1
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
2
|
Moreau F, Atamanyuk D, Blaukopf M, Barath M, Herczeg M, Xavier NM, Monbrun J, Airiau E, Henryon V, Leroy F, Floquet S, Bonnard D, Szabla R, Brown C, Junop MS, Kosma P, Gerusz V. Potentiating Activity of GmhA Inhibitors on Gram-Negative Bacteria. J Med Chem 2024; 67:6610-6623. [PMID: 38598312 PMCID: PMC11056994 DOI: 10.1021/acs.jmedchem.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.
Collapse
Affiliation(s)
- François Moreau
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| | | | - Markus Blaukopf
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
| | - Marek Barath
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Institute
of Chemistry, Center for Glycomics, Slovak
Academy of Sciences, Dúbravská cesta 9, Bratislava SK-845 38, Slovakia
| | - Mihály Herczeg
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Department
of Pharmaceutical Chemistry, University
of Debrecen, Debrecen 4032, Hungary
| | - Nuno M. Xavier
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, Lisboa 1749-016, Portugal
| | | | | | | | - Frédéric Leroy
- Carbosynth
Limited, 8&9 Old
Station Business Park, Compton, Berkshire RG20 6NE, U.K.
| | | | - Damien Bonnard
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| | - Robert Szabla
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Chris Brown
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Murray S. Junop
- Department
of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences, Muthgasse
18, Vienna A-1190, Austria
| | - Vincent Gerusz
- Mutabilis, 102 Avenue Gaston Roussel, Romainville 93230, France
| |
Collapse
|
3
|
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Biochimie 2023; 214:216-227. [PMID: 37499896 DOI: 10.1016/j.biochi.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antimicrobial peptides (AMPs) are essential for defence against pathogens in all living organisms and possessed activities against bacteria, fungi, viruses, parasites and even cancer cells. AMPs are short peptides containing 12-100 amino acids conferring a net positive charge and an amphiphilic property in most cases. Although, anionic AMPs also exist. AMPs can be classified based on the types of secondary structures, charge, hydrophobicity, amino acid composition, length, etc. Their mechanism of action usually includes a membrane disruption process through pore formation (three different models have been described, barrel-stave, toroidal or carpet model) but AMPs can also penetrate and impair intracellular functions. Besides their activity against pathogens, they have also shown immunomodulatory properties in complex scenarios through many different interactions. The aim of this review to summarize knowledge about AMP's and discuss the potential application of AMPs as therapeutics, the challenges due to their limitations, including their susceptibility to degradation, the potential generation of AMP resistance, cost, etc. We also discuss the current FDA-approved drugs based on AMPs and strategies to circumvent natural AMPs' limitations.
Collapse
Affiliation(s)
- Anna Savitskaya
- Institute of Bioorganic Chemistry of Russian Academy of Science, Moscow, Russian Federation
| | - Jorge Masso-Silva
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, La Jolla, CA, USA
| | - Imen Haddaoui
- National Research Institute of Rural Engineering, Water and Forestry, University of Carthage, LR Valorization of Unconventional Waters, Ariana, Tunisia
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| |
Collapse
|
4
|
Ruest MK, Supina BSI, Dennis JJ. Bacteriophage steering of Burkholderia cenocepacia toward reduced virulence and increased antibiotic sensitivity. J Bacteriol 2023; 205:e0019623. [PMID: 37791751 PMCID: PMC10601696 DOI: 10.1128/jb.00196-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotic resistance in bacteria is a growing global concern and has spurred increasing efforts to find alternative therapeutics, such as the use of bacterial viruses, or bacteriophages. One promising approach is to use phages that not only kill pathogenic bacteria but also select phage-resistant survivors that are newly sensitized to traditional antibiotics, in a process called "phage steering." Members of the bacterial genus Burkholderia, which includes various human pathogens, are highly resistant to most antimicrobial agents, including serum immune components, antimicrobial peptides, and polymixin-class antibiotics. However, the application of phages in combination with certain antibiotics can produce synergistic effects that more effectively kill pathogenic bacteria. Herein, we demonstrate that Burkholderia cenocepacia serum resistance is due to intact lipopolysaccharide (LPS) and membranes, and phage-induced resistance altering LPS structure can enhance bacterial sensitivity not only to immune components in serum but also to membrane-associated antibiotics such as colistin. IMPORTANCE Bacteria frequently encounter selection pressure from both antibiotics and lytic phages, but little is known about the interactions between antibiotics and phages. This study provides new insights into the evolutionary trade-offs between phage resistance and antibiotic sensitivity. The creation of phage resistance through changes in membrane structure or lipopolysaccharide composition can simultaneously be a major cause of antibiotic sensitivity. Our results provide evidence of synergistic therapeutic efficacy in phage-antibiotic interactions and have implications for the future clinical use of phage steering in phage therapy applications.
Collapse
Affiliation(s)
- Marta K. Ruest
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Liu Y, Lin Y, Guan N, Song Y, Li Y, Xie X. A Lipopolysaccharide Synthesis Gene rfaD from Mesorhizobium huakuii Is Involved in Nodule Development and Symbiotic Nitrogen Fixation. Microorganisms 2022; 11:microorganisms11010059. [PMID: 36677351 PMCID: PMC9866225 DOI: 10.3390/microorganisms11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Rhizobium lipopolysaccharide (LPS) is an important component of the cell wall of gram-negative bacteria and serves as a signal molecule on the surface of rhizobia, participating in the symbiosis during rhizobia-legume interaction. In this study, we constructed a deletion mutant of ADP-L-glycerol-D-mannoheptosyl-6-exoisomerase (rfaD) of Mesorhizobium huakuii 7653R and a functional complementary strain. The results showed that the deletion of rfaD did not affect the free-living growth rate of 7653R, but that it did affect the LPS synthesis and that it increased sensitivity to abiotic stresses. The rfaD promoter-GUS reporter assay showed that the gene was mainly expressed in the infection zone of the mature nodules. The root nodules formation of the rfaD mutant was delayed during symbiosis with the host plant of Astragalus sinicus. The symbiotic phenotype analyses showed that the nodules of A. sinicus lost symbiotic nitrogen fixation ability, when inoculated with the rfaD mutant strain. In conclusion, our results reveal that the 7653R rfaD gene plays a crucial role in the LPS synthesis involved in the symbiotic interaction between rhizobia and A. sinicus. This study also provides new insights into the molecular mechanisms by which the rhizobia regulate their own gene expression and cell wall components enabling nodulation in legumes.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Guan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.L.); (X.X.); Tel.: +86-127-8728-1685 (Y.L.); +86-159-1855-2425 (X.X.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (X.X.); Tel.: +86-127-8728-1685 (Y.L.); +86-159-1855-2425 (X.X.)
