1
|
Sung K, Gao Y, Yu LR, Chon J, Hiett KL, Line JE, Kweon O, Park M, Khan SA. Phenotypic, genotypic and proteomic variations between poor and robust colonizing Campylobacter jejuni strains. Microb Pathog 2024; 193:106766. [PMID: 38942248 DOI: 10.1016/j.micpath.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Campylobacter jejuni is one of the major causes of bacterial gastrointestinal disease in humans worldwide. This foodborne pathogen colonizes the intestinal tracts of chickens, and consumption of chicken and poultry products is identified as a common route of transmission. We analyzed two C. jejuni strains after oral challenge with 105 CFU/ml of C. jejuni per chick; one strain was a robust colonizer (A74/C) and the other a poor colonizer (A74/O). We also found extensive phenotypic differences in growth rate, biofilm production, and in vitro adherence, invasion, intracellular survival, and transcytosis. Strains A74/C and A74/O were genotypically similar with respect to their whole genome alignment, core genome, and ribosomal MLST, MLST, flaA, porA, and PFGE typing. The global proteomes of the two congenic strains were quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and 618 and 453 proteins were identified from A74/C and A74/O isolates, respectively. Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that carbon metabolism and motility proteins were distinctively overexpressed in strain A74/C. The robust colonizer also exhibited a unique proteome profile characterized by significantly increased expression of proteins linked to adhesion, invasion, chemotaxis, energy, protein synthesis, heat shock proteins, iron regulation, two-component regulatory systems, and multidrug efflux pump. Our study underlines phenotypic, genotypic, and proteomic variations of the poor and robust colonizing C. jejuni strains, suggesting that several factors may contribute to mediating the different colonization potentials of the isogenic isolates.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA.
| | - Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae, South Korea
| | - Kelli L Hiett
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US FDA, Laurel, MD, 20708, USA
| | - J Eric Line
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture (USDA), Athens, GA, 30605, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| |
Collapse
|
2
|
Cao X, van Putten JP, Wösten MM. Campylobacter jejuni benefits from the bile salt deoxycholate under low-oxygen condition in a PldA dependent manner. Gut Microbes 2023; 15:2262592. [PMID: 37768138 PMCID: PMC10540661 DOI: 10.1080/19490976.2023.2262592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Enteric bacteria need to adapt to endure the antibacterial activities of bile salts in the gut. Phospholipase A (PldA) is a key enzyme in the maintenance of bacterial membrane homeostasis. Bacteria respond to stress by modulating their membrane composition. Campylobacter jejuni is the most common cause of human worldwide. However, the mechanism by which C. jejuni adapts and survives in the gut environment is not fully understood. In this study, we investigated the roles of PldA, bile salt sodium deoxycholate (DOC), and oxygen availability in C. jejuni biology, mimicking an in vivo situation. Growth curves were used to determine the adaptation of C. jejuni to bile salts. RNA-seq and functional assays were employed to investigate the PldA-dependent and DOC-induced changes in gene expression that influence bacterial physiology. Survival studies were performed to address oxidative stress defense in C. jejuni. Here, we discovered that PldA of C. jejuni is required for optimal growth in the presence of bile salt DOC. Under high oxygen conditions, DOC is toxic to C. jejuni, but under low oxygen conditions, as is present in the lumen of the gut, C. jejuni benefits from DOC. C. jejuni PldA seems to enable the use of iron needed for optimal growth in the presence of DOC but makes the bacterium more vulnerable to oxidative stress. In conclusion, DOC stimulates C. jejuni growth under low oxygen conditions and alters colony morphology in a PldA-dependent manner. C. jejuni benefits from DOC by upregulating iron metabolism in a PldA-dependent manner.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Buiatte ABG, de Melo RT, Peres PABM, Bastos CM, Grazziotin AL, Armendaris Rodriguez PM, Barreto F, Rossi DA. Virulence, antimicrobial resistance, and dissemination of Campylobacter coli isolated from chicken carcasses in Brazil. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Casado J, Lanas Á, González A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front Cell Infect Microbiol 2022; 12:977944. [PMID: 36093179 PMCID: PMC9449129 DOI: 10.3389/fcimb.2022.977944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory systems (TCRS) are ubiquitous signal transduction mechanisms evolved by bacteria for sensing and adapting to the constant changes that occur in their environment. Typically consisting of two types of proteins, a membrane sensor kinase and an effector cytosolic response regulator, the TCRS modulate via transcriptional regulation a plethora of key physiological processes, thereby becoming essential for bacterial viability and/or pathogenicity and making them attractive targets for novel antibacterial drugs. Some members of the phylum Campylobacterota (formerly Epsilonproteobacteria), including Helicobacter pylori and Campylobacter jejuni, have been classified by WHO as “high priority pathogens” for research and development of new antimicrobials due to the rapid emergence and dissemination of resistance mechanisms against first-line antibiotics and the alarming increase of multidrug-resistant strains worldwide. Notably, these clinically relevant pathogens express a variety of TCRS and orphan response regulators, sometimes unique among its phylum, that control transcription, translation, energy metabolism and redox homeostasis, as well as the expression of relevant enzymes and virulence factors. In the present mini-review, we describe the signalling mechanisms and functional diversity of TCRS in H. pylori and C. jejuni, and provide an overview of the most recent findings in the use of these microbial molecules as potential novel therapeutic targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- *Correspondence: Andrés González,
| |
Collapse
|
6
|
Insights into the Virulence of Campylobacter jejuni Associated with Two-Component Signal Transduction Systems and Single Regulators. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is one of the major aetiologies of diarrhoea. Understanding the processes and virulence factors contributing to C. jejuni fitness is a cornerstone for developing mitigation strategies. Two-component signal transduction systems, known as two-component systems (TCSs), along with single regulators with no obvious cognate histidine kinase, help pathogens in interacting with their environments, but the available literature on C. jejuni is limited. A typical TCS possesses histidine kinase and response regulator proteins. The objective of this review was to provide insights into the virulence of C. jejuni associated with TCSs and single regulators. Despite limited research, TCSs are important contributors to the pathogenicity of C. jejuni by influencing motility (FlgSR), colonisation (DccRS), nutrient acquisition (PhosSR and BumSR), and stress response (RacRS). Of the single regulators, CbrR and CosR are involved in bile resistance and oxidative stress response, respectively. Cross-talks among TCSs complicate the full elucidation of their molecular mechanisms. Although progress has been made in characterising C. jejuni TCSs, shortfalls such as triggering signals, inability to induce mutations in some genes, or developing suitable in vivo models are still being encountered. Further research is expected to shed light on the unexplored sides of the C. jejuni TCSs, which may allow new drug discoveries and better control strategies.
