1
|
Perchat S, Nevers A, Kranzler M, Ehling-Schulz M, Lereclus D, Gohar M. The megaplasmid pCER270 of Bacillus cereus emetic strain affects the timing of the sporulation process, spore resistance properties, and germination. Appl Environ Microbiol 2024; 90:e0102924. [PMID: 39158315 PMCID: PMC11409700 DOI: 10.1128/aem.01029-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The Bacillus cereus group includes closely related spore-forming Gram-positive bacteria. In this group, plasmids play a crucial role in species differentiation and are essential for pathogenesis and adaptation to ecological niches. The B. cereus emetic strains are characterized by the presence of the pCER270 megaplasmid, which encodes the non-ribosomal peptide synthetase for the production of cereulide, the emetic toxin. This plasmid carries several genes that may be involved in the sporulation process. Furthermore, a transcriptomic analysis has revealed that pCER270 influences the expression of chromosome genes, particularly under sporulation conditions. In this study, we investigated the role of pCER270 on spore properties in different species of the B. cereus group. We showed that pCER270 plays a role in spore wet heat resistance and germination, with varying degrees of impact depending on the genetic background. In addition, pCER270 ensures that sporulation occurs at the appropriate time by delaying the expression of sporulation genes. This regulation of sporulation timing is controlled by the pCER270-borne Rap-Phr system, which likely regulates the phosphorylation state of Spo0A. Acquisition of the pCER270 plasmid by new strains could give them an advantage in adapting to new environments and lead to the emergence of new pathogenic strains. IMPORTANCE The acquisition of new mobile genetic elements, such as plasmids, is essential for the pathogenesis and adaptation of bacteria belonging to the Bacillus cereus group. This can confer new phenotypic traits and beneficial functions that enable bacteria to adapt to changing environments and colonize new ecological niches. Emetic B. cereus strains cause food poisoning linked to the production of cereulide, the emetic toxin whose synthesis is due to the presence of plasmid pCER270. In the environment, cereulide provides a competitive advantage in producing bacteria against various competitors or predators. This study demonstrates that pCER270 also regulates the sporulation process, resulting in spores with improved heat resistance and germination capacity. The transfer of plasmid pCER270 among different strains of the B. cereus group may enhance their adaptation to new environments. This raises the question of the emergence of new pathogenic strains, which could pose a serious threat to human health.
Collapse
Affiliation(s)
- Stéphane Perchat
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Alicia Nevers
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Markus Kranzler
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Didier Lereclus
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
Zhao L, Liu Q, Xu FH, Liu H, Zhang J, Liu F, Wang G. Identification and analysis of Rap-Phr system in Bacillus cereus 0-9. FEMS Microbiol Lett 2022; 369:6549557. [PMID: 35293995 DOI: 10.1093/femsle/fnac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, eight rap-related genes were found in the Bacillus cereus 0-9 genome; five rap genes were located on chromosomes and three on large plasmids. Five Rap proteins in B. cereus 0-9 were annotated as 'tetratricopeptide repeat proteins'. SMART Server analysis showed that the eight Rap proteins had typical tetrapeptide repeat sequence (TPR) domains. Biofilm assays and crystal violet staining showed that overexpression of the rapp1 and rap5 genes affected the biofilm formation of B. cereus 0-9, and the activities of Rapp1 and Rap5 proteins were inhibited by their corresponding cognate Phr, suggesting that the Rap-Phr quorum sensing (QS) system might also exist in the B. cereus 0-9 strain. In addition, overexpression of rap1 genes inhibited in the extracellular amylase decomposition capacity of B. cereus 0-9. The results of the sporulation assay indicated that overexpression of the eight rap genes inhibited the spore formation of B. cereus 0-9 to varying degrees. These results provide a reference for research on the regulation of the Rap-Phr QS system in B. cereus.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Feng Hua Xu
- School of Pharmaceutical, Henan University, Kaifeng, China
| | - Huiping Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Juanmei Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,School of Pharmaceutical, Henan University, Kaifeng, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China
| |
Collapse
|
3
|
The transcription factor CpcR determines cell fate by modulating the initiation of sporulation in Bacillus thuringiensis. Appl Environ Microbiol 2022; 88:e0237421. [PMID: 35108078 DOI: 10.1128/aem.02374-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is a bacterium capable of differentiating into a spore, a dormant and highly resistant cellular form. During the sporulation process, this bacterium produces insecticidal toxins in the form of a crystal inclusion, usually in the sporulating cell. We previously reported that the B. thuringiensis LM1212 strain can differentiate into two distinct subpopulations of spore formers and crystal producers, and that this division of labour phenotype provides bacterium with a fitness advantage in competition with a typical B. thuringiensis strain. The transcription factor CpcR was characterized as the regulator responsible for this phenotype. Here, we examined how CpcR interacts with sporulation network to control the cell differentiation. We found sporulation process was inhibited prior to polar septum formation, and that Spo0A activity was impaired, in the presence of cpcR in LM1212 strain. Using bioinformatics and genetic tools, we identified a gene positively controlled by CpcR encoding a putative phosphatase of Spo0E family known to specifically dephosphorylate Spo0A-P. We showed that this protein (called Spo0E1) is a negative regulator of sporulation and that variations in spo0E1 expression can modulate the production of spores. Using fluorescent reporters to follow gene expression at the single-cell level, we correlated expression of cpcR and sporulation genes to the formation of the two differentiated subpopulations. IMPORTANCE Formation of spores is a paradigm for study of cell differentiation in prokaryotes. Sporulation initiation is governed by a gradual increase in the level and activity of the master regulator Spo0A. Spo0A is usually indirectly phosphorylated by a multicomponent phosphorelay and modulation of this phosphorelay system is a critical aspect of Bacillus physiology. Though we know this phosphorelay system is usually affected by two negative regulatory mechanisms: rap genes and spo0E family genes, the regulatory mechanisms controlling the transcription of these genes are poorly understood. Here, we reported the transcription factor CpcR positively regulates a spo0E family gene and variations in spo0E expression can modulate the production of spores in B. thuringiensis. This work emphasizes the diversity in modes of sporulation and illustrate the diversity in the strategies employed by bacteria to control this differentiation pathway and ensure their survival.