| |
Collapse
|
6
|
Ghimire J, Guha S, Nelson BJ, Morici LA, Wimley WC. The Remarkable Innate Resistance of Burkholderia bacteria to Cationic Antimicrobial Peptides: Insights into the Mechanism of AMP Resistance. J Membr Biol 2022; 255:503-511. [PMID: 35435452 PMCID: PMC9576820 DOI: 10.1007/s00232-022-00232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 μM, despite all having sterilizing activity at ≤ 10 μM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Benjamin J. Nelson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112,To whom correspondence should be addressed at
| |
Collapse
|
7
|
Abstract
Kingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity. The K. kingae exopolysaccharide is a galactofuranose homopolymer called galactan and is encoded by the pamABC genes in the pamABCDE locus. In this study, we sought to define the mechanism by which galactan is tethered on the bacterial surface, a prerequisite for mediating evasion of host immune mechanisms. We found that the pamD and pamE genes encode glycosyltransferases and are required for synthesis of an atypical lipopolysaccharide (LPS) O-antigen. The LPS O-antigen in turn is required for anchoring of galactan, a novel mechanism for association of an exopolysaccharide with the bacterial surface.
Collapse
|
8
|
Goltermann L, Zhang M, Ebbensgaard AE, Fiodorovaite M, Yavari N, Løbner-Olesen A, Nielsen PE. Effects of LPS Composition in Escherichia coli on Antibacterial Activity and Bacterial Uptake of Antisense Peptide-PNA Conjugates. Front Microbiol 2022; 13:877377. [PMID: 35794919 PMCID: PMC9251361 DOI: 10.3389/fmicb.2022.877377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The physical and chemical properties of the outer membrane of Gram-negative bacteria including Escherichia coli have a significant impact on the antibacterial activity and uptake of antibiotics, including antimicrobial peptides and antisense peptide-peptide nucleic acid (PNA) conjugates. Using a defined subset of E. coli lipopolysaccharide (LPS) and envelope mutants, components of the LPS-core, which provide differential susceptibility toward a panel of bacterial penetrating peptide (BPP)-PNA conjugates, were identified. Deleting the outer core of the LPS and perturbing the inner core only sensitized the bacteria toward (KFF)3K-PNA conjugates, but not toward conjugates carrying arginine-based BPPs. Interestingly, the chemical composition of the outer LPS core as such, rather than overall hydrophobicity or surface charge, appears to determine the susceptibility to different BPP-PNA conjugates thereby clearly demonstrating the complexity and specificity of the interaction with the LPS/outer membrane. Notably, mutants with outer membrane changes conferring polymyxin resistance did not show resistance toward the BPP-PNA conjugates, thereby eliminating one possible route of resistance for these molecules. Finally, envelope weakening, through deletion of membrane proteins such as OmpA as well as some proteins previously identified as involved in cationic antimicrobial peptide uptake, did not significantly influence BPP-PNA conjugate activity.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Lise Goltermann
| | - Meiqin Zhang
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Marija Fiodorovaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Peter E. Nielsen
| |
Collapse
|
9
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
10
|
Liu B, Qian C, Wu P, Li X, Liu Y, Mu H, Huang M, Zhang Y, Jia T, Wang Y, Wang L, Zhang X, Huang D, Yang B, Feng L, Wang L. Attachment of Enterohemorrhagic Escherichia coli to Host Cells Reduces O Antigen Chain Length at the Infection Site That Promotes Infection. mBio 2021; 12:e0269221. [PMID: 34903041 PMCID: PMC8669466 DOI: 10.1128/mbio.02692-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Many enteropathogenic bacteria express a needle-like type III secretion system (T3SS) that translocates effectors into host cells promoting infection. O antigen (OAg) constitutes the outer layer of Gram-negative bacteria protecting bacteria from host immune responses. Shigella constitutively shortens the OAg molecule in its three-dimensional conformation by glucosylation, leading to enhanced T3SS function. However, whether and how other enteropathogenic bacteria shorten the OAg molecule that probably facilitates infection remain unknown. For the first time, we report a smart mechanism by which enterohemorrhagic Escherichia coli specifically reduces the size of the OAg molecule at the infection site upon sensing mechanical signals of intestinal epithelial cell attachment via the membrane protein YgjI. YgjI represses expression of the OAg chain length regulator gene fepE via the global regulator H-NS, leading to shortened OAg chains and injection of more T3SS effectors into host cells. However, bacteria express long-chain OAg in the intestinal lumen benefiting their survival. Animal experiments show that blocking this regulatory pathway significantly attenuates bacterial virulence. This finding enhances our understanding of interactions between the surfaces of bacterial and host cells and the way this interaction enhances bacterial pathogenesis. IMPORTANCE Little is known about the regulation of cell wall structure of enteropathogenic bacteria within the host. Here, we report that enterohemorrhagic Escherichia coli regulates its cell wall structure during the infection process, which balances its survival in the intestinal lumen and infection of intestinal epithelial cells. In the intestinal lumen, bacteria express long-chain OAg, which is located in the outer part of the cell wall, leading to enhanced resistance to antimicrobial peptides. However, upon epithelial cell attachment, bacteria sense this mechanical signal via a membrane protein and reduce the OAg chain length, resulting in enhanced injection into epithelial cells of T3SS effectors that mediate host cell infection. Similar regulation mechanisms of cell wall structure in response to host cell attachment may be widespread in pathogenic bacteria and closely related with bacterial pathogenesis.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiaodan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yang Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yuanyuan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiao Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Jiang X, Sun Y, Yang K, Yuan B, Velkov T, Wang L, Li J. Coarse-grained simulations uncover Gram-negative bacterial defense against polymyxins by the outer membrane. Comput Struct Biotechnol J 2021; 19:3885-3891. [PMID: 34584634 PMCID: PMC8441625 DOI: 10.1016/j.csbj.2021.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
A structural model of bacterial outer membrane (OM) was developed with Ra LPS. Free energy landscape was revealed for polymyxin interactions with the OM. LPS core sugars and calcium ions confer intrinsic resistance to antibiotics.