Collapse
|
7
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
8
|
Park M, Hwang S, Ryu S, Jeon B. CosR Regulation of perR Transcription for the Control of Oxidative Stress Defense in Campylobacter jejuni. Microorganisms 2021; 9:microorganisms9061281. [PMID: 34208393 PMCID: PMC8231278 DOI: 10.3390/microorganisms9061281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress resistance is an important mechanism to sustain the viability of oxygen-sensitive microaerophilic Campylobacter jejuni. In C. jejuni, gene expression associated with oxidative stress defense is modulated by PerR (peroxide response regulator) and CosR (Campylobacter oxidative stress regulator). Iron also plays an important role in the regulation of oxidative stress, as high iron concentrations reduce the transcription of perR. However, little is known about how iron affects the transcription of cosR. The level of cosR transcription was increased when the defined media MEMα (Minimum Essential Medium) was supplemented with ferrous (Fe2+) and ferric (Fe3+) iron and the Mueller-Hinton (MH) media was treated with an iron chelator, indicating that iron upregulates cosR transcription. However, other divalent cationic ions, such as Zn2+, Cu2+, Co2+, and Mn2+, did not affect cosR transcription, suggesting that cosR transcription is regulated specifically by iron. Interestingly, the level of perR transcription was increased when CosR was overexpressed. The positive regulation of perR transcription by CosR was observed both in the presence or in the absence of iron. The results of the electrophoretic mobility shift assay showed that CosR directly binds to the perR promoter. DNase I footprinting assays revealed that the CosR binding site in the perR promoter overlaps with the PerR box. In the study, we demonstrated that cosR transcription is increased in iron-rich conditions, and CosR positively regulates the transcription of PerR, another important regulator of oxidative stress defense in C. jejuni. These results provide new insight into how C. jejuni regulates oxidative stress defense by coordinating the transcription of perR and cosR in response to iron.
Collapse
Affiliation(s)
- Myungseo Park
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sunyoung Hwang
- Department of Food and Animal Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: (S.R.); (B.J.)
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (S.R.); (B.J.)
| |
Collapse
|
9
|
Olivera C, Le VVH, Davenport C, Rakonjac J. In vitro synergy of 5-nitrofurans, vancomycin and sodium deoxycholate against Gram-negative pathogens. J Med Microbiol 2021; 70. [PMID: 33448923 PMCID: PMC8346734 DOI: 10.1099/jmm.0.001304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.
Collapse
Affiliation(s)
- Catrina Olivera
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Catherine Davenport
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Zhou L, Wang L, Tian P, Bao T, Li L, Zhao X. The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates. Front Microbiol 2019; 10:1048. [PMID: 31134041 PMCID: PMC6522849 DOI: 10.3389/fmicb.2019.01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts - an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium.
Collapse
Affiliation(s)
- Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Tian
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tingting Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lianbin Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Masanta WO, Zautner AE, Lugert R, Bohne W, Gross U, Leha A, Dakna M, Lenz C. Proteome Profiling by Label-Free Mass Spectrometry Reveals Differentiated Response of Campylobacter jejuni 81-176 to Sublethal Concentrations of Bile Acids. Proteomics Clin Appl 2018; 13:e1800083. [PMID: 30246935 PMCID: PMC6585709 DOI: 10.1002/prca.201800083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Indexed: 11/18/2022]
Abstract
Purpose Bile acids are crucial components of the intestinal antimicrobial defense and represent a significant stress factor for enteric pathogens. Adaptation processes of Campylobacter jejuni to this hostile environment are analyzed in this study by a proteomic approach. Experimental design Proteome profiling by label‐free mass spectrometry (SWATH‐MS) has been used to characterize the adaptation of C. jejuni to sublethal concentrations of seven bile acids. Results The bile acids with the lowest inhibitory concentration (IC50), deoxycholic and chenodeoxycholic acid, induce the most significant proteome changes. Overall a downregulation of all basic biosynthetic pathways and a general decrease in the transcription machinery are found. Concurrently, an induction of factors involved in detoxification of reactive oxygen species, protein folding, and bile acid exporting efflux pumps is detected. Exposure to deoxycholic and chenodeoxycholic acid results in an increased expression of components of the more energy‐efficient aerobic respiration pathway, while the anaerobic branches of the electron transport chain are down‐expressed. Conclusions and clinical relevance The results show that C. jejuni has a differentiated system of adaptation to bile acid stresses. The findings enhance the understanding of the pathogenesis of campylobacteriosis, especially for survival of C. jejuni in the human intestine, and may provide clues to future medical treatment.
