1
|
Guden RM, Haegeman A, Ruttink T, Moens T, Derycke S. Nematodes alter the taxonomic and functional profiles of benthic bacterial communities: A metatranscriptomic approach. Mol Ecol 2024; 33:e17331. [PMID: 38533629 DOI: 10.1111/mec.17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Marine sediments cover 70% of the Earth's surface, and harbour diverse bacterial communities critical for marine biogeochemical processes, which affect climate change, biodiversity and ecosystem functioning. Nematodes, the most abundant and species-rich metazoan organisms in marine sediments, in turn, affect benthic bacterial communities and bacterial-mediated ecological processes, but the underlying mechanisms by which they affect biogeochemical cycles remain poorly understood. Here, we demonstrate using a metatranscriptomic approach that nematodes alter the taxonomic and functional profiles of benthic bacterial communities. We found particularly strong stimulation of nitrogen-fixing and methane-oxidizing bacteria in the presence of nematodes, as well as increased functional activity associated with methane metabolism and degradation of various carbon compounds. This study provides empirical evidence that the presence of nematodes results in taxonomic and functional shifts in active bacterial communities, indicating that nematodes may play an important role in benthic ecosystem processes.
Collapse
Affiliation(s)
- Rodgee Mae Guden
- Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Tom Moens
- Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Oostende, Belgium
| |
Collapse
|
2
|
Elhalis H, Helmy M, Ho S, Leow S, Liu Y, Selvarajoo K, Chow Y. Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:13-22. [PMID: 39416691 PMCID: PMC11446366 DOI: 10.1016/j.biotno.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 10/19/2024]
Abstract
Chitin is a major component of various wastes such as crustacean shells, filamentous fungi, and insects. Recently, food-safe biological and chemical processes converting chitin to glucosamine have been developed. Here, we studied microalgae that can uptake glucosamine as vital carbon and nitrogen sources for valuable alternative protein biomass. Utilizing data mining and bioinformatics analysis, we identified 29 species that contain the required enzymes for glucosamine to glucose conversion. The growth performance of the selected strains was examined, and glucosamine was used in different forms and concentrations. Glucose at a concentration of 2.5 g/L was required to initiate glucosamine metabolic degradation by Chlorella vulgaris and Chlorella sorokiniana. Glucosamine HCl and glucosamine phosphate showed maximum cell counts of about 8.5 and 9.0 log/mL for C. sorokiniana and C. vulgaris in 14 days, respectively. Enzymatic hydrolysis of glucosamine increased growth performance with C. sorokiniana by about 3 folds. The adapted strains were fast-growing and could double their dry biomasses during the same incubation time. In addition, adapted C. sorokiniana was able to tolerate three times glucosamine concentration in the medium. The study illustrated possible strategies for employing C. sorokiniana and C. vulgaris to convert glucosamine into valuable biomass in a more sustainable way.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mohamed Helmy
- Bioinformatics Institute (BII), A*STAR, Singapore, Republic of Singapore
- Department of Computer Science, Lakehead University, ON, Canada
| | - Sherilyn Ho
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Sharon Leow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 1 Pesek Road, Jurong Island, 627833, Republic of Singapore
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), A*STAR, Singapore, Republic of Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, Republic of Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
3
|
Wang Y, Mo H, Hu Z, Liu B, Zhang Z, Fang Y, Hou X, Liu S, Yang G. Production, Characterization and Application of a Novel Chitosanase from Marine Bacterium Bacillus paramycoides BP-N07. Foods 2023; 12:3350. [PMID: 37761058 PMCID: PMC10528844 DOI: 10.3390/foods12183350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COS), a high-value chitosan derivative, have many applications in food, pharmaceuticals, cosmetics and agriculture owing to their unique biological activities. Chitosanase, which catalyzes the hydrolysis of chitosan, can cleave β-1,4 linkages to produce COS. In this study, a chitosanase-producing Bacillus paramycoides BP-N07 was isolated from marine mud samples. The chitosanase enzyme (BpCSN) activity was 2648.66 ± 20.45 U/mL at 52 h and was able to effectively degrade chitosan. The molecular weight of purified BpCSN was approximately 37 kDa. The yield and enzyme activity of BpCSN were 0.41 mg/mL and 8133.17 ± 47.83 U/mg, respectively. The optimum temperature and pH of BpCSN were 50 °C and 6.0, respectively. The results of the high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) of chitosan treated with BpCSN for 3 h showed that it is an endo-chitosanase, and the main degradation products were chitobiose, chitotriose and chitotetraose. BpCSN was used for the preparation of oligosaccharides: 1.0 mg enzyme converted 10.0 g chitosan with 2% acetic acid into oligosaccharides in 3 h at 50 °C. In summary, this paper reports that BpCSN has wide adaptability to temperature and pH and high activity for hydrolyzing chitosan substrates. Thus, BpCSN is a chitosan decomposer that can be used for producing chitooligosaccharides industrially.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Hongjuan Mo
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Zhihong Hu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Bingjie Liu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Zhiqian Zhang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
| | - Yaowei Fang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (H.M.); (Z.H.); (B.L.); (Z.Z.); (Y.F.); (X.H.); (S.L.)
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
5
|
Nakajima M. β-1,2-Glucans and associated enzymes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
A Two-Step Cross-Linked Hydrogel Immobilization Strategy for Diacetylchitobiose Deacetylase. Catalysts 2022. [DOI: 10.3390/catal12090932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Free enzymes often face economic problems due to their non-recyclability, which limits their applications for industrial manufacturing. Organic biopolymers are frequently used to fabricate hydrogel for enzyme immobilization due to their advantages of non-toxicity, biocompatibility, biodegradability, and flexibility. However, for highly thermostable enzymes, simple cross-linking causes either low immobilizing efficiency or low thermal stability. Herein, we developed a novel enzyme immobilization strategy with two-step cross-linked gelatin hydrogel for thermostable enzymes working at high temperature. The hydrogel was firstly “soft cross-linked” to immobilize most enzyme molecules and then “hard cross-linked” to gain strong thermal stability. We selected the enzyme diacetylchitobiose deacetylase (Dac), which was firstly derived from hyperthermophilic bacteria, to demonstrate the advantages of our method. With the optimized fabrication steps, our hydrogel showed ~87% Dac immobilization efficiency and excellent stability against heating, dehydrating, long-time storing, and massive recycling. Importantly, our hydrogel showed ~85.0% relative enzyme activity at 80 °C and retained ~65.8% activity after 10 rounds of catalysis. This strategy showed high immobilizing efficiency and strong thermal stability and we believe it could improve the industrial potential for those enzymes.
