1
|
Ersoy SC, Rose WE, Proctor RA. Bicarbonate Within: A Hidden Modulator of Antibiotic Susceptibility. Antibiotics (Basel) 2025; 14:96. [PMID: 39858381 PMCID: PMC11760860 DOI: 10.3390/antibiotics14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Since its standardization, clinical antimicrobial susceptibility testing (AST) has relied upon a standard medium, Mueller-Hinton Broth/Agar (MHB/A), to determine antibiotic resistance. However, this microbiologic medium bears little resemblance to the host milieu, calling into question the physiological relevance of resistance phenotypes it reveals. Recent studies investigating antimicrobial susceptibility in mammalian cell culture media, a more host-mimicking environment, demonstrate that exposure to host factors significantly alters susceptibility profiles. One such factor is bicarbonate, an abundant ion in the mammalian bloodstream/tissues. Importantly, bicarbonate sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to early-generation β-lactams used for the treatment of methicillin-susceptible S. aureus (MSSA). This "NaHCO3-responsive" phenotype is widespread among US MRSA USA300/CC8 bloodstream and skin and soft tissue infection isolates. Translationally, β-lactam therapy has proven effective against NaHCO3-responsive MRSA in both ex vivo simulated endocarditis vegetation (SEV) and in vivo rabbit infective endocarditis (IE) models. Mechanistically, bicarbonate appears to influence mecA expression and PBP2a production/localization, as well as key elements for PBP2a functionality, including the PBP2a chaperone PrsA, components of functional membrane microdomains (FMMs), and wall teichoic acid (WTA) synthesis. The NaHCO3-responsive phenotype highlights the critical role of host factors in shaping antibiotic susceptibility, emphasizing the need to incorporate more physiological conditions into AST protocols.
Collapse
Affiliation(s)
- Selvi C. Ersoy
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
2
|
Kenawy AMA, Khalil AI, Ali BA, El-Deeb NM, Haddad AM. Azotobacter biodiversity in Egypt using microbiological, biochemical, and molecular-biology multidisciplinary approach. Genetica 2025; 153:9. [PMID: 39777558 DOI: 10.1007/s10709-024-00224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
The presence of Azotobacter bacteria in the soil plays an important role in increasing its fertility and enhancing plant health. Azotobacter diversity depends on several environmental factors, particularly soil texture, pH, and nutrient content. The current study investigated the diversity of Azotobacter in various soil samples collected from 10 different governorates along the river Nile valley and its delta, Northern Mediterranean shore, Sinai, and Upper Egypt regions. The sampling sites spanned different environmental and ecological conditions of the Egyptian land either cultivated (agricultural land) or uncultivated (desert land). Fifty Azotobacter isolates were isolated and characterized based on cell morphology, culture properties, physiological, biochemical, and molecular characteristics. In addition, the alginate production capacity of the isolates was investigated. The results indicated that Egyptian soils are rich in Azotobacter diversity. The isolates were Gram-negative short rods, appearing either as single cells or in diploid structures. The isolates showed high variability in alginate production where two isolates (BH3 and AST4) were the highest alginate producers (3.12 and 4.22 g alginate L- 1), respectively. 16S-rDNA sequencing and 16S-rDNA RFLP analyses indicated that despite the presence of Azotobacter salinestris and Azotobacter vinelandii in the Egyptian soil, Azotobacter chroococcum was the predominant species. In addition, sequence analysis of the gene coding for the transcription factor AlgU confirmed the results of 16S-rRNA gene sequence analysis. RAPD-REP and BOX-PCR were used to study the polymorphism among the isolates. High levels of microbial diversity were found using these DNA primers as 6-9 fingerprinting profiles were retrieved.
Collapse
Affiliation(s)
- Ahmed M A Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt.
| | - Ahmed I Khalil
- Department of Environmental Studies, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Bahy A Ali
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Nehal M El-Deeb
- Pharmaceutical Bioproduct Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria,, Egypt
| | - Ahmed M Haddad
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt.
| |
Collapse
|
3
|
Hussein S, Ahmed SK, Mohammed SM, Qurbani K, Ali S, Saber AF, Khdir K, Shareef S, Rasool AH, Mousa S, Sidiq AS, Hamzah H. Recent developments in antibiotic resistance: an increasing threat to public health. ANNALS OF ANIMAL SCIENCE 2024. [DOI: 10.2478/aoas-2024-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Antibiotic resistance (ABR) is a major global health threat that puts decades of medical progress at risk. Bacteria develop resistance through various means, including modifying their targets, deactivating drugs, and utilizing efflux pump systems. The main driving forces behind ABR are excessive antibiotic use in healthcare and agriculture, environmental contamination, and gaps in the drug development process. The use of advanced detection technologies, such as next-generation sequencing (NGS), clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, and metagenomics, has greatly improved the identification of resistant pathogens. The consequences of ABR on public health are significant, increased mortality rates, the endangerment of modern medical procedures, and resulting in higher healthcare expenses. It has been expected that ABR could potentially drive up to 24 million individuals into extreme poverty by 2030. Mitigation strategies focus on antibiotic stewardship, regulatory measures, research incentives, and raising public awareness. Furthermore, future research directions involve exploring the potential of CRISPR-Cas9 (CRISPR-associated protein 9), nanotechnology, and big data analytics as new antibiotic solutions. This review explores antibiotic resistance, including mechanisms, recent trends, drivers, and technological advancements in detection. It also evaluates the implications for public health and presents strategies for mitigating resistance. The review emphasizes the significance of future directions and research needs, stressing the necessity for sustained and collaborative efforts to tackle this issue.
Collapse
Affiliation(s)
- Safin Hussein
- Department of Biology, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Sirwan Khalid Ahmed
- College of Nursing , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Saman M. Mohammed
- Department of Biology, College of Education , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Karzan Qurbani
- Department of Biology, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Seenaa Ali
- Department of Medical Laboratory, College of Health and Medical Technology , Sulaimani Polytechnic University , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Abdulmalik Fareeq Saber
- Department of Psychiatric and Mental Health Nursing, College of Nursing , Hawler Medical University , Erbil, Kurdistan Region, 44001 , Iraq
| | - Karokh Khdir
- Department of Biology, College of Education , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Aram H. Rasool
- Department of Medical Laboratory Science, College of Health Sciences , University of Human Development , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Sumayah Mousa
- Department of Medical Laboratory Science, College of Science , Komar University of Science and Technology , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Avin S. Sidiq
- Department of Anesthesia, College of Health Sciences , Cihan University Sulaimaniya , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Haider Hamzah
- Department of Biology, College of Science , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Krivosheev DM, Karabanov SY, Sedykh SE. Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms 2024; 12:2308. [PMID: 39597696 PMCID: PMC11596788 DOI: 10.3390/microorganisms12112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
This paper presents the findings of a large-scale study on antibiotic resistance in bacteria found in farm animal feces across Russia. The study included 6578 samples of farm animal manure from 13 regions in Russia, with the help of citizen scientists. Molecular and microbiological methods were used to analyze 1111 samples of E. coli. The microbiological analysis focused on culturing the microorganisms present in the fecal samples on selective media for E. coli and evaluating the sensitivity of the bacteria to different antibiotics, including ampicillin, tetracycline, chloramphenicol, cefotaxime, and ciprofloxacin. The molecular analysis involved isolating the genomic DNA of the bacteria and conducting PCR assays to detect the vanA, vanB, and mcr-1 antibiotic resistance genes. The results demonstrated significant differences in antibiotic sensitivity of the samples that are morphologically identical to E. coli from different regions. For example, 98.0% and 82.5% of E. coli and other fecal bacterial isolates from the Omsk and Vologda regions lacked antibiotic resistance genes, while 97.7% of samples from the Voronezh region possessed three resistance genes simultaneously. The phenotypic antibiotic sensitivity test also revealed regional differences. For instance, 98.1% of fecal bacterial samples from cattle in the Udmurt Republic were sensitive to all five antibiotics tested, whereas 92.8% of samples from the Voronezh region showed resistance to all five antibiotics. The high level of antibiotic resistance observed may be attributed to their use in farming practices. The distinctive feature of our research is that comprehensive geographical coverage was achieved by using a citizen science platform. Citizen scientists, specifically students from colleges and universities, were responsible for the collection and initial analysis of samples. The project attracted 3096 student participants, enabling the collection and analysis of a significant number of samples from various locations in Russia.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | | | | | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