Collapse
Affiliation(s)
- Wycliffe O Masanta
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany.,Department of Medical Microbiology, Maseno University Medical School, Private Bag, 40105 Maseno, Kenya
| | - Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uwe Gross
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mohammed Dakna
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Li J, Gulbronson CJ, Bogacz M, Hendrixson DR, Thompson SA. FliW controls growth-phase expression of Campylobacter jejuni flagellar and non-flagellar proteins via the post-transcriptional regulator CsrA. MICROBIOLOGY-SGM 2018; 164:1308-1319. [PMID: 30113298 DOI: 10.1099/mic.0.000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Campylobacter jejuni is an important human pathogen that causes 96 million cases of acute diarrheal disease worldwide each year. We have shown that C. jejuni CsrA is involved in the post-transcriptional regulation of more than 100 proteins, and altered expression of these proteins is presumably involved in the altered virulence-related phenotypes of a csrA mutant. Mutation of fliW results in C. jejuni cells that have greatly truncated flagella, are less motile, less able to form biofilms, and exhibit a reduced ability to colonize chicks. The loss of FliW results in the altered expression of 153 flagellar and non-flagellar proteins, the majority of which are members of the CsrA regulon. The number of proteins dysregulated in the fliW mutant was greater at mid-log phase (120 proteins) than at stationary phase (85 proteins); 52 proteins showed altered expression at both growth phases. Loss of FliW altered the growth-phase- and CsrA-mediated regulation of FlaA flagellin. FliW exerts these effects by binding to both FlaA and to CsrA, as evidenced by pull-down assays, protein-protein cross-linking, and size-exclusion chromatography. Taken together, these results show that CsrA-mediated regulation of both flagellar and non-flagellar proteins is modulated by direct binding of CsrA to the flagellar chaperone FliW. Changing FliW:CsrA stoichiometries at different growth phases allow C. jejuni to couple the expression of flagellar motility to metabolic and virulence characteristics.
Collapse
Affiliation(s)
- Jiaqi Li
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - Connor J Gulbronson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Bogacz
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| | - David R Hendrixson
- 2Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stuart A Thompson
- 1Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
14
|
Elmi A, Dorey A, Watson E, Jagatia H, Inglis NF, Gundogdu O, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N. The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity. Cell Microbiol 2017; 20. [PMID: 29205766 DOI: 10.1111/cmi.12814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber Dorey
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Heena Jagatia
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David G E Smith
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
15
|
The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species. Sci Rep 2017; 7:15455. [PMID: 29133896 PMCID: PMC5684402 DOI: 10.1038/s41598-017-15379-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygen stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: 1) induce the production of reactive oxygen species (ROS); 2) decrease succinate dehydrogenase activity (complex II of the electron transport chain); 3) increase catalase activity that is involved in H2O2 breakdown; and 4) result in DNA strand breaks. Congruently, the addition of 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic that reacts with superoxide, rescued the growth of C. jejuni cultured in the presence of deoxycholate. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.
Collapse
|
16
|
Kreuder AJ, Schleining JA, Yaeger M, Zhang Q, Plummer PJ. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment. Front Microbiol 2017; 8:940. [PMID: 28611744 PMCID: PMC5447181 DOI: 10.3389/fmicb.2017.00940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 02/01/2023] Open
Abstract
Colonization of the gallbladder by enteric pathogens such as Salmonella typhi, Listeria monocytogenes, and Campylobacter jejuni is thought to play a key role in transmission and persistence of these important zoonotic agents; however, little is known about the molecular mechanisms that allow for bacterial survival within this harsh environment. Recently, a highly virulent C. jejuni sheep abortion (SA) clone represented by the clinical isolate IA3902 has emerged as the dominant cause for sheep abortion in the United States. Previous studies have indicated that the C. jejuni clone SA can frequently be isolated from the gallbladders of otherwise healthy sheep, suggesting that the gallbladder may serve as an important reservoir for infection. To begin to understand the molecular mechanisms associated with survival in the host gallbladder, C. jejuni IA3902 was exposed for up to 24 h to both the natural ovine host in vivo gallbladder environment, as well as ovine bile in vitro. Following exposure, total RNA was isolated from the bile and high throughput deep sequencing of strand specific rRNA-depleted total RNA was used to characterize the transcriptome of IA3902 under these conditions. Our results demonstrated for the first time the complete transcriptome of C. jejuni IA3902 during exposure to an important host environment, the sheep gallbladder. Exposure to the host environment as compared to in vitro bile alone provided a more robust picture of the complexity of gene regulation required for survival in the host gallbladder. A subset of genes including a large number of protein coding genes as well as seven previously identified non-coding RNAs were confirmed to be differentially expressed within our data, suggesting that they may play a key role in adaptation upon exposure to these conditions. This research provides valuable insights into the molecular mechanisms that may be utilized by C. jejuni IA3902 to colonize and survive within the inhospitable gallbladder environment.