Collapse
|
7
|
Zhang Y, Guan F, Xu G, Liu X, Zhang Y, Sun J, Yao B, Huang H, Wu N, Tian J. A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem. BIORESOUR BIOPROCESS 2022; 9:54. [PMID: 38647756 PMCID: PMC10991277 DOI: 10.1186/s40643-022-00543-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Chitin is abundant in nature and its degradation products are highly valuable for numerous applications. Thermophilic chitinases are increasingly appreciated for their capacity to biodegrade chitin at high temperatures and prolonged enzyme stability. Here, using deep learning approaches, we developed a prediction tool, Preoptem, to screen thermophilic proteins. A novel thermophilic chitinase, Chi304, was mined directly from the marine metagenome. Chi304 showed maximum activity at 85 ℃, its Tm reached 89.65 ± 0.22℃, and exhibited excellent thermal stability at 80 and 90 °C. Chi304 had both endo- and exo-chitinase activities, and the (GlcNAc)2 was the main hydrolysis product of chitin-related substrates. The product yields of colloidal chitin degradation reached 97% within 80 min, and 20% over 4 days of reaction with crude chitin powder. This study thus provides a method to mine the novel thermophilic chitinase for efficient chitin biodegradation.
Collapse
Affiliation(s)
- Yan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoshun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Kobayashi K, Shimizu H, Tanaka N, Kuramochi K, Nakai H, Nakajima M, Taguchi H. Characterization and structural analyses of a novel glycosyltransferase acting on the β-1,2-glucosidic linkages. J Biol Chem 2022; 298:101606. [PMID: 35065074 PMCID: PMC8861115 DOI: 10.1016/j.jbc.2022.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
|
9
|
Mao X, Huang Z, Sun G, Zhang H, Lu W, Liu Y, Lv X, Du G, Li J, Liu L. High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. BIORESOURCE TECHNOLOGY 2021; 341:125836. [PMID: 34469820 DOI: 10.1016/j.biortech.2021.125836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Diacetylchitobiose deacetylase (Dac) from Pyrococcus horikoshii can realize the one-step production of glucosamine (GlcN). The efficient expression and secretion of Dac play a central role in the green production of GlcN. In this study, Bacillus subtilis WB600 was used as the expression host. Firstly, we screened 12 signal peptides, among which signal peptide NprB had the strongest ability of guiding Dac secretion. Further optimization of the functional region showed that the extracellular Dac activity of NprB mutant was increased to 3682.2 U/mL. Next, the extracellular Dac activity was increased to 4807.6 U/mL by RBS sequence optimization. Then we got a new recombinant B. subtilis C6 for plasmid-free expression of Dac by integrating comK gene and silencing bpr, nprB, aprE, mpr and nprE genes. Finally, the extracellular Dac activity of genome-integrating strain reached 6357.38 U/mL, which was the highest level reported so far.
Collapse
Affiliation(s)
- Xinzhu Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Ziyang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, PR China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, PR China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
10
|
Huang Z, Mao X, Lv X, Sun G, Zhang H, Lu W, Liu Y, Li J, Du G, Liu L. Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. BIORESOURCE TECHNOLOGY 2021; 334:125241. [PMID: 33964814 DOI: 10.1016/j.biortech.2021.125241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, semi-rational design based on site-directed saturation mutagenesis and surface charge modification was used to improve the catalytic efficiency of the diacetylchitobiose deacetylase derived from Pyrococcus horikoshii (PhDac). PhDac mutant M14, which was screened by site-directed saturation mutagenesis, showed a ~ 2.21 -fold enhanced catalytic efficiency (kcat/Km) and the specific activity was improved by 70.02%. To keep the stability of glucosamine (GlcN), we reduced the optimal pH of M14 by modifying the surface charge from -35 to -59 to obtain mutant M20, whose specific activity reached 2 -fold of the wild-type. The conversion rate of N-acetylglucosamine (GlcNAc) to GlcN catalyzed by M20 reached 94.3%. Moreover, the decline of GlcN production was slowed down by the reduction of pH when temperature was higher than 50 ℃. Our results would accelerate the process of industrial production of GlcN by biocatalysis.
Collapse
Affiliation(s)
- Ziyang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xinzhu Mao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Cui T, Jia A, Yao M, Zhang M, Sun C, Shi Y, Liu X, Sun J, Liu C. Characterization and Caco-2 Cell Transport Assay of Chito-Oligosaccharides Nano-Liposomes Based on Layer-by-Layer Coated. Molecules 2021; 26:molecules26144144. [PMID: 34299419 PMCID: PMC8306128 DOI: 10.3390/molecules26144144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Chito-oligosaccharides (COSs) were encapsulated by the film-ultrasonic method into three nano-liposomes, which were uncoated liposomes (COSs-Lip), chitosan-coated liposomes (CH-COSs-Lip), and sodium alginate (SA)/chitosan (CH)-coated liposomes (SA/CH-COSs-Lip). The physicochemical and structural properties, as well as the stability and digestive characteristics, of all three nano-liposomes were assessed in the current study. Thereafter, the characteristics of intestinal absorption and transport of nano-liposomes were investigated by the Caco-2 cell monolayer. All nano-liposomes showed a smaller-sized distribution with a higher encapsulation efficiency. The ζ-potential, Z-average diameter (Dz), and polydispersity index (PDI) demonstrated that the stability of the SA/CH-COSs-Lip had much better stability than COSs-Lip and CH-COSs-Lip. In addition, the transport of the nano-liposomes via the Caco-2 cell monolayer indicated a higher transmembrane transport capacity. In summary, the chitosan and sodium alginate could serve as potential delivery systems for COSs to fortify functional foods and medicines.