5
|
Yu SH, Jung SI, Lee SJ, Oh MM, Choi JB, Choi CI, Kim YJ, Park DJ, Bae S, Min SK. Antimicrobial Resistance of Escherichia coli for Uncomplicated Cystitis: Korean Antimicrobial Resistance Monitoring System. Antibiotics (Basel) 2024; 13:1075. [PMID: 39596768 PMCID: PMC11591001 DOI: 10.3390/antibiotics13111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Uncomplicated cystitis is a leading form of bacterial UTI; the most common causative bacterium worldwide is Escherichia coli. This internet-based, prospective, multicenter, and national observational study aimed to report the antimicrobial resistance of E. coli in patients with uncomplicated cystitis through the use of the Korean Antimicrobial Resistance Monitoring System (KARMS) in 2023. Results: Data for a total of 654 patients were retrieved from the KARMS database. The mean (standard deviation) patient age was 55.9 (18.3) years. The numbers of postmenopausal women and patients with recurrent cystitis were 381 (59.4%) and 78 (11.9%), respectively. Regarding antimicrobial susceptibility, 96.8% were susceptible to fosfomycin, 98.9% to nitrofurantoin, 50.9% to ciprofloxacin, and 82.4% to cefotaxime. Extended-spectrum beta-lactamase positivity was 14.4% (89/616), and was significantly higher in tertiary hospitals (24.6%, p < 0.001) and recurrent cystitis (27.6%, p < 0.001). Fluoroquinolone resistance was significantly higher in tertiary hospitals (57.8%, p < 0.001), postmenopausal women (54.2%, p < 0.001), and recurrent cystitis (70.3%, p < 0.001). In addition, postmenopausal status (95% confidence interval [CI]: 1.44-3.17, odds ratio [OR] 2.13, p < 0.001), recurrent cystitis (95% CI: 1.40-4.66, OR 2.56, p = 0.002) and tertiary hospitals (95% CI: 1.00-2.93, OR 1.71, p = 0.049) were associated with significantly increased fluoroquinolone resistance. Methods: Any female patient diagnosed with clinical uncomplicated cystitis and microbiologically proven E. coli infection in 2023 was eligible for this study. Patient data were obtained from the web-based KARMS database. The antimicrobial susceptibility of E. coli was analyzed according to clinical factors, including hospital region, hospital type, menopause status, and recurrence status. Conclusions: The antimicrobial resistance of E. coli in patients with uncomplicated cystitis in the Republic of Korea has reached a serious level, especially in fluoroquinolone resistance. Therefore, major efforts should be made to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Seong Hyeon Yu
- Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
| | - Seung Il Jung
- Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
| | - Seung-Ju Lee
- Department of Urology, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Republic of Korea;
| | - Mi-Mi Oh
- Department of Urology, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Jin Bong Choi
- Department of Urology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea;
| | - Chang Il Choi
- Department of Urology, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 18450, Republic of Korea;
| | - Yeon Joo Kim
- Department of Urology, Daegu Fatima Hospital, Daegu 41199, Republic of Korea;
| | - Dong Jin Park
- Department of Urology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
| | - Sangrak Bae
- Department of Urology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Seung Ki Min
- Department of Urology, Goldman Urologic Clinic, Seoul 05510, Republic of Korea;
| | | |
Collapse
|
6
|
Jian MJ, Lin TH, Chung HY, Chang CK, Perng CL, Chang FY, Shang HS. Pioneering Klebsiella Pneumoniae Antibiotic Resistance Prediction With Artificial Intelligence-Clinical Decision Support System-Enhanced Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: Retrospective Study. J Med Internet Res 2024; 26:e58039. [PMID: 39509693 PMCID: PMC11582491 DOI: 10.2196/58039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The rising prevalence and swift spread of multidrug-resistant gram-negative bacteria (MDR-GNB), especially Klebsiella pneumoniae (KP), present a critical global health threat highlighted by the World Health Organization, with mortality rates soaring approximately 50% with inappropriate antimicrobial treatment. OBJECTIVE This study aims to advance a novel strategy to develop an artificial intelligence-clinical decision support system (AI-CDSS) that combines machine learning (ML) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), aiming to significantly improve the accuracy and speed of diagnosing antibiotic resistance, directly addressing the grave health risks posed by the widespread dissemination of pan drug-resistant gram-negative bacteria across numerous countries. METHODS A comprehensive dataset comprising 165,299 bacterial specimens and 11,996 KP isolates was meticulously analyzed using MALDI-TOF MS technology. Advanced ML algorithms were harnessed to sculpt predictive models that ascertain resistance to quintessential antibiotics, particularly levofloxacin and ciprofloxacin, by using the amassed spectral data. RESULTS Our ML models revealed remarkable proficiency in forecasting antibiotic resistance, with the random forest classifier emerging as particularly effective in predicting resistance to both levofloxacin and ciprofloxacin, achieving the highest area under the curve of 0.95. Performance metrics across different models, including accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1-score, were detailed, underlining the potential of these algorithms in aiding the development of precision treatment strategies. CONCLUSIONS This investigation highlights the synergy between MALDI-TOF MS and ML as a beacon of hope against the escalating threat of antibiotic resistance. The advent of AI-CDSS heralds a new era in clinical diagnostics, promising a future in which rapid and accurate resistance prediction becomes a cornerstone in combating infectious diseases. Through this innovative approach, we answered the challenge posed by KP and other multidrug-resistant pathogens, marking a significant milestone in our journey toward global health security.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Tai-Han Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
7
|
Mai Q, Lai W, Deng W, Guo J, Luo Y, Bai R, Gu C, Luo G, Mai R, Luo M. Prevalence, Serotypes and Antimicrobial Resistance of Salmonella Isolated from Children in Guangzhou, China, 2018-2023. Infect Drug Resist 2024; 17:4511-4520. [PMID: 39439916 PMCID: PMC11495190 DOI: 10.2147/idr.s486907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Acute gastroenteritis caused by Salmonella spp. among children post a great threat for global public health. The increasing rate of drug-resistant Salmonella spp. has also become a challenging problem worldwide. In this study, the prevalence, serotypes, and antimicrobial characteristics of Salmonella isolated from children in Guangzhou, China, were investigated to provide supporting information for clinical treatment and prevention. Methods Clinical data of children featured with gastroenteritis symptoms from 2018 to 2023 in Guangdong Women and Children Hospital were collected. The difference and fluctuation of antimicrobial resistance between serotypes and years were retrospectively analyzed. Results A total of 1304 Salmonella isolates were cultural-confirmed. The overall positive rate of Salmonella isolated from stool samples was 22.0% (1304/5924). Salmonella infections occur mainly from June to September and the majority of infected children aged under 4 years. Serogroup B was the most common serogroup among Salmonella isolates (74.6%, 973/1304). The predominant serotypes of Salmonella isolates were Typhimurium (63.1%, 823/1304). Higher drug resistance rate of Salmonella spp. to ceftriaxone was observed in 2023. The drug resistance rates of Salmonella isolates to sulfamethoxazole/trimethoprim and ampicillin are at high level during the past 6 years. Notably, higher multi-drug resistance (MDR) rate was demonstrated in Salmonella Typhimurium compared with other serotypes. Conclusion Salmonella Typhimurium was the most common serotype isolated from children in Guangzhou, China, and it may mainly account for the high drug resistance rate in Salmonella spp. to most of the antimicrobial profiles. For controlling the high drug resistance rate of Salmonella spp. continuous surveillance of drug resistance and appropriate use of antibiotics based on clinical and laboratory results are of great significance.