Collapse
Affiliation(s)
- Amanda J Kreuder
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Jennifer A Schleining
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Michael Yaeger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| |
Collapse
|
17
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|
18
|
Woods EC, McBride SM. Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Microbes Infect 2017; 19:238-248. [PMID: 28153747 DOI: 10.1016/j.micinf.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors are a subfamily of σ70 sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.
Collapse
Affiliation(s)
- Emily C Woods
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Grinnage-Pulley T, Mu Y, Dai L, Zhang Q. Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni. Front Microbiol 2016; 7:1097. [PMID: 27468281 PMCID: PMC4943160 DOI: 10.3389/fmicb.2016.01097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
During transmission and intestinal colonization, Campylobacter jejuni, a major foodborne human pathogen, experiences oxidative stress. CosR, a response regulator in C. jejuni, modulates the oxidative stress response and represses expression of the CmeABC multidrug efflux pump. CmeABC, a key component in resistance to toxic compounds including antimicrobials and bile salts, is also under negative regulation by CmeR, a TetR family transcriptional regulator. How CosR and CmeR interact in binding to the cmeABC promoter and how CosR senses oxidative stress are still unknown. To answer these questions, we conducted various experiments utilizing electrophoretic mobility shift assays and transcriptional fusion assays. CosR and CmeR bound independently to two separate sites of the cmeABC promoter, simultaneously repressing cmeABC expression. This dual binding of CosR and CmeR is optimal with a 17 base pair space between the two binding sites as mutations that shortened the distance between the binding sites decreased binding by CmeR and enhanced cmeABC expression. Additionally, the single cysteine residue (C218) of CosR was sensitive to oxidation, which altered the DNA-binding activity of CosR and dissociated CosR from the cmeABC promoter as determined by electrophoretic mobility shift assay. Replacement of C218 with serine rendered CosR insensitive to oxidation, suggesting a potential role of C218 in sensing oxidative stress and providing a possible mechanism for CosR-mediated response to oxidative stress. These findings reveal a dual regulatory role of CosR and CmeR in modulating cmeABC expression and suggest a potential mechanism that may explain overexpression of cmeABC in response to oxidative stress. Differential expression of cmeABC mediated by CmeR and CosR in response to different signals may facilitate adaptation of Campylobacter to various environmental conditions.
Collapse
Affiliation(s)
- Tara Grinnage-Pulley
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Yang Mu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| |
Collapse
|
20
|
Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness. Appl Environ Microbiol 2016; 82:2929-2942. [PMID: 26969700 DOI: 10.1128/aem.00252-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens.
Collapse
|
21
|
High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni. mBio 2015; 6:e00612-15. [PMID: 26419875 PMCID: PMC4611032 DOI: 10.1128/mbio.00612-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. IMPORTANCE C. jejuni is an important cause of bacterial diarrheal illness. Bacterial populations have many strategies for stress survival, but phenotypic variation due to genetic diversity has a powerful advantage: no matter how swift the change in environment, a fraction of the population already expresses the survival trait. Nonclonality is thus increasingly viewed as a mechanism of population success. Our previous work identified prominent resistant/sensitive colonial variation in C. jejuni bacteria in response to hyperosmotic stress; in the work presented here, we attribute that to high-frequency genetic variation in two purine biosynthesis genes, purF and apt. We demonstrated selective pressure for nonlethal mutant alleles of both genes, showed that single-cell variants had the capacity to give rise to diverse purF and apt populations, and determined that stress exposure selected for desirable alleles. Thus, a novel C. jejuni adaptive strategy was identified, which was, unusually, reliant on prevalent genetic variation in two housekeeping genes.
Collapse
|
22
|
Reuter M, Periago PM, Mulholland F, Brown HL, van Vliet AHM. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni. Front Microbiol 2015; 6:770. [PMID: 26284050 PMCID: PMC4519771 DOI: 10.3389/fmicb.2015.00770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023] Open
Abstract
The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated “cell-train” morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively.
Collapse
Affiliation(s)
- Mark Reuter
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK
| | - Paula M Periago
- Departamento Ingeniería de Alimentos y del Equipamiento Agrícola, Campus de Excelencia Internacional Regional "Campus Mare Nostrum," Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena Cartagena, Spain ; Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum," Universidad Politécnica de Cartagena Cartagena, Spain
| | - Francis Mulholland
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK
| | - Helen L Brown
- Institute of Food Research, Gut Health and Food Safety Programme Norwich, UK ; Cardiff School of Health Sciences, Cardiff Metropolitan University Cardiff, UK
| | | |
Collapse
|
23
|
Varsaki A, Murphy C, Barczynska A, Jordan K, Carroll C. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays. Microb Biotechnol 2015. [PMID: 26221965 PMCID: PMC4621450 DOI: 10.1111/1751-7915.12302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.
Collapse
Affiliation(s)
- Athanasia Varsaki
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Caroline Murphy
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Barczynska
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cyril Carroll
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Kim JC, Oh E, Kim J, Jeon B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol 2015; 6:751. [PMID: 26284041 PMCID: PMC4518328 DOI: 10.3389/fmicb.2015.00751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense.
Collapse
Affiliation(s)
| | | | | | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
25
|
The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 2015; 34:1503-13. [PMID: 25934376 DOI: 10.1007/s10096-015-2392-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/19/2015] [Indexed: 01/30/2023]
Abstract
Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis.