Collapse
Affiliation(s)
- Tingting Cui
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Airong Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Correspondence: ; Tel.: +86-531-82605355
| | - Mengke Yao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Miansong Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai 264005, China;
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science &Technology), Ministry of Education, Tianjin 300457, China
| | - Yaping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xue Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jimin Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Changheng Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (T.C.); (M.Y.); (M.Z.); (Y.S.); (X.L.); (J.S.); (C.L.)
- China-Australia Joint Laboratory for Native Bioresource Industry Innovation, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
12
|
Vortmann M, Stumpf AK, Sgobba E, Dirks-Hofmeister ME, Krehenbrink M, Wendisch VF, Philipp B, Moerschbacher BM. A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine. Appl Microbiol Biotechnol 2021; 105:1547-1561. [PMID: 33521845 PMCID: PMC7880967 DOI: 10.1007/s00253-021-11112-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/27/2023]
Abstract
Chitin is an abundant waste product from shrimp and mushroom industries and as such, an appropriate secondary feedstock for biotechnological processes. However, chitin is a crystalline substrate embedded in complex biological matrices, and, therefore, difficult to utilize, requiring an equally complex chitinolytic machinery. Following a bottom-up approach, we here describe the step-wise development of a mutualistic, non-competitive consortium in which a lysine-auxotrophic Escherichia coli substrate converter cleaves the chitin monomer N-acetylglucosamine (GlcNAc) into glucosamine (GlcN) and acetate, but uses only acetate while leaving GlcN for growth of the lysine-secreting Corynebacterium glutamicum producer strain. We first engineered the substrate converter strain for growth on acetate but not GlcN, and the producer strain for growth on GlcN but not acetate. Growth of the two strains in co-culture in the presence of a mixture of GlcN and acetate was stabilized through lysine cross-feeding. Addition of recombinant chitinase to cleave chitin into GlcNAc2, chitin deacetylase to convert GlcNAc2 into GlcN2 and acetate, and glucosaminidase to cleave GlcN2 into GlcN supported growth of the two strains in co-culture in the presence of colloidal chitin as sole carbon source. Substrate converter strains secreting a chitinase or a β-1,4-glucosaminidase degraded chitin to GlcNAc2 or GlcN2 to GlcN, respectively, but required glucose for growth. In contrast, by cleaving GlcNAc into GlcN and acetate, a chitin deacetylase-expressing substrate converter enabled growth of the producer strain in co-culture with GlcNAc as sole carbon source, providing proof-of-principle for a fully integrated co-culture for the biotechnological utilization of chitin. ![]()
Collapse
Affiliation(s)
- Marina Vortmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Anna K Stumpf
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Elvira Sgobba
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
- Department of Forest Genetics and Plant Physiology, SLU, Skogsmarksgränd 17, 90183, Umeå, Sweden
| | | | | | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
13
|
Benchamas G, Huang G, Huang S, Huang H. Preparation and biological activities of chitosan oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
15
|
Mathew GM, Madhavan A, Arun KB, Sindhu R, Binod P, Singhania RR, Sukumaran RK, Pandey A. Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. Appl Biochem Biotechnol 2020; 193:142-164. [PMID: 32827066 DOI: 10.1007/s12010-020-03416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Chitin is the second most widely found natural polymer next to cellulose. Chitinases degrade the insoluble chitin to bioactive chitooligomers and monomers for various industrial applications. Based on their function, these enzymes act as biocontrol agents against pathogenic fungi and invasive pests compared with conventional chemical fungicides and insecticides. They have other functional roles in shellfish waste management, fungal protoplast generation, and Single-Cell Protein production. Among the chitinases, thermophilic and thermostable chitinases are gaining popularity in recent years, as they can withstand high temperatures and maintain the enzyme stability for longer periods. Not all chitinases are thermostable; hence, tailor-made thermophilic chitinases are designed to enhance their thermostability by direct evolution, genetic engineering involving mutagenesis, and proteomics approach. Although research has been done extensively on cloning and expression of thermophilic chitinase genes, there are only few papers discussing on the mechanism of chitin degradation using thermophiles. The current review discusses the sources of thermophilic chitinases, improvement of protein stability by gene manipulation, metagenomics approaches, chitin degradation mechanism in thermophiles, and their prospective applications for industrial, agricultural, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Gincy M Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | | | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR - Indian Institute of Toxicology Research, Lucknow, 226 001, India.
- Frontier Research Lab, Yonsei University, Seoul, South Korea.
| |
Collapse
|
16
|
Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Mar Drugs 2020; 18:E93. [PMID: 32019265 PMCID: PMC7073968 DOI: 10.3390/md18020093] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
17
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
18
|
Aktuganov GE, Melentiev AI, Varlamov VP. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Chen L, Wei Y, Shi M, Li Z, Zhang SH. An Archaeal Chitinase With a Secondary Capacity for Catalyzing Cellulose and Its Biotechnological Applications in Shell and Straw Degradation. Front Microbiol 2019; 10:1253. [PMID: 31244795 PMCID: PMC6579819 DOI: 10.3389/fmicb.2019.01253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous thermostable enzymes have been reported from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which made it an attractive resource for gene cloning. This research reported a glycosyl hydrolase (Tk-ChiA) form T. Kodakarensis with dual hydrolytic activity due to the presence of three binding domains with affinity toward chitin and cellulose. The Tk-ChiA gene was cloned and expressed on Pichia pastoris GS115. The molecular weight of the purified Tk-ChiA is about 130.0 kDa. By using chitosan, CMC-Na and other polysaccharides as substrates, we confirmed that Tk-ChiA with dual hydrolysis activity preferably hydrolyzes both chitosan and CMC-Na. Purified Tk-ChiA showed maximal activity for hydrolyzing CMC-Na at temperature 65°C and pH 7.0. It showed thermal stability on incubation for 4 h at temperatures ranging from 70 to 80°C and remained more than 40% of its maximum activity after pre-incubation at 100°C for 4 h. Particularly, Tk-ChiA is capable of degrading shrimp shell and rice straw through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The main factors affecting shell and straw degradation were determined to be reaction time and temperature; and both factors were optimized by central composite design (CCD) of response surface methodology (RSM) to enhance the efficiency of degradation. Our findings suggest that Tk-ChiA with dual thermostable hydrolytic activities maybe a promising hydrolase for shell and straw waste treatment, conversion, and utilization.
