1
|
Rahn HP, Liu X, Chosy MB, Sun J, Cegelski L, Wender PA. Biguanide-Vancomycin Conjugates are Effective Broad-Spectrum Antibiotics against Actively Growing and Biofilm-Associated Gram-Positive and Gram-Negative ESKAPE Pathogens and Mycobacteria. J Am Chem Soc 2024; 146:22541-22552. [PMID: 39088791 DOI: 10.1021/jacs.4c06520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Strategies to increase the efficacy and/or expand the spectrum of activity of existing antibiotics provide a potentially fast path to clinically address the growing crisis of antibiotic-resistant infections. Here, we report the synthesis, antibacterial efficacy, and mechanistic activity of an unprecedented class of biguanide-antibiotic conjugates. Our lead biguanide-vancomycin conjugate, V-C6-Bg-PhCl (5e), induces highly effective cell killing with up to a 2 orders-of-magnitude improvement over its parent compound, vancomycin (V), against vancomycin-resistant enterococcus. V-C6-Bg-PhCl (5e) also exhibits improved activity against mycobacteria and each of the ESKAPE pathogens, including the Gram-negative organisms. Furthermore, we uncover broad-spectrum killing activity against biofilm-associated Gram-positive and Gram-negative bacteria as well as mycobacteria not observed for clinically used antibiotics such as oritavancin. Mode-of-action studies reveal that vancomycin-like cell wall synthesis inhibition with improved efficacy attributed to enhanced engagement at vancomycin binding sites through biguanide association with relevant cell-surface anions for Gram-positive and Gram-negative bacteria. Due to its potency, remarkably broad activity, and lack of acute mammalian cell toxicity, V-C6-Bg-PhCl (5e) is a promising candidate for treating antibiotic-resistant infections and notoriously difficult-to-treat slowly growing and antibiotic-tolerant bacteria associated with chronic and often incurable infections. More generally, this study offers a new strategy (biguanidinylation) to enhance antibiotic activity and facilitate clinical entry.
Collapse
Affiliation(s)
- Harrison P Rahn
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Madeline B Chosy
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MGN, De Benedetti S, Krueger AM, Vermeulen BJA, Harbig T, Lavore F, Kumar R, Honorato RV, Grein F, Nieselt K, Liu Y, Bonvin AMJJ, Baldus M, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 2023; 186:4059-4073.e27. [PMID: 37611581 DOI: 10.1016/j.cell.2023.07.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bram J A Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Theresa Harbig
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rodrigo V Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Alexandre M J J Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ulrich Kubitscheck
- Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | | | | | | | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
3
|
Brčić J, Tong A, Wender PA, Cegelski L. Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting. J Med Chem 2023; 66:10226-10237. [PMID: 37477249 PMCID: PMC10783851 DOI: 10.1021/acs.jmedchem.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.
Collapse
Affiliation(s)
- Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Alan Tong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
5
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MG, de Benedetti S, Krueger AM, Vermeulen BJ, Lavore F, Honorato RV, Grein F, Bonvin A, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. A new antibiotic from an uncultured bacterium binds to an immutable target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540765. [PMID: 37292624 PMCID: PMC10245560 DOI: 10.1101/2023.05.15.540765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maik G.N. Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefania de Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Bram J.A. Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexandre Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ulrich Kubitscheck
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | | | - Amy L. Spoering
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Losee Lucy Ling
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Silveiro C, Marques M, Olivença F, Pires D, Mortinho D, Nunes A, Pimentel M, Anes E, Catalão MJ. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival. Front Cell Infect Microbiol 2023; 13:1089911. [PMID: 37009497 PMCID: PMC10050696 DOI: 10.3389/fcimb.2023.1089911] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The lack of effective therapeutics against emerging multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) prompts the identification of novel anti-tuberculosis targets. The essential nature of the peptidoglycan (PG) layer of the mycobacterial cell wall, which features several distinctive modifications, such as the N-glycolylation of muramic acid and the amidation of D-iso-glutamate, makes it a target of particular interest. To understand their role in susceptibility to beta-lactams and in the modulation of host-pathogen interactions, the genes encoding the enzymes responsible for these PG modifications (namH and murT/gatD, respectively) were silenced in the model organism Mycobacterium smegmatis using CRISPR interference (CRISPRi). Although beta-lactams are not included in TB-therapy, their combination with beta-lactamase inhibitors is a prospective strategy to treat MDR-TB. To uncover synergistic effects between the action of beta-lactams and the depletion of these PG modifications, knockdown mutants were also constructed in strains lacking the major beta-lactamase of M. smegmatis BlaS, PM965 (M. smegmatis ΔblaS1) and PM979 (M. smegmatis ΔblaS1 ΔnamH). The phenotyping assays affirmed the essentiality of the amidation of D-iso-glutamate to the survival of mycobacteria, as opposed to the N-glycolylation of muramic acid. The qRT-PCR assays confirmed the successful repression of the target genes, along with few polar effects and differential knockdown level depending on PAM strength and target site. Both PG modifications were found to contribute to beta-lactam resistance. While the amidation of D-iso-glutamate impacted cefotaxime and isoniazid resistance, the N-glycolylation of muramic acid substantially promoted resistance to the tested beta-lactams. Their simultaneous depletion provoked synergistic reductions in beta-lactam MICs. Moreover, the depletion of these PG modifications promoted a significantly faster bacilli killing by J774 macrophages. Whole-genome sequencing revealed that these PG modifications are highly conserved in a set of 172 clinical strains of Mtb, demonstrating their potential as therapeutic targets against TB. Our results support the development of new therapeutic agents targeting these distinctive mycobacterial PG modifications.