The outer membrane (OM) of Gram-negative bacteria is a formidable barrier against antibiotics. Understanding the structure and function of the OM is essential for the discovery of novel membrane-acting agents against multidrug-resistant Gram-negative pathogens. However, it remains challenging to obtain three-dimensional structure of bacterial membranes using crystallographic approaches, which has significantly hindered the elucidation of its interaction with antibiotics. Here, we developed an asymmetric OM model consisting of rough lipopolysaccharide (LPS) and three key types of phospholipids. Using coarse-grained molecular dynamics simulations, we investigated the interaction dynamics of LPS-containing OM with the polymyxins, a last-line class of antibiotics against Gram-negative ‘superbugs’. We discovered that polymyxin molecules spontaneously penetrated the OM core sugar region where most were trapped before entering the lipid A region. Examination of the free energy profile of polymyxin penetration revealed a major free energy barrier at the LPS inner core and lipid A interface. Further analysis revealed calcium ions predominantly distributed in the inner core region and mediated extensive cross-linking interactions between LPS molecules, thereby inhibiting the penetration of polymyxins into the hydrophobic region of the OM. Collectively, our results provide novel mechanistic insights into an intrinsic defense of Gram-negative bacteria to polymyxins and may help identify new antimicrobial targets.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Melbourne, Australia
| | - Yuliang Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Aslanhan U, Cakir E, Pur Ozyigit L, Kucuksezer UC, Gelmez YM, Yuksel M, Deniz G, Cetin Aktas E. Pseudomonas aeruginosa colonization in cystic fibrosis: Impact on neutrophil functions and cytokine secretion capacity. Pediatr Pulmonol 2021; 56:1504-1513. [PMID: 33512090 DOI: 10.1002/ppul.25294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Chronic colonization with Pseudomonas (P.) aeruginosa worsens the prognosis of cystic fibrosis (CF) patients. This study aims to analyze the functional properties of neutrophils in CF patients with P. aeruginosa colonization. METHODS Patients with CF (n = 16) were grouped by positivity of P. aeruginosa in sputum culture, as positive (P.+) or negative (P.-), then compared with age and sex matched healthy controls (n = 8). Adhesion molecules, apoptotic index, intracellular CAP-18, interleukin 8 (IL-8), and tumor necrosis factor α (TNF-α) levels of neutrophils, following P. aeruginosa and lipopolysaccharides (LPS) stimulation, were analyzed by flow cytometry. IL-1β, IL-6, TNF-α, and IL-17 plasma levels were determined by Luminex. RESULTS Patients with CF had increased phagocytosis of Escherichia coli and P. aeruginosa, upregulated oxidative burst and chemotaxis. Increased neutrophil apoptosis was noted in CF patients. In unstimulated conditions, higher levels of CD16+ TNF-α+ and CD16+ IL-8+ neutrophils were determined, whereas bacteria and LPS stimulation significantly decreased secretion of CAP-18 from CD16+ neutrophils of CF patients. Plasma levels of IL-1β, TNF-α and IL-17 in P.+ patients were higher than in P.- group. CONCLUSION Our findings confirm inadequate neutrophil defense towards pathogens in CF. A significant difference in migration, phagocytosis, oxidative burst, percentage of IL-8 producing neutrophils, IL-1β, TNF-α, and IL-17 secretions were noted among CF patients according to their colonization status, which might induce a further destructive effect on airways, resulting in an unfavorable prognosis for children with CF who also have colonization.
Collapse
Affiliation(s)
- Umit Aslanhan
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Immunology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Erkan Cakir
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Leyla Pur Ozyigit
- Department of Allergy and Immunology, University Hospitals of Leicester, Leicester, UK
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Yusuf Metin Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mine Yuksel
- Department of Pediatric Pulmonology, Bezmialem Vakif University Medical Faculty, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
15
|
Rahnamoun A, Kim K, Pedersen JA, Hernandez R. Ionic Environment Affects Bacterial Lipopolysaccharide Packing and Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3149-3158. [PMID: 32069057 DOI: 10.1021/acs.langmuir.9b03162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of lipopolysaccharides (LPS) with metal cations strongly affects the stability and function of the Gram-negative bacterial outer membrane. The sensitivity of deep rough (Re) LPS packing and function to the ionic environment, as affected by cation valency and ionic radius, has been determined using molecular dynamics simulations and Langmuir balance experiments. The degree of LPS aggregation within the LPS models in the presence of different cations is assessed by measuring the effective mean molecular area (Âm) of each LPS molecule projected onto the interfacial plane at the end of the equilibration. These results are compared to the LPS mean molecular area from experimental measurements in which the LPS monolayers are assembled at the air-water interface using a Langmuir film balance. We found that packing of the LPS arrays is sensitive to the ionic radius and ion valency of the cations present in solution during LPS array packing. Using enhanced sampling of the free energy for the intercalation of oligo(allylamine HCl) (OAH) into deep rough Salmonella enterica LPS bilayers, we obtained the affinity of the core section of LPS to OAH as a function of the nature of the metal cations present in solution. We found that packing of the solvated LPS bilayer models is sensitive to ionic radius and ion valency of the neutralizing cations. This further suggests that ion bridging and steric barriers rather than charge shielding are important factors in mitigating ligand intercalation under conditions with low ionic concentrations.