Collapse
|
4
|
Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, Wu LJ. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci 2021; 8:648468. [PMID: 33816561 PMCID: PMC8014075 DOI: 10.3389/fmolb.2021.648468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main horizontal gene transfer route responsible for the spread of antibiotic resistance, virulence and toxin genes. During conjugation, DNA is transferred from a donor to a recipient cell via a sophisticated channel connecting the two cells. Conjugation not only affects many different aspects of the plasmid and the host, ranging from the properties of the membrane and the cell surface of the donor, to other developmental processes such as competence, it probably also poses a burden on the donor cell due to the expression of the large number of genes involved in the conjugation process. Therefore, expression of the conjugation genes must be strictly controlled. Over the past decade, the regulation of the conjugation genes present on the conjugative Bacillus subtilis plasmid pLS20 has been studied using a variety of methods including genetic, biochemical, biophysical and structural approaches. This review focuses on the interplay between RcopLS20, RappLS20 and Phr*pLS20, the proteins that control the activity of the main conjugation promoter Pc located upstream of the conjugation operon. Proper expression of the conjugation genes requires the following two fundamental elements. First, conjugation is repressed by default and an intercellular quorum-signaling system is used to sense conditions favorable for conjugation. Second, different layers of regulation act together to repress the Pc promoter in a strict manner but allowing rapid activation. During conjugation, ssDNA is exported from the cell by a membrane-embedded DNA translocation machine. Another membrane-embedded DNA translocation machine imports ssDNA in competent cells. Evidences are reviewed indicating that conjugation and competence are probably mutually exclusive processes. Some of the questions that remain unanswered are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Laboratory 402, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Saúl Ares
- Laboratory 35, C. Grupo Interdisciplinar de Sistemas Complejos and Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Laboratory B08, Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Laboratory 216, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan R Luque-Ortega
- Laboratory S07, Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
6
|
Abstract
The ancestral strain of Bacillus subtilis NCIB3610 (3610) bears a large, low-copy-number plasmid, called pBS32, that was lost during the domestication of laboratory strain derivatives. Selection against pBS32 may have been because it encodes a potent inhibitor of natural genetic competence (ComI), as laboratory strains were selected for high-frequency transformation. Previous studies have shown that pBS32 and its sibling, pLS32 in Bacillus subtilis subsp. natto, encode a replication initiation protein (RepN), a plasmid partitioning system (AlfAB), a biofilm inhibitor (RapP), and an alternative sigma factor (SigN) that can induce plasmid-mediated cell death in response to DNA damage. Here, we review the literature on pBS32/pLS32, the genes found on it, and their associated phenotypes.
Collapse
|
7
|
Involvement of Chromosomally Encoded Homologs of the RRNPP Protein Family in Enterococcus faecalis Biofilm Formation and Urinary Tract Infection Pathogenesis. J Bacteriol 2020; 202:JB.00063-20. [PMID: 32540933 DOI: 10.1128/jb.00063-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen capable of causing infections, including endocarditis and urinary tract infections (UTI). One of the well-characterized quorum-sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes, including sporulation, competence, conjugation, nutrient sensing, biofilm formation, and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the genome of the multidrug-resistant strain V583 for additional RRNPP homologs using computational searches and refined those identified hits for predicted structural similarities to known RRNPP family members. This led us to investigate the contribution of the chromosomally encoded RRNPP homologs to biofilm processes and pathogenesis in a catheter-associated urinary tract infection (CAUTI) model. In this study, we identified five such homologs and report that 3 of the 5 homologs, EF0073, EF1599, and EF1316, affect biofilm formation as well as outcomes in the CAUTI model.IMPORTANCE Enterococcus faecalis causes health care-associated infections and displays resistance to a variety of broad-spectrum antibiotics by acquisition of resistance traits as well as the ability to form biofilms. Even though a growing number of factors related to biofilm formation have been identified, mechanisms that contribute to biofilm formation are still largely unknown. Members of the RRNPP protein family regulate a diverse set of biological reactions in low-G+C Gram-positive bacteria (Firmicutes). Here, we identify three predicted structural homologs of the RRNPP family, EF0073, EF1599, and EF1316, which affect biofilm formation and CAUTI pathogenesis.
Collapse
|
8
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
9
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
10
|
Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2019; 22:540-556. [PMID: 31782608 DOI: 10.1111/1462-2920.14880] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.
Collapse
Affiliation(s)
- Ludovic Vial
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5557 Ecologie Microbienne, 69622, Villeurbanne, France.,INRA, UMR1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| |
Collapse
|
11
|
Kohler V, Keller W, Grohmann E. Regulation of Gram-Positive Conjugation. Front Microbiol 2019; 10:1134. [PMID: 31191478 PMCID: PMC6540685 DOI: 10.3389/fmicb.2019.01134] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type IV Secretion Systems (T4SSs) are membrane-spanning multiprotein complexes dedicated to protein secretion or conjugative DNA transport (conjugation systems) in bacteria. The prototype and best-characterized T4SS is that of the Gram-negative soil bacterium Agrobacterium tumefaciens. For Gram-positive bacteria, only conjugative T4SSs have been characterized in some biochemical, structural, and mechanistic details. These conjugation systems are predominantly encoded by self-transmissible plasmids but are also increasingly detected on integrative and conjugative elements (ICEs) and transposons. Here, we report regulatory details of conjugation systems from Enterococcus model plasmids pIP501 and pCF10, Bacillus plasmid pLS1, Clostridium plasmid pCW3, and staphylococcal plasmid pSK41. In addition, regulation of conjugative processes of ICEs (ICEBs1, ICESt1, ICESt3) by master regulators belonging to diverse repressor families will be discussed. A special focus of this review lies on the comparison of regulatory mechanisms executed by proteins belonging to the RRNPP family. These regulators share a common fold and govern several essential bacterial processes, including conjugative transfer.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| |
Collapse
|
12
|
Cardoso PDF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367-1381. [PMID: 31104082 DOI: 10.1007/s00294-019-00993-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiquitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-sensing systems from the RNPP family. Among them, the Rap-Phr systems, which are well-described in Bacillus subtilis, regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The rap-phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite a high variability in their sequences, there is a remarkable association between closely related strains and their Rap-Phr profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and diversity of Rap-Phr systems could strictly control the commitment to sporulation and then improve the adaptation capacities of the bacteria to environmental changes.