Collapse
Affiliation(s)
- Lina Chen
- College of Plant Sciences, Jilin University, Changchun, China.,College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mao Shi
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Zhengqun Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Structural Insights into the Molecular Evolution of the Archaeal Exo-β-d-Glucosaminidase. Int J Mol Sci 2019; 20:ijms20102460. [PMID: 31109049 PMCID: PMC6566704 DOI: 10.3390/ijms20102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA), a thermostable enzyme belonging to the glycosidase hydrolase (GH) 35 family, hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a novel enzyme in terms of its primary structure, as it is homologous to both GH35 and GH42 β-galactosidases. The catalytic mechanism of GlmA is not known. Here, we summarize the recent reports on the crystallographic analysis of GlmA. GlmA is a homodimer, with each subunit comprising three distinct domains: a catalytic TIM-barrel domain, an α/β domain, and a β1 domain. Surprisingly, the structure of GlmA presents features common to GH35 and GH42 β-galactosidases, with the domain organization resembling that of GH42 β-galactosidases and the active-site architecture resembling that of GH35 β-galactosidases. Additionally, the GlmA structure also provides critical information about its catalytic mechanism, in particular, on how the enzyme can recognize glucosamine. Finally, we postulate an evolutionary pathway based on the structure of an ancestor GlmA to extant GH35 and GH42 β-galactosidases.
Collapse
|
21
|
Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol 2019; 129:827-843. [DOI: 10.1016/j.ijbiomac.2019.01.192] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
22
|
Wang M, Zheng F, Wang T, Lyu YM, Alteen MG, Cai ZP, Cui ZL, Liu L, Voglmeir J. Characterization of Stackebrandtia nassauensis GH 20 Beta-Hexosaminidase, a Versatile Biocatalyst for Chitobiose Degradation. Int J Mol Sci 2019; 20:ijms20051243. [PMID: 30871033 PMCID: PMC6429369 DOI: 10.3390/ijms20051243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
An unstudied β-N-acetylhexosaminidase (SnHex) from the soil bacterium Stackebrandtia nassauensis was successfully cloned and subsequently expressed as a soluble protein in Escherichia coli. Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h. The addition of urea (1 M) or sodium dodecyl sulfate (1% w/v) reduced the activity of the enzyme by 44% and 58%, respectively, whereas the addition of divalent metal ions had no effect on the enzymatic activity. PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate) strongly inhibited the enzyme in sub-micromolar concentrations. The β-N-acetylhexosaminidase was able to hydrolyze β1,2-linked, β1,3-linked, β1,4-linked, and β1,6-linked GlcNAc residues from the non-reducing end of various tested glycan standards, including bisecting GlcNAc from one of the tested hybrid-type N-glycan substrates. A mutational study revealed that the amino acids D306 and E307 bear the catalytically relevant side acid/base side chains. When coupled with a chitinase, the β-N-acetylhexosaminidase was able to generate GlcNAc directly from colloidal chitin, which showed the potential of this enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhong-Li Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Guo N, Sun J, Wang W, Gao L, Liu J, Liu Z, Xue C, Mao X. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food Chem 2019; 286:696-702. [PMID: 30827665 DOI: 10.1016/j.foodchem.2019.02.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022]
Abstract
A gene encoding chitosanase from Streptomyces albolongus was cloned, sequenced and expressed in Escherichia coli. The novel recombinant enzyme (Csn21c) was purified by Ni-NTA Superflow Column and showed a molecular mass of 29.6 kDa by SDS-PAGE. The enzyme Csn21c showed the optimal activity in 50 mmol/L Tris-HCl buffer, pH 8.0, and 50 °C and it was strongly activated (2-fold) by Mn2+. It belonged to glycoside hydrolase 46 family according to NCBI database (http://www.ncbi.nlm.nih.gov/) and displayed an exo-type cleavage pattern, hydrolyzing chitosan mainly into d-glucosamine (GlcN) and chitobiose ((GlcN)2) as confirmed by TLC and MS analysis. This study demonstrated that Csn21c can be an effective tool to produce abundant glucosamine and chitooligosaccharides (COS) from chitosan.
Collapse
Affiliation(s)
- Na Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jinbao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
24
|
Purification and characterization of exo-β-1,4-glucosaminidase produced by chitosan-degrading fungus, Penicillium sp. IB-37-2A. World J Microbiol Biotechnol 2019; 35:18. [DOI: 10.1007/s11274-019-2590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
25
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
26
|
Cabrera MÁ, Blamey JM. Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 2018; 51:37. [PMID: 30290805 PMCID: PMC6172850 DOI: 10.1186/s40659-018-0186-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins, 3363, Santiago, Chile.
| |
Collapse
|
27
|
Bao J, Liu N, Zhu L, Xu Q, Huang H, Jiang L. Programming a Biofilm-Mediated Multienzyme-Assembly-Cascade System for the Biocatalytic Production of Glucosamine from Chitin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8061-8068. [PMID: 29989414 DOI: 10.1021/acs.jafc.8b02142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chitin is used as an essential raw material for the production of glucosamine (GlcN). In this study, we adopted three key enzymes, isolated from Thermococcus kodakaraensis KOD1, that catalyze the sequential conversion of α-chitin into GlcN and developed a multienzyme-assembly-cascade (MAC) system immobilized in a bacterial biofilm, which enabled a multistep one-pot reaction. Specifically, the SpyTag-SpyCatcher and SnoopTag-SnoopCatcher pairs provided covalent and specific binding force to fix enzymes to the biofilm one by one and assemble close enzyme cascades. The MAC system showed great catalytic activity, converting 79.02 ± 3.61% of α-chitin into GlcN with little byproducts, which was 2.09 times that of GlcN catalyzed by a mixture of pure enzymes. The system also exhibited good temperature and pH stability. Notably, 90% of enzyme activity was retained after 6 rounds of reuse, and appreciable activity remained after 17 rounds.