Collapse
Affiliation(s)
- Qiongdan Mai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Weiming Lai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Wenyu Deng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Junfei Guo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Yasha Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Ru Bai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Chunming Gu
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Guanbin Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Rongjia Mai
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| | - Mingyong Luo
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Pacheco F, Barrera A, Ciro Y, Polo-Cerón D, Salamanca CH, Oñate-Garzón J. Synthesis, Characterization, and Biological Evaluation of Chitosan Nanoparticles Cross-Linked with Phytic Acid and Loaded with Colistin against Extensively Drug-Resistant Bacteria. Pharmaceutics 2024; 16:1115. [PMID: 39339153 PMCID: PMC11435368 DOI: 10.3390/pharmaceutics16091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The natural evolution of microorganisms, as well as the inappropriate use of medicines, have accelerated the problem of drug resistance to many of the antibiotics employed today. Colistin, a lipopeptide antibiotic used as a last resort against multi-resistant strains, has also begun to present these challenges. Therefore, this study was focused on establishing whether colistin associated with chitosan nanoparticles could improve its antibiotic activity on an extremely resistant clinical isolate of Pseudomonas aeruginosa, which is a clinically relevant Gram-negative bacterium. For this aim, nanoparticulate systems based on phytic acid cross-linked chitosan and loaded with colistin were prepared by the ionic gelation method. The characterization included particle size, polydispersity index-PDI, and zeta potential measurements, as well as thermal (DSC) and spectrophotometric (FTIR) analysis. Encapsulation efficiency was assessed by the bicinchoninic acid (BCA) method, while the antimicrobial evaluation was made following the CLSI guidelines. The results showed that colistin-loaded nanoparticles were monodispersed (PDI = 0.196) with a particle size of around 266 nm and a positive zeta potential (+33.5 mV), and were able to associate with around 65.8% of colistin and decrease the minimum inhibitory concentration from 16 μg/mL to 4 μg/mL. These results suggest that the association of antibiotics with nanostructured systems could be an interesting alternative to recover the antimicrobial activity on resistant strains.
Collapse
Affiliation(s)
- Fabian Pacheco
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Alejandro Barrera
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Yhors Ciro
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali 760001, Colombia
| | - Constain H Salamanca
- Grupo de Investigación Biopolimer, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
- Grupo de Investigación Ciencia de Materiales Avanzados, Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín 050034, Colombia
| | - José Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
9
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
10
|
Mohanty S, Ye G, Sheets C, Cossrow N, Yu KC, White M, Klinker KP, Gupta V. Association Between Social Vulnerability and Streptococcus pneumoniae Antimicrobial Resistance in US Adults. Clin Infect Dis 2024; 79:305-311. [PMID: 38483935 PMCID: PMC11327797 DOI: 10.1093/cid/ciae138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Growing evidence indicates antimicrobial resistance disproportionately affects individuals living in socially vulnerable areas. This study evaluated the association between the CDC/ATSDR Social Vulnerability Index (SVI) and Streptococcus pneumoniae (SP) antimicrobial resistance (AMR) in the United States. METHODS Adult patients ≥18 years with 30-day nonduplicate SP isolates from ambulatory/hospital settings from January 2011 to December 2022 with zip codes of residence were evaluated across 177 facilities in the BD Insights Research Database. Isolates were identified as SP AMR if they were non-susceptible to ≥1 antibiotic class (macrolide, tetracycline, extended-spectrum cephalosporins, or penicillin). Associations between SP AMR and SVI score (overall and themes) were evaluated using generalized estimating equations with repeated measurements within county to account for within-cluster correlations. RESULTS Of 8008 unique SP isolates from 574 US counties across 39 states, the overall proportion of AMR was 49.9%. A significant association between socioeconomic status (SES) theme and SP AMR was detected with higher SES theme SVI score (indicating greater social vulnerability) associated with greater risk of AMR. On average, a decile increase of SES, indicating greater vulnerability, was associated with a 1.28% increased risk of AMR (95% confidence interval [CI], .61%, 1.95%; P = .0002). A decile increase of household characteristic score was associated with a 0.81% increased risk in SP AMR (95% CI, .13%, 1.49%; P = .0197). There was no association between racial/ethnic minority status, housing type and transportation theme, or overall SVI score and SP AMR. CONCLUSIONS SES and household characteristics were the SVI themes most associated with SP AMR.
Collapse
Affiliation(s)
- Salini Mohanty
- Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Gang Ye
- Data Science and Analytics, Becton, Dickinson & Company, Franklin Lakes, New Jersey, USA
| | - Charles Sheets
- Data Science and Analytics, Becton, Dickinson & Company, Franklin Lakes, New Jersey, USA
| | - Nicole Cossrow
- Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kalvin C Yu
- Medical Affairs, Becton, Dickinson & Company, Franklin Lakes, New Jersey, USA
| | - Meghan White
- Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kenneth P Klinker
- Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Vikas Gupta
- Medical Affairs, Blue Health Intelligence, Chicago, IL 60601, USA
| |
Collapse
|
11
|
Ray M, Ashwini M, Halami PM. The Occurrence of Colistin Resistance in Potential Lactic Acid Bacteria of Food-Producing Animals in India. Curr Microbiol 2024; 81:297. [PMID: 39105865 DOI: 10.1007/s00284-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The overuse of colistin, the last-resort antibiotic, has led to the emergence of colistin-resistant bacteria, which is a major concern. Lactic acid bacteria which are generally regarded as safe are known to be reservoirs of antibiotic resistance that possibly pose a threat to human and animal health. Therefore, this study assessed the prevalence of colistin antimicrobial resistance in livestock in India, that is lactic acid bacteria in healthy chickens, sheep, beef, and swine of Mysore. Diverse phenotypic and genotypic colistin resistance were examined among the lactic acid bacterial species (n = 84) isolated from chicken (n = 44), sheep (n = 16), beef (n = 14), and swine (n = 10). Hi-comb, double-disk diffusion tests, Minimum Inhibitory Concentration (MIC), and biofilm formation were assessed for phenotypic colistin resistance. Specific primers for colistin-resistant genes were used for the determination of genotypic colistin resistance. Around 20%, 18%, and 1% were colistin-resistant Lactobacillus, Enterococcus, and Pediococcus species, respectively. Among these, 66.67% exhibited MDR phenotypes, including colistin antibiotic. The identified resistant isolates are Levilactobacillus brevis LBA and LBB (2), Limosilactobacillus fermentum LBF (1), and Pediococcus acidilactici CHBI (1). The mcr-1 and mcr-3 genes were detected in Levilactobacillus brevis LBA, LBB, and Pediococcus acidilactici CHBI isolated from chicken and sheep intestines respectively. The study identified colistin resistance determinants in lactobacilli from food animals, emphasizing the need for enhanced surveillance and monitoring of resistance spread. These findings underscore colistin resistance as a significant medical concern and should be integrated into India's ongoing antimicrobial resistance monitoring programs.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India
| | - M Ashwini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
12
|
Jian MJ, Lin TH, Chung HY, Chang CK, Perng CL, Chang FY, Shang HS. Artificial Intelligence-Clinical Decision Support System in Infectious Disease Control: Combatting Multidrug-Resistant Klebsiella pneumoniae with Machine Learning. Infect Drug Resist 2024; 17:2899-2912. [PMID: 39005853 PMCID: PMC11246630 DOI: 10.2147/idr.s470821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose The World Health Organization has identified Klebsiella pneumoniae (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant Klebsiella pneumoniae (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains. Patients and Methods We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS. Results MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant Klebsiella pneumoniae (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP. Conclusion Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Tai-Han Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|
13
|
Park KH, Jung YJ, Lee HJ, Kim HJ, Maeng CH, Baek SK, Han JJ, Jeon W, Kim DY, Lee YM, Lee MS. Impact of multidrug resistance on outcomes in hematologic cancer patients with bacterial bloodstream infections. Sci Rep 2024; 14:15622. [PMID: 38972913 PMCID: PMC11228017 DOI: 10.1038/s41598-024-66524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Despite the improved outcomes in patients with hematological malignancies, infections caused by multidrug-resistant organisms (MDROs) pose a new threat to these patients. We retrospectively reviewed the patients with hematological cancer and bacterial bloodstream infections (BSIs) at a tertiary hospital between 2003 and 2022 to assess the impact of MDROs on outcomes. Among 328 BSIs, 81 (24.7%) were caused by MDROs. MDRO rates increased from 10.3% (2003-2007) to 39.7% (2018-2022) (P < 0.001). The 30-day mortality rate was 25.0%, which was significantly higher in MDRO-infected patients than in non-MDRO-infected patients (48.1 vs. 17.4%; P < 0.001). The observed trend was more pronounced in patients with newly diagnosed diseases and relapsed/refractory disease but less prominent in patients in complete remission. Among MDROs, carbapenem-resistant Gram-negative bacteria exhibited the highest mortality, followed by vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, and extended-spectrum β-lactamase-producing Enterobacteriaceae. Multivariate analysis identified independent risk factors for 30-day mortality as age ≥ 65 years, newly diagnosed disease, relapsed/refractory disease, MDROs, polymicrobial infection, CRP ≥ 20 mg/L, and inappropriate initial antibiotic therapy. In conclusion, MDROs contribute to adverse outcomes in patients with hematological cancer and bacterial BSIs, with effects varying based on the underlying disease status and causative pathogens. Appropriate initial antibiotic therapy may improve patient outcomes.