Collapse
Affiliation(s)
- Priscilla de F Cardoso
- Depto. Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
13
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
14
|
Dubois T, Lemy C, Perchat S, Lereclus D. The signaling peptide NprX controlling sporulation and necrotrophism is imported into Bacillus thuringiensis by two oligopeptide permease systems. Mol Microbiol 2019; 112:219-232. [PMID: 31017318 DOI: 10.1111/mmi.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
The infectious cycle of Bacillus thuringiensis in the insect host is regulated by quorum sensors of the RNPP family. The activity of these regulators is modulated by their cognate signaling peptides translocated into the bacterial cells by oligopeptide permeases (Opp systems). In B. thuringiensis, the quorum sensor NprR is a bi-functional regulator that connects sporulation to necrotrophism. The binding of the signaling peptide NprX switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. Here, we report that NprX is imported into the bacterial cells by two different oligopeptide permease systems. The first one is Opp, the system known to be involved in the import of the signaling peptide PapR in B. thuringiensis and Bacillus cereus. The second, designated as Npp (NprX peptide permease), was not previously described. We show that at least two substrate binding proteins (SBPs) are able to translocate NprX through OppBCDF. In contrast, we demonstrate that a unique SBP (NppA) can translocate NprX through NppDFBC. We identified the promoter of the npp operon, and we showed that transcription starts at the onset of stationary phase and is repressed by the nutritional regulator CodY during the exponential growth phase.
Collapse
Affiliation(s)
- Thomas Dubois
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Christelle Lemy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
15
|
Dale JL, Raynor MJ, Ty MC, Hadjifrangiskou M, Koehler TM. A Dual Role for the Bacillus anthracis Master Virulence Regulator AtxA: Control of Sporulation and Anthrax Toxin Production. Front Microbiol 2018; 9:482. [PMID: 29599764 PMCID: PMC5862856 DOI: 10.3389/fmicb.2018.00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
Bacillus anthracis is an endemic soil bacterium that exhibits two different lifestyles. In the soil environment, B. anthracis undergoes a cycle of saprophytic growth, sporulation, and germination. In mammalian hosts, the pathogenic lifestyle of B. anthracis is spore germination followed by vegetative cell replication, but cells do not sporulate. During infection, and in specific culture conditions, transcription of the structural genes for the anthrax toxin proteins and the biosynthetic operon for capsule synthesis is positively controlled by the regulatory protein AtxA. A critical role for the atxA gene in B. anthracis virulence has been established. Here we report an inverse relationship between toxin production and sporulation that is linked to AtxA levels. During culture in conditions favoring sporulation, B. anthracis produces little to no AtxA. When B. anthracis is cultured in conditions favoring toxin gene expression, AtxA is expressed at relatively high levels and sporulation rate and efficiency are reduced. We found that a mutation within the atxA promoter region resulting in AtxA over-expression leads to a marked sporulation defect. The sporulation phenotype of the mutant is dependent upon pXO2-0075, an atxA-regulated open reading frame located on virulence plasmid pXO2. The predicted amino acid sequence of the pXO2-0075 protein has similarity to the sensor domain of sporulation sensor histidine kinases. It was shown previously that pXO2-0075 overexpression suppresses sporulation. We have designated pXO2-0075 “skiA” for “sporulation kinase inhibitor.” Our results indicate that in addition to serving as a positive regulator of virulence gene expression, AtxA modulates B. anthracis development.
Collapse
Affiliation(s)
- Jennifer L Dale
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Malik J Raynor
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Maureen C Ty
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maria Hadjifrangiskou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
16
|
Fazion F, Perchat S, Buisson C, Vilas-Bôas G, Lereclus D. A plasmid-borne Rap-Phr system regulates sporulation ofBacillus thuringiensisin insect larvae. Environ Microbiol 2017; 20:145-155. [DOI: 10.1111/1462-2920.13946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/28/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Fernanda Fazion
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
- Universidade Estadual de Londrina, Bio/CCB; Londrina Brazil
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | - Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
17
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
18
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
19
|
Cabrera R, Rodríguez-Romero A, Guarneros G, de la Torre M. New insights into the interaction between the quorum-sensing receptor NprR and its DNA target, or the response regulator Spo0F. FEBS Lett 2016; 590:3243-53. [PMID: 27543719 DOI: 10.1002/1873-3468.12371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Abstract
The NprR protein and NprRB signaling peptide comprise a bifunctional quorum-sensing system from the Bacillus cereus group that is involved in transcriptional activation through DNA-binding and in sporulation initiation by binding to Spo0F. We characterized in vitro the direct interactions established by NprR that may be relevant for performing its two functions. Apo-NprR interacted with Spo0F, but not with the target DNA. The NprRB signaling peptide SSKPDIVG that binds strongly to Apo-NprR, failed to bind and disrupt the NprR-Spo0F complex. Finally, the NprR-NprRB complex bound both to Spo0F and the target DNA with similar affinity. Based on our findings, we propose that rather than a switch triggered by NprRB, the NprR/NprRB ratio and the availability of Spo0F binding sites define the function of NprR.
Collapse
Affiliation(s)
- Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Mayra de la Torre
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.
| |
Collapse
|
20
|
Perchat S, Talagas A, Poncet S, Lazar N, Li de la Sierra-Gallay I, Gohar M, Lereclus D, Nessler S. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis. PLoS Pathog 2016; 12:e1005779. [PMID: 27483473 PMCID: PMC4970707 DOI: 10.1371/journal.ppat.1005779] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/29/2016] [Indexed: 11/28/2022] Open
Abstract
Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. Bacillus thuringiensis is an entomopathogenic bacterium used worldwide as biopesticide. Its life cycle in insect larvae, which includes virulence, necrotrophism and sporulation, is regulated by cell-cell communication systems involving sensor proteins directly regulated by re-internalized peptide pheromones. After toxaemia caused by pore-forming Cry toxins, the PlcR sensor activates the production of virulence factors leading to insect death. B. thuringiensis then shifts to a necrotrophic lifestyle preceding sporulation. Previously, we showed that this process is regulated by the sensor NprR, which, in the presence of its cognate signaling peptide NprX, adopts a tetrameric conformation allowing its binding to specific DNA sequences and transcription of genes involved in survival of the bacteria in insect cadavers. Here, we demonstrate that, in the absence of NprX, NprR is a dimer, which negatively controls sporulation, independently of its transcription factor activity. We show that NprR prevents the phosphorylation of the phosphoprotein Spo0F and inhibits the phosphorylation cascade regulating sporulation. This demonstrates that NprX binding switches the bifunctional sensor NprR from a dimeric sporulation inhibitor to a tetrameric transcription factor. By establishing a close coordination between cell density, necrotrophism and sporulation, this communication system benefits a pathogenic bacterium feeding on death matter like B. thuringiensis. NprR is found in all strains of the B. cereus group, including B. anthracis and B. cereus involved in food poisoning. Our results may provide new insights for controlling the development and the survival of these undesirable bacteria.
