1
|
Zeng C, Wan SR, Guo M, Tan XZ, Zeng Y, Wu Q, Xie JJ, Yan P, Long Y, Zheng L, Jiang ZZ, Teng FY, Xu Y. Fecal virome transplantation: A promising strategy for the treatment of metabolic diseases. Biomed Pharmacother 2024; 177:117065. [PMID: 38971010 DOI: 10.1016/j.biopha.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiao-Zhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Qi Wu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia-Jie Xie
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Yang Long
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, Peking University, Beijing 100871, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Cai Z, Wang Y, You Y, Yang N, Lu S, Xue J, Xing X, Sha S, Zhao L. Introduction of Cellulolytic Bacterium Bacillus velezensis Z2.6 and Its Cellulase Production Optimization. Microorganisms 2024; 12:979. [PMID: 38792808 PMCID: PMC11124521 DOI: 10.3390/microorganisms12050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Enzyme-production microorganisms typically occupy a dominant position in composting, where cellulolytic microorganisms actively engage in the breakdown of lignocellulose. Exploring strains with high yields of cellulose-degrading enzymes holds substantial significance for the industrial production of related enzymes and the advancement of clean bioenergy. This study was inclined to screen cellulolytic bacteria, conduct genome analysis, mine cellulase-related genes, and optimize cellulase production. The potential carboxymethylcellulose-hydrolyzing bacterial strain Z2.6 was isolated from the maturation phase of pig manure-based compost with algae residuals as the feedstock and identified as Bacillus velezensis. In the draft genome of strain Z2.6, 31 related cellulolytic genes were annotated by the CAZy database, and further validation by cloning documented the existence of an endo-1,4-β-D-glucanase (EC 3.2.1.4) belonging to the GH5 family and a β-glucosidase (EC 3.2.1.21) belonging to the GH1 family, which are predominant types of cellulases. Through the exploration of ten factors in fermentation medium with Plackett-Burman and Box-Behnken design methodologies, maximum cellulase activity was predicted to reach 2.98 U/mL theoretically. The optimal conditions achieving this response were determined as 1.09% CMC-Na, 2.30% salinity, and 1.23% tryptone. Validation under these specified conditions yielded a cellulose activity of 3.02 U/mL, demonstrating a 3.43-fold degree of optimization. In conclusion, this comprehensive study underscored the significant capabilities of strain Z2.6 in lignocellulolytic saccharification and its potentialities for future in-depth exploration in biomass conversion.
Collapse
Affiliation(s)
- Zhi Cai
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
- Marine College, Shandong University, Weihai 264209, China
| | - Yi Wang
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Yang You
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Nan Yang
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Shanshan Lu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Jianheng Xue
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
| | - Xiang Xing
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China; (Z.C.); (Y.W.); (Y.Y.); (N.Y.); (S.L.); (J.X.); (X.X.)
- Marine College, Shandong University, Weihai 264209, China
| | - Sha Sha
- Marine College, Shandong University, Weihai 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
3
|
Hackmann TJ, Zhang B. The phenotype and genotype of fermentative prokaryotes. SCIENCE ADVANCES 2023; 9:eadg8687. [PMID: 37756392 PMCID: PMC10530074 DOI: 10.1126/sciadv.adg8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Fermentation is a type of metabolism pervasive in oxygen-deprived environments. Despite its importance, we know little about the range and traits of organisms that carry out this metabolism. Our study addresses this gap with a comprehensive analysis of the phenotype and genotype of fermentative prokaryotes. We assembled a dataset with phenotypic records of 8350 organisms plus 4355 genomes and 13.6 million genes. Our analysis reveals fermentation is both widespread (in ~30% of prokaryotes) and complex (forming ~300 combinations of metabolites). Furthermore, it points to previously uncharacterized proteins involved in this metabolism. Previous studies suggest that metabolic pathways for fermentation are well understood, but metabolic models built in our study show gaps in our knowledge. This study demonstrates the complexity of fermentation while showing that there is still much to learn about this metabolism. All resources in our study can be explored by the scientific community with an online, interactive tool.
Collapse
Affiliation(s)
| | - Bo Zhang
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Kedia S, Ahuja V. Human gut microbiome: A primer for the clinician. JGH Open 2023; 7:337-350. [PMID: 37265934 PMCID: PMC10230107 DOI: 10.1002/jgh3.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 04/01/2023] [Indexed: 06/03/2023]
Abstract
The human host gets tremendously influenced by a genetically and phenotypically distinct and heterogeneous constellation of microbial species-the human microbiome-the gut being one of the most densely populated and characterized site for these organisms. Microbiome science has advanced rapidly, technically with respect to the analytical methods and biologically with respect to its mechanistic influence in health and disease states. A clinician conducting a microbiome study should be aware of the nuances related to microbiome research, especially with respect to the technical and biological factors that can influence the interpretation of research outcomes. Hence, this review is an attempt to detail these aspects of the human gut microbiome, with emphasis on its determinants in a healthy state.