Collapse
Affiliation(s)
- Ki-Ho Park
- Department of Infectious Diseases, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ye Ji Jung
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyun Jung Lee
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong Jun Kim
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Chi Hoon Maeng
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Kyung Baek
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae Joon Han
- Department of Hematology and Medical Oncology, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Woojae Jeon
- Department of Infectious Diseases, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dong Youn Kim
- Department of Infectious Diseases, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Lee
- Department of Infectious Diseases, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Mi Suk Lee
- Department of Infectious Diseases, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Menendez Alvarado LR, Margulis Landayan A, Williams KN, Frederick CM, Zhang Z, Gauthier TP. Impact of removing ESBL status labelling from culture reports on the use of carbapenems for non-bacteraemic patients diagnosed with ESBL-positive urinary tract infections. J Antimicrob Chemother 2024; 79:1564-1568. [PMID: 38717472 DOI: 10.1093/jac/dkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES To evaluate carbapenem prescribing rates for initial definitive treatment of urinary tract infections and clinical outcomes before and after removing ESBL status labels on antibiotic susceptibility reports. METHODS This was a retrospective cohort study of adult patients treated for at least 48 h for an ESBL-producing/ceftriaxone-resistant Enterobacterales urinary tract infection. ESBL status reporting ceased in September 2022 for a network of seven community hospitals within the USA. The primary endpoint was the rate of carbapenem prescribing for initial definitive treatment of urinary tract infections. Secondary endpoints included total days of therapy for initial definitive treatment with carbapenems, clinical cure rates, time to transition to oral antibiotic therapy for initial definitive treatment, rate of guideline-compliant therapy, rate of relapsed infection within 30 days, 30 day readmission rate, and 30 day all-cause in-hospital mortality. RESULTS Of 3055 patients screened, 199 were included in the pre group and 153 were included in the post group. The rate of carbapenem prescribing for initial definitive treatment was 156 patients (78%) in the pre group, compared with 93 patients (61%) in the post group (P = <0.01). Days of therapy for initial definitive therapy with carbapenem was 620 in the pre group compared with 372 in the post group (P < 0.01). There was no difference between other secondary outcomes. CONCLUSIONS Removing ESBL status labels from laboratory reports reduced carbapenem use for initial definitive treatment of urinary tract infections from 78% to 61% (P < 0.01) without impacting clinical outcomes.
Collapse
Affiliation(s)
| | | | - Kelsey N Williams
- Pharmacy Department, Baptist Health South Florida, 1500 San Remo Ave, Miami, FL 33146, USA
| | - Corey M Frederick
- Pharmacy Department, Baptist Health South Florida, 1500 San Remo Ave, Miami, FL 33146, USA
| | - Zhenwei Zhang
- Center for Advanced Analytics, Baptist Health South Florida, 1500 San Remo Ave, Miami, FL 33146, USA
| | - Timothy P Gauthier
- Pharmacy Department, Baptist Health South Florida, 1500 San Remo Ave, Miami, FL 33146, USA
| |
Collapse
|
15
|
Fouad A, Simner PJ, Nicolau DP, Asempa TE. Comparison of BD Phoenix and disk diffusion to broth microdilution for determining cefepime susceptibility among carbapenem-resistant Enterobacterales. J Clin Microbiol 2024; 62:e0152023. [PMID: 38712928 PMCID: PMC11237536 DOI: 10.1128/jcm.01520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
There are increasing reports of carbapenem-resistant Enterobacterales (CRE) that test as cefepime-susceptible (S) or susceptible-dose dependent (SDD). However, there are no data to compare the cefepime testing performance of BD Phoenix automated susceptibility system (BD Phoenix) and disk diffusion (DD) relative to reference broth microdilution (BMD) against carbapenemase-producing (CPblaKPC-CRE) and non-producing (non-CP CRE) isolates. Cefepime susceptibility results were interpreted according to CLSI M100Ed32. Essential agreement (EA), categorical agreement (CA), minor errors (miEs), major errors (MEs), and very major errors (VMEs) were calculated for BD Phoenix (NMIC-306 Gram-negative panel) and DD relative to BMD. Correlates were also analyzed by the error rate-bounded method. EA and CA for CPblaKPC-CRE isolates (n = 64) were <90% with BD Phoenix while among non-CP CRE isolates (n = 58), EA and CA were 96.6%, and 79.3%, respectively. CA was <90% with DD for both cohorts. No ME or VME was observed for either isolate cohort; however, miEs were >10% for CPblaKPC-CRE and non-CP CRE with BD Phoenix and DD tests. For error rate-bounded method, miEs were <40% for IHigh + 1 to ILow - 1 ranges for CPblaKPC-CRE and non-CP CRE with BD Phoenix. Regarding disk diffusion, miEs were unacceptable for all MIC ranges among CPblaKPC-CRE. For non-CP CRE isolates, only IHigh + 1 to ILow - 1 range was acceptable at 37.2%. Using this challenge set of genotypic-phenotypic discordant CRE, the BD Phoenix MICs and DD susceptibility results trended higher (toward SDD and resistant phenotypes) relative to reference BMD results yielding lower CA. These results were more prominent among CPblaKPC-CRE than non-CP CRE.
Collapse
Affiliation(s)
- Aliaa Fouad
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Tomefa E. Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
16
|
Shumi G, Demissie TB, Koobotse M, Kenasa G, Beas IN, Zachariah M, Desalegn T. Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS OMEGA 2024; 9:25014-25026. [PMID: 38882155 PMCID: PMC11171097 DOI: 10.1021/acsomega.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
The utilization of metallodrugs as a viable alternative to organic molecules has gained significant attention in modern medicine. We hereby report synthesis of new imine quinoline ligand (IQL)-based Cu(II) complexes and evaluation of their potential biological applications. Syntheses of the ligand and complexes were achieved by condensation of 7-chloro-2-hydroxyquinoline-3-carbaldehyde and 2,2'-thiodianiline, followed by complexation with Cu(II) metal ions. The synthesized ligand and complexes were characterized using UV-vis spectroscopy, TGA/DTA, FTIR spectroscopy, 1H and 13C NMR spectroscopy, and pXRD. The pXRD diffractogram analysis revealed that the synthesized ligand and its complexes were polycrystalline systems, with nanolevel average crystallite sizes of 13.28, 31.47, and 11.57 nm for IQL, CuL, and CuL 2 , respectively. The molar conductivity confirmed the nonelectrolyte nature of the Cu(II) complexes. The biological activity of the synthesized ligand and its Cu(II) complexes was evaluated with in vitro assays, to examine anticancer activity against the MCF-7 human breast cancer cell line and antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. The CuL complex had the highest cytotoxic potency against MCF-7 breast cancer cells, with an IC50 of 43.82 ± 2.351 μg/mL. At 100 μg/mL, CuL induced the largest reduction of cancer cell proliferation by 97%, whereas IQL reduced cell proliferation by 53% and CuL 2 by 28%. The minimum inhibitory concentration for CuL was found to be 12.5 μg/mL against the three tested pathogens. Evaluation of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl revealed that CuL exhibited the highest antioxidant activity with IC50 of 153.3 ± 1.02 μg/mL. Molecular docking results showed strong binding affinities of CuL to active sites of S. aureus, E. coli, and estrogen receptor alpha, indicating its high biological activity compared to IQL and CuL 2 .