Collapse
Affiliation(s)
- Ali Rahnamoun
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kyoungtea Kim
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joel A Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Departments of Soil Science, Chemistry, Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Olagnon C, Monjaras Feria J, Grünwald‐Gruber C, Blaukopf M, Valvano MA, Kosma P. Synthetic Phosphodiester-Linked 4-Amino-4-deoxy-l-arabinose Derivatives Demonstrate that ArnT is an Inverting Aminoarabinosyl Transferase. Chembiochem 2019; 20:2936-2948. [PMID: 31233657 PMCID: PMC6902282 DOI: 10.1002/cbic.201900349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/22/2022]
Abstract
4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.
Collapse
Affiliation(s)
- Charlotte Olagnon
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Julia Monjaras Feria
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Clemens Grünwald‐Gruber
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Markus Blaukopf
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Paul Kosma
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
17
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
18
|
Lee C, Mannaa M, Kim N, Kim J, Choi Y, Kim SH, Jung B, Lee HH, Lee J, Seo YS. Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2019; 35:445-458. [PMID: 31632220 PMCID: PMC6788416 DOI: 10.5423/ppj.oa.04.2019.0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Collapse
Affiliation(s)
- Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Yeounju Choi
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Soo Hyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Corresponding author.: Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail)
| |
Collapse
|
19
|
Jasim R, Baker MA, Zhu Y, Han M, Schneider-Futschik EK, Hussein M, Hoyer D, Li J, Velkov T. A Comparative Study of Outer Membrane Proteome between Paired Colistin-Susceptible and Extremely Colistin-Resistant Klebsiella pneumoniae Strains. ACS Infect Dis 2018; 4:1692-1704. [PMID: 30232886 DOI: 10.1021/acsinfecdis.8b00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present report we characterized the outer membrane proteome, genomic, and lipid A remodelling changes following the evolution of a colistin-susceptible K. pneumoniae ATCC 13883 strain into an extremely colistin-resistant strain. Lipid A profiling revealed the outer membrane of the colistin-susceptible strain is decorated primarily by hexa- and hepta-acylated lipid A species and a minor tetra-acylated species. In the lipid A profile of the extremely colistin-resistant strain, in addition to the aforementioned lipid A species, the obligatory 4-amino-4-deoxy-l-arabinose modification of the hexa-acylated lipid A was detected. Comparative genomic analysis revealed that the mgrB gene of the colistin-resistant strain is inactivated by a single nucleotide insertion which produces a frame-shift, resulting in premature termination. We also detected two synonymous mutations in the two-component system genes phoP and phoQ. Comparative profiling of the outer membrane proteome of each strain revealed that outer membrane proteins from bacterial stress response, glutamine degradation, pyruvate, aspartate, and asparagine metabolic pathways were over-represented in the extremely colistin-resistant K. pneumoniae ATCC 13883 strain. In comparison, in the sensitive strain, outer membrane proteins from carbohydrate metabolism, H+-ATPase, cell division, and peptidoglycan biosynthesis were over-represented. Notably, there were no discernible differences between the OmpK35 and OmpK36 major outer membrane porins between the polymyxin-susceptible and -resistant strains suggesting porin deficiency is not involved in the colistin resistance in the ATCC 13883 strain. These findings shed new light on the outer membrane remodelling events accompanying the development of extremely high levels of colistin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Raad Jasim
- Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Meiling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | - Maytham Hussein
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:28-38. [PMID: 30439931 DOI: 10.5507/bp.2018.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.
Collapse
|
21
|
Pusic P, Sonnleitner E, Krennmayr B, Heitzinger DA, Wolfinger MT, Resch A, Bläsi U. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2709. [PMID: 30473687 PMCID: PMC6237836 DOI: 10.3389/fmicb.2018.02709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for ~ 10% of hospital-acquired infections worldwide. It is notorious for its high level resistance toward many antibiotics, and the number of multi-drug resistant clinical isolates is steadily increasing. A better understanding of the molecular mechanisms underlying drug resistance is crucial for the development of novel antimicrobials and alternative strategies such as enhanced sensitization of bacteria to antibiotics in use. In P. aeruginosa several uptake channels for amino-acids and carbon sources can serve simultaneously as entry ports for antibiotics. The respective genes are often controlled by carbon catabolite repression (CCR). We have recently shown that Hfq in concert with Crc acts as a translational repressor during CCR. This function is counteracted by the regulatory RNA CrcZ, which functions as a decoy to abrogate Hfq-mediated translational repression of catabolic genes. Here, we report an increased susceptibility of P. aeruginosa hfq deletion strains to different classes of antibiotics. Transcriptome analyses indicated that Hfq impacts on different mechanisms known to be involved in antibiotic susceptibility, viz import and efflux, energy metabolism, cell wall and LPS composition as well as on the c-di-GMP levels. Furthermore, we show that sequestration of Hfq by CrcZ, which was over-produced or induced by non-preferred carbon-sources, enhances the sensitivity toward antibiotics. Thus, controlled synthesis of CrcZ could provide a means to (re)sensitize P. aeruginosa to different classes of antibiotics.