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vineet Ahuja
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
5
|
Osorio-Doblado AM, Feldmann KP, Lourenco JM, Stewart RL, Smith WB, Tedeschi LO, Fluharty FL, Callaway TR. Forages and pastures symposium: forage biodegradation: advances in ruminal microbial ecology. J Anim Sci 2023; 101:skad178. [PMID: 37257501 PMCID: PMC10313095 DOI: 10.1093/jas/skad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
The rumen microbial ecosystem provides ruminants a selective advantage, the ability to utilize forages, allowing them to flourish worldwide in various environments. For many years, our understanding of the ruminal microbial ecosystem was limited to understanding the microbes (usually only laboratory-amenable bacteria) grown in pure culture, meaning that much of our understanding of ruminal function remained a "black box." However, the ruminal degradation of plant cell walls is performed by a consortium of bacteria, archaea, protozoa, and fungi that produces a wide variety of carbohydrate-active enzymes (CAZymes) that are responsible for the catabolism of cellulose, hemicellulose, and pectin. The past 15 years have seen the development and implementation of numerous next-generation sequencing (NGS) approaches (e.g., pyrosequencing, Illumina, and shotgun sequencing), which have contributed significantly to a greater level of insight regarding the microbial ecology of ruminants fed a variety of forages. There has also been an increase in the utilization of liquid chromatography and mass spectrometry that revolutionized transcriptomic approaches, and further improvements in the measurement of fermentation intermediates and end products have advanced with metabolomics. These advanced NGS techniques along with other analytic approaches, such as metaproteomics, have been utilized to elucidate the specific role of microbial CAZymes in forage degradation. Other methods have provided new insights into dynamic changes in the ruminal microbial population fed different diets and how these changes impact the assortment of products presented to the host animal. As more omics-based data has accumulated on forage-fed ruminants, the sequence of events that occur during fiber colonization by the microbial consortium has become more apparent, with fungal populations and fibrolytic bacterial populations working in conjunction, as well as expanding understanding of the individual microbial contributions to degradation of plant cell walls and polysaccharide components. In the future, the ability to predict microbial population and enzymatic activity and end products will be able to support the development of dynamic predictive models of rumen forage degradation and fermentation. Consequently, it is imperative to understand the rumen's microbial population better to improve fiber degradation in ruminants and, thus, stimulate more sustainable production systems.
Collapse
Affiliation(s)
- A M Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - K P Feldmann
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - R L Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - W B Smith
- Department Animal Science, Auburn University, Auburn, AL, USA
| | - L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - F L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
7
|
Kon A, Omata S, Hayakawa Y, Aburai N, Fujii K. Microflora communities which can convert digested sludge to biogas. ENVIRONMENTAL TECHNOLOGY 2022; 43:2391-2403. [PMID: 33475466 DOI: 10.1080/09593330.2021.1880489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we developed several microflora communities that utilize digested sludge (DS), the recalcitrant waste product of anaerobic digestion, as a substrate for biogas production with the aim of their future application to DS recycling. Strict enrichment with DS as the sole nutrient source was introduced to culture microbes from soil and herbivore dung samples; microflora communities promoting stable levels of biogas production were obtained. The average methane and hydrogen yield from soil-derived microflora were 4.86 and 0.94 ml per 1.0 g DS, respectively. Notably, two microflora communities enriched from a riverbank sediment produced 20.79 ml and 14.10 ml methane from 1.0 g DS. By contrast, the methane and hydrogen yield for herbivore dung-derived microfloras were on average 1.31 ml and 1.87 ml per 1.0 g DS, respectively. Potent hydrogen-biogas producers were obtained from rabbit (4.12 ml per 1.0 g DS), goat (3.16 ml per 1.0 g DS), and sheep dung (2.52 ml per 1.0 g DS). The cultured microflora communities included representatives from the eubacterial genera, Clostridiaceae and Eubacteriaceae together with several anaerobic genera. Pseudomonas spp. are found in the riverbank sediment-derived microfloras, suggesting that the floras employ syntrophic acetate oxidation and hydrogentrophic methanogenesis (SAO-HM) pathway for methane production. The methanogenic microflora communities were dominated by bacteria from the Methanobacteriaceae family and unclassified archaea. Moreover, ascomycetous fungi and protists were found, implying that they act as oxygen scavengers and bacterial grazers, respectively. Enzymatic analysis suggested that the microfloras hydrolyze DS via cellulase, chitinase, and protease activities.