Collapse
Affiliation(s)
- Gemechu Shumi
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Taye B Demissie
- Department of Chemistry, University of Botswana, Gaborone P/Bag 00704, Botswana
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Girmaye Kenasa
- Department of Biology, College of Natural and Computational Science, Wollega University, P.O. Box: 395, Nekemte 251, Ethiopia
| | - Isaac N Beas
- Botswana Institute for Technology Research and Innovation, Maranyane House, Plot No. 50654, Machel Drive, Gaborone Private Bag 0082, Botswana
- Department of Chemical Engineering, University of South Africa, P/Bag X6, Florida, Johannesburg 1710, South Africa
| | - Matshediso Zachariah
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Tegene Desalegn
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
17
|
Liang Q, Ding S, Chen J, Chen X, Xu Y, Xu Z, Huang M. Prediction of carbapenem-resistant gram-negative bacterial bloodstream infection in intensive care unit based on machine learning. BMC Med Inform Decis Mak 2024; 24:123. [PMID: 38745177 PMCID: PMC11095031 DOI: 10.1186/s12911-024-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Predicting whether Carbapenem-Resistant Gram-Negative Bacterial (CRGNB) cause bloodstream infection when giving advice may guide the use of antibiotics because it takes 2-5 days conventionally to return the results from doctor's order. METHODS It is a regional multi-center retrospective study in which patients with suspected bloodstream infections were divided into a positive and negative culture group. According to the positive results, patients were divided into the CRGNB group and other groups. We used the machine learning algorithm to predict whether the blood culture was positive and whether the pathogen was CRGNB once giving the order of blood culture. RESULTS There were 952 patients with positive blood cultures, 418 patients in the CRGNB group, 534 in the non-CRGNB group, and 1422 with negative blood cultures. Mechanical ventilation, invasive catheterization, and carbapenem use history were the main high-risk factors for CRGNB bloodstream infection. The random forest model has the best prediction ability, with AUROC being 0.86, followed by the XGBoost prediction model in bloodstream infection prediction. In the CRGNB prediction model analysis, the SVM and random forest model have higher area under the receiver operating characteristic curves, which are 0.88 and 0.87, respectively. CONCLUSIONS The machine learning algorithm can accurately predict the occurrence of ICU-acquired bloodstream infection and identify whether CRGNB causes it once giving the order of blood culture.
Collapse
Affiliation(s)
- Qiqiang Liang
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China
| | - Shuo Ding
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China
| | - Juan Chen
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China
| | - Xinyi Chen
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China
| | - Yongshan Xu
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China
| | - Zhijiang Xu
- Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Man Huang
- General Intensive Care Unit and Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 1511, Jianghong Road, Bingjiang District, Hangzhou, Zhejiang, China.
- Laboratory Chief, Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Okurowska K, Monk PN, Karunakaran E. Increased tolerance to commonly used antibiotics in a Pseudomonas aeruginosa ex vivo porcine keratitis model. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001459. [PMID: 38739119 PMCID: PMC11165664 DOI: 10.1099/mic.0.001459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.
Collapse
Affiliation(s)
- Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
- National Institute for Health and Care Research, University of Leeds, Leeds LS2 9JT, UK
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Sethi G, Sood S, Bhardwaj SB, Jain A. In vitro evaluation of anti-microbial efficacy of Trigonella foenum-graecum and its constituents on oral biofilms. J Indian Soc Periodontol 2024; 28:304-311. [PMID: 39742064 PMCID: PMC11684565 DOI: 10.4103/jisp.jisp_540_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/19/2024] [Indexed: 01/03/2025] Open
Abstract
Background and Objective The extracts obtained from the leaves and seeds of Trigonella foenum-graecum (Fenugreek) are effective against various microbial infections. The phytoconstituents of Trigonella foenum-graecum have shown promising effects as anti-diabetics, anti-helmentic, anti-microbial, antifungal, and antipyretic, but its impact on oral pathogens is yet to be established. Therefore, the present study aimed to explore the antimicrobial efficacy of phytoconstituents of Trigonella foenum-graecum as compared to 0.2% chlorhexidine (CHX). Materials and Methods The methanolic extracts of Trigonella foenum-graecum i.e., fenugreek absolute (FA), diosgenin (DIO), and furanone (FU) were used in this study. The antimicrobial efficacy of these extracts was evaluated by testing the minimal inhibitory concentration, minimal bactericidal concentration (MBC), agar well-diffusion assay, colony-forming unit (CFU) count, and also by using confocal laser scanning microscopy (CLSM) against Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 35218, and Pseudomonas aeruginosa ATCC 27853. Results The results of the study demonstrated that Trigonella foenum-graecum has anti-microbial activity comparable to 0.2% CHX. Well-diffusion assay and CFU count assay of the extracts showed statistically significant (P < 0.001) results. MIC and MBC values were observed for FA, DIO, and FU compared to CHX against these selected test organisms. These results were confirmed by visual validation with CLSM. Conclusion The use of herbal alternatives in periodontics might prove to be advantageous. Trigonella foenum-graecum can be used as a promising alternative to CHX against S. aureus, E. faecalis, E. coli, and P. aeruginosa for the management of oral and periodontal infections.
Collapse
Affiliation(s)
- Geetanshu Sethi
- Department of Periodontics, Maharishi Markendeshwar College of Dental Science and Research, Ambala, Haryana, India
| | - Shaveta Sood
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Sonia Bhonchal Bhardwaj
- Department of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Ashish Jain
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Tree M, Lam TJGM, Townsend K, McDougall S, Beggs DS, Barnes AL, Robertson ID, Aleri JW. A scoping review of antimicrobial resistance in the Australian dairy cattle industry. Prev Vet Med 2024; 226:106161. [PMID: 38460345 DOI: 10.1016/j.prevetmed.2024.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Quantification of antimicrobial resistance (AMR) is beneficial to inform policies and direct prudent antimicrobial use. AIM This study aimed to assess the current published evidence of AMR from passive and active ad hoc surveillance activities within the Australian dairy cattle industry. METHODS Following a scoping review framework 373 articles published before January 2023 were retrieved using the keyword search function from two online databases (PubMed® and Web of Science™ Core Collection). The duplicate articles were removed and the title, abstract, and full text of the remaining articles were reviewed following the study objectives and inclusion criteria (location, subject/theme, and data). Data from the remaining articles were extracted, summarised, interpreted and the study quality assessed using the Grades of Recommendations, Assessment, Development, and Evaluation guidelines. RESULTS A total of 29 articles dating from the 1960 s until 2022 were identified to meet the study criteria (passive: n = 15; active: n = 14). Study characteristics such as sampling type, sampling method, and AMR assessment were all common characteristics from both passive and active surveillance articles, being milk samples, individual sampling, and phenotypic assessment respectively. Passive surveillance articles had a wider range in both the type of bacteria and the number of antimicrobials investigated, while active surveillance articles included a higher number of bacterial isolates and sampling from healthy populations. There was an overall low level of clinical AMR across all articles. Higher prevalence of non-wildtype Escherichia coli, Salmonella spp., and Staphylococcus spp., although limited in data, was suggested for commonly used Australian veterinary antimicrobials for these bacteria. The prevalence of phenotypic AMR varied due to the health and age status of the sampled animals. The articles reviewed in this study suggest the prevalence of AMR genes was higher for commonly used antimicrobials, although genes were not always related to the phenotypic AMR profile. CONCLUSIONS Published evidence of AMR in the Australian dairy cattle industry is limited as demonstrated by only 29 articles included in this review following selection criteria screening. However, collectively these articles provide insight on industry AMR prevalence. For example, the suggestion of non-wildtype bacteria within the Australian dairy cattle indicating a risk of emerging or increasing industry AMR. Therefore, further surveillance is required to monitor the development of future AMR risk within the industry. Additionally, evidence suggesting that animals varying in health and age differ in prevalence of AMR imply a requirement for further research into animal population demographics to reduce potential bias in data collated in both national and global surveillance activities.
Collapse
Affiliation(s)
- Michele Tree
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| | - Theo J G M Lam
- GD Animal Health, Deventer, and Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Kristy Townsend
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Scott McDougall
- Cognosco, Anexa Veterinary Services, PO Box 21, Morrinsville 3340, New Zealand; School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - David S Beggs
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, VIC 3030, Australia
| | - Anne L Barnes
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Ian D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Josh W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| |
Collapse
|
21
|
Robillard DW, Sundermann AJ, Raux BR, Prinzi AM. Navigating the network: a narrative overview of AMR surveillance and data flow in the United States. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e55. [PMID: 38655022 PMCID: PMC11036423 DOI: 10.1017/ash.2024.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The antimicrobial resistance (AMR) surveillance landscape in the United States consists of a data flow that starts in the clinical setting and is maintained by a network of national and state public health laboratories. These organizations are well established, with robust methodologies to test and confirm antimicrobial susceptibility. Still, the bridge that guides the flow of data is often one directional and caught in a constant state of rush hour that can only be refined with improvements to infrastructure and automation in the data flow. Moreover, there is an absence of information in the literature explaining the processes clinical laboratories use to coalesce and share susceptibility test data for AMR surveillance, further complicated by variability in testing procedures. This knowledge gap limits our understanding of what is needed to improve and streamline data sharing from clinical to public health laboratories. Successful models of AMR surveillance display attributes like 2-way communication between clinical and public health laboratories, centralized databases, standardized data, and the use of electronic health records or data systems, highlighting areas of opportunity and improvement. This article explores the roles and processes of the organizations involved in AMR surveillance in the United States and identifies current knowledge gaps and opportunities to improve communication between them through standardization, communication, and modernization of data flow.