Collapse
Affiliation(s)
- Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Noureddine Lazar
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail: (DL); (SN)
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (DL); (SN)
| |
Collapse
|
21
|
Babel H, Bischofs IB. Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs). BMC SYSTEMS BIOLOGY 2016; 10:35. [PMID: 27122155 PMCID: PMC4849100 DOI: 10.1186/s12918-016-0274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Background Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heiko Babel
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany
| | - Ilka B Bischofs
- Center for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany. .,Center for the Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
22
|
Verplaetse E, Slamti L, Gohar M, Lereclus D. Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Res Microbiol 2016; 168:388-393. [PMID: 27106256 DOI: 10.1016/j.resmic.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
The spore-forming bacterium Bacillus thuringiensis is an efficient biofilm producer, responsible for persistent contamination of industrial food processing systems. B. thuringiensis biofilms are highly heterogeneous bacterial structures in which three distinct cell types controlled by quorum sensing regulators were identified: PlcR-controlled virulent cells, NprR-dependent necrotrophic cells and cells committed to sporulation, a differentiation process controlled by Rap phosphatases and Spo0A-P. Interestingly, a cell lineage study revealed that, in LB medium or in insect larvae, only necrotrophic cells became spores. Here we analyzed cellular differentiation undertaken by cells growing in biofilm in a medium optimized for sporulation. No virulent cells were identified; surprisingly, two distinct routes could lead to differentiation as a spore in this growth condition: the NprR-dependent route, followed by the majority of cells, and the newly identified NprR-independent route, which is followed by 20% of sporulating cells.
Collapse
Affiliation(s)
- Emilie Verplaetse
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Leyla Slamti
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
23
|
Rösch TC, Graumann PL. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor. J Biol Chem 2015; 290:20221-32. [PMID: 26112413 DOI: 10.1074/jbc.m115.664110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/23/2022] Open
Abstract
Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon.
Collapse
Affiliation(s)
- Thomas C Rösch
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany, and the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| | - Peter L Graumann
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
24
|
Hoover SE, Perez AJ, Tsui HCT, Sinha D, Smiley DL, DiMarchi RD, Winkler ME, Lazazzera BA. A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Mol Microbiol 2015; 97:229-43. [PMID: 25869931 DOI: 10.1111/mmi.13029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/20/2022]
Abstract
The Phr peptides of the Bacillus species mediate quorum sensing, but their identification and function in other species of bacteria have not been determined. We have identified a Phr peptide quorum-sensing system (TprA/PhrA) that controls the expression of a lantibiotic gene cluster in the Gram-positive human pathogen, Streptococcus pneumoniae. Lantibiotics are highly modified peptides that are part of the bacteriocin family of antimicrobial peptides. We have characterized the basic mechanism for a Phr-peptide signaling system in S. pneumoniae and found that it induces the expression of the lantibiotic genes when pneumococcal cells are at high density in the presence of galactose, a main sugar of the human nasopharynx, a highly competitive microbial environment. Activity of the Phr peptide system is not seen when pneumococcal cells are grown with glucose, the preferred carbon source and the most prevalent sugar encountered by S. pneumoniae during invasive disease. Thus, the lantibiotic genes are expressed under the control of both cell density signals via the Phr peptide system and nutritional signals from the carbon source present, suggesting that quorum sensing and the lantibiotic machinery may help pneumococcal cells compete for space and resources during colonization of the nasopharynx.
Collapse
Affiliation(s)
- Sharon E Hoover
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| | - Amilcar J Perez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - David L Smiley
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana, 47405, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana, 47405, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Jordan Hall, 1001 East Third Street, Bloomington, Indiana, 47405, USA
| | - Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, California, 90095, USA
| |
Collapse
|
25
|
Yang Y, Wu HJ, Lin L, Zhu QQ, Borriss R, Gao XW. A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105. Appl Microbiol Biotechnol 2015; 99:7241-52. [PMID: 25921807 DOI: 10.1007/s00253-015-6604-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/16/2023]
Abstract
According to the change of environment, soil-dwelling Bacillus species differentiate into distinct subpopulations, such as spores and competent cells. Rap-Phr systems have been found to be involved in this differentiation circuit by interacting with major regulatory proteins, such as Spo0A, ComA, and DegU. In this study, we report that the plasmid-born RapQ-PhrQ system found in Bacillus amyloliquefaciens B3 affects three regulatory pathways in the heterologous host Bacillus subtilis. Expression of rapQ in B. subtilis OKB105 strongly suppressed its sporulation efficiency, transformation efficiency, and surfactin production. Co-expression of phrQ or addition of synthesized PhrQ pentapeptide in vitro could compensate for the suppressive effects caused by rapQ. We also found that expression of rapQ decreased the transcriptional level of the sporulation-related gene spoIIE and surfactin synthesis-related gene srfA; meanwhile, the transcriptional levels of these genes could be rescued by co-expression of phrQ and in vitro addition of PhrQ pentapeptide. Electrophoretic mobility shift (EMSA) result also showed that RapQ could bind to ComA without interacting with ComA binding to DNA, and PhrQ pentapeptide antagonized RapQ activity in vitro. These results indicate that this new plasmid-born RapQ-PhrQ system controls sporulation, competent cell formation, and surfactin production in B. subtilis OKB105.
Collapse
Affiliation(s)
- Yang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection. mBio 2015; 6:e00138-15. [PMID: 25922389 PMCID: PMC4436061 DOI: 10.1128/mbio.00138-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host’s death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the cellular level and if they are switched on in all cells. We used an insect model of infection and biofilms to decipher the cellular differentiation of this bacterium under naturalistic conditions. Our study reveals the connection and lineage existing among virulent, necrotrophic, and sporulating cells. It also shows that the complex conditions encountered in biofilms and during infection generate great heterogeneity inside the population, which might reflect a bet-hedging strategy to ameliorate survival. These data generate new insights into the role of regulatory networks in the adaptation of a pathogen to its host.