Collapse
Affiliation(s)
- Ayaka Kon
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Shunsuke Omata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yuhei Hayakawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Nobuhiro Aburai
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Dery KJ, Kupiec-Weglinski JW, Dong TS. The human microbiome in transplantation: the past, present, and future. Curr Opin Organ Transplant 2021; 26:595-602. [PMID: 34545840 DOI: 10.1097/mot.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Over the past 20 years, DNA sequencing technology has transformed human microbiome research from identity characterizations to metagenomics approaches that reveal how microbials correlate with human health and disease. New studies are showing unprecedented opportunity for deep characterization of the human microbial ecosystem, with benefits to the field of organ transplantation. RECENT FINDINGS In the present review, we focus on past milestones of human-associated microbiota research, paying homage to microbiota pioneers. We highlight the role of sequencing efforts to provide insights beyond taxonomic identification. Recent advances in microbiome technology is now integrating high-throughput datasets, giving rise to multi'omics - a comprehensive assessment modeling dynamic biologic networks. Studies that show benefits and mechanisms in peritransplant antibiotic (Abx)-conditioned recipients are reviewed. We describe how next-generation microbial sequencing has the potential to combine with new technologies like phage therapy (PT) to translate into life-saving therapeutics. SUMMARY The study of the microbiome is advancing the field of transplantation by enhancing our knowledge of precision medicine. Sequencing technology has allowed the use of the microbiome as a biomarker to risk stratify patients. Further research is needed to better understand how microbiomes shape transplantation outcomes while informing immune cell - tissue crosstalk platforms.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation
| | - Tien S Dong
- Department of Medicine, Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Montalban-Arques A, Katkeviciute E, Busenhart P, Bircher A, Wirbel J, Zeller G, Morsy Y, Borsig L, Glaus Garzon JF, Müller A, Arnold IC, Artola-Boran M, Krauthammer M, Sintsova A, Zamboni N, Leventhal GE, Berchtold L, de Wouters T, Rogler G, Baebler K, Schwarzfischer M, Hering L, Olivares-Rivas I, Atrott K, Gottier C, Lang S, Boyman O, Fritsch R, Manz MG, Spalinger MR, Scharl M. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe 2021; 29:1573-1588.e7. [PMID: 34453895 DOI: 10.1016/j.chom.2021.08.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Despite overall success, T cell checkpoint inhibitors for cancer treatment are still only efficient in a minority of patients. Recently, intestinal microbiota was found to critically modulate anti-cancer immunity and therapy response. Here, we identify Clostridiales members of the gut microbiota associated with a lower tumor burden in mouse models of colorectal cancer (CRC). Interestingly, these commensal species are also significantly reduced in CRC patients compared with healthy controls. Oral application of a mix of four Clostridiales strains (CC4) in mice prevented and even successfully treated CRC as stand-alone therapy. This effect depended on intratumoral infiltration and activation of CD8+ T cells. Single application of Roseburia intestinalis or Anaerostipes caccae was even more effective than CC4. In a direct comparison, the CC4 mix supplementation outperformed anti-PD-1 therapy in mouse models of CRC and melanoma. Our findings provide a strong preclinical foundation for exploring gut bacteria as novel stand-alone therapy against solid tumors.
Collapse
Affiliation(s)
- Ana Montalban-Arques
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Busenhart
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Anne Müller
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mariela Artola-Boran
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Department of Quantitative Biomedicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Olivares-Rivas
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Claudia Gottier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph Fritsch
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Gabriel-Barajas JE, Arreola-Vargas J, Toledo-Cervantes A, Méndez-Acosta HO, Rivera-González JC, Snell-Castro R. Prokaryotic population dynamics and interactions in an AnSBBR using tequila vinasses as substrate in co-digestion with acid hydrolysates of Agave tequilana var. azul bagasse for hydrogen production. J Appl Microbiol 2021; 132:413-428. [PMID: 34189819 DOI: 10.1111/jam.15196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
AIMS The purpose of this study was to characterize the prokaryotic community and putative microbial interactions between H2 -producing bacteria (HPB) and non-HPB using two anaerobic sequencing batch biofilm reactors (AnSBBRs) fed with tequila vinasses in co-digestion with acid hydrolysates of Agave tequilana var. azul bagasse (ATAB). METHODS AND RESULTS Two AnSBBRs were operated for H2 production to correlate changes in physicochemical and biological variables by principal component analysis (PCA). Results indicated that H2 yield was supported by Ethanoligenens harbinense and Clostridium tyrobutyricum through the PFOR pathway. However, only E. harbinense was able to compete for sugars against non-HPB. Competitive exclusion associated with competition for sugars, depletion of essential trace elements, bacteriocin production and resistance to inhibitory compounds could be carried out by non-HPB, increasing their relative abundances during the dark fermentation (DF) process. CONCLUSIONS The global scenario obtained by PCA correlated the decrease in H2 production with the lactate:acetate molar ratio in the influent. At the beginning of co-digestion, this ratio had the minimum value considered for a net gain of ATP. This fact could cause the reduction of the relative abundance of C. tyrobutyricum. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that demonstrated the feasibility of H2 production by Clostridiales from acid hydrolysates of ATAB in co-digestion with tequila vinasses.
Collapse
Affiliation(s)
| | - Jorge Arreola-Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Alma Toledo-Cervantes
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Hugo Oscar Méndez-Acosta
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | - Raúl Snell-Castro
- Departamento de Ingeniería química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
11
|
PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. Int J Mol Sci 2021; 22:ijms22063077. [PMID: 33802923 PMCID: PMC8002723 DOI: 10.3390/ijms22063077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/16/2023] Open
Abstract
Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.