Collapse
Affiliation(s)
- Darin W. Robillard
- Division of Public Health, University of Utah School of Medicine, Salt Lake City, UT, USA
- Corporate Program Management, bioMérieux, Salt Lake City, UT, USA
| | - Alexander J. Sundermann
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian R. Raux
- US Medical Affairs, bioMérieux, Salt Lake City, UT, USA
| | | |
Collapse
|
22
|
Veillette JJ, May SS, Alzaidi S, Olson J, Butler AM, Waters CD, Jackson K, Hutton MA, Webb BJ. Real-World Effectiveness of Intravenous and Oral Antibiotic Stepdown Strategies for Gram-Negative Complicated Urinary Tract Infection With Bacteremia. Open Forum Infect Dis 2024; 11:ofae193. [PMID: 38665174 PMCID: PMC11045028 DOI: 10.1093/ofid/ofae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Background Robust data are lacking regarding the optimal route, duration, and antibiotic choice for gram-negative bloodstream infection from a complicated urinary tract infection source (GN-BSI/cUTI). Methods In this multicenter observational cohort study, we simulated a 4-arm registry trial using a causal inference method to compare effectiveness of the following regimens for GN-BSI/cUTI: complete course of an intravenous β-lactam (IVBL) or oral stepdown therapy within 7 days using fluoroquinolones (FQs), trimethoprim-sulfamethoxazole (TMP-SMX), or high-bioavailability β-lactams (HBBLs). Adults treated between January 2016 and December 2022 for Escherichia coli or Klebsiella species GN-BSI/cUTI were included. Propensity weighting was used to balance characteristics between groups. The 60-day recurrence was compared using a multinomial Cox proportional hazards model with probability of treatment weighting. Results Of 2571 patients screened, 759 (30%) were included. Characteristics were similar between groups. Compared with IVBLs, we did not observe a difference in effectiveness for FQs (adjusted hazard ratio, 1.09 [95% confidence interval, .49-2.43]) or TMP-SMX (1.44 [.54-3.87]), and the effectiveness of TMP-SMX/FQ appeared to be optimal at durations of >10 days. HBBLs were associated with nearly 4-fold higher risk of recurrence (adjusted hazard ratio, 3.83 [95% confidence interval, 1.76-8.33]), which was not mitigated by longer treatment durations. Most HBBLs (67%) were not optimally dosed for bacteremia. Results were robust to multiple sensitivity analyses. Conclusions These real-world data suggest that oral stepdown therapy with FQs or TMP-SMX have similar effectiveness as IVBLs. HBBLs were associated with higher recurrence rates, but dosing was suboptimal. Further data are needed to define optimal dosing and duration to mitigate treatment failures.
Collapse
Affiliation(s)
- John J Veillette
- Infectious Diseases Telehealth Service, Intermountain Health, Murray, Utah, USA
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - Stephanie S May
- Infectious Diseases Telehealth Service, Intermountain Health, Murray, Utah, USA
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - Sameer Alzaidi
- Pharmacy Services, Intermountain Health, Taylorsville, Utah, USA
| | - Jared Olson
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
- Division of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Allison M Butler
- Statistical Data Center, Intermountain Health, Murray, Utah, USA
| | - C Dustin Waters
- Department of Pharmacy, McKay-Dee Hospital, Ogden, Utah, USA
| | - Katarina Jackson
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - Mary A Hutton
- Department of Pharmacy, Utah Valley Hospital, Provo, Utah, USA
| | - Brandon J Webb
- Division of Clinical Epidemiology and Infectious Diseases, Intermountain Medical Center, Murray, Utah, USA
| |
Collapse
|
23
|
Yan K, Yao J, Liu L, Liang W, Cai Y. Effects of low-frequency ultrasound combined with anti-MRSA agents on the mouse model of pulmonary infection. Microbiol Spectr 2024; 12:e0101623. [PMID: 38323827 PMCID: PMC10913739 DOI: 10.1128/spectrum.01016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The treatment of methicillin-resistant Staphylococcus aureus (MRSA)-induced pneumonia with antibiotics alone poses considerable challenges. To address these challenges, low-frequency ultrasound (LFU) emerges as a promising approach. In this study, a mouse pneumonia model was established through intratracheal injection of MRSA to investigate the therapeutic efficacy of LFU in combination with antibiotics. Minimal inhibitory concentration was assessed, and the distribution of antibiotics in the lung and plasma was determined using liquid chromatography coupled with mass spectrometry. Various parameters, including the survival rate, histopathology, lung bacterial clearance, and the expressions of cytokines and inflammation-related genes, were evaluated before and after treatment. Compared with the infection group, both the antibiotic-alone groups [vancomycin (VCM), linezolid, and contezolid (CZD)] and the groups in combination with LFU demonstrated an improvement in the survival status of mice. The average colony-forming units of lung tissue in the LFU combination groups were lower compared with the antibiotic-alone groups. While no significant changes in C-reactive protein and procalcitonin in plasma and bronchoalveolar lavage fluid were observed, histopathological results revealed reduced inflammatory damage in LFU combination groups. The secretion of interleukin-6 and tumor necrosis factor-alpha was decreased by the combination treatment, particularly in the VCM + LFU group. Furthermore, the expressions of MRSA virulence factors (hla and agrA) and inflammation-related genes (Saa3, Cxcl9, and Orm1) were further reduced by the combinations of LFU and antibiotics. Additionally, LFU treatment facilitated the distribution of VCM and CZD in mouse lung tissue at 30 and 45 min, respectively, after dosage.IMPORTANCETreating pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) with antibiotics alone poses significant challenges. In this in vivo study, we present compelling evidence supporting the efficacy of low-frequency ultrasound (LFU) as a promising approach to overcome these obstacles. Our findings demonstrated that LFU enhanced the effectiveness of vancomycin, linezolid, and contezolid in an MRSA pneumonia model. The combination of LFU with anti-MRSA agents markedly improved the survival rate of mice, accelerated the clearance of pulmonary bacteria, reduced inflammatory injury, inhibited the production of MRSA endotoxin, and enhanced the distribution of antibiotics in lung tissue. The application of LFU in the treatment of pulmonary infections held substantial significance. We believe that readers of your journal will find this topic of considerable interest.
Collapse
Affiliation(s)
- Kaicheng Yan
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
- Unit 32701 of Chinese PLA, Beijing, China
| | - Jiahui Yao
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Lingling Liu
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Wenxin Liang
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Alzaidi S, Veillette JJ, May SS, Olson J, Jackson K, Waters CD, Butler AM, Hutton MA, Buckel WR, Webb BJ. Oral β-Lactams, Fluoroquinolones, or Trimethoprim-Sulfamethoxazole for Definitive Treatment of Uncomplicated Escherichia coli or Klebsiella Species Bacteremia From a Urinary Tract Source. Open Forum Infect Dis 2024; 11:ofad657. [PMID: 38370295 PMCID: PMC10873539 DOI: 10.1093/ofid/ofad657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Background Fluoroquinolones (FQs) are effective for oral step-down therapy for gram-negative bloodstream infections but are associated with unfavorable toxic effects. Robust data are lacking for trimethoprim-sulfamethoxazole (TMP-SMX) and high-bioavailability β-lactams (HBBLs). Methods In this multicenter observational cohort study, we simulated a 3-arm registry trial using causal inference methods to compare the effectiveness of FQs, TMP-SMX, or HBBLs for gram-negative bloodstream infections oral step-down therapy. The study included adults treated between January 2016 and December 2022 for uncomplicated Escherichia coli or Klebsiella species bacteremia of urinary tract origin who were who were transitioned to an oral regimen after ≤4 days of effective intravenous antibiotics. Propensity weighting was used to balance characteristics between groups. 60-day recurrence was compared using a multinomial Cox proportional hazards model with probability of treatment weighting. Results Of 2571 patients screened, 648 (25%) were included. Their median age (interquartile range) was 67 (45-78) years, and only 103 (16%) were male. Characteristics were well balanced between groups. Compared with FQs, TMP-SMX had similar effectiveness (adjusted hazard ratio, 0.91 [95% confidence interval, .30-2.78]), and HBBLs had a higher risk of recurrence (2.19 [.95-5.01]), although this difference was not statistically significant. Most HBBLs (70%) were not optimally dosed for bacteremia. A total antibiotic duration ≤8 days was associated with a higher recurrence rate in select patients with risk factors for failure. Conclusions FQs and TMP-SMX had similar effectiveness in this real-world data set. HBBLs were associated with higher recurrence rates but suboptimal dosing may have contributed. Further studies are needed to define optimal BL dosing and duration to mitigate treatment failures.