Collapse
|
26
|
Svensson SL, Huynh S, Hyunh S, Parker CT, Gaynor EC. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope. Mol Microbiol 2015; 96:189-209. [PMID: 25582441 DOI: 10.1111/mmi.12927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Campylobacter jejuni is a leading cause of food-borne gastroenteritis in humans. It lives commensally in the gastrointestinal tract of animals, and tolerates variable conditions during transit/colonization of susceptible hosts. The C. jejuni CprRS two-component system contains an essential response regulator (CprR), and deletion of the cprS sensor kinase enhances biofilms. We sought to identify CprRS-regulated genes and better understand how the system affects survival. Expression from the cprR promoter was highest during logarithmic growth and dependent on CprS. CprR(D52A) did not support viability, indicating that CprR phosphorylation is essential despite the dispensability of CprS. We identified a GTAAAC consensus bound by the CprR C-terminus; the Asp52 residue of full-length CprR was required for binding, suggesting phosphorylation is required. Transcripts differing in expression in ΔcprS compared with wildtype (WT) contained a putative CprR binding site upstream of their promoter region and encoded htrA (periplasmic protease upstream of cprRS) and peb4 (SurA-like chaperone). Consistent with direct regulation, the CprR consensus in the htrA promoter was bound by CprR(CTD). Finally, ΔhtrA formed enhanced biofilms, and ΔcprS biofilms were suppressed by Mg(2+). CprRS is the first C. jejuni regulatory system shown to control genes related to the cell envelope, the first line of interaction between pathogen and changing environments.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
27
|
High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization. J Bacteriol 2014; 196:1958-67. [PMID: 24633877 DOI: 10.1128/jb.01395-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.
Collapse
|
28
|
Hwang S, Miller WG, Ryu S, Jeon B. Divergent distribution of the sensor kinase CosS in non-thermotolerant campylobacter species and its functional incompatibility with the response regulator CosR of Campylobacter jejuni. PLoS One 2014; 9:e89774. [PMID: 24587027 PMCID: PMC3938529 DOI: 10.1371/journal.pone.0089774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
Two-component signal transduction systems are commonly composed of a sensor histidine kinase and a cognate response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a major foodborne pathogenic species causing human gastroenteritis. Although CosR is a response regulator, its cognate sensor kinase has not been identified in C. jejuni. In this study, DNA sequence analysis of the cosR flanking regions revealed that a gene encoding a putative sensor kinase, which we named cosS, is prevalent in non-thermotolerant Campylobacter spp., but not in thermotolerant campylobacters. Phosphorylation assays indicated that C. fetus CosS rapidly autophosphorylates and then phosphorylates C. fetus CosR, suggesting that the CosRS system constitutes a paired two-component signal transduction system in C. fetus. However, C. fetus CosS does not phosphorylate C. jejuni CosR, suggesting that CosR may have different regulatory cascades between thermotolerant and non-thermotolerant Campylobacter species. Comparison of CosR homolog amino acid sequences showed that the conserved phosphorylation residue (D51), which is present in all non-thermotolerant Campylobacter spp., is absent from the CosR homologs of thermotolerant Campylobacter species. However, C. jejuni CosR was not phosphorylated by C. fetus CosS even after site-directed mutagenesis of N51D, implying that C. jejuni CosR may possibly function phosphorylation-independently. In addition, the results of cosS mutational analysis indicated that CosS is not associated with the temperature dependence of the Campylobacter spp. despite its unique divergent distribution only in non-thermotolerant campylobacters. The findings in this study strongly suggest that thermotolerant and non-thermotolerant Campylobacter spp. have different signal sensing mechanisms associated with the CosR regulation.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Food and Bioconvergence, Seoul National University, Seoul, Korea
| | - William G. Miller
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Food and Bioconvergence, Seoul National University, Seoul, Korea
- * E-mail: (BJ); (SR)
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (BJ); (SR)
| |
Collapse
|
29
|
Oh E, Jeon B. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS One 2014; 9:e87312. [PMID: 24498070 PMCID: PMC3909096 DOI: 10.1371/journal.pone.0087312] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
31
|
Bauer S, Endres M, Lange M, Schmidt T, Schumbrutzki C, Sickmann A, Beier D. Novel function assignment to a member of the essential HP1043 response regulator family of epsilon-proteobacteria. Microbiology (Reading) 2013; 159:880-889. [DOI: 10.1099/mic.0.066548-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Susanne Bauer
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Michelle Endres
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Manuel Lange
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Theresa Schmidt
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Cornelia Schumbrutzki
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Albert Sickmann
- Leibnitz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Str. 6B, D-44227 Dortmund, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
32
|
Thibodeau A, Fravalo P, Garneau P, Masson L, Laurent-Lewandowski S, Quessy S, Harel J, Letellier A. Distribution of colonization and antimicrobial resistance genes in Campylobacter jejuni isolated from chicken. Foodborne Pathog Dis 2013; 10:382-91. [PMID: 23510494 DOI: 10.1089/fpd.2012.1271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter jejuni is an important worldwide foodborne pathogen commonly found as a commensal organism in poultry that can reach high numbers within the gut after colonization. Although information regarding some genes involved in colonization is available, little is known about their distribution in strains isolated specifically from chickens and whether there is a linkage between antimicrobial resistance (AMR) and colonization genes. To assess the distribution and relevance of genes associated with chicken colonization and AMR, a C. jejuni microarray was created to detect 254 genes of interest in colonization and AMR including variants. DNA derived from chicken-specific Campylobacter isolates collected in 2003 (n=29) and 2008 (n=28) was hybridized to the microarray and compared. Hybridization results showed variable colonization-associated gene presence. Acquired AMR genes were low in prevalence whereas chemotaxis receptors, arsenic resistance genes, as well as genes from the cell envelope and flagella functional groups were highly variable in their presence. Strains clustered into two groups, each linked to different control strains, 81116 and NCTC11168. Clustering was found to be independent of collection time. We also show that AMR weakly associated with the CJ0628 and arsR genes. Although other studies have implicated numerous genes associated with C. jejuni chicken colonization, our data on chicken-specific isolates suggest the opposite. The enormous variability in presumed colonization gene prevalence in our chicken isolates suggests that many are of lesser importance than previously thought. Alternatively, this also suggests that combinations of genes may be required for natural colonization of chicken intestines.