Collapse
|
27
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
28
|
Slamti L, Perchat S, Huillet E, Lereclus D. Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel) 2014; 6:2239-55. [PMID: 25089349 PMCID: PMC4147580 DOI: 10.3390/toxins6082239] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial cell-cell communication or quorum sensing (QS) is a biological process commonly described as allowing bacteria belonging to a same pherotype to coordinate gene expression to cell density. In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors regulated by secreted and re-imported signaling peptides. The Bacillus quorum sensors Rap, NprR, and PlcR were previously identified as the first members of a new protein family called RNPP. Except for the Rap proteins, these RNPP regulators are transcription factors that directly regulate gene expression. QS regulates important biological functions in bacteria of the Bacillus cereus group. PlcR was first characterized as the main regulator of virulence in B. thuringiensis and B. cereus. More recently, the PlcR-like regulator PlcRa was characterized for its role in cysteine metabolism and in resistance to oxidative stress. The NprR regulator controls the necrotrophic properties allowing the bacteria to survive in the infected host. The Rap proteins negatively affect sporulation via their interaction with a phosphorelay protein involved in the activation of Spo0A, the master regulator of this differentiation pathway. In this review we aim at providing a complete picture of the QS systems that are sequentially activated during the lifecycle of B. cereus and B. thuringiensis in an insect model of infection.
Collapse
Affiliation(s)
- Leyla Slamti
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Stéphane Perchat
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Eugénie Huillet
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| | - Didier Lereclus
- INRA, Unité MICALIS UMR-1319, La Minière, 78280 Guyancourt, France.
| |
Collapse
|
29
|
Singh PK, Meijer WJJ. Diverse regulatory circuits for transfer of conjugative elements. FEMS Microbiol Lett 2014; 358:119-28. [PMID: 24995588 DOI: 10.1111/1574-6968.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022] Open
Abstract
Conjugation systems are present on many plasmids as well as on chromosomally integrated elements. Conjugation, which is a major route by which bacteria exchange genetic material, is a complex and energy-consuming process. Hence, a shared feature of conjugation systems is that expression of the genes involved is strictly controlled in such a way that conjugation is kept in a default 'OFF' state and that the process is switched on only under conditions that favor the transfer of the conjugative element into a recipient cell. However, there is a remarkable diversity in the way by which conjugation genes present on different transferable elements are regulated. Here, we review these diverse regulatory circuits on the basis of several prototypes with a special focus on the recently discovered regulation of the conjugation genes present on the native Bacillus subtilis plasmid pLS20.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
30
|
Singh PK, Ramachandran G, Ramos-Ruiz R, Peiró-Pastor R, Abia D, Wu LJ, Meijer WJJ. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 2013; 9:e1003892. [PMID: 24204305 PMCID: PMC3814332 DOI: 10.1371/journal.pgen.1003892] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. Bacteria evolve rapidly due to their short generation time and their ability to exchange genetic material, which can occur via different processes, collectively named Horizontal Gene Transfer (HGT). Most bacteria contain, besides a single chromosome, autonomously replicating units called plasmids. Many plasmids carry genes enabling them to be transferred into plasmid-free bacteria. This process, called conjugation, contributes significantly to HGT. Many plasmids also contain antibiotic resistance genes. Therefore, plasmid conjugation plays a major role in the spread of antibiotic resistance. Understanding the regulation of conjugation genes is essential for designing strategies to combat the spread of antibiotic resistance. We have studied the regulation of the native plasmid pLS20 from Bacillus subtilis. Besides being a soil bacterium, B. subtilis is a gut commensal in animals and humans. Here we unraveled the mechanisms controlling conjugation and found that pLS20 conjugation genes become activated when plasmid-free recipient cells are present. We have identified the repressor protein that keeps conjugation in an ‘OFF’ state, and an anti-repressor that activates conjugation. The activity of the anti-repressor is inhibited by a pLS20-encoded peptide that is secreted from the cell and can be absorbed by cells, after a secondary processing step. Ultimately, it is the signaling-peptide that dictates when conjugation genes become activated.
Collapse
Affiliation(s)
- Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Ramón Peiró-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Zouhir S, Perchat S, Nicaise M, Perez J, Guimaraes B, Lereclus D, Nessler S. Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Res 2013; 41:7920-33. [PMID: 23793817 PMCID: PMC3763537 DOI: 10.1093/nar/gkt546] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator NprR controls the expression of genes essential for the adaptative response of Bacillus cereus. NprR belongs to the RNPP family of directly regulated quorum sensors from Gram-positive bacteria. It is activated by the re-imported signaling peptide NprX. To elucidate the activation mechanism of this quorum-sensing system, we analyzed the conformation changes induced on binding of NprX. We solved the crystal structure of the NprR/NprX binary complex and characterized the apo form of NprR in solution. We demonstrated that apo NprR is a dimer that switches to a tetramer in the presence of NprX. Mutagenesis, and functional analysis allowed us to identify the protein and peptide residues directly involved in the NprR activation process. Based on the comparison with the Rap proteins, we propose a model for the peptide-induced conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences.
Collapse
Affiliation(s)
- Samira Zouhir
- CNRS, UPR3082, Laboratoire d'Enzymologie et Biochimie Structurales, Gif sur Yvette 91198, France, INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France, AgroParisTech, UMR1319 Micalis, Jouy-en-Josas 78350, France, Université Paris-Sud, UMR8619, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay 91405, France and Synchrotron SOLEIL, 91192 Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
32
|
A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 2013; 195:2437-48. [PMID: 23524609 DOI: 10.1128/jb.02030-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus subtilis biofilm formation is tightly regulated by elaborate signaling pathways. In contrast to domesticated lab strains of B. subtilis which form smooth, essentially featureless colonies, undomesticated strains such as NCIB 3610 form architecturally complex biofilms. NCIB 3610 also contains an 80-kb plasmid absent from laboratory strains, and mutations in a plasmid-encoded homolog of a Rap protein, RapP, caused a hyperrugose biofilm phenotype. Here we explored the role of rapP phrP in biofilm formation. We found that RapP is a phosphatase that dephosphorylates the intermediate response regulator Spo0F. RapP appears to employ a catalytic glutamate to dephosphorylate the Spo0F aspartyl phosphate, and the implications of the RapP catalytic glutamate are discussed. In addition to regulating B. subtilis biofilm formation, we found that RapP regulates sporulation and genetic competence as a result of its ability to dephosphorylate Spo0F. Interestingly, while rap phr gene cassettes routinely form regulatory pairs; i.e., the mature phr gene product inhibits the activity of the rap gene product, the phrP gene product did not inhibit RapP activity in our assays. RapP activity was, however, inhibited by PhrH in vivo but not in vitro. Additional genetic analysis suggests that RapP is directly inhibited by peptide binding. We speculate that PhrH could be subject to posttranslational modification in vivo and directly inhibit RapP activity or, more likely, PhrH upregulates the expression of a peptide that, in turn, directly binds to RapP and inhibits its Spo0F phosphatase activity.