Collapse
Affiliation(s)
- Jingjing Bao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Nian Liu
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Liying Zhu
- College of Chemical and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Qing Xu
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| |
Collapse
|
28
|
Wang M, Zhang XY, Guo RR, Cai ZP, Hu XC, Chen H, Wei S, Voglmeir J, Liu L. Cloning, purification and biochemical characterization of two β- N -acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr Res 2018; 457:1-7. [DOI: 10.1016/j.carres.2017.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
|
29
|
Aslam M, Takahashi N, Matsubara K, Imanaka T, Kanai T, Atomi H. Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. J Biosci Bioeng 2018; 125:320-326. [DOI: 10.1016/j.jbiosc.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
|
30
|
Engineering of the Hyperthermophilic Archaeon Thermococcus kodakarensis for Chitin-Dependent Hydrogen Production. Appl Environ Microbiol 2017; 83:AEM.00280-17. [PMID: 28550062 DOI: 10.1128/aem.00280-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022] Open
Abstract
Thermococcus kodakarensis is a hyperthermophilic archaeon that harbors a complete set of genes for chitin degradation to fructose 6-phosphate. However, wild-type T. kodakarensis KOD1 does not display growth on chitin. In this study, we developed a T. kodakarensis strain that can grow on chitin via genetic and adaptive engineering. First, a chitinase overproduction strain (KC01) was constructed by replacing the chitinase gene promoter with a strong promoter from the cell surface glycoprotein gene, resulting in increased degradation of swollen chitin and accumulation of N-,N'-diacetylchitobiose in the medium. To enhance N-,N'-diacetylchitobiose assimilation in KC01, genes encoding diacetylchitobiose deacetylase, exo-β-d-glucosaminidase, and glucosamine-6-phosphate deaminase were also overexpressed to obtain strain KC04. To strengthen the glycolytic flux of KC04, the gene encoding Tgr (transcriptional repressor of glycolytic genes) was disrupted to obtain strain KC04Δt. In both KC04 and KC04Δt strains, degradation of swollen chitin was further enhanced. In the culture broth of these strains, the accumulation of glucosamine was observed. KC04Δt was repeatedly inoculated in a swollen-chitin-containing medium for 13 cultures. This adaptive engineering strategy resulted in the isolation of a strain (KC04ΔtM1) that showed almost complete degradation of 0.4% (wt/vol) swollen chitin after 90 h. The strain produced high levels of acetate and ammonium in the culture medium, and, moreover, molecular hydrogen was generated. This strongly suggests that strain KC04ΔtM1 has acquired the ability to convert chitin to fructose 6-phosphate via deacetylation and deamination and further convert fructose 6-phosphate to acetate via glycolysis coupled to hydrogen generation.IMPORTANCE Chitin is a linear homopolymer of β-1,4-linked N-acetylglucosamine and is the second most abundant biomass next to cellulose. Compared to the wealth of research focused on the microbial degradation and conversion of cellulose, studies addressing microbial chitin utilization are still limited. In this study, using the hyperthermophilic archaeon Thermococcus kodakarensis as a host, we have constructed a strain that displays chitin-dependent hydrogen generation. The apparent hydrogen yield per unit of sugar consumed was slightly higher with swollen chitin than with starch. As gene manipulation in T. kodakarensis is relatively simple, the strain constructed in this study can also be used as a parent strain for the development and expansion of chitin-dependent biorefinery, in addition to its capacity to produce hydrogen.
Collapse
|
31
|
Honda K, Kimura K, Ninh PH, Taniguchi H, Okano K, Ohtake H. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes. J Biosci Bioeng 2017; 124:296-301. [PMID: 28527827 DOI: 10.1016/j.jbiosc.2017.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023]
Abstract
Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD+ regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL-1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM.
Collapse
Affiliation(s)
- Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keisuke Kimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pham Huynh Ninh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Shinya S, Fukamizo T. Interaction between chitosan and its related enzymes: A review. Int J Biol Macromol 2017; 104:1422-1435. [PMID: 28223213 DOI: 10.1016/j.ijbiomac.2017.02.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p Ka of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass.
Collapse
Affiliation(s)
- Shoko Shinya
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
33
|
Mine S, Watanabe M, Kamachi S, Abe Y, Ueda T. The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution. J Biol Chem 2017; 292:4996-5006. [PMID: 28130448 DOI: 10.1074/jbc.m116.766535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.
Collapse
Affiliation(s)
- Shouhei Mine
- From the Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577,
| | - Masahiro Watanabe
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Saori Kamachi
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Yoshito Abe
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Aktuganov GE, Galimzyanova NF, Teregulova GA, Melentjev AI. Synthesis of exo-β-glucosaminidase BY FUNGUS Penicillium sp. IB-37-2. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Mekasha S, Toupalová H, Linggadjaja E, Tolani HA, Anděra L, Arntzen MØ, Vaaje-Kolstad G, Eijsink VGH, Agger JW. A novel analytical method for d-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail. Carbohydr Res 2016; 433:18-24. [PMID: 27423879 DOI: 10.1016/j.carres.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 11/30/2022]
Abstract
Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS).