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Industrial-CRSNG Meat Safety Research, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase, in Vibrio cholerae. J Bacteriol 2013; 195:2004-10. [PMID: 23435982 DOI: 10.1128/jb.02127-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, a noninvasive bacterium, colonizes the intestinal epithelium and secretes cholera toxin (CT), a potent enterotoxin that causes the severe fluid loss characteristic of the disease cholera. In this study, we demonstrate that adherence of V. cholerae to the intestinal epithelial cell line INT 407 strongly induces the expression of the major virulence genes ctxAB and tcpA and the virulence regulatory gene toxT. No induction of toxR and tcpP, which encode transcriptional activators of toxT, was observed in adhered bacteria, and the adherence-dependent upregulation of toxT expression was independent of ToxR and TcpP. A sharp increase in the expression of the vieA gene, which encodes a cyclic di-GMP (c-di-GMP) phosphodiesterase, was observed in INT 407-adhered V. cholerae immediately after infection. Induction of toxT, ctxAB, and tcpA in INT 407-adhered vieA mutant strain O395 ΔvieA was consistently lower than in the parent strain, although no effect was observed in unadhered bacteria, suggesting that VieA has a role in the upregulation of toxT expression specifically in host cell-adhered V. cholerae. Furthermore, though VieA has both a DNA binding helix-turn-helix domain and an EAL domain conferring c-di-GMP phosphodiesterase activity, the c-di-GMP phosphodiesterase activity of VieA is necessary and sufficient for the upregulation of toxT expression.
Collapse
|
34
|
Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni. J Bacteriol 2012; 194:6883-91. [PMID: 23065977 DOI: 10.1128/jb.01636-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
CosR is an essential response regulator in Campylobacter jejuni, a major food-borne pathogen causing enteritis worldwide. A transcriptomic analysis performed in this study discovered 93 genes whose transcriptional levels were changed >2-fold due to the repression of CosR expression by antisense peptide nucleic acid. The identified CosR-regulated genes are involved in various cellular functions, such as energy production, protein synthesis and folding, flagellum biogenesis, and lipid metabolism. Interestingly, 17 of the 93 CosR-regulated genes (18.3%) are predicted essential genes, indicating that CosR may participate in the regulation of vital biological processes in C. jejuni. In particular, CosR knockdown increased the transcriptional levels of cmeA, cmeB, and cmeC genes, whose protein product (CmeABC) is an important determinant conferring multidrug resistance in Campylobacter. Negative regulation of cmeABC by CosR was verified by quantitative real-time PCR (qRT-PCR) and P(cmeABC)::lacZ assay. The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays demonstrated that CosR directly binds to the cmeABC promoter. Another notable finding is that CosR regulates the transcription of katA, the sole catalase gene in C. jejuni. Further characterization with qRT-PCR, the catalase enzyme assay, EMSA, and DNase I footprinting assays successfully demonstrated that CosR affects the katA transcription and the catalase activity by direct interactions with the katA promoter. The findings in this study clearly demonstrated that CosR regulates resistance mechanisms in C. jejuni by controlling the expression of genes involved in oxidative stress defense and extrusion of toxic compounds out of the cell.
Collapse
|
35
|
Fields JA, Thompson SA. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol 2012; 12:233. [PMID: 23051923 PMCID: PMC3534301 DOI: 10.1186/1471-2180-12-233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 11/12/2022] Open
Abstract
Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA.
Collapse
Affiliation(s)
- Joshua A Fields
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA
| | | |
Collapse
|
36
|
Abstract
The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter(-1). C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely "bet-hedging" survival strategies relying on the presence of stress-fit individuals in a heterogeneous population.
Collapse
|
37
|
FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection. J Bacteriol 2012; 194:3803-13. [PMID: 22636777 DOI: 10.1128/jb.06665-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
Collapse
|
38
|
Cj1136 is required for lipooligosaccharide biosynthesis, hyperinvasion, and chick colonization by Campylobacter jejuni. Infect Immun 2012; 80:2361-70. [PMID: 22508861 DOI: 10.1128/iai.00151-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial food-borne enteritis worldwide, and invasion into intestinal epithelial cells is an important virulence mechanism. Recently we reported the identification of hyperinvasive C. jejuni strains and created a number of transposon mutants of one of these strains, some of which exhibited reduced invasion into INT-407 and Caco-2 cells. In one such mutant the transposon had inserted into a homologue of cj1136, which encodes a putative galactosyltransferase according to the annotation of the C. jejuni NCTC11168 genome. In the current study, we investigated the role of cj1136 in C. jejuni virulence, lipooligosaccharide (LOS) biosynthesis, and host colonization by targeted mutagenesis and complementation of the mutation. The cj1136 mutant showed a significant reduction in invasion into human intestinal epithelial cells compared to the wild-type strain 01/51. Invasion levels were partially restored on complementing the mutation. The inactivation of cj1136 resulted in the production of truncated LOS, while biosynthesis of a full-length LOS molecule was restored in the complemented strain. The cj1136 mutant showed an increase in sensitivity to the bile salts sodium taurocholate and sodium deoxycholate and significantly increased sensitivity to polymyxin B compared to the parental strain. Importantly, the ability of the mutant to colonize 1-day-old chicks was also significantly impaired. This study confirms that a putative galactosyltransferase encoded by cj1136 is involved in LOS biosynthesis and is important for C. jejuni virulence, as disruption of this gene and the resultant truncation of LOS affect both colonization in vivo and invasiveness in vitro.