Collapse
|
33
|
Dubois T, Perchat S, Verplaetse E, Gominet M, Lemy C, Aumont-Nicaise M, Grenha R, Nessler S, Lereclus D. Activity of the Bacillus thuringiensis NprR-NprX cell-cell communication system is co-ordinated to the physiological stage through a complex transcriptional regulation. Mol Microbiol 2013; 88:48-63. [PMID: 23388036 DOI: 10.1111/mmi.12168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 12/01/2022]
Abstract
NprR is a quorum sensor of the RNPP family found in bacteria of the Bacillus cereus group. In association with its cognate peptide NprX, NprR controls the expression of genes essential for survival and sporulation of Bacillus thuringiensis during its necrotrophic development in insects. Here, we report that the nprR-nprX genes are not autoregulated and are co-transcribed from a σ(A) -dependent promoter (PA ) located upstream from nprR. The transcription from PA starts at the onset of the stationary phase and is controlled by two transcriptional regulators: CodY and PlcR. The nutritional repressor CodY represses nprR-nprX transcription during the exponential growth phase and the quorum sensor PlcR activates nprR-nprX transcription at the onset of stationary phase. We show that nprX is also transcribed independently of nprR from two promoters, PH and PE , dependent on the sporulation-specific sigma factors, σ(H) and σ(E) respectively. Both promoters ensure nprX transcription during late stationary phase while transcription from PA has decreased. These results show that the activity of the NprR-NprX quorum sensing system is tightly co-ordinated to the physiological stage throughout the developmental process of the Bacillus.
Collapse
Affiliation(s)
- Thomas Dubois
- INRA, UMR1319 Micalis, La Minière, F-78280, Guyancourt, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog 2012; 8:e1002629. [PMID: 22511867 PMCID: PMC3325205 DOI: 10.1371/journal.ppat.1002629] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.
Collapse
|
35
|
Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. J Bacteriol 2012; 194:1378-88. [PMID: 22267516 DOI: 10.1128/jb.06747-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap proteins in Bacillus subtilis regulate the phosphorylation level or the DNA-binding activity of response regulators such as Spo0F, involved in sporulation initiation, or ComA, regulating competence development. Rap proteins can be inhibited by specific peptides generated by the export-import processing pathway of the Phr proteins. Rap proteins have a modular organization comprising an amino-terminal alpha-helical domain connected to a domain formed by six tetratricopeptide repeats (TPR). In this study, the molecular basis for the specificity of the RapA phosphatase for its substrate, phosphorylated Spo0F (Spo0F∼P), and its inhibitor pentapeptide, PhrA, was analyzed in part by generating chimeric proteins with RapC, which targets the DNA-binding domain of ComA, rather than Spo0F∼P, and is inhibited by the PhrC pentapeptide. In vivo analysis of sporulation efficiency or competence-induced gene expression, as well as in vitro biochemical assays, allowed the identification of the amino-terminal 60 amino acids as sufficient to determine Rap specificity for its substrate and the central TPR3 to TPR5 (TPR3-5) repeats as providing binding specificity toward the Phr peptide inhibitor. The results allowed the prediction and testing of key residues in RapA that are essential for PhrA binding and specificity, thus demonstrating how the widespread structural fold of the TPR is highly versatile, using a common interaction mechanism for a variety of functions in eukaryotic and prokaryotic organisms.
Collapse
|
36
|
Baker MD, Neiditch MB. Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol 2011; 9:e1001226. [PMID: 22215984 PMCID: PMC3246441 DOI: 10.1371/journal.pbio.1001226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/14/2011] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to inhibit ComA activity and how PhrF in turn antagonizes the RapF-ComA interaction were unknown. Here we present the X-ray crystal structure of RapF in complex with the ComA DNA binding domain. Along with biochemical and genetic studies, the X-ray crystal structure reveals how RapF mechanistically regulates ComA function. Interestingly, we found that a RapF surface mimics DNA to block ComA binding to its target promoters. Furthermore, RapF is a monomer either alone or in complex with PhrF, and it undergoes a conformational change upon binding to PhrF, which likely causes the dissociation of ComA from the RapF-ComA complex. Finally, we compare the structure of RapF complexed with the ComA DNA binding domain and the structure of RapH complexed with Spo0F. This comparison reveals that RapF and RapH have strikingly similar overall structures, and that they have evolved different, non-overlapping surfaces to interact with diverse cellular targets. To our knowledge, the data presented here reveal the first atomic level insight into the inhibition of response regulator DNA binding by an anti-activator. Compounds that affect the interaction of Rap and Rap-like proteins with their target domains could serve to regulate medically and commercially important phenotypes in numerous Bacillus species, such as sporulation in B. anthracis and sporulation and the production of Cry protein endotoxin in B. thuringiensis.
Collapse
Affiliation(s)
- Melinda D. Baker
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 2011; 108:5027-32. [PMID: 21383169 DOI: 10.1073/pnas.1016657108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.
Collapse
|
38
|
Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 2011; 9:e1000589. [PMID: 21346797 PMCID: PMC3035606 DOI: 10.1371/journal.pbio.1000589] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/22/2010] [Indexed: 01/03/2023] Open
Abstract
Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic "switch" residue to an internal position when the β4-α4 loop adopts an active-site proximal conformation.
Collapse
|
39
|
Stranzl GR, Santelli E, Bankston LA, La Clair C, Bobkov A, Schwarzenbacher R, Godzik A, Perego M, Grynberg M, Liddington RC. Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. J Biol Chem 2011; 286:8448-8458. [PMID: 21216948 DOI: 10.1074/jbc.m110.207126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.
Collapse
Affiliation(s)
- Gudrun R Stranzl
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eugenio Santelli
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Laurie A Bankston
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Chandra La Clair
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Andrey Bobkov
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert Schwarzenbacher
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Adam Godzik
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Marta Perego
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Marcin Grynberg
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,; the Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Robert C Liddington
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,.
| |
Collapse
|
40
|
Complete nucleotide sequence and determination of the replication region of the sporulation inhibiting plasmid p576 from Bacillus pumilus NRS576. Res Microbiol 2010; 161:772-82. [PMID: 20863889 DOI: 10.1016/j.resmic.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Large plasmids, presumably replicating via the theta mechanism, have been identified in numerous gram-positive bacteria. However, their characterization is rather poor and predominantly limited to those harbored by some (opportunistic) pathogenic bacteria. Here we determined the DNA sequence of the 43.3 kb plasmid p576 from Bacillus pumilus strain NRS576, the first B. pumilus theta-replicating plasmid sequenced. Plasmid p576 has a modular structure, but surprisingly, it does not seem to encode a Rep protein found on most theta-replicating plasmids. However, a ∼1 kb region was identified showing homology with the Rep-independent replication region of Bacillus subtilis plasmid pLS20, and we demonstrated that this region is sufficient for autonomous replication. The plasmid contains various large direct repeat sequences. A likely function could be attributed to at least 15 putative p576 genes. Some of these are predicted to be involved in stable maintenance of the plasmid; others are likely to encode proteins involved in conjugation. p576 also carries a rap-phr cassette whose possible function is discussed.