Collapse
Affiliation(s)
- Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Diana Mortinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- Faculty of Veterinary Medicine, Universidade Lusófona, Lisbon, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Maria João Catalão,
| |
Collapse
|
7
|
LdtC Is a Key l,d-Transpeptidase for Peptidoglycan Assembly in Mycobacterium smegmatis. J Bacteriol 2023; 205:e0042422. [PMID: 36541811 PMCID: PMC9879121 DOI: 10.1128/jb.00424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The peptidoglycan of mycobacteria has two types of direct cross-links, classical 4-3 cross-links that occur between diaminopimelate (DAP) and alanine residues, and nonclassical 3-3 cross-links that occur between DAP residues on adjacent peptides. The 3-3 cross-links are synthesized by the concerted action of d,d-carboxypeptidases and l,d-transpeptidases (Ldts). Mycobacterial genomes encode several Ldt proteins that can be classified into six classes based upon sequence identity. As a group, the Ldt enzymes are resistant to most β-lactam antibiotics but are susceptible to carbapenem antibiotics, with the exception of LdtC, a class 5 enzyme. In previous work, we showed that loss of LdtC has the greatest effect on the carbapenem susceptibility phenotype of Mycobacterium smegmatis (also known as Mycolicibacterium smegmatis) compared to other ldt deletion mutants. In this work, we show that a M. smegmatis mutant lacking the five ldt genes other than ldtC has a wild-type phenotype with the exception of increased susceptibility to rifampin. In contrast, a mutant lacking all six ldt genes has pleiotropic cell envelope defects, is temperature sensitive, and has increased susceptibility to a variety of antibiotics. These results indicate that LdtC is capable of functioning as the sole l,d-transpeptidase in M. smegmatis and suggest that it may represent a carbapenem-resistant pathway for peptidoglycan biosynthesis. IMPORTANCE Mycobacteria have several enzymes to catalyze nonclassical 3-3 linkages in the cell wall peptidoglycan. Understanding the biology of these cross-links is important for the development of antibiotic therapies to target peptidoglycan biosynthesis. Our work provides evidence that LdtC can function as the sole enzyme for 3-3 cross-link formation in M. smegmatis and suggests that LdtC may be part of a carbapenem-resistant l,d-transpeptidase pathway.
Collapse
|
8
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
9
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
10
|
Rimal B, Senzani S, Ealand C, Lamichhane G, Kana B, Kim SJ. Peptidoglycan compositional analysis of Mycobacterium smegmatis using high-resolution LC-MS. Sci Rep 2022; 12:11061. [PMID: 35773428 PMCID: PMC9247062 DOI: 10.1038/s41598-022-15324-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Collapse
Affiliation(s)
- Binayak Rimal
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.,Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sibusiso Senzani
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Bavesh Kana
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa.
| | - Sung Joon Kim
- Department of Chemistry, Howard University, Chemistry Building, 525 College Street, Washington, DC, 20059, USA.
| |
Collapse
|
11
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Modak B, Girkar S, Narayan R, Kapoor S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J Med Chem 2022; 65:3046-3065. [PMID: 35133820 DOI: 10.1021/acs.jmedchem.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases remain significant health concerns worldwide, and resistance is particularly common in patients with tuberculosis caused by Mycobacterium tuberculosis. The development of anti-infectives with novel modes of action may help overcome resistance. In this regard, membrane-active agents, which modulate membrane components essential for the survival of pathogens, present attractive antimicrobial agents. Key advantages of membrane-active compounds include their ability to target slow-growing or dormant bacteria and their favorable pharmacokinetics. Here, we comprehensively review recent advances in the development of membrane-active chemotypes that target mycobacterial membranes and discuss clinically relevant membrane-active antibacterial agents that have shown promise in counteracting bacterial infections. We discuss the relationship between the membrane properties and the synthetic requirements within the chemical scaffold, as well as the limitations of current membrane-active chemotypes. This review will lay the chemical groundwork for the development of membrane-active antituberculosis agents and will foster the discovery of more effective antitubercular agents.
Collapse
Affiliation(s)
- Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Siddhali Girkar
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
13
|
Gupta R, Al-Kharji NMSA, Alqurafi MA, Nguyen TQ, Chai W, Quan P, Malhotra R, Simcox BS, Mortimer P, Brammer Basta LA, Rohde KH, Buynak JD. Atypically Modified Carbapenem Antibiotics Display Improved Antimycobacterial Activity in the Absence of β-Lactamase Inhibitors. ACS Infect Dis 2021; 7:2425-2436. [PMID: 34191496 PMCID: PMC8369493 DOI: 10.1021/acsinfecdis.1c00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Commercial carbapenem
antibiotics are being used to treat multidrug
resistant (MDR) and extensively drug resistant (XDR) tuberculosis.
Like other β-lactams, carbapenems are irreversible inhibitors
of serine d,d-transpeptidases involved in peptidoglycan biosynthesis.
