are stored in databases. However, several types of errors can, and do, occur in the process of manually incorporating annotation data from the scientific literature into these databases. Here, we introduce MotifAdjuster http://dig.ipk-gatersleben.de/MotifAdjuster.html, a tool that helps to detect these errors, and we demonstrate its efficacy on public data sets.
Collapse
Affiliation(s)
- Jens Keilwagen
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
43
|
Desai TA, Rodionov DA, Gelfand MS, Alm EJ, Rao CV. Engineering transcription factors with novel DNA-binding specificity using comparative genomics. Nucleic Acids Res 2009; 37:2493-503. [PMID: 19264798 PMCID: PMC2677863 DOI: 10.1093/nar/gkp079] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional program for a gene consists of the promoter necessary for recruiting RNA polymerase along with neighboring operator sites that bind different activators and repressors. From a synthetic biology perspective, if the DNA-binding specificity of these proteins can be changed, then they can be used to reprogram gene expression in cells. While many experimental methods exist for generating such specificity-altering mutations, few computational approaches are available, particularly in the case of bacterial transcription factors. In a previously published computational study of nitrogen oxide metabolism in bacteria, a small number of amino-acid residues were found to determine the specificity within the CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors. By analyzing how these amino acids vary in different regulators, a simple relationship between the identity of these residues and their target DNA-binding sequence was constructed. In this article, we experimentally tested whether this relationship could be used to engineer novel DNA–protein interactions. Using Escherichia coli CRP as a template, we tested eight designs based on this relationship and found that four worked as predicted. Collectively, these results in this work demonstrate that comparative genomics can inform the design of bacterial transcription factors.
Collapse
Affiliation(s)
- Tasha A Desai
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
44
|
Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect Immun 2009; 77:1426-41. [PMID: 19139196 DOI: 10.1128/iai.00297-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Host-pathogen interactions are of great importance in understanding the pathogenesis of infectious microorganisms. We developed in vitro models to study the host-pathogen interactions of porcine respiratory tract pathogens using two immortalized epithelial cell lines, namely, the newborn pig trachea (NPTr) and St. Jude porcine lung (SJPL) cell lines. We first studied the interactions of Actinobacillus pleuropneumoniae, an important swine pathogen, using these models. Under conditions where cytotoxicity was absent or low, we showed that A. pleuropneumoniae adheres to both cell lines, stimulating the induction of NF-kappaB. The NPTr cells consequently secrete interleukin 8, while the SJPL cells do not, since they are deprived of the NF-kappaB p65 subunit. Cell death ultimately occurs by necrosis, not apoptosis. The transcriptomic profile of A. pleuropneumoniae was determined after contact with the porcine lung epithelial cells by using DNA microarrays. Genes such as tadB and rcpA, members of a putative adhesin locus, and a gene whose product has high homology to the Hsf autotransporter adhesin of Haemophilus influenzae were upregulated, as were the genes pgaBC, involved in biofilm biosynthesis, while capsular polysaccharide-associated genes were downregulated. The in vitro models also proved to be efficient with other swine pathogens, such as Actinobacillus suis, Haemophilus parasuis, and Pasteurella multocida. Our results demonstrate that interactions of A. pleuropneumoniae with host epithelial cells seem to involve complex cross talk which results in regulation of various bacterial genes, including some coding for putative adhesins. Furthermore, our data demonstrate the potential of these in vitro models in studying the host-pathogen interactions of other porcine respiratory tract pathogens.