Collapse
|
39
|
Neal-McKinney JM, Konkel ME. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol 2012; 2:31. [PMID: 22919623 PMCID: PMC3417660 DOI: 10.3389/fcimb.2012.00031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/29/2012] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute C. jejuni-mediated disease (campylobacteriosis) involves C. jejuni invasion of host epithelial cells using adhesins (e.g., CadF and FlpA) and secreted proteins [e.g., the Campylobacter invasion antigens (Cia)]. The genes encoding the Cia proteins are up-regulated upon co-culture of C. jejuni with epithelial cells. One of the Cia proteins, CiaC, is required for maximal invasion of host cells by C. jejuni. Previous work has also revealed that CiaC is, in part, responsible for host cell cytoskeletal rearrangements that result in membrane ruffling. This study was performed to test the hypothesis that CiaC is delivered to the cytosol of host cells. To detect the delivery of CiaC into cultured epithelial cells, we used the adenylate cyclase domain (ACD) of Bordetella pertussis CyaA as a reporter. In this study, we found that export and delivery of the C. jejuni Cia proteins into human INT 407 epithelial cells required a functional flagellar hook complex composed of FlgE, FlgK, and FlgL. Assays performed with bacterial culture supernatants supported the hypothesis that CiaC delivery requires bacteria-host cell contact. We also found that CiaC was delivered to host cells by cell-associated (bound) bacteria, as judged by experiments performed with inhibitors that specifically target the cell signaling pathways utilized by C. jejuni for cell invasion. Interestingly, the C. jejuni flgL mutant, which is incapable of exporting and delivering the Cia proteins, did not induce INT 407 cell membrane ruffles. Complementation of the flgL mutant with plasmid-encoded flgL restored the motility and membrane ruffling. These data support the hypothesis that the C. jejuni Cia proteins, which are exported from the flagellum, are delivered to the cytosol of host cells.
Collapse
|
40
|
Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 2012; 194:2342-54. [PMID: 22343300 DOI: 10.1128/jb.06041-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni commensally colonizes the cecum of birds. The RacR (reduced ability to colonize) response regulator was previously shown to be important in avian colonization. To explore the means by which RacR and its cognate sensor kinase RacS may modulate C. jejuni physiology and colonization, ΔracR and ΔracS mutations were constructed in the invasive, virulent strain 81-176, and extensive phenotypic analyses were undertaken. Both the ΔracR and ΔracS mutants exhibited a ~100-fold defect in chick colonization despite no (ΔracS) or minimal (ΔracR) growth defects at 42 °C, the avian body temperature. Each mutant was defective for colony formation at 44°C and in the presence of 0.8% NaCl, both of which are stresses associated with the heat shock response. Promoter-reporter and real-time quantitative PCR (RT-qPCR) analyses revealed that RacR activates racRS and represses dnaJ. Although disregulation of several other heat shock genes was not observed at 38°C, the ΔracR and ΔracS mutants exhibited diminished upregulation of these genes upon a rapid temperature upshift. Furthermore, the ΔracR and ΔracS mutants displayed increased length heterogeneity during exponential growth, with a high proportion of filamented bacteria. Filamented bacteria had reduced swimming speed and were defective for invasion of Caco-2 epithelial cells. Soft-agar studies also revealed that the loss of racR or racS resulted in whole-population motility defects in viscous medium. These findings reveal new roles for RacRS in C. jejuni physiology, each of which is likely important during colonization of the avian host.
Collapse
|
41
|
Grabowska AD, Wandel MP, Łasica AM, Nesteruk M, Roszczenko P, Wyszyńska A, Godlewska R, Jagusztyn-Krynicka EK. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism. BMC Microbiol 2011; 11:166. [PMID: 21787430 PMCID: PMC3167755 DOI: 10.1186/1471-2180-11-166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/25/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond) family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. RESULTS In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA) confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. CONCLUSIONS The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins during different stages of infection. Our work further shows that synthesis of the DsbI membrane oxidoreductase is controlled by a translational coupling mechanism. The dba expression is not only essential for the translation of the downstream dsbI gene, but also Dba protein that is produced might regulate the activity and/or stability of DsbI.
Collapse
Affiliation(s)
- Anna D Grabowska
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hwang S, Kim M, Ryu S, Jeon B. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One 2011; 6:e22300. [PMID: 21811584 PMCID: PMC3139631 DOI: 10.1371/journal.pone.0022300] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/18/2011] [Indexed: 11/20/2022] Open
Abstract
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Minkyeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Byeonghwa Jeon
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
43
|
Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 2011; 42:82. [PMID: 21714866 PMCID: PMC3156733 DOI: 10.1186/1297-9716-42-82] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.