Collapse
Affiliation(s)
- Sophanit Mekasha
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Hana Toupalová
- Apronex s.r.o., Nad Safinou II/365, Vestec, 252 42 Jesenice u Prahy, Czech Republic
| | - Eka Linggadjaja
- PT Biotech Surindo, Komp. Pelabuhan Perikanan Kejawanan Jl. Pelabuhan Perikanan No. 1, Cirebon, West Java 45113, Indonesia
| | - Harish A Tolani
- PT Biotech Surindo, Komp. Pelabuhan Perikanan Kejawanan Jl. Pelabuhan Perikanan No. 1, Cirebon, West Java 45113, Indonesia
| | - Ladislav Anděra
- Apronex s.r.o., Nad Safinou II/365, Vestec, 252 42 Jesenice u Prahy, Czech Republic
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jane W Agger
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway; Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
36
|
Sorokin DY, Rakitin AL, Gumerov VM, Beletsky AV, Sinninghe Damsté JS, Mardanov AV, Ravin NV. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres. Front Microbiol 2016; 7:407. [PMID: 27065971 PMCID: PMC4814513 DOI: 10.3389/fmicb.2016.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5–10.5 and total Na+ concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscow, Russia; Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Vadim M Gumerov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and and Utrecht UniversityUtrecht, Netherlands; Geochemistry, Department of Earth Sciences, Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
37
|
The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase. Biochem J 2016; 473:463-72. [DOI: 10.1042/bj20150966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/27/2015] [Indexed: 02/04/2023]
Abstract
The crystal structure of an inverting exo-β-D-glucosaminidase from glycoside hydrolase family 9 was determined. This is the first description of the structure of an exo-type enzyme from this family. A glycosynthase was produced from this enzyme through saturation mutagenesis.
Collapse
|
38
|
Jung WJ, Park RD. Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 2014; 12:5328-56. [PMID: 25353253 PMCID: PMC4245534 DOI: 10.3390/md12115328] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/28/2023] Open
Abstract
Chitin and chitosan oligosaccharides (COS) have been traditionally obtained by chemical digestion with strong acids. In light of the difficulties associated with these traditional production processes, environmentally compatible and reproducible production alternatives are desirable. Unlike chemical digestion, biodegradation of chitin and chitosan by enzymes or microorganisms does not require the use of toxic chemicals or excessive amounts of wastewater. Enzyme preparations with chitinase, chitosanase, and lysozymeare primarily used to hydrolyze chitin and chitosan. Commercial preparations of cellulase, protease, lipase, and pepsin provide another opportunity for oligosaccharide production. In addition to their hydrolytic activities, the transglycosylation activity of chitinolytic enzymes might be exploited for the synthesis of desired chitin oligomers and their derivatives. Chitin deacetylase is also potentially useful for the preparation of oligosaccharides. Recently, direct production of oligosaccharides from chitin and crab shells by a combination of mechanochemical grinding and enzymatic hydrolysis has been reported. Together with these, other emerging technologies such as direct degradation of chitin from crustacean shells and microbial cell walls, enzymatic synthesis of COS from small building blocks, and protein engineering technology for chitin-related enzymes have been discussed as the most significant challenge for industrial application.
Collapse
Affiliation(s)
- Woo-Jin Jung
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| | - Ro-Dong Park
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
39
|
Abstract
Chitin and chitosan oligosaccharides (COS) have been traditionally obtained by chemical digestion with strong acids. In light of the difficulties associated with these traditional production processes, environmentally compatible and reproducible production alternatives are desirable. Unlike chemical digestion, biodegradation of chitin and chitosan by enzymes or microorganisms does not require the use of toxic chemicals or excessive amounts of wastewater. Enzyme preparations with chitinase, chitosanase, and lysozymeare primarily used to hydrolyze chitin and chitosan. Commercial preparations of cellulase, protease, lipase, and pepsin provide another opportunity for oligosaccharide production. In addition to their hydrolytic activities, the transglycosylation activity of chitinolytic enzymes might be exploited for the synthesis of desired chitin oligomers and their derivatives. Chitin deacetylase is also potentially useful for the preparation of oligosaccharides. Recently, direct production of oligosaccharides from chitin and crab shells by a combination of mechanochemical grinding and enzymatic hydrolysis has been reported. Together with these, other emerging technologies such as direct degradation of chitin from crustacean shells and microbial cell walls, enzymatic synthesis of COS from small building blocks, and protein engineering technology for chitin-related enzymes have been discussed as the most significant challenge for industrial application.
Collapse
Affiliation(s)
- Woo-Jin Jung
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| | - Ro-Dong Park
- Division of Applied Bioscience & Biotechnology, Institute of Environment-Friendly Agriculture (IEFA), College of Agricultural and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
40
|
Senol M, Nadaroglu H, Dikbas N, Kotan R. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 2014; 13:35. [PMID: 25112904 PMCID: PMC4236515 DOI: 10.1186/s12941-014-0035-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chitin is the main structural component of cell walls of fungi, exoskeletons of insects and other arthropods and shells of crustaceans. Chitinase enzyme is capable of degrading chitin, and this enzyme can be used as a biological fungicide against phytopathogenic fungi, as well as an insecticide against insect pests. METHODS In this study, 158 isolates, which were derived from bacteria cultures isolated from leaves and root rhizospheres of certain plants in Turkey, were selected after confirming that they are not phytopathogenic based on the hypersensitivity test performed on tobacco; and antifungal activity test was performed against Fusarium culmorum, which is a pathogenic fungi that cause decomposition of roots of vegetables. Accordingly, chitinase enzyme activity assay was performed on 31 isolates that have an antifungal activity, and among them the isolate of Bacillus subtilis TV-125 was selected, which has demonstrated the highest activity. RESULTS Chitinase enzyme was purified by using ammonium sulphate and DEAE-sephadex ion exchange chromatography. Ammonium sulphate precipitation of chitinase enzyme from Bacillus subtilis TV-125 isolate was performed at maximum range of 0-20%, and 28.4-fold purification was obtained with a 13.4% of yield. Optimum activity of the purified enzyme was observed at pH 4.0 and at 50°C of temperature. In addition, it was identified that Bacillus subtilis TV-125A isolate retains 42% of its activity at 80°C temperature. CONCLUSION In the last phase of the study, chitinase enzyme purified from Bacillus subtilis TV-125A was tested on four fungal agents, although all the results were positive, it was particularly effective on F. culmorum according to the findings.