In addition to d,d-transpeptidases, mycobacteria also utilize
nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link
the stem peptides of peptidoglycan, and carbapenems form long-lived
acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications
of a common scaffold. This study describes the synthesis of a series
of atypical, C5α modifications of the carbapenem scaffold, microbiological
evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well
as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified
carbapenems revealed compounds with standalone (i.e., in the absence of a β-lactamase inhibitor) minimum inhibitory
concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill
kinetics assays showed better killing (2–4 log decrease) of Mtb and Mab with lower concentrations of
compound 10a as compared to meropenem. Although susceptibility
of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry
revealed that 10a acylates LdtMt2 at a rate
comparable to meropenem, but subsequently undergoes an unprecedented
carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic
fragmentation of the LdtMt2 acyl-enzymes is proposed. The
observed activity illustrates the potential of novel atypical carbapenems
as prospective candidates for treatment of Mtb and Mab infections.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | | | - Maha A. Alqurafi
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Thu Q. Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Riya Malhotra
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Breven S. Simcox
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Phil Mortimer
- Department of Chemistry, Mass Spectrometry Facility, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Leighanne A. Brammer Basta
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
14
|
Unique C-terminal extension and interactome of Mycobacterium tuberculosis GlmU impacts it's in vivo function and the survival of pathogen. Biochem J 2021; 478:2081-2099. [PMID: 33955473 DOI: 10.1042/bcj20210170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
N-acetyl glucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme involved in the biosynthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a critical precursor for the synthesis of peptidoglycan and other cell wall components. The absence of a homolog in eukaryotes makes GlmU an attractive target for therapeutic intervention. Mycobacterium tuberculosis GlmU (GlmUMt) has features, such as a C-terminal extension, that are not present in GlmUorthologs from other bacteria. Here, we set out to determine the uniqueness of GlmUMt by performing in vivo complementation experiments using RvΔglmU mutant. We find that any deletion of the carboxy-terminal extension region of GlmUMt abolishes its ability to complement the function of GlmUMt. Results show orthologs of GlmU, including its closest ortholog, from Mycobacterium smegmatis, cannot complement the function of GlmUMt. Furthermore, the co-expression of GlmUMt domain deletion mutants with either acetyl or uridyltransferase activities failed to rescue the function. However, co-expression of GlmUMt point mutants with either acetyl or uridyltransferase activities successfully restored the biological function of GlmUMt, likely due to the formation of heterotrimers. Based on the interactome experiments, we speculate that GlmUMt participates in unique interactions essential for its in vivo function.
Collapse
|
15
|
Shinde Y, Ahmad I, Surana S, Patel H. The Mur Enzymes Chink in the Armour of Mycobacterium tuberculosis cell wall. Eur J Med Chem 2021; 222:113568. [PMID: 34118719 DOI: 10.1016/j.ejmech.2021.113568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023]
Abstract
TUBERCULOSIS: (TB) transmitted by Mycobacterium tuberculosis (Mtb) is one of the top 10 causes of death globally. Currently, the widespread occurrence of resistance toward Mtb strains is becoming a significant concern to public health. This scenario exaggerated the need for the discovery of novel targets and their inhibitors. Targeting the "Mtb cell wall peptidoglycan synthesis" is an attractive strategy to overcome drug resistance. Mur enzymes (MurA-MurF) play essential roles in the peptidoglycan synthesis by catalyzing the ligation of key amino acid residues to the stem peptide. These enzymes are unique and confined to the eubacteria and are absent in humans, representing potential targets for anti-tubercular drug discovery. Mtb Mur ligases with the same catalytic mechanism share conserved amino acid regions and structural features that can conceivably exploit for the designing of the inhibitors, which can simultaneously target more than one isoforms (MurC-MurF) of the enzyme. In light of these findings in the current review, we have discussed the recent advances in medicinal chemistry of Mtb Mur enzymes (MurA-MurF) and their inhibitors, offering attractive multi-targeted strategies to combat the problem of drug-resistant in M. tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India.
| |
Collapse
|
16
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
17
|
Crump GM, Zhou J, Mashayekh S, Grimes CL. Revisiting peptidoglycan sensing: interactions with host immunity and beyond. Chem Commun (Camb) 2020; 56:13313-13322. [PMID: 33057506 PMCID: PMC7642115 DOI: 10.1039/d0cc02605k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between host immunity and bacterial cells plays a pivotal role in a variety of human diseases. The bacterial cell wall component peptidoglycan (PG) is known to stimulate an immune response, which makes PG a distinctive recognition element for unveiling these complicated molecular interactions. Pattern recognition receptor (PRR) proteins are among the critical components of this system that initially recognize molecular patterns associated with microorganisms such as bacteria and fungi. These molecular patterns are mostly embedded in the bacterial or fungal cell wall structure and can be released and presented to the immune system in various situations. Nonetheless, detailed knowledge of this recognition is limited due to the diversity among the PG polymer and its fragments; the subsequent responses by multiple hosts add more complexity. Here, we discuss how our understanding of the role and molecular mechanisms of the well-studied PRR, the NOD-like receptors (NLRs), in the human immune system has evolved in recent years. We highlight the instances of other classes of proteins with similar behavior in the recognition of PG that have been identified in other microorganisms such as yeasts. These proteins are particularly interesting because a network of cellular interactions exists between human host cells, bacteria and yeast as a part of the normal human flora. To support our understanding of these interactions, we provide insight into the chemist's toolbox of peptidoglycan probes that aid in the investigations of the behaviors of these proteins and other biological contexts relevant to the sensing and recognition of peptidoglycan. The importance of these interactions in human health for the development of biomarkers and biotherapy is highlighted.