Collapse
|
45
|
Schnell R, Agren D, Schneider G. 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1096-100. [PMID: 19052358 PMCID: PMC2593691 DOI: 10.1107/s1744309108035203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/10/2022]
Abstract
NarL from Mycobacterium tuberculosis is a putative nitrate response regulator that is involved in the regulation of anaerobic metabolism in this pathogen. The recombinant purified N-terminal signal receiver domain of NarL has been crystallized in space group C222(1), with unit-cell parameters a = 85.6, b = 90.0, c = 126.3 A, and the structure was determined by molecular replacement to 1.9 A resolution. Comparisons with related signal receiver domains show that the closest structural homologue is an uncharacterized protein from Staphylococcus aureus, whereas the nearest sequence homologue, NarL from Escherichia coli, displays larger differences in three-dimensional structure. The largest differences between the mycobacterial and E. coli NarL domains were found in the loop between beta3 and alpha3 in the proximity of the phosphorylation site. The active site in response regulators is similar to that of members of the haloacid dehalogenase (HAD) family, which also form a phospho-aspartyl intermediate. In NarL, the aspartic acid that acts as catalytic acid/base in several HAD enzymes is replaced by an arginine residue, which is less likely to participate in steps involving proton abstraction. This substitution may slow down the breakdown of the phospho-aspartyl anhydride and allow signalling beyond the timescales defined by a catalytic reaction intermediate.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
46
|
Partridge JD, Browning DF, Xu M, Newnham LJ, Scott C, Roberts RE, Poole RK, Green J. Characterization of the Escherichia coli K-12 ydhYVWXUT operon: regulation by FNR, NarL and NarP. MICROBIOLOGY-SGM 2008; 154:608-618. [PMID: 18227264 DOI: 10.1099/mic.0.2007/012146-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli K-12 the expression of many genes is controlled by the oxygen-responsive transcription factor FNR and the nitrate- and nitrite-responsive two-component systems NarXL and NarPQ. Here, the ydhY gene is shown to be the first gene of a six-gene operon (ydhYVWXUT) that encodes proteins predicted to be components of an oxidoreductase. Mapping the ydhY-T transcript start and site-directed mutagenesis confirmed that the ydhY-T genes are transcribed from an FNR-dependent class II promoter and showed that the FNR site is centred at -42.5. In the presence of nitrate or nitrite, NarXL and NarPQ repressed ydhY-T expression. Analysis of the DNA sequence of the ydhY promoter region (PydhY) revealed the presence of four heptameric sequences similar to NarL/P binding sites centred at -42, -16, +6 and +15. The latter heptamers are arranged as a 7-2-7 inverted repeat, which is required for recognition by NarP. Accordingly, NarP protected the 7-2-7 region in DNase I footprints, and mutation of either heptamer +6 or heptamer +15 impaired nitrite-mediated repression, whereas mutation of heptamer -42 and heptamer -16 did not affect the response to nitrite. The NarL protein also protected the 7-2-7 region, but in contrast to NarP, the NarL footprint extended further upstream to encompass the -16 heptamer. The extended NarL footprint was consistent with the presence of multiple NarL-PydhY complexes in gel retardation assays. Mutation of heptamer -42, which is located within the FNR binding site, or heptamer +6 (but not heptamers -16 or +15) impaired nitrate-mediated repression. Thus, although the region of the ydhY-T promoter containing the -16 and +15 heptamers was recognized by NarL in vitro, mutation of these heptamers did not affect NarL-mediated repression in vivo.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Douglas F Browning
- The School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Meng Xu
- The School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Louise J Newnham
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Colin Scott
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ruth E Roberts
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
47
|
Ferenci T. Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 2007; 53:169-229. [PMID: 17707145 DOI: 10.1016/s0065-2911(07)53003-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemostat was devised over 50 years ago and rapidly adopted for studies of bacterial physiology and mutation. Despite the long history and earlier analyses, the complexity of events in continuous cultures is only now beginning to be resolved. The application of techniques for following regulatory and mutational changes and the identification of mutated genes in chemostat populations has provided new insights into bacterial behaviour. Inoculation of bacteria into a chemostat culture results in a population competing for a limiting amount of a particular resource. Any utilizable carbon source or ion can be a limiting nutrient and bacteria respond to limitation through a regulated nutrient-specific hunger response. In addition to transcriptional responses to nutrient limitation, a second regulatory