Collapse
|
12
|
Rettenmaier R, Kowollik ML, Klingl A, Liebl W, Zverlov V. Ruminiclostridium herbifermentans sp. nov., a mesophilic and moderately thermophilic cellulolytic and xylanolytic bacterium isolated from a lab-scale biogas fermenter fed with maize silage. Int J Syst Evol Microbiol 2021; 71. [PMID: 33555241 DOI: 10.1099/ijsem.0.004692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic bacterial strain, designated MA18T, was isolated from a laboratory-scale biogas fermenter fed with maize silage. Cells stained Gram-negative and performed Gram-negative in the KOH test. The peptidoglycan type was found to be A1y-meso-Dpm direct. The major cellular fatty acids were C14 : 0 iso, C15 : 0 iso, anteiso and iso DMA as well as a C16 unidentified fatty acid. Oxidase and catalase activities were absent. Cells were slightly curved rods, motile, formed spores and measured approximately 0.35 µm in diameter and 3.0-5.0 µm in length. When cultivated on GS2 agar with cellobiose, round, arched, shiny and slightly yellow-pigmented colonies were formed. The isolate was mesophilic to moderately thermophilic with a growth optimum between 40 and 48 °C. Furthermore, neutral pH values were preferred and up to 1.2 % (w/v) NaCl supplemented to the GS2 medium was tolerated. Producing mainly acetate and ethanol, MA18T fermented arabinose, cellobiose, crystalline and amorphous cellulose, ribose, and xylan. The genome of MA18T consists of 4 817 678 bp with a G+C content of 33.16 mol%. In the annotated protein sequences, cellulosomal components were detected. Phylogenetically, MA18T is most closely related to Ruminiclostridium sufflavum DSM 19573T (76.88 % average nucleotide identity of the whole genome sequence; 97.23 % 16S rRNA gene sequence similarity) and can be clustered into one clade with other species of the genus Ruminiclostridium, family Oscillospiraceae, class Clostridia. Based on morphological, physiological and genetic characteristics, this strain represents a novel species in the genus Ruminiclostridium. Therefore, the name Ruminiclostridium herbifermentans sp. nov. is proposed. The type strain is MA18T (=DSM 109966T=JCM 39124T).
Collapse
Affiliation(s)
- Regina Rettenmaier
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Marie-Louise Kowollik
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Andreas Klingl
- LMU Munich, Plant Development & Electron Microscopy, Biocenter LMU Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir Zverlov
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Kurchatov Sq. 2, 123182 Moscow, Russia.,Technical University of Munich, Chair of Microbiology, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
13
|
Briggs JA, Grondin JM, Brumer H. Communal living: glycan utilization by the human gut microbiota. Environ Microbiol 2020; 23:15-35. [PMID: 33185970 DOI: 10.1111/1462-2920.15317] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Collapse
Affiliation(s)
- Jonathon A Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Julie M Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Chowdhury S, Fong SS. Computational Modeling of the Human Microbiome. Microorganisms 2020; 8:microorganisms8020197. [PMID: 32023941 PMCID: PMC7074762 DOI: 10.3390/microorganisms8020197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The impact of microorganisms on human health has long been acknowledged and studied, but recent advances in research methodologies have enabled a new systems-level perspective on the collections of microorganisms associated with humans, the human microbiome. Large-scale collaborative efforts such as the NIH Human Microbiome Project have sought to kick-start research on the human microbiome by providing foundational information on microbial composition based upon specific sites across the human body. Here, we focus on the four main anatomical sites of the human microbiome: gut, oral, skin, and vaginal, and provide information on site-specific background, experimental data, and computational modeling. Each of the site-specific microbiomes has unique organisms and phenomena associated with them; there are also high-level commonalities. By providing an overview of different human microbiome sites, we hope to provide a perspective where detailed, site-specific research is needed to understand causal phenomena that impact human health, but there is equally a need for more generalized methodology improvements that would benefit all human microbiome research.