Collapse
Affiliation(s)
- Sameer Alzaidi
- Department of Pharmacy, Intermountain Health, Taylorsville, Utah, USA
| | - John J Veillette
- Infectious Diseases Telehealth Service, Intermountain Health, Murray, Utah, USA
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - Stephanie S May
- Infectious Diseases Telehealth Service, Intermountain Health, Murray, Utah, USA
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - Jared Olson
- Department of Pharmacy, Primary Children's Hospital, Salt Lake City, Utah, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Katarina Jackson
- Department of Pharmacy, Intermountain Medical Center, Murray, Utah, USA
| | - C Dustin Waters
- Department of Pharmacy, McKay-Dee Hospital, Ogden, Utah, USA
| | - Allison M Butler
- Statistical Data Center, Intermountain Health, Murray, Utah, USA
| | - Mary A Hutton
- Department of Pharmacy, Utah Valley Hospital, Provo, Utah, USA
| | - Whitney R Buckel
- Department of Pharmacy, Intermountain Health, Taylorsville, Utah, USA
| | - Brandon J Webb
- Division of Clinical Epidemiology and Infectious Diseases, Intermountain Medical Center, Murray, Utah, USA
| |
Collapse
|
25
|
Selig D, Caridha D, Evans M, Kress A, Lanteri C, Ressner R, DeLuca J. Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014-2022. J Pers Med 2024; 14:111. [PMID: 38276233 PMCID: PMC10820112 DOI: 10.3390/jpm14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
We sought to better understand the utility and role of animal models of infection for Food and Drug Administration (FDA)-approved antibiotics for the indications of community-, hospital-acquired-, and ventilator-associated bacterial pneumonia (CABP, HABP, VABP), complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), and acute bacterial skin and structural infections (ABSSSIs). We reviewed relevant documents from new drug applications (NDA) of FDA-approved antibiotics from 2014-2019 for the above indications. Murine neutropenic thigh infection models supported the choice of a pharmacokinetic-pharmacodynamic (PKPD) target in 11/12 NDAs reviewed. PKPD targets associated with at least a 1-log bacterial decrease were commonly considered ideal (10/12 NDAs) to support breakpoints. Plasma PK, as opposed to organ specific PK, was generally considered most reliable for PKPD correlation. Breakpoint determination was multi-disciplinary, accounting at minimum for epidemiologic cutoffs, non-clinical PKPD, clinical exposure-response and clinical efficacy. Non-clinical PKPD targets in combination with probability of target attainment (PTA) analyses generated breakpoints that were consistent with epidemiologic cutoffs and clinically derived breakpoints. In 6/12 NDAs, there was limited data to support clinically derived breakpoints, and hence the non-clinical PKPD targets in combination with PTA analyses played a heightened role in the final breakpoint determination. Sponsor and FDA breakpoint decisions were in general agreement. Disagreement may have arisen from differences in the definition of the optimal PKPD index or the ability to extrapolate protein binding from animals to humans. Overall, murine neutropenic thigh infection models supported the reviewed NDAs by providing evidence of pre-clinical efficacy and PKPD target determination, and played, in combination with PTA analysis, a significant role in breakpoint determination for labeling purposes.
Collapse
Affiliation(s)
- Daniel Selig
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, MD 20910, USA; (D.C.); (M.E.); (A.K.); (C.L.); (R.R.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Givens CE, Kolpin DW, Hubbard LE, Meppelink SM, Cwiertny DM, Thompson DA, Lane RF, Wilson MC. Simultaneous stream assessment of antibiotics, bacteria, antibiotic resistant bacteria, and antibiotic resistance genes in an agricultural region of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166753. [PMID: 37673265 DOI: 10.1016/j.scitotenv.2023.166753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Antimicrobial resistance (AMR) is now recognized as a leading global threat to human health. Nevertheless, there currently is a limited understanding of the environment's role in the spread of AMR and antibiotic resistance genes (ARGs). In 2019, the U.S. Geological Survey conducted the first statewide assessment of antibiotic resistant bacteria (ARB) and ARGs in surface water and bed sediment collected from 34 stream locations across Iowa. Environmental samples were analyzed for a suite of 29 antibiotics and plated on selective media for 15 types of bacteria growth; DNA was extracted from culture growth and used in downstream polymerase chain reaction (PCR) assays for the detection of 24 ARGs. ARGs encoding resistance to antibiotics of clinical importance to human health and disease prevention were prioritized as their presence in stream systems has the potential for environmental significance. Total coliforms, Escherichia coli (E. coli), and staphylococci were nearly ubiquitous in both stream water and stream bed sediment samples, with enterococci present in 97 % of water samples, and Salmonella spp. growth present in 94 % and 67 % of water and bed sediment samples. Bacteria enumerations indicate that high bacteria loads are common in Iowa's streams, with 23 (68 %) streams exceeding state guidelines for primary contact for E. coli in recreational waters and 6 (18 %) streams exceeding the secondary contact advisory level. Although antibiotic-resistant E. coli growth was detected from 40 % of water samples, vancomycin-resistant enterococci (VRE) and penicillinase-resistant Staphylococcus aureus (MRSA) colony growth was detected from nearly all water samples. A total of 14 different ARGs were detected from viable bacteria cells from 30 Iowa streams (88 %, n = 34). Study results provide the first baseline understanding of the prevalence of ARB and ARGs throughout Iowa's waterways and health risk potential for humans, wildlife, and livestock using these waterways for drinking, irrigating, or recreating.
Collapse
Affiliation(s)
- Carrie E Givens
- U.S. Geological Survey, 5840 Enterprise Drive, Lansing, MI 48911, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, 400 S. Clinton Street, Iowa City, Iowa 52240, USA
| | - Laura E Hubbard
- U.S. Geological Survey, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | | | - David M Cwiertny
- University of Iowa Center for Health Effects of Environmental Contamination, The University of Iowa, 251 North Capitol Street, Chemistry Building - Room W195, Iowa City, Iowa 52242, USA
| | - Darrin A Thompson
- University of Iowa Center for Health Effects of Environmental Contamination, The University of Iowa, 251 North Capitol Street, Chemistry Building - Room W195, Iowa City, Iowa 52242, USA
| | - Rachael F Lane
- U.S. Geological Survey, 1217 Biltmore Drive, Lawrence, Kansas 66049, USA
| | - Michaelah C Wilson
- U.S. Geological Survey, 1217 Biltmore Drive, Lawrence, Kansas 66049, USA
| |
Collapse
|
27
|
Peri AM, Edwards F, Henden A, Harris PNA, Chatfield MD, Paterson DL, Laupland KB. Bloodstream infections in neutropenic and non-neutropenic patients with haematological malignancies: epidemiological trends and clinical outcomes in Queensland, Australia over the last 20 years. Clin Exp Med 2023; 23:4563-4573. [PMID: 37815735 PMCID: PMC10725384 DOI: 10.1007/s10238-023-01206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Knowledge of the epidemiology of bloodstream infection (BSI) in haematology patients is essential to guide patient management. We investigated the epidemiology of BSI in patients with haematological malignancies in Queensland over the last 20 years (2000-2019), including all episodes diagnosed by the state-wide microbiology service. We identified 7749 BSI in 5159 patients, 58% associated with neutropenia. Gram-negatives were the main causative pathogens (58.3%), more frequent in neutropenic than non-neutropenic patients (3308/5309, 62.3% vs 1932/3678, 52.5%, p < 0.001). Amongst 8987 isolates the most common were E. coli (15.4%) and Pseudomonas spp. (14.2%). Pseudomonas spp. (16.6% vs 10.7%, p < 0.001), Klebsiella spp. (11.6% vs 6.8%, p < 0.001), viridans-group streptococci (4.4% vs 1.2%, p < 0.001) and E. faecium (2.4% vs 0.9%, p < 0.001) were more common in neutropenic than non-neutropenic patients, while S. aureus was less common (5.9% vs 15.6%, p < 0.001). Several antimicrobial resistance rates increased over time and had higher prevalence in neutropenic than non-neutropenic patients, including ciprofloxacin-resistant E. coli (94/758, 12.4% vs 42/506, 8.3%, p = 0.021), trimethoprim-sulfamethoxazole-resistant E. coli (366/764, 47.9% vs 191/517, 36.9%, p < 0.001), penicillin-resistant streptococci (51/236, 21.6% vs 28/260, 10.8%, p < 0.001) and vancomycin-resistant enterococci (46/250, 18.4% vs 9/144, 6.3%, p < 0.001). Carbapenem-resistant Pseudomonas spp. (OR 7.32, 95%CI 2.78-19.32) and fungi, including yeasts and moulds (OR 3.33, 95%CI 2.02-5.48) were associated to the highest odds of 30-day case-fatality at a multivariable logistic regression analysis. Neutropenia was associated with survival (OR 0.66, 95%CI 0.55-0.78). Differences were observed in the BSI epidemiology according to neutropenic status, with an overall increase of resistance over time associated to adverse outcome.