Collapse
Affiliation(s)
- Geneva Maddison Crump
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
18
|
Mashayekh S, Bersch KL, Ramsey J, Harmon T, Prather B, Genova LA, Grimes CL. Synthesis of Bacterial-Derived Peptidoglycan Cross-Linked Fragments. J Org Chem 2020; 85:16243-16253. [PMID: 33108204 DOI: 10.1021/acs.joc.0c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptidoglycan (PG) is the core structural motif of the bacterial cell wall. Fragments released from the PG serve as fundamental recognition elements for the immune system. The structure of the PG, however, encompasses a variety of chemical modifications among different bacterial species. Here, the applicability of organic synthetic methods to address this chemical diversity is explored, and the synthesis of cross-linked PG fragments, carrying biologically relevant amino acid modifications and peptide cross-linkages, is presented using solution and solid phase approaches.
Collapse
Affiliation(s)
- Siavash Mashayekh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Klare L Bersch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jared Ramsey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas Harmon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Benjamin Prather
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lauren A Genova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages. Cell Rep 2020; 29:3580-3591.e4. [PMID: 31825837 PMCID: PMC6915324 DOI: 10.1016/j.celrep.2019.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb’s nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies. Mycobacterium tuberculosis utilizes multiple amino acids as nitrogen sources in human macrophages 15N-FSRA tool identified the intracellular nitrogen sources Glutamine is the predominant nitrogen donor for M. tuberculosis Serine biosynthesis is essential for the survival of intracellular M. tuberculosis
Collapse
|
20
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
21
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
22
|
Abstract
The chapter about the Gram-positive bacterial cell wall gives a brief historical background on the discovery of Gram-positive cell walls and their constituents and microscopic methods applied for studying the Gram-positive cell envelope. Followed by the description of the different chemical building blocks of peptidoglycan and the biosynthesis of the peptidoglycan layers and high turnover of peptidoglycan during bacterial growth. Lipoteichoic acids and wall teichoic acids are highlighted as major components of the cell wall. Characterization of capsules and the formation of extracellular vesicles by Gram-positive bacteria close the section on cell envelopes which have a high impact on bacterial pathogenesis. In addition, the specialized complex and unusual cell wall of mycobacteria is introduced thereafter. Next a short back view is given on the development of electron microscopic examinations for studying bacterial cell walls. Different electron microscopic techniques and methods applied to examine bacterial cell envelopes are discussed in the view that most of the illustrated methods should be available in a well-equipped life sciences orientated electron microscopic laboratory. In addition, newly developed and mostly well-established cryo-methods like high-pressure freezing and freeze-substitution (HPF-FS) and cryo-sections of hydrated vitrified bacteria (CEMOVIS, Cryo-electron microscopy of vitreous sections) are described. At last, modern cryo-methods like cryo-electron tomography (CET) and cryo-FIB-SEM milling (focus ion beam-scanning electron microscopy) are introduced which are available only in specialized institutions, but at present represent the best available methods and techniques to study Gram-positive cell walls under close-to-nature conditions in great detail and at high resolution.
Collapse
Affiliation(s)
- Manfred Rohde
- Helmholtz Centre for Infection Research, HZI, Central Facility for Microscopy, ZEIM, Braunschweig, Germany
| |
Collapse
|
23
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
25
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses 2018; 10:E428. [PMID: 30110929 PMCID: PMC6116114 DOI: 10.3390/v10080428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mycobacteriophages are viruses that specifically infect mycobacteria, which ultimately culminate in host cell death. Dedicated enzymes targeting the complex mycobacterial cell envelope arrangement have been identified in mycobacteriophage genomes, thus being potential candidates as antibacterial agents. These comprise lipolytic enzymes that target the mycolic acid-containing outer membrane and peptidoglycan hydrolases responsive to the atypical mycobacterial peptidoglycan layer. In the recent years, a remarkable progress has been made, particularly on the comprehension of the mechanisms of bacteriophage lysis proteins activity and regulation. Notwithstanding, information about mycobacteriophages lysis strategies is limited and is mainly represented by the studies performed with mycobacteriophage Ms6. Since mycobacteriophages target a specific group of bacteria, which include Mycobacterium tuberculosis responsible for one of the leading causes of death worldwide, exploitation of the use of these lytic enzymes demands a special attention, as they may be an alternative to tackle multidrug resistant tuberculosis. This review focuses on the current knowledge of the function of lysis proteins encoded by mycobacteriophages and their potential applications, which may contribute to increasing the effectiveness of antimycobacterial therapy.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
27
|
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother 2017; 95:1520-1534. [PMID: 28946393 DOI: 10.1016/j.biopha.2017.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis is the leading infectious disease responsible for an estimated one and a half million human deaths each year around the globe. HIV-TB coinfection and rapid increase in the emergence of drug resistant forms of TB is a dangerous scenario. This underlines the urgent need for new drugs with novel mechanism of action. A plethora of literature exist that highlight the importance of enzymes involved in the biosynthesis of mycobacterial cell wall responsible for its survival, growth, permeability, virulence and resistance to antibiotics. Therefore, assembly of cell wall components is an attractive target for the development of chemotherapeutics against Mycobacterium tuberculosis. The aim of this review is to highlight novel sets of enzyme inhibitors that disrupt its cell wall biosynthetic pathway. These include the currently approved first and second line drugs, candidates in clinical trials and current structure activity guided endeavors of scientific community to identify new potent inhibitors with least cytotoxicity and better efficacy against emergence of drug resistance till date.