Collapse
Affiliation(s)
- Shomeek Chowdhury
- Integrative Life Sciences, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284 USA;
| | - Stephen S. Fong
- Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
15
|
Zhang X, Tu B, Dai LR, Lawson PA, Zheng ZZ, Liu LY, Deng Y, Zhang H, Cheng L. Petroclostridium xylanilyticum gen. nov., sp. nov., a xylan-degrading bacterium isolated from an oilfield, and reclassification of clostridial cluster III members into four novel genera in a new Hungateiclostridiaceae fam. nov. Int J Syst Evol Microbiol 2018; 68:3197-3211. [DOI: 10.1099/ijsem.0.002966] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xue Zhang
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Bo Tu
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Li-rong Dai
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Paul A. Lawson
- 2Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Zhen-zhen Zheng
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Lai-Yan Liu
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Yu Deng
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Hui Zhang
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Lei Cheng
- 1Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| |
Collapse
|
16
|
McCann JC, Drewery ML, Sawyer JE, Pinchak WE, Wickersham TA. Effect of postextraction algal residue supplementation on the ruminal microbiome of steers consuming low-quality forage. J Anim Sci 2015; 92:5063-75. [PMID: 25349354 DOI: 10.2527/jas.2014-7811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cattle consuming low-quality forages (LQF) require protein supplementation to increase forage utilization via ruminal fermentation. Biofuel production from algal biomass results in large quantities of postextraction algal residue (PEAR), which has the potential to elicit LQF utilization responses similar to cottonseed meal (CSM); however, its effect on ruminal bacterial communities is unknown. Five ruminally and duodenally cannulated Angus steers in a 5 × 5 Latin square had ad libitum access to oat straw diets. Treatments were infused ruminally and consisted of an unsupplemented control; PEAR at 50, 100, and 150 mg N/kg BW; and CSM at 100 mg N/kg BW. Ruminal samples were collected 4 h after supplementation on d 14 of each period and separated into solid and liquid fractions. Each sample was extracted for genomic DNA, PCR amplified for the V4 to V6 region of the 16S rRNA, sequenced on the 454 Roche pyrosequencing platform, and analyzed using the QIIME pipeline. Weighted UniFrac analysis and Morisita-Horn index demonstrated different community composition between liquid and solid fractions. Measures of richness including observed operational taxonomic units (OTU) and abundance coverage estimator metric decreased with greater PEAR provision (P ≤ 0.09). There were 42 core microbiome OTU observed in all solid fraction samples while the liquid fraction samples contained 30 core OTU. Bacteroidetes was the predominant phylum followed by Firmicutes in both fractions, which together characterized more than 90% of sequences. Relative abundance of Firmicutes increased with PEAR supplementation in the liquid fraction (linear, P = 0.02). Among Firmicutes, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae families increased in the liquid fraction with greater PEAR supplementation (linear, P ≤ 0.03). Prevotella represented over 25% of sequences in all treatments, and relative abundance decreased in the solid fraction with increasing PEAR provision (linear, P = 0.01). Fibrobacter and Treponema decreased in the liquid fraction with increasing PEAR (linear, P < 0.10). Results suggest PEAR supplementation increased forage utilization by increasing members of Firmicutes within the liquid fraction of the rumen microbiome.
Collapse
Affiliation(s)
- J C McCann
- Texas A&M University, College Station TX 77840
| | - M L Drewery
- Texas A&M University, College Station TX 77840
| | - J E Sawyer
- Texas A&M University, College Station TX 77840
| | - W E Pinchak
- Texas A&M AgriLife Research, Vernon TX 76384
| | | |
Collapse
|
17
|
Speers AM, Young JM, Reguera G. Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6350-8. [PMID: 24802954 DOI: 10.1021/es500690a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The in situ generation of ethanol from glycerol-containing wastewater shows promise to improve the economics of the biodiesel industry. Consequently, we developed a microbial electrolysis cell (MEC) driven by the synergistic metabolisms of the exoelectrogen Geobacter sulfurreducens and the bacterium Clostridium cellobioparum, which fermented glycerol into ethanol in high yields (90%) and produced fermentative byproducts that served as electron donors for G. sulfurreducens. Syntrophic cooperation stimulated glycerol consumption, ethanol production, and the conversion of fermentation byproducts into cathodic H2 in the MEC. The platform was further improved by adaptively evolving glycerol-tolerant strains with robust growth at glycerol loadings typical of biodiesel wastewater and by increasing the buffering capacity of the anode medium. This resulted in additional increases in glycerol consumption (up to 50 g/L) and ethanol production (up to 10 g/L) at rates that greatly exceeded the capacity of the anode biofilms to concomitantly remove the fermentation byproducts. As a result, 1,3-propanediol was generated as a metabolic sink for electrons not converted into electricity syntrophically. The results highlight the potential of consortia to process glycerol in MECs and provide insights into genetic engineering and system design approaches that can be implemented to further improve MEC performance to satisfy industrial needs.
Collapse
Affiliation(s)
- Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University , 6190 Biomedical and Physical Science Building, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | | | | |
Collapse
|
18
|
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: leading the way in microbial ecology. J Anim Sci 2013; 91:331-41. [PMID: 23404990 DOI: 10.2527/jas.2012-5567] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.
Collapse
Affiliation(s)
- D O Krause
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | |
Collapse
|
19
|
Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 2012; 11:115. [PMID: 22925149 PMCID: PMC3443015 DOI: 10.1186/1475-2859-11-115] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/03/2012] [Indexed: 01/25/2023] Open
Abstract
Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community.Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.
Collapse
Affiliation(s)
- Simon Rittmann
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| |
Collapse
|
20
|
Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 2012; 95:1135-54. [PMID: 22782251 DOI: 10.1007/s00253-012-4262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
Abstract
Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community. These techniques are rapid, reproducible and allow both the qualitative and quantitative assessment of microbial diversity. This review describes the different molecular methods and their applications in elucidating the rumen microbial community.