Collapse
Affiliation(s)
- Petra Pusic
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Beatrice Krennmayr
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Dorothea A. Heitzinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. J Bacteriol 2018; 200:JB.00156-18. [PMID: 29986943 DOI: 10.1128/jb.00156-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a threat to our modern society, and new strategies leading to the identification of new molecules or targets to combat multidrug-resistant pathogens are needed. Species of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc), Burkholderia pseudomallei, and Burkholderia mallei, can be highly pathogenic and are intrinsically resistant to multiple classes of antibiotics. Bcc species are nonetheless sensitive to extracellular products released by Pseudomonas aeruginosa in interspecies competition. We screened for Burkholderia transposon mutants with increased sensitivity to P. aeruginosa spent medium and identified multiple mutants in genes sharing homology with the Mla pathway. Insertional mutants in representative genes of the Bcc Mla pathway had a compromised cell membrane and were more sensitive to various extracellular stresses, including antibiotics and human serum. More precisely, mla mutants in the Bcc species Burkholderia cenocepacia and Burkholderia dolosa were more susceptible to Gram-positive antibiotics (i.e., macrolides and rifampin), fluoroquinolones, tetracyclines, and chloramphenicol. Genetic complementation of mlaC insertional mutants restored cell permeability and resistance to Gram-positive antibiotics. Importantly, Bcc mla mutants were not universally weaker strains since their susceptibilities to other classes of antibiotics were unaffected. Although cell permeability of homologous mla mutants in Escherichia coli or P. aeruginosa was also impaired, they were not more sensitive to Gram-positive antibiotics or other antimicrobials as was observed in Bcc mla mutants. Together, the data suggest that the Mla pathway in Burkholderia may play a different biological role, which could potentially represent a Burkholderia-specific drug target in combination therapy with antibiotic adjuvants.IMPORTANCE The outer membrane of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore compromising this structure could increase sensitivity to currently available antibiotics. In this study, we show that the Mla pathway, a system involved in maintaining the integrity of the outer membrane, is genetically and functionally different in Burkholderia cepacia complex species compared to that in other proteobacteria. Mutants in mla genes of Burkholderia cenocepacia or Burkholderia dolosa were sensitive to Gram-positive antibiotics, while this effect was not observed in Escherichia coli or Pseudomonas aeruginosa The Mla pathway in Burkholderia species may represent an ideal genus-specific target to address their intrinsic antimicrobial resistances.
Collapse
|
23
|
Jasim R, Han ML, Zhu Y, Hu X, Hussein MH, Lin YW, Zhou QT, Dong CYD, Li J, Velkov T. Lipidomic Analysis of the Outer Membrane Vesicles from Paired Polymyxin-Susceptible and -Resistant Klebsiella pneumoniae Clinical Isolates. Int J Mol Sci 2018; 19:E2356. [PMID: 30103446 PMCID: PMC6121281 DOI: 10.3390/ijms19082356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired polymyxin-susceptible and -resistant Klebsiella pneumoniae isolates. K. pneumoniae ATCC 700721 was employed as a reference strain in addition to two clinical strains, K. pneumoniae FADDI-KP069 and K. pneumoniae BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of these lipid species, both intrinsically and increasingly under polymyxin treatment. The average diameter of the OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate, measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B treatment (2 mg/L) of the K. pneumoniae ATCC 700721 cells resulted in the production of OMVs with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant (average diameter ~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated with polymyxin resistance in K. pneumoniae may involve fortifying the membrane structure with increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack.
Collapse
Affiliation(s)
- Raad Jasim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Xiaohan Hu
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Maytham H Hussein
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Charlie Yao Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Immunity and Infection Program and Department of Microbiology, Monash University, VIC 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
24
|
Vaccine development targeting lipopolysaccharide structure modification. Microbes Infect 2017; 20:455-460. [PMID: 29233768 DOI: 10.1016/j.micinf.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Vaccines are one of the most important methods for preventing infectious disease. Structural modification of lipopolysaccharide (LPS) provides a strategy for the development of live attenuated vaccines, either by altering the immunogenicity or by attenuating virulence of the bacteria. This review summarizes various approaches that utilize LPS mutants as whole-cell vaccines.
Collapse
|
25
|
Kostas ET, White DA, Cook DJ. Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Kim JK, Jang HA, Kim MS, Cho JH, Lee J, Di Lorenzo F, Sturiale L, Silipo A, Molinaro A, Lee BL. The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. J Biol Chem 2017; 292:19226-19237. [PMID: 28972189 DOI: 10.1074/jbc.m117.813832] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide, the outer cell-wall component of Gram-negative bacteria, has been shown to be important for symbiotic associations. We recently reported that the lipopolysaccharide O-antigen of Burkholderia enhances the initial colonization of the midgut of the bean bug, Riptortus pedestris However, the midgut-colonizing Burkholderia symbionts lack the O-antigen but display the core oligosaccharide on the cell surface. In this study, we investigated the role of the core oligosaccharide, which directly interacts with the host midgut, in the Riptortus-Burkholderia symbiosis. To this end, we generated the core oligosaccharide mutant strains, ΔwabS, ΔwabO, ΔwaaF, and ΔwaaC, and determined the chemical structures of their oligosaccharides, which exhibited different compositions. The symbiotic properties of these mutant strains were compared with those of the wild-type and O-antigen-deficient ΔwbiG strains. Upon introduction into Riptortus via the oral route, the core oligosaccharide mutant strains exhibited different rates of colonization of the insect midgut. The symbiont titers in fifth-instar insects revealed significantly reduced population sizes of the inner core oligosaccharide mutant strains ΔwaaF and ΔwaaC These two strains also negatively affected host growth rate and fitness. Furthermore, R. pedestris individuals colonized with the ΔwaaF and ΔwaaC strains were vulnerable to septic bacterial challenge, similar to insects without a Burkholderia symbiont. Taken together, these results suggest that the core oligosaccharide from Burkholderia symbionts plays a critical role in maintaining a proper symbiont population and in supporting the beneficial effects of the symbiont on its host in the Riptortus-Burkholderia symbiosis.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- From the Department of Microbiology, Kosin University College of Medicine, Busan 49267, South Korea
| | - Ho Am Jang
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min Seon Kim
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jae Hyun Cho
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Junbeom Lee
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Flaviana Di Lorenzo
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Luisa Sturiale
- the CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB, Via P. Gaifami 18, Catania 95126, Italy
| | - Alba Silipo
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Antonio Molinaro
- the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy, and
| | - Bok Luel Lee
- the Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea,
| |
Collapse
|
27
|
Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia. Can J Microbiol 2017; 63:857-863. [PMID: 28817787 DOI: 10.1139/cjm-2017-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.