Collapse
|
41
|
Purohit M, Sassi-Gaha S, Rest RF. Rapid sporulation of Bacillus anthracis in a high iron, glucose-free medium. J Microbiol Methods 2010; 82:282-7. [PMID: 20621133 DOI: 10.1016/j.mimet.2010.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/01/2010] [Indexed: 11/26/2022]
Abstract
Spores are the infectious form of Bacillus anthracis (BA), causing cutaneous, inhalation and gastrointestinal anthrax. Because of the possible use of BA spores in a bioterrorism attack, there is considerable interest in studying spore biology. In the laboratory, however, it takes a number of days to prepare spores. Standard sporulation protocols, such as the use of 'PA broth', allow sporulation of BA to occur in 3 to 5 days. Another method employs growth of BA on plates in the dark for several days until they have efficiently sporulated. In efforts to determine the effect of iron on gene expression in BA, we grew BA Sterne strain 7702 in a minimal defined medium (CDM; Koppisch et al., 2005) with various concentrations of iron and glucose. As part of our initial observations, we monitored BA sporulation in CDM via light microscopy. In glucose-free CDM containing 1.5mM Fe(NO(3))(3) (CDM-Fe), >95% of the BA sporulated by 30 h; a far shorter time period than expected. We pursued this observation and we further characterized spores derived from PA and CDM-Fe media. Purified spores derived from PA or CDM-Fe had similar morphologies when viewed by light or electron microscopy, and were equally resistant to harsh conditions including heat (65 degrees C), ice and fresh 30% H(2)O(2). Spore viability in long term cold storage in water was similar for the two spore preparations. Extracted spore coat proteins were evaluated by SDS-PAGE and silver staining, which revealed distinct protein profiles for PA and CDM-Fe spore coat extracts. ELISA assays were done to compare the interaction of the two spore preparations with rabbit antiserum raised against UV-killed Sterne strain 7702 spores prepared in PA medium. Spores from both media reacted identically with this antiserum. Finally, the interaction and fate of spores incubated with macrophages in vitro was very similar. In summary, BA spores induced in CDM-Fe or in PA medium are similar by several criteria, but show distinct extractable coat proteins. CDM-Fe liquid medium can be used for rapid production of BA spores, and could save considerable time in spore research studies.
Collapse
Affiliation(s)
- Mitali Purohit
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
42
|
Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 2010; 87:913-23. [PMID: 20502894 DOI: 10.1007/s00253-010-2651-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 03/29/2010] [Accepted: 04/20/2010] [Indexed: 11/29/2022]
Abstract
Quorum sensing is one of several mechanisms that bacterial cells use to interact with each other and coordinate certain physiological processes in response to cell density. This mechanism is mediated by extracellular signaling molecules; once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed), facilitating the expression of quorum sensing-dependent genes. Gram-positive bacteria mostly use oligo-peptides as signaling molecules. These cells have a special kind of quorum-sensing systems in which the receptor protein interacts directly with its cognate signaling peptide. The receptors are either Rap phosphatases or transcriptional regulators and integrate the protein family RNPP, from Rap, Npr, PlcR, and PrgX. These quorum-sensing systems control several microbial processes, like sporulation, virulence, biofilm formation, conjugation, and production of extracellular enzymes. Insights of the mechanism of protein-signaling peptide binding as well as the molecular interaction among receptor protein, signaling peptide, and target DNA have changed some earlier perceptions. In spite of the increased knowledge and the potential biotechnological applications of these quorum-sensing systems, few examples on engineering for biotechnological applications have been published. Real applications will arise only when researchers working in applied microbiology and biotechnology are aware of the importance of quorum-sensing systems for health and bioprocess applications.
Collapse
Affiliation(s)
- Jorge Rocha-Estrada
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera a la Victoria Km. 0.6, 83304, Hermosillo, Sonora, México
| | | | | | | |
Collapse
|
43
|
Dubey GP, Narayan A, Mattoo AR, Singh GP, Kurupati RK, Zaman MS, Aggarwal A, Baweja RB, Basu-Modak S, Singh Y. Comparative genomic study of spo0E family genes and elucidation of the role of Spo0E in Bacillus anthracis. Arch Microbiol 2008; 191:241-53. [DOI: 10.1007/s00203-008-0446-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 09/05/2008] [Accepted: 11/03/2008] [Indexed: 11/30/2022]
|
44
|
A unique GTP-dependent sporulation sensor histidine kinase in Bacillus anthracis. J Bacteriol 2008; 191:687-92. [PMID: 18931112 DOI: 10.1128/jb.01184-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus anthracis BA2291 gene codes for a sensor histidine kinase involved in the induction of sporulation. Genes for orthologs of the sensor domain of the BA2291 kinase exist in virulence plasmids in this organism, and these proteins, when expressed, inhibit sporulation by converting BA2291 to an apparent phosphatase of the sporulation phosphorelay. Evidence suggests that the sensor domains inhibit BA2291 by titrating its activating signal ligand. Studies with purified BA2291 revealed that this kinase is uniquely specific for GTP in the forward reaction and GDP in the reverse reaction. The G1 motif of BA2291 is highly modified from ATP-specific histidine kinases, and modeling this motif in the structure of the kinase catalytic domain suggested how guanine binds to the region. A mutation in the putative coiled-coil linker between the sensor domain and the catalytic domains was found to decrease the rate of the forward autophosphorylation reaction and not affect the reverse reaction from phosphorylated Spo0F. The results suggest that the activating ligand for BA2291 is a critical signal for sporulation and in a limited concentration in the cell. Decreasing the response to it either by slowing the forward reaction through mutation or by titration of the ligand by expressing the plasmid-encoded sensor domains switches BA2291 from an inducer to an inhibitor of the phosphorelay and sporulation.
Collapse
|
45
|
Identification of residues important for cleavage of the extracellular signaling peptide CSF of Bacillus subtilis from its precursor protein. J Bacteriol 2008; 190:6668-75. [PMID: 18689487 DOI: 10.1128/jb.00910-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential- to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues -1 to -5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the -2, -3, or -4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the -4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.