Collapse
Affiliation(s)
- Zubair Shanib Bhat
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| | - Muzafar Ahmad Rather
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Mubashir Maqbool
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Department of Zoology, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India
| | - Hafiz Ul Lah
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Syed Khalid Yousuf
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India
| | - Zahoor Ahmad
- Clinical Microbiology and PK/PD Division, Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine (IIIM), Campus, Sanat Nagar, Srinagar, Jammu & Kashmir 190005, India.
| |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
29
|
Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:6091-9. [PMID: 27480853 PMCID: PMC5038272 DOI: 10.1128/aac.01249-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Collapse
|
30
|
Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis. mBio 2016; 7:mBio.00972-16. [PMID: 27486192 PMCID: PMC4981717 DOI: 10.1128/mbio.00972-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has a unique cell envelope which accounts for its unusual low permeability and contributes to resistance against common antibiotics. The main structural elements of the cell wall consist of a cross-linked network of peptidoglycan (PG) in which some of the muramic acid residues are covalently attached to a complex polysaccharide, arabinogalactan (AG), via a unique α-l-rhamnopyranose-(1→3)-α-d-GlcNAc-(1→P) linker unit. While the molecular genetics associated with PG and AG biosynthetic pathways have been largely delineated, the mechanism by which these two major pathways converge has remained elusive. In Gram-positive organisms, the LytR-CpsA-Psr (LCP) family of proteins are responsible for ligating cell wall teichoic acids to peptidoglycan, through a linker unit that bears a striking resemblance to that found in mycobacterial arabinogalactan. In this study, we have identified Rv3267 as a mycobacterial LCP homolog gene that encodes a phosphotransferase which we have named Lcp1. We demonstrate that lcp1 is an essential gene required for cell viability and show that recombinant Lcp1 is capable of ligating AG to PG in a cell-free radiolabeling assay. IMPORTANCE Tuberculosis is an infectious disease caused by the bacterial organism Mycobacterium tuberculosis Survival of M. tuberculosis rests critically on the integrity of its unique cell wall; therefore, a better understanding of how the genes and enzymes involved in cell wall assembly work is fundamental for us to develop new drugs to treat this disease. In this study, we have identified Lcp1 as an essential phosphotransferase that ligates together arabinogalactan and peptidoglycan, two crucial cell wall macromolecules found within the mycobacterial cell wall. The discovery of Lcp1 sheds new light on the final stages of mycobacterial cell wall assembly and represents a key biosynthetic step that could be exploited for new anti-TB drug discovery.
Collapse
|
31
|
Abstract
The complex cell envelope is a hallmark of mycobacteria and is anchored by the peptidoglycan layer, which is similar to that of Escherichia coli and a number of other bacteria but with modifications to the monomeric units and other structural complexities that are likely related to a role for the peptidoglycan in stabilizing the mycolyl-arabinogalactan-peptidoglycan complex (MAPc). In this article, we will review the genetics of several aspects of peptidoglycan biosynthesis in mycobacteria, including the production of monomeric precursors in the cytoplasm, assembly of the monomers into the mature wall, cell wall turnover, and cell division. Finally, we will touch upon the resistance of mycobacteria to β-lactam antibiotics, an important class of drugs that, until recently, have not been extensively exploited as potential antimycobacterial agents. We will also note areas of research where there are still unanswered questions.
Collapse
|
32
|
Affiliation(s)
- Monika Jankute
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - Jonathan A.G. Cox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - James Harrison
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
33
|
Chen KT, Huang DY, Chiu CH, Lin WW, Liang PH, Cheng WC. Synthesis of Diverse N-Substituted Muramyl Dipeptide Derivatives and Their Use in a Study of Human NOD2 Stimulation Activity. Chemistry 2015; 21:11984-8. [PMID: 26226896 DOI: 10.1002/chem.201501557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/01/2023]
Abstract
A flexible synthetic strategy toward the preparation of diverse N-substituted muramyl dipeptides (N-substituted MDPs) from different protected monosaccharides is described. The synthetic MDPs include N-acetyl MDP and N-glycolyl MDP, known NOD2 ligands, and this methodology allows for structural variation at six positions, including the muramic acid, peptide, and N-substituted moieties. The capacity of these molecules to activate human NOD2 in the innate immune response was also investigated. It was found that addition of the methyl group at the C1 position of N-glycolyl MDP significantly enhanced the NOD2 stimulating activity.
Collapse
Affiliation(s)
- Kuo-Ting Chen
- Genomics Research Center, Academia Sinica No. 128, Academia Road Sec. 2, Nankang District, Taipei, 115 (Taiwan).,School of Pharmacy, National Taiwan University, No. 17, Xuzhou Road, Taipei 100 (Taiwan)
| | - Duen-Yi Huang
- Department of Pharmacology, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei 100 (Taiwan)
| | - Cheng-Hsin Chiu
- Genomics Research Center, Academia Sinica No. 128, Academia Road Sec. 2, Nankang District, Taipei, 115 (Taiwan)
| | - Wan-Wan Lin
- Department of Pharmacology, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei 100 (Taiwan).
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, No. 17, Xuzhou Road, Taipei 100 (Taiwan).