Collapse
Affiliation(s)
- Maria S Stietz
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christina Lopez
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Osasumwen Osifo
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marcelo E Tolmasky
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
28
|
Dutta D, Zhao T, Cheah KB, Holmlund L, Willcox MD. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating. Cont Lens Anterior Eye 2017; 40:175-183. [DOI: 10.1016/j.clae.2017.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
|
29
|
Satlin MJ, Jenkins SG. Polymyxins. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
30
|
Short Palate, Lung, and Nasal Epithelial Clone 1 Has Antimicrobial and Antibiofilm Activities against the Burkholderia cepacia Complex. Antimicrob Agents Chemother 2016; 60:6003-12. [PMID: 27458217 DOI: 10.1128/aac.00975-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
The opportunistic bacteria of the Burkholderia cepacia complex (Bcc) are extremely pathogenic to cystic fibrosis (CF) patients, and acquisition of Bcc bacteria is associated with a significant increase in mortality. Treatment of Bcc infections is difficult because the bacteria are multidrug resistant and able to survive in biofilms. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an innate defense protein that is secreted by the upper airways and pharynx. While SPLUNC1 is known to have antimicrobial functions, its effects on Bcc strains are unclear. We therefore tested the hypothesis that SPLUNC1 is able to impair Bcc growth and biofilm formation. We found that SPLUNC1 exerted bacteriostatic effects against several Bcc clinical isolates, including B. cenocepacia strain J2315 (50% inhibitory concentration [IC50] = 0.28 μM), and reduced biofilm formation and attachment (IC50 = 0.11 μM). We then determined which domains of SPLUNC1 are responsible for its antimicrobial activity. Deletions of SPLUNC1's N terminus and α6 helix did not affect its function. However, deletion of the α4 helix attenuated antimicrobial activity, while the corresponding α4 peptide displayed antimicrobial activity. Chronic neutrophilia is a hallmark of CF lung disease, and neutrophil elastase (NE) cleaves SPLUNC1. However, we found that the ability of SPLUNC1 to disrupt biofilm formation was significantly potentiated by NE pretreatment. While the impact of CF on SPLUNC1-Bcc interactions is not currently known, our data suggest that understanding this interaction may have important implications for CF lung disease.
Collapse
|
31
|
|
32
|
Moreira AS, Mil-Homens D, Sousa SA, Coutinho CP, Pinto-de-Oliveira A, Ramos CG, Dos Santos SC, Fialho AM, Leitão JH, Sá-Correia I. Variation of Burkholderia cenocepacia virulence potential during cystic fibrosis chronic lung infection. Virulence 2016; 8:782-796. [PMID: 27652671 DOI: 10.1080/21505594.2016.1237334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences the pathogenic potential is unclear. The virulence potential of 39 sequential B. cenocepacia (recA lineage IIIA) isolates, corresponding to 3 different clones retrieved from 3 chronically infected CF patients was compared in this study using the non-mammalian infection hosts Galleria mellonella and Caenorhabditis elegans. The isolates used in this retrospective study were picked randomly from selective agar plates as part of a CF Center routine, from the onset of infection until patients' death after 3.5 and 7.5 y or the more recent isolation date after 12.5 y of chronic infection. The infection models proved useful to assess virulence potential diversification, but for some isolates the relative values diverged in C. elegans and G. mellonella. Results also reinforce the concept of the occurrence of clonal diversification and co-existence of multiple phenotypes within the CF lungs, also with respect to pathogenicity. No clear trend of decrease (or increase) of the virulence potential throughout long-term infection was found but there is an apparent tendency for a clone/patient-dependent decrease of virulence when the G. mellonella model was used. The sole avirulent variant in both infection hosts was found to lack the small third replicon previously associated to virulence. Although possible, the in vivo loss of this nonessential megaplasmid was found to be a rare event (1 among a total of 64 isolates examined).
Collapse
Affiliation(s)
- Ana S Moreira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Dalila Mil-Homens
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sílvia A Sousa
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Carla P Coutinho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Ana Pinto-de-Oliveira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Christian G Ramos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra C Dos Santos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Arsénio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Jorge H Leitão
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Isabel Sá-Correia
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
33
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Abstract
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.
Collapse
Affiliation(s)
- Victor I. Band
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA; E-Mail:
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | - David S. Weiss
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-404-727-8214; Fax: +1-404-727-8199
| |
Collapse
|
36
|
Wakao S, Siarot L, Aono T, Oyaizu H. Effects of alteration in LPS structure in Azorhizobium caulinodans on nodule development. J GEN APPL MICROBIOL 2016; 61:248-54. [PMID: 26782655 DOI: 10.2323/jgam.61.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
Collapse
Affiliation(s)
- Seiji Wakao
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
37
|
Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:926-35. [PMID: 26751595 DOI: 10.1016/j.bbamem.2015.12.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
|
38
|
Polymyxin Susceptibility in Pseudomonas aeruginosa Linked to the MexXY-OprM Multidrug Efflux System. Antimicrob Agents Chemother 2015; 59:7276-89. [PMID: 26369970 DOI: 10.1128/aac.01785-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
The ribosome-targeting antimicrobial, spectinomycin (SPC), strongly induced the mexXY genes of the MexXY-OprM multidrug efflux system in Pseudomonas aeruginosa and increased susceptibility to the polycationic antimicrobials polymyxin B and polymyxin E, concomitant with a decrease in expression of the polymyxin resistance-promoting lipopolysaccharide (LPS) modification loci, arnBCADTEF and PA4773-74. Consistent with the SPC-promoted reduction in arn and PA4773-74 expression being linked to mexXY, expression of these LPS modification loci was moderated in a mutant constitutively expressing mexXY and enhanced in a mutant lacking the efflux genes. Still, the SPC-mediated increase in polymyxin susceptibility was retained in mutants lacking arnB and/or PA4773-74, an indication that their reduced expression in SPC-treated cells does not explain the enhanced polymyxin susceptibility. That the polymyxin susceptibility of a mutant strain lacking mexXY was unaffected by SPC exposure, however, was an indication that the unknown polymyxin resistance 'mechanism' is also influenced by the MexXY status of the cell. In agreement with SPC and MexXY influencing polymyxin susceptibility as a result of changes in the LPS target of these agents, SPC treatment yielded a decline in common polysaccharide antigen (CPA) synthesis in wild-type P. aeruginosa but not in the ΔmexXY mutant. A mutant lacking CPA still showed the SPC-mediated decline in polymyxin MICs, however, indicating that the loss of CPA did not explain the SPC-mediated MexXY-dependent increase in polymyxin susceptibility. It is possible, therefore, that some additional change in LPS promoted by SPC-induced mexXY expression impacted CPA synthesis or its incorporation into LPS and that this was responsible for the observed changes in polymyxin susceptibility.