Collapse
Affiliation(s)
- David Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Winy Messens
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Current address: Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Marc Heyndrickx
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
44
|
Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 2010; 78:3540-53. [PMID: 20515930 DOI: 10.1128/iai.00109-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Campylobacter jejuni is the leading cause of infectious gastroenteritis in industrialized nations. Its ability to enter and survive within nonphagocytic cells is thought to be very important for pathogenesis. However, little is known about the C. jejuni determinants that mediate these processes. Through an extensive transposon mutagenesis screen, we have identified several loci that are required for C. jejuni efficient entry and survival within epithelial cells. Among these loci, insertional mutations in aspA, aspB, and sodB resulted in drastic reduction in C. jejuni entry and/or survival within host cells and a severe defect in colonization in an animal model. The implications of these findings for the understanding of C. jejuni-host cell interactions are discussed.
Collapse
|
45
|
Neal-McKinney JM, Christensen JE, Konkel ME. Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum. Mol Microbiol 2010; 76:918-31. [PMID: 20398207 DOI: 10.1111/j.1365-2958.2010.07144.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino-termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein-specific residues in the amino-terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino-termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.
Collapse
|
46
|
Jeon B, Muraoka WT, Zhang Q. Advances in Campylobacter biology and implications for biotechnological applications. Microb Biotechnol 2009; 3:242-58. [PMID: 21255325 PMCID: PMC3815368 DOI: 10.1111/j.1751-7915.2009.00118.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen of animal origin and a leading cause of bacterial gastroenteritis in humans. During the past decade, especially since the publication of the first C. jejuni genome sequence, major advances have been made in understanding the pathobiology and physiology of this organism. It is apparent that C. jejuni utilizes sophisticated mechanisms for effective colonization of the intestinal tracts in various animal species. Although Campylobacter is fragile in the environment and requires fastidious growth conditions, it exhibits great flexibility in the adaptation to various habitats including the gastrointestinal tract. This high adaptability is attributable to its genetically, metabolically and phenotypically diverse population structure and its ability to change in response to various challenges. Unlike other enteric pathogens, such as Escherichia coli and Salmonella, Campylobacter is unable to utilize exogenous glucose and mainly depends on the catabolism of amino acids as a carbon source. Campylobacter proves highly mutable in response to antibiotic treatments and possesses eukaryote‐like dual protein glycosylation systems, which modify flagella and other surface proteins with specific sugar structures. In this review we will summarize the distinct biological traits of Campylobacter and discuss the potential biotechnological approaches that can be developed to control this enteric pathogen.
Collapse
Affiliation(s)
- Byeonghwa Jeon
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
47
|
MA YUE, HANNING IRENE, SLAVIK MICHAEL. STRESS-INDUCED ADAPTIVE TOLERANCE RESPONSE AND VIRULENCE GENE EXPRESSION INCAMPYLOBACTER JEJUNI. J Food Saf 2009. [DOI: 10.1111/j.1745-4565.2008.00147.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC. The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 2009; 71:253-72. [PMID: 19017270 PMCID: PMC2771394 DOI: 10.1111/j.1365-2958.2008.06534.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Campylobacter jejuni, a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS (Campylobacter planktonic growth regulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The Delta cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. Delta cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in Delta cprS, and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.
Collapse
Affiliation(s)
- Sarah L. Svensson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay M. Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Brenda J. Allan
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | - Stuart A. Thompson
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Ritz M, Garenaux A, Berge M, Federighi M. Determination of rpoA as the most suitable internal control to study stress response in C. jejuni by RT-qPCR and application to oxidative stress. J Microbiol Methods 2008; 76:196-200. [PMID: 19041906 DOI: 10.1016/j.mimet.2008.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/15/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Campylobacter jejuni represents one of the major causes of bacterial enteritis caused by food in humans. There are still mechanisms to be deciphered to better understand better its physiology and pathogenesis. Study of gene expression levels by RT-qPCR could be used, but to be accurate and reproducible, a good internal control has to be chosen. The aim of this study was to identify a highly stable housekeeping gene in Campylobacter jejuni that could constitute a good internal control to study gene expression variations between different growth phases or stress conditions. Expression levels of six different housekeeping genes (gyrA, ilvC, rpoA, slyD, thiC and rrs) were measured by RT-qPCR under different conditions (exponential phase, stationary phase, cold shock, cold shock+oxidative stress, oxidative stress). The rpoA gene was chosen as the best internal control. In a previous study, 9 proteins were identified as involved in oxidative stress response, among which 3 virulence factors. Expression levels of genes coding for these proteins was evaluated by RT-qPCR using rpoA as an internal control. The results obtained were concordant with what had been observed at the proteomic level, validating the methods used and confirming the hypothesis of a potential link between oxidative stress and virulence factors expression.
Collapse
Affiliation(s)
- M Ritz
- UMR-INRA 1014, Sécurité des Aliments, Ecole Nationale Vétérinaire de Nantes, Nantes cedex 03, France
| | | | | | | |
Collapse
|
50
|
LaGier MJ, Threadgill DS. Identification of novel genes in the oral pathogenCampylobacter rectus. ACTA ACUST UNITED AC 2008; 23:406-12. [DOI: 10.1111/j.1399-302x.2008.00443.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|