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica No. 128, Academia Road Sec. 2, Nankang District, Taipei, 115 (Taiwan).
| |
Collapse
|
34
|
Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Hervé M, Arthur M, Houssin C, Mengin-Lecreulx D. Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION. J Biol Chem 2015; 290:13079-94. [PMID: 25847251 DOI: 10.1074/jbc.m115.642843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4(+) could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.
Collapse
Affiliation(s)
- Marjorie Levefaudes
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Delphine Patin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Célia de Sousa-d'Auria
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Didier Blanot
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mireille Hervé
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Michel Arthur
- INSERM, UMR S1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006 Paris, France, the Sorbonne Universités, UPMC Université Paris 06, UMR S1138, Centre de Recherche des Cordeliers, F-75006 Paris, France, and the Université Paris-Descartes, Sorbonne Paris Cité, UMR S1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Christine Houssin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| | - Dominique Mengin-Lecreulx
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| |
Collapse
|
35
|
Alderwick LJ, Harrison J, Lloyd GS, Birch HL. The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan. Cold Spring Harb Perspect Med 2015; 5:a021113. [PMID: 25818664 DOI: 10.1101/cshperspect.a021113] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mycobacterial bacillus is encompassed by a remarkably elaborate cell wall structure. The mycolyl-arabinogalactan-peptidoglycan (mAGP) complex is essential for the viability of Mycobacterium tuberculosis and maintains a robust basal structure supporting the upper "myco-membrane." M. tuberculosis peptidoglycan, although appearing to be unexceptional at first glance, contains a number of unique molecular subtleties that become particularly important as the TB-bacilli enters into nonreplicative growth during dormancy. Arabinogalactan, a highly branched polysaccharide, serves to connect peptidoglycan with the outer mycolic acid layer, and a variety of unique glycolsyltransferases are used for its assembly. In this review, we shall explore the microbial chemistry of this unique heteropolysacchride, examine the molecular genetics that underpins its fabrication, and discuss how the essential biosynthetic process might be exploited for the development of future anti-TB chemotherapies.
Collapse
Affiliation(s)
- Luke J Alderwick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - James Harrison
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Georgina S Lloyd
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen L Birch
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
36
|
Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis. PLoS One 2014; 9:e116249. [PMID: 25551456 PMCID: PMC4281109 DOI: 10.1371/journal.pone.0116249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.
Collapse
|
37
|
Abstract
Mycobacterium tuberculosis, which is the aetiological agent of tuberculosis, owes much of its success as a pathogen to its unique cell wall and unusual mechanism of growth, which facilitate its adaptation to the human host and could have a role in clinical latency. Asymmetric growth and division increase population heterogeneity, which may promote antibiotic tolerance and the fitness of single cells. In this Review, we describe the unusual mechanisms of mycobacterial growth, cell wall biogenesis and division, and discuss how these processes might affect the survival of M. tuberculosis in vivo and contribute to the persistence of infection.
Collapse
|
38
|
Yang S, Zhang F, Kang J, Zhang W, Deng G, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity. BMC Microbiol 2014; 14:174. [PMID: 24975018 PMCID: PMC4087242 DOI: 10.1186/1471-2180-14-174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023] Open
Abstract
Background Many bacteria modulate and evade the immune defenses of their hosts through peptidoglycan (PG) deacetylation. The PG deacetylases from Streptococcus pneumonia, Listeria monocytogenes and Lactococcus lactis have been characterized. However, thus far, the PG deacetylase of Mycobacterium tuberculosis has not been identified. Results In this study, we cloned the Rv1096 gene from the M. tuberculosis H37Rv strain and expressed Rv1096 protein in both Escherichia coli and M. smegmatis. The results showed that the purified Rv1096 protein possessed metallo-dependent PG deacetylase activity, which increased in the presence of Co2+. The kinetic parameters of the PG deacetylase towards M. smegmatis PG as a substrate were as follows: Km, 0.910 ± 0.007 mM; Vmax, 0.514 ± 0.038 μMmin-1; and Kcat = 0.099 ± 0.007 (S-1). Additionally, the viability of M. smegmatis in the presence of over-expressed Rv1096 protein was 109-fold higher than that of wild-type M. smegmatis after lysozyme treatment. Additionally, light microscopy and scanning electron microscopy showed that in the presence of over-expressed Rv1096 protein, M. smegmatis kept its regular shape, with an undamaged cell wall and smooth surface. These results indicate that Rv1096 caused deacetylation of cell wall PG, leading to lysozyme resistance in M. smegmatis. Conclusion We have determined that M. tuberculosis Rv1096 is a PG deacetylase. The PG deacetylase activity of Rv1096 contributed to lysozyme resistance in M. smegmatis. Our findings suggest that deacetylation of cell wall PG may be involved in evasion of host immune defenses by M. tuberculosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China.