Collapse
|
39
|
Loutet SA, El-Halfawy OM, Jassem AN, López JMS, Medarde AF, Speert DP, Davies JE, Valvano MA. Identification of synergists that potentiate the action of polymyxin B against Burkholderia cenocepacia. Int J Antimicrob Agents 2015; 46:376-80. [PMID: 26187366 DOI: 10.1016/j.ijantimicag.2015.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/19/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Burkholderia cenocepacia and other members of the Burkholderia cepacia complex (BCC) are highly multidrug-resistant bacteria that cause severe pulmonary infections in patients with cystic fibrosis. A screen of 2686 compounds derived from marine organisms identified molecules that could synergise with polymyxin B (PMB) to inhibit the growth of B. cenocepacia. At 1 μg/mL, five compounds synergised with PMB and inhibited the growth of B. cenocepacia by ≥70% compared with growth in PMB alone. Follow-up testing revealed that one compound from the screen, the aminocoumarin antibiotic novobiocin, synergised with PMB and colistin against tobramycin-resistant clinical isolates of B. cenocepacia and Burkholderia multivorans. In parallel, we show that novobiocin sensitivity is common among BCC species and that these bacteria are even more susceptible to an alternative aminocoumarin, clorobiocin, which also had an additive effect with PMB against B. cenocepacia. These studies support using aminocoumarin antibiotics to treat BCC infections and show that synergisers can be found to increase the efficacy of antimicrobial peptides and polymyxins against BCC bacteria.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Omar M El-Halfawy
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Agatha N Jassem
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - David P Speert
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Julian E Davies
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Miguel A Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada; Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
40
|
Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A, Li J, Cox AD, Moffat J, Gray-Owen SD. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 2015; 348:1251-5. [PMID: 26068852 DOI: 10.1126/science.aaa4921] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.
Collapse
Affiliation(s)
- Ryan G Gaudet
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Anna Sintsova
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Carolyn M Buckwalter
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Nelly Leung
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Jianjun Li
- Vaccine Program, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Andrew D Cox
- Vaccine Program, National Research Council, Ottawa, ON, Canada K1A 0R6
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8. Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada M5S 3E1
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8.
| |
Collapse
|
41
|
Tavares-Carreón F, Patel KB, Valvano MA. Burkholderia cenocepacia and Salmonella enterica ArnT proteins that transfer 4-amino-4-deoxy-l-arabinose to lipopolysaccharide share membrane topology and functional amino acids. Sci Rep 2015; 5:10773. [PMID: 26030265 PMCID: PMC5377068 DOI: 10.1038/srep10773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022] Open
Abstract
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kinnari B Patel
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Miguel A Valvano
- 1] Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada [2] Centre for Infection and Immunity, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| |
Collapse
|
42
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|
43
|
Tolerance of Salmonella enterica serovar Typhimurium to nisin combined with EDTA is accompanied by changes in cellular composition. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Bauer ME, Shafer WM. On the in vivo significance of bacterial resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3101-11. [PMID: 25701234 DOI: 10.1016/j.bbamem.2015.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) are at the front-line of host defense during infection and play critical roles both in reducing the microbial load early during infection and in linking innate to adaptive immunity. However, successful pathogens have developed mechanisms to resist AMPs. Although considerable progress has been made in elucidating AMP-resistance mechanisms of pathogenic bacteria in vitro, less is known regarding the in vivo significance of such resistance. Nevertheless, progress has been made in this area, largely by using murine models and, in two instances, human models of infection. Herein, we review progress on the use of in vivo infection models in AMP research and discuss the AMP resistance mechanisms that have been established by in vivo studies to contribute to microbial infection. We posit that in vivo infection models are essential tools for investigators to understand the significance to pathogenesis of genetic changes that impact levels of bacterial susceptibility to AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Margaret E Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive MS-420, Indianapolis, IN 46254, USA.