Collapse
|
41
|
Hamer SN, Moerschbacher BM, Kolkenbrock S. Enzymatic sequencing of partially acetylated chitosan oligomers. Carbohydr Res 2014; 392:16-20. [PMID: 24824785 DOI: 10.1016/j.carres.2014.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
Chitosan oligosaccharides have diverse biological activities with potentially valuable applications, for example, in the fields of medicine and agriculture. These functionalities are thought to depend on their degree of polymerization and acetylation, and possibly on specific patterns of acetylation. Chitosan oligomers with fully defined architecture are difficult to produce, and their complete analysis is demanding. Analysis is typically done using MS or NMR, requiring access to expensive infrastructure, and yielding unequivocal results only in the case of rather small oligomers. We here describe a simple and cost-efficient method for the sequencing of μg amounts of chitosan oligosaccharides which is based on the sequential action of two recombinant glycosidases, namely an exo-β-N-acetylhexosaminidase (GlcNAcase) from Bacillus subtilis 168 and an exo-β-d-glucosaminidase (GlcNase) from Thermococcus kodakarensis KOD1. Starting from the non-reducing end, GlcNAcase and GlcNase specifically remove N-acetyl glucosamine (A) and glucosamine (D) units, respectively. By the sequential addition and removal of these enzymes in an alternating way followed by analysis of the products using high-performance thin-layer chromatography, the sequence of chitosan oligosaccharides can be revealed. Importantly, both enzymes work under identical conditions so that no buffer exchange is required between steps, and the enzyme can be removed conveniently using simple ultra-filtration devices. As proof-of-principle, the method was used to sequence the product of enzymatic deacetylation of chitin pentamer using a recombinant chitin deacetylase from Vibrio cholerae which specifically removes the acetyl group from the second unit next to the non-reducing end of the substrate, yielding mono-deacetylated pentamer with the sequence ADAAA.
Collapse
Affiliation(s)
- Stefanie Nicole Hamer
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Bruno Maria Moerschbacher
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stephan Kolkenbrock
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
42
|
Sorokin DY, Gumerov VM, Rakitin AL, Beletsky AV, Damsté JSS, Muyzer G, Mardanov AV, Ravin NV. Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3. Environ Microbiol 2013; 16:1549-65. [PMID: 24112708 DOI: 10.1111/1462-2920.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/29/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
Anaerobic enrichments from hypersaline soda lakes with chitin as substrate yielded five closely related anaerobic haloalkaliphilic isolates growing on insoluble chitin by fermentation at pH 10 and salinities up to 3.5 M. The chitinolytic activity was exclusively cell associated. To better understand the biology and evolutionary history of this novel bacterial lineage, the genome of the type strain ACht1 was sequenced. Analysis of the 2.6 Mb draft genome revealed enzymes of chitin-degradation pathways, including secreted cell-bound chitinases. The reconstructed central metabolism revealed pathways enabling the fermentation of polysaccharides, while it lacks the genes needed for aerobic or anaerobic respiration. The Rnf-type complex, oxaloacetate decarboxylase and sodium-transporting V-type adenosine triphosphatase were identified among putative membrane-bound ion pumps. According to 16S ribosomal RNA analysis, the isolates belong to the candidate phylum Termite Group 3, representing its first culturable members. Phylogenetic analysis using ribosomal proteins and taxonomic distribution analysis of the whole proteome supported a class-level classification of ACht1 most probably affiliated to the phylum Fibribacteres. Based on phylogenetic, phenotypic and genomic analyses, the novel bacteria are proposed to be classified as Chitinivibrio alkaliphilus gen. nov., sp. nov., within a novel class Chitinivibrione.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Oktyabrya, bld. 7-2, 117312, Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gu J, Huang LX, Gong YJ, Zheng SC, Liu L, Huang LH, Feng QL. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:794-808. [PMID: 23796435 DOI: 10.1016/j.ibmb.2013.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/11/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Larval cuticle is degraded and replaced by the pupal counterpart during larval-pupal metamorphosis in the holometabolous insects. In addition to the extrinsic transformation, the epidermis goes through significant changes at molecular levels. To elucidate the intrinsic mechanism of epidermal metamorphosis, the dynamics of chitin content in the cuticle was examined in an important agricultural lepidopteran, the common cutworm, and the transcriptome was analyzed using Illumina sequencing technology. Gene expression profiles during the metamorphosis were further studied by both the digital gene expression (DGE) system and real-time quantitative PCR. The results showed that the chitin content decreased in prepupae and then increased in pupae. A total of 58 million sequencing reads were obtained and assembled into 70,346 unigenes. Over 9000 unigenes were identified to express differentially during the transformation process. As compared with the 6th instar feeding larvae, the most significant changes took place in the proteasome and metabolic pathways in prepupae and pupae, respectively. The cytochrome P450s, VHDLs, chitinase, serine protease and genes involved in sex pheromone biosynthesis changed their mRNA levels remarkably. Three chitinolytic enzymes (chitinase, β-N-acetylglucosaminidase and chitin deacetylase) showed distinct mRNA expression patterns, the former two enzymes revealed the highest expression in prepupae, however the latter one showed its climax mRNA level in pupae. The gene expression patterns suggest that chitinase and β-N-acetylglucosaminidase may be responsible for the degradation of larval cuticles, whereas chitin deacetylase may help to degrade the pupal counterparts. Gene expression dynamics also implied that the chitin of pupal cuticle might be formed by recycling of the degraded chitin of larval cuticle rather than through de novo synthesis. The 20E-induced nuclear receptors seem to be important factors regulating chitin metabolic enzymes during the cuticle remodeling. Our data provide a comprehensive resource for exploring the molecular mechanism of epidermal metamorphosis in insects.