Collapse
|
46
|
Aronson AI, Hu H. The response to a specific germinant by Bacillus anthracis spores in primary mouse macrophages is modulated by a protein encoded on the pXO1 plasmid. Arch Microbiol 2008; 190:539-46. [PMID: 18654763 DOI: 10.1007/s00203-008-0403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/05/2008] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
Abstract
A Bacillus anthracis Sterne pXO1 plasmid-encoded protein designated Cot43 was found in coat extracts of purified spores. Cot43 is a tetratricopeptide repeat domain protein related to those which function as phosphatases in the sporulation phosphorelay and as regulators of competence and pathogenic factors. The synthesis of Cot43 began in the late exponential phase downstream from a sigmaA promoter (as mapped by RACE) and it was present at least until the formation of phase white endospores. There was specificity in the association of Cot43 with B. anthracis spores since Bacillus cereus producing Cot43 from a cloned gene had very little of this protein in spore coat extracts. In addition, Cot43 was synthesized by B. anthracis cells to the same extent in glucose-yeast extract and nutrient sporulation media, but was essentially absent from spores formed in the former. L-histidine is an important germinant for B. anthracis spores in macrophages, Spores produced by a mutant with a disruption of cot43 germinated in response to L-histidine both in vitro and within primary mouse macrophages earlier and more extensively than Sterne strain spores. The germination delay due to the presence of Cot43 would enhance spore survival and thus increase the chances for a successful infection.
Collapse
Affiliation(s)
- Arthur I Aronson
- Department of Biological Sciences, Purdue University, W. Lafayette, IN 47907, USA.
| | | |
Collapse
|
47
|
Virulence gene expression is independent of ResDE-regulated respiration control in Bacillus anthracis. J Bacteriol 2008; 190:5522-5. [PMID: 18539743 DOI: 10.1128/jb.00312-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ResDE two-component system regulates the synthesis of several components of the aerobic and anaerobic respiratory pathways in bacilli. The ResD response regulator transcription factor has been implicated in the regulation of virulence factors in a number of gram-positive species, including Bacillus anthracis. The precise deletions of resD and resE in B. anthracis that retained the classical respiratory phenotypes did not affect the expression of the gene for the protective antigen of the anthrax toxin, pagA, or that of the toxin regulator, atxA. The results indicate that the loss of ResDE-controlled respiratory capacity does not affect the synthesis of anthrax toxin.
Collapse
|
48
|
Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol 2008; 16:215-21. [PMID: 18374574 DOI: 10.1016/j.tim.2008.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/21/2008] [Accepted: 01/30/2008] [Indexed: 11/22/2022]
Abstract
The conversion of a bacterium from a non-pathogenic to a pathogenic existence is usually associated with the acquisition of virulence factors, the genes of which gain entry through bacteriophage infection, transposable elements or plasmid transfer. Pathogenesis research is mostly focused on how these factors enable the bacterium to infect the host or evade the repertoire of host defenses. Less effort is expended on understanding how the invading genes are affected by the complex regulatory circuits of the bacterium and how virulence is the result of converting these regulatory circuits to make them complicit with pathogenesis. An example of such a conversion is seen in Bacillus anthracis, and how acquired plasmid regulatory functions affect the activity of the regulatory processes of the bacterium, and vice versa, is now being revealed.
Collapse
|
49
|
Mattoo AR, Saif Zaman M, Dubey GP, Arora A, Narayan A, Jailkhani N, Rathore K, Maiti S, Singh Y. Spo0B of Bacillus anthracis - a protein with pleiotropic functions. FEBS J 2008; 275:739-52. [PMID: 18190531 DOI: 10.1111/j.1742-4658.2007.06240.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spo0B is an important component of the phosphorelay signal transduction pathway, the pathway involved in the initiation of sporulation in Bacillus subtilis. Bioinformatic, phylogenetic and biochemical studies showed that Spo0B of Bacillus anthracis has evolved from citrate/malate kinases. During the course of evolution, Spo0B has retained the characteristic histidine kinase boxes H, N, F, G(1) and G(2), and has acquired nucleotide-binding domains, Walker A and Walker B, of ATPases. Owing to the presence of these domains, autophosphorylation and ATPase activity was observed in Spo0B of B. anthracis. Mutational studies showed that among the six histidine residues, His13 of the H-box is involved in the autophosphorylation activity of Spo0B, whereas Lys33 of the Walker A domain is associated with the ATPase activity of the protein. Thermodynamic and binding studies of the binding of Mg-ATP to Spo0B using isothermal titration calorimetry (ITC) suggested that the binding is driven by favorable entropy changes and that the reaction is exothermic, with an apparent dissociation constant (K(d)) equal to 0.02 mm. The value of the dissociation constant (K(d) = 0.05 mm) determined by the intrinsic fluorescence of trytophan of Spo0B was similar to that obtained by ITC studies. The purified Spo0B of B. anthracis also showed nucleoside diphosphate kinase-like activity of phosphate transfer from nucleoside triphosphate to nucleoside diphosphate. This is the first evidence for Spo0B of B. anthracis as an enzyme with histidine kinase and ATPase activities, which may have important roles to play in sporulation and pathogenesis.
Collapse
Affiliation(s)
- Abid R Mattoo
- Allergy and Infectious Diseases, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Smits WK, Bongiorni C, Veening JW, Hamoen LW, Kuipers OP, Perego M. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Mol Microbiol 2007; 65:103-20. [PMID: 17581123 DOI: 10.1111/j.1365-2958.2007.05776.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bacterial differentiation, mechanisms have evolved to limit cells to a single developmental pathway. The establishment of genetic competence in Bacillus subtilis is controlled by a complex regulatory circuit that is highly interconnected with the developmental pathway for spore formation, and the two pathways appear to be mutually exclusive. Here we show by in vitro and in vivo analyses that a member of the Rap family of proteins, RapH, is activated directly by the late competence transcription factor ComK, and is capable of inhibiting both competence and sporulation. Importantly, RapH is the first member of the Rap family that demonstrates dual specificity, by dephosphorylating the Spo0F-P response regulator and inhibiting the DNA-binding activity of ComA. The protein thus acts at the stage where competence is well initiated, and prevents initiation of sporulation in competent cells as well as contributing to the escape from the competent state. A deletion of rapH induces both differentiation pathways and interferes with their temporal separation. Together, these results indicate that RapH is an integral part of a multifactorial regulatory circuit affecting the cell's decision between distinct developmental pathways.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|