Collapse
Affiliation(s)
- Sunil Kumar Sirohi
- Nutrition Biotechnology Laboratory, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | |
Collapse
|
21
|
Lee BH, Blackburn TH. Cellulase production by a thermophilic clostridium species. Appl Microbiol 2010; 30:346-53. [PMID: 16350033 PMCID: PMC187188 DOI: 10.1128/am.30.3.346-353.1975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strain M7, a thermophilic, anaerobic, terminally sporing bacterium (0.6 by 4.0 mum) was isolated from manure. It degraded filter paper in 1 to 2 days at 60 C in a minimal cellulose medium but was stimulated by yeast extract. It fermented a wide variety of sugars but produced cellulase only in cellulose or carboxymethyl-cellulose media. Cellulase synthesis not only was probably repressed by 0.4% glucose and 0.3% cellobiose, but also cellulase activity appeared to be inhibited by these sugars at these concentrations. Both C(1) cellulase (degrades native cellulose) and C(x) cellulase (beta-1,4-glucanase) activities in strain M7 cultures were assayed by measuring the liberation of reducing sugars with dinitrosalicylic acid. Both activities had optima at pH 6.5 and 67 C. One milliliter of a 48-h culture of strain M7 hydrolyzed 0.044-meq of glucose per min from cotton fibers. The cellulase(s) from strain M7 was extracellular, produced during exponential growth, but was not free in the growth medium until approximately 30% of the cellulose was hydrolyzed. Glucose and cellobiose were the major soluble products liberated from cellulose by the cellulase. ZnCl(2) precipitation appeared initially to be a good method for the concentration of cellulase activity, but subsequent purification was not successful. Isoelectric focusing indicated the presence of four C(x) cellulases (pI 4.5, 6.3, 6.8, and 8.7). The rapid production and high activity of cellulases from this organism strongly support the basic premise that increased hydrolysis of native cellulose is possible at elevated temperature.
Collapse
Affiliation(s)
- B H Lee
- Department of Microbiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
22
|
Leschine SB, Canale-Parola E. Mesophilic cellulolytic clostridia from freshwater environments. Appl Environ Microbiol 2010; 46:728-37. [PMID: 16346388 PMCID: PMC239342 DOI: 10.1128/aem.46.3.728-737.1983] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight strains of obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from mud of freshwater environments. The isolates (C strains) were rod-shaped, gram negative, and formed terminal spherical to oval spores that swelled the sporangium. The guanine plus cytosine content of the DNA of the C strains ranged from 30.7 to 33.2 mol% (midpoint of thermal denaturation). The C strains fermented cellulose with formation primarily of acetate, ethanol, CO(2), and H(2). Reducing sugars accumulated in the supernatant fluid of cultures which initially contained >/=0.4% (wt/vol) cellulose. The C strains resembled Clostridium cellobioparum in some phenotypic characteristics and Clostridium papyrosolvens in others, but they were not identical to either of these species. The C strains differed from thermophilic cellulolytic clostridia (e.g., Clostridium thermocellum) not only in growth temperature range but also because they fermented xylan and five-carbon products of plant polysaccharide hydrolysis such as d-xylose and l-arabinose. At 40 degrees C, cellulose was degraded by cellulolytic mesophilic cells (strain C7) at a rate comparable to that at which C. thermocellum degrades cellulose at 60 degrees C. Substrate utilization and growth temperature data indicated that the C strains contribute to the anaerobic breakdown of plant polymers in the environments they inhabit.
Collapse
Affiliation(s)
- S B Leschine
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
23
|
Murray WD. Symbiotic Relationship of Bacteroides cellulosolvens and Clostridium saccharolyticum in Cellulose Fermentation. Appl Environ Microbiol 2010; 51:710-4. [PMID: 16347034 PMCID: PMC238952 DOI: 10.1128/aem.51.4.710-714.1986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In coculture, Bacteroides cellulosolvens and Clostridium saccharolyticum fermented 33% more cellulose than did B. cellulosolvens alone. Also, cellulose digestion continued at a maximum rate 48 h longer in coculture. B. cellulosolvens hydrolyzes cellulose and supplies C. saccharolyticum with sugars and a growth factor replaceable by yeast extract. Alone, B. cellulosolvens exhibited an early cessation of growth which was not due to nutrient depletion, low pH, or toxic accumulation of acetic acid, ethanol, lactic acid, H(2), CO(2), cellobiose, glucose, or xylose. However, a 1-h incubation of B. cellulosolvens spent-culture medium with C. saacharolyticum cells starved for growth factor allowed a resumption of B. cellulosolvens growth. The symbiotic relationship of this naturally occurring coculture is one of mutualism, in which the cellulolytic microbe supplies the saccharolytic microbe with nutrients, and in turn the saccharolytic microbe removes a secondary metabolite toxic to the primary microbe.
Collapse
Affiliation(s)
- W D Murray
- Division of Biological Sciences, National Research Council of Canada. Ottawa, Canada K1A 0R6
| |
Collapse
|
24
|
Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. BIOFUELS, BIOPRODUCTS AND BIOREFINING 2010; 4:77-93. [PMID: 0 DOI: 10.1002/bbb.188] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
25
|
|
26
|
|
27
|
WILSON MARIONK, BRIGGS CAE. THE NORMAL FLORA OF THE BOVINE RUMEN II. QUANTITATIVE BACTERIOLOGICAL STUDIES. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1955.tb02086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 2007; 1125:267-79. [PMID: 18096849 DOI: 10.1196/annals.1419.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellulolytic activity of mesophilic bacteria and fungi is described, with special emphasis on the large extracellular enzyme complex called the cellulosome. The cellulosome is composed of a scaffolding protein, which is attached to various cellulolytic and hemicellulolytic enzymes, and this complex allows the organisms to degrade plant cell walls very efficently. The enzymes include a variety of cellulases, hemicellulases, and pectinases that work synergistically to degrade complex cell-wall molecules.