| | - William M Shafer
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Lynch KH, Liang Y, Eberl L, Wishart DS, Dennis JJ. Identification and characterization of ϕH111-1: A novel myovirus with broad activity against clinical isolates of Burkholderia cenocepacia.. BACTERIOPHAGE 2014; 3:e26649. [PMID: 24265978 DOI: 10.4161/bact.26649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/18/2022]
Abstract
Characterization of prophages in sequenced bacterial genomes is important for virulence assessment, evolutionary analysis, and phage application development. The objective of this study was to identify complete, inducible prophages in the cystic fibrosis (CF) clinical isolate Burkholderia cenocepacia H111. Using the prophage-finding program PHAge Search Tool (PHAST), we identified three putative intact prophages in the H111 sequence. Virions were readily isolated from H111 culture supernatants following extended incubation. Using shotgun cloning and sequencing, one of these virions (designated ϕH111-1 [vB_BceM_ϕH111-1]) was identified as the infective particle of a PHAST-detected intact prophage. ϕH111-1 has an extremely broad host range with respect to B. cenocepacia strains and is predicted to use lipopolysaccharide (LPS) as a receptor. Bioinformatics analysis indicates that the prophage is 42,972 base pairs in length, encodes 54 proteins, and shows relatedness to the virion morphogenesis modules of AcaML1 and "Vhmllikevirus" myoviruses. As ϕH111-1 is active against a broad panel of clinical strains and encodes no putative virulence factors, it may be therapeutically effective for Burkholderia infections.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences; University of Alberta; Edmonton, Alberta Canada
| | | | | | | | | |
Collapse
|
46
|
Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients. ScientificWorldJournal 2014; 2014:132971. [PMID: 25379514 PMCID: PMC4213392 DOI: 10.1155/2014/132971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
Collapse
|
47
|
Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on Burkholderia multivorans clinical isolates. Antimicrob Agents Chemother 2014; 58:5211-9. [PMID: 24957830 DOI: 10.1128/aac.02705-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) pulmonary infections in people living with cystic fibrosis (CF) are difficult to treat because of the extreme intrinsic resistance of most isolates to a broad range of antimicrobials. Fosmidomycin is an antibacterial and antiparasitic agent that disrupts the isoprenoid biosynthesis pathway, a precursor to hopanoid biosynthesis. Hopanoids are involved in membrane stability and contribute to polymyxin resistance in Bcc bacteria. Checkerboard MIC assays determined that although isolates of the Bcc species B. multivorans were highly resistant to treatment with fosmidomycin or colistin (polymyxin E), antimicrobial synergy was observed in certain isolates when the antimicrobials were used in combination. Treatment with fosmidomycin decreased the MIC of colistin for isolates as much as 64-fold to as low as 8 μg/ml, a concentration achievable with colistin inhalation therapy. A liquid chromatography-tandem mass spectrometry technique was developed for the accurate quantitative determination of underivatized hopanoids in total lipid extracts, and bacteriohopanetetrol cyclitol ether (BHT-CE) was found to be the dominant hopanoid made by B. multivorans. The amount of BHT-CE made was significantly reduced upon fosmidomycin treatment of the bacteria. Uptake assays with 1-N-phenylnaphthylamine were used to determine that dual treatment with fosmidomycin and colistin increases membrane permeability, while binding assays with boron-dipyrromethene-conjugated polymyxin B illustrated that the addition of fosmidomycin had no impact on polymyxin binding. This work indicates that pharmacological suppression of membrane hopanoids with fosmidomycin treatment can increase the susceptibility of certain clinical B. multivorans isolates to colistin, an agent currently in use to treat pulmonary infections in CF patients.
Collapse
|
48
|
Genetic signature of bacterial pathogen adaptation during chronic pulmonary infections. Nat Genet 2014; 46:5-6. [PMID: 24370741 DOI: 10.1038/ng.2859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To establish and maintain chronic infections, many pathogens adapt in response to selective pressures within the host, leaving unique genetic signatures. A new study uses whole-genome and population sequencing approaches to identify evidence of adaptive evolution in Burkholderia dolosa genomes isolated from chronic infections in patients with cystic fibrosis.
Collapse
|
49
|
Zughaier SM, Kandler JL, Shafer WM. Neisseria gonorrhoeae modulates iron-limiting innate immune defenses in macrophages. PLoS One 2014; 9:e87688. [PMID: 24489950 PMCID: PMC3905030 DOI: 10.1371/journal.pone.0087688] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/01/2014] [Indexed: 11/19/2022] Open
Abstract
Neisseria gonorrhoeae is a strict human pathogen that causes the sexually transmitted infection termed gonorrhea. The gonococcus can survive extracellularly and intracellularly, but in both environments the bacteria must acquire iron from host proteins for survival. However, upon infection the host uses a defensive response by limiting the bioavailability of iron by a number of mechanisms including the enhanced expression of hepcidin, the master iron-regulating hormone, which reduces iron uptake from the gut and retains iron in macrophages. The host also secretes the antibacterial protein NGAL, which sequesters bacterial siderophores and therefore inhibits bacterial growth. To learn whether intracellular gonococci can subvert this defensive response, we examined expression of host genes that encode proteins involved in modulating levels of intracellular iron. We found that N. gonorrhoeae can survive in association (tightly adherent and intracellular) with monocytes and macrophages and upregulates a panel of its iron-responsive genes in this environment. We also found that gonococcal infection of human monocytes or murine macrophages resulted in the upregulation of hepcidin, NGAL, and NRAMP1 as well as downregulation of the expression of the gene encoding the short chain 3-hydroxybutyrate dehydrogenase (BDH2); BDH2 catalyzes the production of the mammalian siderophore 2,5-DHBA involved in chelating and detoxifying iron. Based on these findings, we propose that N. gonorrhoeae can subvert the iron-limiting innate immune defenses to facilitate iron acquisition and intracellular survival.
Collapse
Affiliation(s)
- Susu M. Zughaier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| | - Justin L. Kandler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| |
Collapse
|
50
|
Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an 'old' class of antibiotics. Future Microbiol 2013; 8:711-24. [PMID: 23701329 DOI: 10.2217/fmb.13.39] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing antibiotic resistance in Gram-negative bacteria, particularly in Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae, presents a global medical challenge. No new antibiotics will be available for these 'superbugs' in the near future due to the dry antibiotic discovery pipeline. Colistin and polymyxin B are increasingly used as the last-line therapeutic options for treatment of infections caused by multidrug-resistant Gram-negative bacteria. This article surveys the significant progress over the last decade in understanding polymyxin chemistry, mechanisms of antibacterial activity and resistance, structure-activity relationships and pharmacokinetics/pharmacodynamics. In the 'Bad Bugs, No Drugs' era, we must pursue structure-activity relationship-based approaches to develop novel polymyxin-like lipopeptides targeting polymyxin-resistant Gram-negative 'superbugs'. Before new antibiotics become available, we must optimize the clinical use of polymyxins through the application of pharmacokinetic/pharmacodynamic principles, thereby minimizing the development of resistance.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade Parkville 3052, Victoria, Australia
| | | | | | | | | |
Collapse
|