| |
Collapse
|
39
|
Siricilla S, Mitachi K, Skorupinska-Tudek K, Swiezewska E, Kurosu M. Biosynthesis of a water-soluble lipid I analogue and a convenient assay for translocase I. Anal Biochem 2014; 461:36-45. [PMID: 24939461 DOI: 10.1016/j.ab.2014.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/08/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023]
Abstract
Translocase I (MraY/MurX) is an essential enzyme in growth of the vast majority of bacteria that catalyzes the transformation from UDP-MurNAc-pentapeptide (Park's nucleotide) to prenyl-MurNAc-pentapeptide (lipid I), the first membrane-anchored peptidoglycan precursor. MurX has received considerable attention in the development of new tuberculosis (TB) drugs due to the fact that the MurX inhibitors kill exponentially growing Mycobacterium tuberculosis (Mtb) much faster than clinically used TB drugs. Lipid I isolated from Mtb contains the C50-prenyl unit that shows very poor water solubility; thus, this chemical characteristic of lipid I renders MurX enzyme assays impractical for screening and lacks reproducibility of the enzyme assays. We have established a scalable chemical synthesis of Park's nucleotide-N(ε)-dansylthiourea 2 that can be used as a MurX enzymatic substrate to form lipid I analogues. In our investigation of the minimum structure requirement of the prenyl phosphate in the MraY/MurX-catalyzed lipid I analogue synthesis with 2, we found that neryl phosphate (C10 phosphate) can be recognized by MraY/MurX to generate the water-soluble lipid I analogue in quantitative yield under the optimized conditions. Here, we report a rapid and robust analytical method for quantifying MraY/MurX inhibitory activity of library molecules.
Collapse
Affiliation(s)
- Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| |
Collapse
|
40
|
Hong W, Chen L, Xie J. Molecular basis underlying Mycobacterium tuberculosis D-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways? Expert Opin Ther Targets 2014; 18:691-701. [PMID: 24773568 DOI: 10.1517/14728222.2014.902937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis. Though less potent than isoniazid (INH) and streptomycin, DCS is crucial for antibiotic-resistant tuberculosis. One advantage of DCS is that less drug-resistant M. tuberculosis is reported in comparison with first-line antituberculosis drugs such as INH and rifampin. AREAS COVERED In this review, we summarise our current knowledge of DCS, and review the drug target and low-level resistance of DCS in M. tuberculosis. We summarise the metabolism of D-alanine (D-Ala) and peptidoglycan biosynthesis in bacteria. We first compared the amino acid similarity of Mycobacterium alanine racemase and D-Ala:D-alanine ligase and quite unexpectedly found that the two enzymes are highly conserved among Mycobacterium. EXPERT OPINION We summarise the drug targets of DCS and possible mechanisms underlying its low-level resistance for the first time. One significant finding is that ubiquinone and menaquinone metabolism-related genes are novel genes underlying DCS resistance in Escherichia coli and with homologues in M. tuberculosis. Further understanding of DCS targets and basis for its low-level resistance might inspire us to improve the use of DCS or find better drug targets.
Collapse
Affiliation(s)
- Weiling Hong
- Southwest University, Institute of Modern Biopharmaceuticals, School of Life Sciences, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education , Beibei, Chongqing 400715 , China +86 23 68367 108 ; +86 23 68367 108 ;
| | | | | |
Collapse
|
41
|
Halouska S, Fenton RJ, Zinniel DK, Marshall DD, Barletta RG, Powers R. Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria. J Proteome Res 2013; 13:1065-76. [PMID: 24303782 DOI: 10.1021/pr4010579] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR) drug resistant strains of Mycobacterium tuberculosis . d-Cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of alanine racemase (Alr) and d-alanine-d-alanine ligase (Ddl). Although the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of d-alanyl-d-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of d-alanine, thus allowing DCS to outcompete d-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce d-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | | | | | | | | | | |
Collapse
|
42
|
Chen KT, Kuan YC, Fu WC, Liang PH, Cheng TJR, Wong CH, Cheng WC. Rapid preparation of mycobacterium N-glycolyl Lipid I and Lipid II derivatives: a biocatalytic approach. Chemistry 2012; 19:834-8. [PMID: 23229320 DOI: 10.1002/chem.201203251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Indexed: 11/11/2022]
Abstract
Breaking down barriers: A rapid, inexpensive preparation of the structurally complex mycobacterial N-glycolyl Lipid I, Lipid II, and their analogues from a range of different synthetic N-glycolyl and N-glycinyl Park's nucleotides is described (see scheme). The biotransformations were catalyzed by a readily available biocatalyst obtained from a bacterial cell-free membrane fraction. The unnatural N-glycinyl Lipid II was found to be a substrate of Mycobacterium tuberculosis (Mtb) transglycosylase, PonA, and N-glycolyl Lipid I was a weak inhibitor against PonA.
Collapse
Affiliation(s)
- Kuo-Ting Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang,Taipei, 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J Bacteriol 2012; 194:6441-52. [PMID: 23002228 DOI: 10.1128/jb.01013-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant tuberculosis has emerged as a major threat to tuberculosis control. Phylogenetically related rifampin-resistant actinomycetes with mutations mapping to clinically dominant Mycobacterium tuberculosis mutations in the rpoB gene show upregulation of gene networks encoding secondary metabolites. We compared the expressed proteomes and metabolomes of two fully drug-susceptible clinical strains of M. tuberculosis (wild type) to those of their respective rifampin-resistant, rpoB mutant progeny strains with confirmed rifampin monoresistance following antitubercular therapy. Each of these strains was also used to infect gamma interferon- and lipopolysaccharide-activated murine J774A.1 macrophages to analyze transcriptional responses in a physiologically relevant model. Both rpoB mutants showed significant upregulation of the polyketide synthase genes ppsA-ppsE and drrA, which constitute an operon encoding multifunctional enzymes involved in the biosynthesis of phthiocerol dimycocerosate and other lipids in M. tuberculosis, but also of various secondary metabolites in related organisms, including antibiotics, such as erythromycin and rifamycins. ppsA (Rv2931), ppsB (Rv2932), and ppsC (Rv2933) were also found to be upregulated more than 10-fold in the Beijing rpoB mutant strain relative to its wild-type parent strain during infection of activated murine macrophages. In addition, metabolomics identified precursors of phthiocerol dimycocerosate, but not the intact molecule itself, in greater abundance in both rpoB mutant isolates. These data suggest that rpoB mutation in M. tuberculosis may trigger compensatory transcriptional changes in secondary metabolism genes analogous to those observed in related actinobacteria. These findings may assist in developing novel methods to diagnose and treat drug-resistant M. tuberculosis infections.