influence in a chemostat culture is the reduced growth rate fixed by the dilution rate in individual experiments. Sub-maximal growth rates and hunger result in regulation involving sigma factors and alarmones like cAMP and ppGpp. Reduced growth rate also results in increased mutation frequencies. The combination of a strongly selective environment (where mutants able to compete for limiting nutrient have a major fitness advantage) and elevated mutation rates (both endogenous and through the secondary enrichment of mutators) results in a population that changes rapidly and persistently over many generations. Contrary to common belief, the chemostat environment is never in "steady state" with fixed bacterial characteristics usable for clean comparisons of physiological or regulatory states. Adding to the complexity, chemostat populations do not simply exhibit a succession of mutational sweeps leading to a dominant winner clone. Instead, within 100 generations large populations become heterogeneous and evolving bacteria adopt alternative, parallel fitness strategies. Transport physiology, metabolism and respiration, as well as growth yields, are highly diverse in chemostat-evolved bacteria. The rich assortment of changes in an evolving chemostat provides an excellent experimental system for understanding bacterial evolution. The adaptive radiation or divergence of populations into a collection of individuals with alternative solutions to the challenge of chemostat existence provides an ideal model system for testing evolutionary and ecological theories on adaptive radiations and the generation of bacterial diversity.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Molecular and Microbial Biosciences G08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
48
|
Maeda T, Sanchez-Torres V, Wood TK. Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 2007; 77:879-90. [DOI: 10.1007/s00253-007-1217-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 09/14/2007] [Accepted: 09/16/2007] [Indexed: 11/30/2022]
|
49
|
Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, Autieri SM, Leatham MP, Lins JJ, Jorgensen M, Cohen PS, Conway T. Respiration of Escherichia coli in the mouse intestine. Infect Immun 2007; 75:4891-9. [PMID: 17698572 PMCID: PMC2044527 DOI: 10.1128/iai.00484-07] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/01/2007] [Accepted: 07/30/2007] [Indexed: 12/24/2022] Open
Abstract
Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo(3) oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine.
Collapse
Affiliation(s)
- Shari A Jones
- Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ravcheev DA, Gerasimova AV, Mironov AA, Gelfand MS. Comparative genomic analysis of regulation of anaerobic respiration in ten genomes from three families of gamma-proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics 2007; 8:54. [PMID: 17313674 PMCID: PMC1805755 DOI: 10.1186/1471-2164-8-54] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 02/21/2007] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gamma-proteobacteria, such as Escherichia coli, can use a variety of respiratory substrates employing numerous aerobic and anaerobic respiratory systems controlled by multiple transcription regulators. Thus, in E. coli, global control of respiration is mediated by four transcription factors, Fnr, ArcA, NarL and NarP. However, in other Gamma-proteobacteria the composition of global respiration regulators may be different. RESULTS In this study we applied a comparative genomic approach to the analysis of three global regulatory systems, Fnr, ArcA and NarP. These systems were studied in available genomes containing these three regulators, but lacking NarL. So, we considered several representatives of Pasteurellaceae, Vibrionaceae and Yersinia spp. As a result, we identified new regulon members, functioning in respiration, central metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway, citrate cicle, metabolism of pyruvate and lactate), metabolism of carbohydrates and fatty acids, transcriptional regulation and transport, in particular: the ATP synthase operon atpIBEFHAGCD, Na+-exporting NADH dehydrogenase operon nqrABCDEF, the D-amino acids dehydrogenase operon dadAX. Using an extension of the comparative technique, we demonstrated taxon-specific changes in regulatory interactions and predicted taxon-specific regulatory cascades. CONCLUSION A comparative genomic technique was applied to the analysis of global regulation of respiration in ten gamma-proteobacterial genomes. Three structurally different but functionally related regulatory systems were described. A correlation between the regulon size and the position of a transcription factor in regulatory cascades was observed: regulators with larger regulons tend to occupy top positions in the cascades. On the other hand, there is no obvious link to differences in the species' lifestyles and metabolic capabilities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
| | | | - Andrey A Mironov
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| | - Mikhail S Gelfand
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| |
Collapse
|