Collapse
Affiliation(s)
- Roy H Doi
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Affiliation(s)
- R H McBee
- Division of Industrial Research and Department of Bacteriology and Public Health, The State College of Washington, Pullman, Washington
| |
Collapse
|
30
|
Hungate RE. Studies on Cellulose Fermentation: III. The Culture and Isolation for Cellulose-decomposing Bacteria from the Rumen of Cattle. J Bacteriol 2006; 53:631-45. [PMID: 16561317 PMCID: PMC518363 DOI: 10.1128/jb.53.5.631-645.1947] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R E Hungate
- Department of Bacteriology and Public Health, Washington State College, Pullman, Washington
| |
Collapse
|
31
|
|
32
|
|
33
|
Gizzi G, Zanchi R, Sciaraffia F. Comparison of microbiological and fermentation parameters obtained with an improved rumen in vitro technique with those obtained in vivo. Anim Feed Sci Technol 1998. [DOI: 10.1016/s0377-8401(98)00150-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Varm A, Kolli BK, Paul J, Saxena S, König H. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol Rev 1994. [DOI: 10.1111/j.1574-6976.1994.tb00120.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
|
36
|
Hsing W, Canale-Parola E. Cellobiose chemotaxis by the cellulolytic bacterium Cellulomonas gelida. J Bacteriol 1992; 174:7996-8002. [PMID: 1459948 PMCID: PMC207536 DOI: 10.1128/jb.174.24.7996-8002.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the course of a study on the bacterial degradation of plant cell wall polysaccharides, we observed that growing cells of motile cellulolytic bacteria accumulated, without attachment, near cellulose fibers present in the cultures. Because it seemed likely that the accumulation was due to chemotactic behavior, we investigated the chemotactic responses of one of the above-mentioned bacteria (Cellulomonas gelida ATCC 488). We studied primarily the responses toward cellobiose, which is the major product of cellulose hydrolysis by microorganisms, and toward hemicellulose hydrolysis products. We found that cellobiose, cellotriose, D-glucose, xylobiose, and D-xylose, as well as other sugars that are hemicellulose components, served as chemoattractants for C. gelida, as determined by a modification of Adler's capillary assay. Competition and inducibility experiments indicated that C. gelida possesses at least two types of separately regulated cellobiose chemoreceptors (Cb1 and cellobiose, cellotriose, xylobiose, and D-glucose, and it is constitutively synthesized. The presence in C. gelida of a constitutive response toward cellobiose and of at least two distinct cellobiose chemoreceptors has implications for the survival of this cellulolytic bacterium in nature. A possible mechanism for cellobiose-mediated bacterial chemotaxis toward cellulose is proposed. We suggest that, in natural environments, motile cellulolytic bacteria migrate toward plant materials that contain cellulose and hemicellulose by swimming up cellobiose concentration gradients and/or concentration gradients of other sugars (e.g., xylobiose, D-xylose, and D-glucose) formed by enzymatic hydrolysis of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- W Hsing
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
37
|
Cavedon K, Canale-Parola E. Physiological interactions between a mesophilic cellulolyticClostridiumand a non-cellulolytic bacterium. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb04815.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Hethener P, Brauman A, Garcia JL. Clostridium termitidis sp. nov., a Cellulolytic Bacterium from the Gut of the Wood-feeding Termite, Nasutitermes lujae. Syst Appl Microbiol 1992. [DOI: 10.1016/s0723-2020(11)80138-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Cavedon K, Canale-Parola E. Physiological interactions between a mesophilic cellulolytic Clostridium and a non-cellulolytic bacterium. FEMS Microbiol Ecol 1991. [DOI: 10.1111/j.1574-6941.1991.tb01758.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
40
|
Varel VH. Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe. Arch Microbiol 1989; 152:209-14. [PMID: 2774798 DOI: 10.1007/bf00409652] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two strictly anaerobic strains of ruminal cellulolytic bacteria were isolated which are very similar to the original description given for Clostridium longisporum. Vegetative cells were 1 micron wide by 5 to 15 microns long. Subterminal spores were observed only when an insoluble carbon source was provided for growth. Besides cellulose, the organisms fermented cellobiose, glucose, galactose, fructose, mannose, pectin, salicin and sucrose. Xylan and xylose were not fermented. Fermentation products from glucose or alfalfa cell walls included formate, acetate, butyrate, ethanol, H2 and CO2. The GC content was 23% for one strain and 33% for the other. These isolates hydrolyzed cell wall fractions of alfalfa, in particular, hemicellulose, more rapidly and extensively than other ruminal cellulolytic species examined.