Collapse
|
44
|
Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HIM, Barry CE. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 2012; 86:367-81. [PMID: 22906310 DOI: 10.1111/j.1365-2958.2012.08199.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug-resistant tuberculosis. These β-lactams target the transpeptidases that introduce interpeptide cross-links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of Mycobacterium tuberculosis (Mtb) with the β-lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3-3 cross-linkages [involving two diaminopimelate (DAP) molecules] predominate over 4-3 cross-linkages (involving one DAP and one D-alanine) in stationary-phase cells. We purified and analysed peptidoglycan from Mtb and found that 3-3 cross-linkages predominate throughout all growth phases and the ratio of 4-3/3-3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D-carboxypeptidase and an L,D-transpeptidase. We purified a candidate D,D-carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem-treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3-cross-links while simultaneously limiting the pool of available substrates available for cross-linking.
Collapse
Affiliation(s)
- Pradeep Kumar
- Tuberculosis Research Section, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
46
|
Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS One 2012; 7:e34052. [PMID: 22470512 PMCID: PMC3314691 DOI: 10.1371/journal.pone.0034052] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/27/2012] [Indexed: 11/28/2022] Open
Abstract
The mycobacterial cell wall presents significant challenges to mycobacteriophages – viruses that infect mycobacterial hosts – because of its unusual structure containing a mycolic acid-rich mycobacterial outer membrane attached to an arabinogalactan layer that is in turn linked to the peptidoglycan. Although little is known about how mycobacteriophages circumvent these barriers during the process of infection, destroying it for lysis at the end of their lytic cycles requires an unusual set of functions. These include Lysin B proteins that cleave the linkage of mycolic acids to the arabinogalactan layer, chaperones required for endolysin delivery to peptidoglycan, holins that regulate lysis timing, and the endolysins (Lysin As) that hydrolyze peptidoglycan. Because mycobacterial peptidoglycan contains atypical features including 3→3 interpeptide linkages, it is not surprising that the mycobacteriophage endolysins also have non-canonical features. We present here a bioinformatic dissection of these lysins and show that they are highly diverse and extensively modular, with an impressive number of domain organizations. Most contain three domains with a novel N-terminal predicted peptidase, a centrally located amidase, muramidase, or transglycosylase, and a C-terminal putative cell wall binding domain.
Collapse
|
47
|
Boudreau MA, Fisher JF, Mobashery S. Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 2012; 51:2974-90. [PMID: 22409164 DOI: 10.1021/bi300174x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall and messengers in diverse cell signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria are discussed, followed by muropeptide sensing by eukaryotes as a crucial event in the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion.
Collapse
Affiliation(s)
- Marc A Boudreau
- Department of Chemistry and Biochemistry, Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
48
|
Peltier P, Beláňová M, Dianišková P, Zhou R, Zheng RB, Pearcey JA, Joe M, Brennan PJ, Nugier-Chauvin C, Ferrières V, Lowary TL, Daniellou R, Mikušová K. Synthetic UDP-furanoses as potent inhibitors of mycobacterial galactan biogenesis. ACTA ACUST UNITED AC 2011; 17:1356-66. [PMID: 21168771 DOI: 10.1016/j.chembiol.2010.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 11/29/2022]
Abstract
UDP-galactofuranose (UDP-Galf) is a substrate for two types of enzymes, UDP-galactopyranose mutase and galactofuranosyltransferases, which are present in many pathogenic organisms but absent from mammals. In particular, these enzymes are involved in the biosynthesis of cell wall galactan, a polymer essential for the survival of the causative agent of tuberculosis, Mycobacterium tuberculosis. We describe here the synthesis of derivatives of UDP-Galf modified at C-5 and C-6 using a chemoenzymatic route. In cell-free assays, these compounds prevented the formation of mycobacterial galactan, via the production of short "dead-end" intermediates resulting from their incorporation into the growing oligosaccharide chain. Modified UDP-furanoses thus constitute novel probes for the study of the two classes of enzymes involved in mycobacterial galactan assembly, and studies with these compounds may ultimately facilitate the future development of new therapeutic agents against tuberculosis.
Collapse
Affiliation(s)
- Pauline Peltier
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 35708 Rennes, Cedex 7, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein Cell 2010; 1:1011-22. [PMID: 21153518 DOI: 10.1007/s13238-010-0132-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022] Open
Abstract
The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 N-terminal residues, the other mutated residues are essential for catalysis. Variations in K(m) values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis.
Collapse
|
50
|
Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob Agents Chemother 2010; 55:291-301. [PMID: 20956591 DOI: 10.1128/aac.00558-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 Å. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC(50)) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.
Collapse
|