Collapse
Affiliation(s)
- Jun Gu
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 55 W. Zhongshan Ave., Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Chavan SB, Deshpande MV. Chitinolytic enzymes: An appraisal as a product of commercial potential. Biotechnol Prog 2013; 29:833-46. [DOI: 10.1002/btpr.1732] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- S. B. Chavan
- Jay Biotech; 111, Matrix, World Trade Centre, Kharadi, Pune 411014 India
| | - M. V. Deshpande
- Biochemical Sciences Division; National Chemical Laboratory; Pune 411008 India
| |
Collapse
|
45
|
Low rates of lateral gene transfer among metabolic genes define the evolving biogeochemical niches of archaea through deep time. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:843539. [PMID: 23226971 PMCID: PMC3512248 DOI: 10.1155/2012/843539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/02/2012] [Accepted: 10/02/2012] [Indexed: 01/26/2023]
Abstract
Phylogenomic analyses of archaeal genome sequences are providing windows into the group's evolutionary past, even though most archaeal taxa lack a conventional fossil record. Here, phylogenetic analyses were performed using key metabolic genes that define the metabolic niche of microorganisms. Such genes are generally considered to have undergone high rates of lateral gene transfer. Many gene sequences formed clades that were identical, or similar, to the tree constructed using large numbers of genes from the stable core of the genome. Surprisingly, such lateral transfer events were readily identified and quantifiable, occurring only a relatively small number of times in the archaeal domain of life. By placing gene acquisition events into a temporal framework, the rates by which new metabolic genes were acquired can be quantified. The highest lateral transfer rates were among cytochrome oxidase genes that use oxygen as a terminal electron acceptor (with a total of 12–14 lateral transfer events, or 3.4–4.0 events per billion years, across the entire archaeal domain). Genes involved in sulfur or nitrogen metabolism had much lower rates, on the order of one lateral transfer event per billion years. This suggests that lateral transfer rates of key metabolic proteins are rare and not rampant.
Collapse
|
46
|
Blank CE. An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 2011; 73:188-208. [PMID: 22105429 DOI: 10.1007/s00239-011-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricus-Sulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses-although built upon evolutionary inferences-are fundamentally testable.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296, USA.
| |
Collapse
|
47
|
Liu FC, Su CR, Wu TY, Su SG, Yang HL, Lin JHY, Wu TS. Efficient H-NMR quantitation and investigation of N-acetyl-d-glucosamine (GlcNAc) and N,N'-diacetylchitobiose (GlcNAc)(2) from chitin. Int J Mol Sci 2011; 12:5828-43. [PMID: 22016629 PMCID: PMC3189753 DOI: 10.3390/ijms12095828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022] Open
Abstract
A quantitative determination method of N-acetyl-d-glucosamine (GlcNAc) and N,N′-diacetylchitobiose (GlcNAc)2 is proposed using a proton nuclear magnetic resonance experiment. N-acetyl groups of GlcNAc and (GlcNAc)2 are chosen as target signals, and the deconvolution technique is used to determine the concentration of the corresponding compound. Compared to the HPLC method, 1H-NMR spectroscopy is simple and fast. The method can be used for the analysis of chitin hydrolyzed products with real-time analysis, and for quantifying the content of products using internal standards without calibration curves. This method can be used to quickly evaluate chitinase activity. The temperature dependence of 1H-NMR spectra (VT-NMR) is studied to monitor the chemical shift variation of acetyl peak. The acetyl groups of products are involved in intramolecular H-bonding with the OH group on anomeric sites. The rotation of the acetyl group is closely related to the intramolecular hydrogen bonding pattern, as suggested by the theoretical data (molecular modeling).
Collapse
Affiliation(s)
- Fu-Chien Liu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (F.-C.L.); (C.-R.S.); (T.-Y.W.); (S.-G.S.)
| | - Chung-Ren Su
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (F.-C.L.); (C.-R.S.); (T.-Y.W.); (S.-G.S.)
| | - Tzi-Yi Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (F.-C.L.); (C.-R.S.); (T.-Y.W.); (S.-G.S.)
| | - Shyh-Gang Su
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (F.-C.L.); (C.-R.S.); (T.-Y.W.); (S.-G.S.)
| | - Huey-Lang Yang
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (H.-L.Y.); (J.H.-Y.L.)
| | - John Han-You Lin
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (H.-L.Y.); (J.H.-Y.L.)
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan; E-Mails: (F.-C.L.); (C.-R.S.); (T.-Y.W.); (S.-G.S.)
- Department of Pharmacy, China Medical University, Taichung 401, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-2757575; Fax: +886-6-2740552
| |
Collapse
|
48
|
Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya P, Barber AR, Bhattacharjee C. Feasibility study of enzyme immobilization on polymeric membrane: A case study with enzymatically galacto-oligosaccharides production from lactose. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Santangelo TJ, Cuboňová L, Reeve JN. Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol Microbiol 2011; 81:897-911. [PMID: 21749486 DOI: 10.1111/j.1365-2958.2011.07734.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrogen (H₂) production by Thermococcus kodakarensis compares very favourably with the levels reported for the most productive algal, fungal and bacterial systems. T. kodakarensis can also consume H₂ and is predicted to use several alternative pathways to recycle reduced cofactors, some of which may compete with H₂ production for reductant disposal. To explore the reductant flux and possible competition for H₂ production in vivo, T. kodakarensis TS517 was mutated to precisely delete each of the alternative pathways of reductant disposal, H₂ production and consumption. The results obtained establish that H₂ is generated predominantly by the membrane-bound hydrogenase complex (Mbh), confirm the essential role of the SurR (TK1086p) regulator in vivo, delineate the roles of sulfur (S°) regulon proteins and demonstrate that preventing H₂ consumption results in a substantial net increase in H₂ production. Constitutive expression of TK1086 (surR) from a replicative plasmid restored the ability of T. kodakarensis TS1101 (ΔTK1086) to grow in the absence of S° and stimulated H₂ production, revealing a second mechanism to increase H₂ production. Transformation of T. kodakarensis TS1101 with plasmids that express SurR variants constructed to direct the constitutive synthesis of the Mbh complex and prevent expression of the S° regulon was only possible in the absence of S° and, under these conditions, the transformants exhibited wild-type growth and H₂ production. With S° present, they grew slower but synthesized more H₂ per unit biomass than T. kodakarensis TS517.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
50
|
Sinha S, Kumar R, Dhakate SR, Chand S. Chitosanase Linked PAN Nanofibres for Enzymatic Production of Glucosamine. ACTA ACUST UNITED AC 2011. [DOI: 10.7763/ijbbb.2011.v1.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|