Collapse
Affiliation(s)
- V H Varel
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933
| |
Collapse
|
41
|
Faure E, Bagnara C, Belaich A, Belaich JP. Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli. Gene 1988; 65:51-8. [PMID: 2840356 DOI: 10.1016/0378-1119(88)90416-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two cellulase genes isolated from Clostridium cellulolyticum strain ATCC3519 were cloned in Escherichia coli using plasmid pACYC184. Plasmids pB52 and pB43 were isolated from the transformants producing carboxymethylcellulase (CMCase) and the two cloned CMCase-coding genes were found to be included in two EcoRI fragments of 5.7 kb and 2.6 kb, respectively. These two genes showed no homology. The CMCase-coding genes were found to be contained in a 1.8-kb KpnI-HindIII fragment and a 2.05-kb HindIII-PvuII fragment of the DNA donor strain. Expression of these genes in E. coli was found not to depend on their orientation in the cloning vector. Hybridization experiments between these two fragments and Clostridium thermocellum NCIB10682 DNA fragments carrying genes celA, celB, celC and celD were carried out and some homologies were detected.
Collapse
Affiliation(s)
- E Faure
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | |
Collapse
|
42
|
Lamed R, Naimark J, Morgenstern E, Bayer EA. Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 1987; 169:3792-800. [PMID: 3301817 PMCID: PMC212468 DOI: 10.1128/jb.169.8.3792-3800.1987] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.
Collapse
|
43
|
Bagnara C, Gaudin C, Belaich JP. Physiological properties of Cellulomonas fermentans, a mesophilic cellulolytic bacterium. Appl Microbiol Biotechnol 1987. [DOI: 10.1007/bf00253904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Kelly WJ, Asmundson RV, Hopcroft DH. Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch Microbiol 1987; 147:169-73. [PMID: 3592909 DOI: 10.1007/bf00415279] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cellulolytic, strictly anaerobic spore-forming bacteria were isolated from chloroform treated rumen contents. They were different from previously described cellulolytic rumen clostridia in several characteristics. They formed subterminal rod-shaped spores approximately 0.7 micron by 3.5 micron. In broth cultures the growth rate was maximal at 39 degrees C and after log growth extensive autolysis occurred. Fermentation products consisted of acetate, butyrate, hydrogen and ethanol. The GC content was 31%.
Collapse
|
45
|
|
46
|
Marty DG. [Description of 23 cellulolytic or non-cellulolytic clostridia isolated from a marine milieu]. ANNALES DE L'INSTITUT PASTEUR. MICROBIOLOGIE 1986; 137A:33-43. [PMID: 3674779 DOI: 10.1016/s0769-2609(86)80003-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Twenty-three obligately anaerobic mesophilic bacteria were isolated from marine environments. The isolates were rod-shaped, spore-forming bacteria and were placed in the genus Clostridium. They could be divided into three groups: 9 non-cellulolytic strains which used cellobiose as sole energy and carbon source; 6 pseudo-cellulolytic strains which fermented carboxymethyl-cellulose but degraded cellulose very slowly, and 8 cellulolytic bacteria. The morphological, physiological and biochemical characteristics indicated that, except for one strain which could be identified with C. aminovalerium and three strains which resembled C. sphenoides, these marine clostridia did not correspond to any previously described species.
Collapse
Affiliation(s)
- D G Marty
- Microbiologie Marine, CNRS ER 223, Université de Provence, Marseille, France
| |
Collapse
|
47
|
Giallo J, Gaudin C, Belaich JP. Metabolism and Solubilization of Cellulose by
Clostridium cellulolyticum
H10. Appl Environ Microbiol 1985; 49:1216-21. [PMID: 16346795 PMCID: PMC238532 DOI: 10.1128/aem.49.5.1216-1221.1985] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When
Clostridium cellulolyticum
was grown with cellulose MN300 as the substrate, the rates of growth and metabolite production were found to be lower than those observed with soluble sugars as the substrate. At low cellulose concentrations, the growth yields were equal to those obtained with cellobiose. The main fermentation products from cellulose and soluble sugars were the same. Up to 15 mM of consumed hexose, a change in the metabolic pathway favoring lactate production similar to that observed with soluble sugars was found to occur concomitantly with a decrease in molar growth yield. With cellulose concentrations above 5 g/liter, accumulation of soluble sugars occurred once growth had ceased. Glucose accounted for 30% of these sugars. A kinetic analysis of cellulose solubilization revealed that cellulolysis by
C. cellulolyticum
involved three stages whatever cellulose concentration was used. Analysis of these kinetics showed three consecutive enzymatic activity levels having the same
K
m
(0.8 g of cellulose per liter, i.e., 5 mM hexose equivalent) but decreasing values of
V
max
. The hypothesis is suggested that each step corresponds to differences in cellulose structure.
Collapse
Affiliation(s)
- J Giallo
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, and Université de Provence, 13277 Marseille Cedex 9, France
| | | | | |
Collapse
|
48
|
Ljungdahl LG, Eriksson KE. Ecology of Microbial Cellulose Degradation. ADVANCES IN MICROBIAL ECOLOGY 1985. [DOI: 10.1007/978-1-4615-9412-3_6] [Citation(s) in RCA: 192] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
49
|
Isolation and cellulolytic. Activities of bacteria from a cattle waste anaerobic digester and the properties of some Clostridium species. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0141-4607(85)80029-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Direct Microbiological Conversion of Cellulosics to Ethanol. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/b978-0-12-040304-2.50013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|