Collapse
Affiliation(s)
- Anna Maria Peri
- University of Queensland Centre for Clinical Research (UQCCR), Building 71/918 RBWH Herston, Brisbane City, QLD, 4029, Australia.
| | - Felicity Edwards
- Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Andrea Henden
- Department of Haematology and Bone Marrow Transplantation, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research (UQCCR), Building 71/918 RBWH Herston, Brisbane City, QLD, 4029, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane City, QLD, 4029, Australia
| | - Mark D Chatfield
- University of Queensland Centre for Clinical Research (UQCCR), Building 71/918 RBWH Herston, Brisbane City, QLD, 4029, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research (UQCCR), Building 71/918 RBWH Herston, Brisbane City, QLD, 4029, Australia
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kevin B Laupland
- Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Intensive Care Unit, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Ganjo AR, Ali FA, Aka ST, Hussen BM, Smail SB. Diversity of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa recovered from various clinical isolates. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:742-749. [PMID: 38156300 PMCID: PMC10751611 DOI: 10.18502/ijm.v15i6.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives The resistance of Pseudomonas aeruginosa to antibiotics offers a significant challenge in the treatment of patients. This study aimed to investigate the antimicrobial resistance profile, biofilm-specific antimicrobial resistance genes, and genetic diversity of P. aeruginosa recovered from clinical samples. Materials and Methods Totally 47 non-duplicate isolates of P. aeruginosa were recovered from various clinical samples. toxA, algD, ndvB, and tssC1 genes were detected in biofilm-producing isolates. The DNA sequences of the toxA and tssC1 genes were analyzed, by creating phylogenetic trees. Results The findings revealed that 30 (63.8%) of the isolates tested positive for Extended spectrum β-lactamase (ESBL), whereas 31 (65.9%) tested positive for Metallo-β-lactamase (MBL) and all of the isolates presented the toxA genes, and 19.1%,17%, 6.3% presented by algD, ndvB and tssC1 genes. Besides, the phylogenetic trees of the toxA and tssC1 gene isolates suggested a genotype that was closely aligned with others. Gene sequencing similarity revealed 99% identity with other isolates deposited in GenBank. Conclusion The occurrence of toxA was most prevalent. One isolate was recorded as a novel isolate in the global gene bank as a locally isolated strain from the city of Erbil that has never been identified in global isolates due to genetic variation.
Collapse
Affiliation(s)
- Aryan R. Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Fattma A. Ali
- Department of Medical Microbiology, College of Health Science, Hawler Medical University, Erbil, Iraq
| | - Safaa T. Aka
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Bashdar M. Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | |
Collapse
|
29
|
Tamma PD, Harris PNA, Mathers AJ, Wenzler E, Humphries RM. Breaking Down the Breakpoints: Rationale for the 2022 Clinical and Laboratory Standards Institute Revised Piperacillin-Tazobactam Breakpoints Against Enterobacterales. Clin Infect Dis 2023; 77:1585-1590. [PMID: 36001445 DOI: 10.1093/cid/ciac688] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Piperacillin-tazobactam (PTZ) is one of the most common antibiotics administered to hospitalized patients. Its broad activity against gram-negative, gram-positive, and anaerobic pathogens; efficacy in clinical trials across diverse infection types and patient populations; and generally favorable toxicity profile make it a particularly appealing antibiotic agent. PTZ susceptibility interpretive criteria (ie, breakpoints) for the Enterobacterales were initially established in 1992, as the drug was undergoing approval by the US Food and Drug Administration. In the ensuing 30 years, changes in the molecular epidemiology of the Enterobacterales and its impact on PTZ susceptibility testing, mounting pharmacokinetic/pharmacodynamic data generated from sophisticated techniques such as population pharmacokinetic modeling and Monte Carlo simulation, and disturbing safety signals in a large clinical trial prompted the Clinical Laboratory and Standards Institute (CLSI) to review available evidence to determine the need for revision of the PTZ breakpoints for Enterobacterales. After an extensive literature review and formal voting process, the susceptibility criteria were revised in the 2022 CLSI M100 document to the following: ≤8/4 µg/mL (susceptible), 16/4 µg/mL (susceptible dose-dependent), and ≥32/4 µg/mL (resistant). Herein, we provide a brief overview of the CLSI process of antibiotic breakpoint revisions and elaborate on the available data that ultimately led to the decision to revise the PTZ breakpoints.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrick N A Harris
- Faculty of Medicine, UQ Center for Clinical Research, Royal Brisbane and Women's Hospital Campus, University of Queensland, Brisbane, Australia
| | - Amy J Mathers
- Department of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Romney M Humphries
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Wen X, Yang H, Li Z, Chu W. Alcohol degradation, learning, and memory-enhancing effect of Acetobacter pasteurianus BP2201 in Caenorhabditis elegans model. J Appl Microbiol 2023; 134:lxad253. [PMID: 37934610 DOI: 10.1093/jambio/lxad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to investigate the probiotic effects of Acetobacter pasteurianus BP2201, isolated from brewing mass, for the treatment of alcohol-induced learning and memory ability impairments in a Caenorhabditis elegans model. METHODS AND RESULTS Acetobacter pasteurianus BP2201 was examined for probiotic properties, including acid and bile salt resistance, ethanol degradation, antioxidant efficacy, hemolytic activity, and susceptibility to antibiotics. The strain displayed robust acid and bile salt tolerance, efficient ethanol degradation, potent antioxidant activity, and susceptibility to specific antibiotics. Additionally, in the C. elegans model, administering A. pasteurianus BP2201 significantly improved alcohol-induced learning and memory impairments. CONCLUSIONS Acetobacter pasteurianus BP2201 proves to be a promising candidate strain for the treatment of learning and memory impairments induced by alcohol intake.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huazhong Yang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongqi Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Cartagena AJ, Taylor KL, Smith JT, Manson AL, Pierce VM, Earl AM, Bhattacharyya RP. The carbapenem inoculum effect provides insight into the molecular mechanisms underlying carbapenem resistance in Enterobacterales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541813. [PMID: 37292717 PMCID: PMC10245868 DOI: 10.1101/2023.05.23.541813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are important pathogens that can develop resistance via multiple molecular mechanisms, including hydrolysis or reduced antibiotic influx. Identifying these mechanisms can improve pathogen surveillance, infection control, and patient care. We investigated how resistance mechanisms influence the carbapenem inoculum effect (IE), a phenomenon where inoculum size affects antimicrobial susceptibility testing (AST). We demonstrated that seven different carbapenemases impart a meropenem IE in Escherichia coli. Across 110 clinical CRE isolates, the carbapenem IE strictly depended on resistance mechanism: all carbapenemase-producing CRE (CP-CRE) exhibited a strong IE, whereas porin-deficient CRE displayed none. Concerningly, 50% and 24% of CP-CRE isolates changed susceptibility classification to meropenem and ertapenem, respectively, across the allowable inoculum range in clinical guidelines. The meropenem IE, and the ratio of ertapenem to meropenem minimal inhibitory concentration (MIC) at standard inoculum, reliably identified CP-CRE. Understanding how resistance mechanisms affect AST could improve diagnosis and guide therapies for CRE infections.
Collapse
Affiliation(s)
| | - Kyra L. Taylor
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua T. Smith
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abigail L. Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Virginia M. Pierce
- Microbiology Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roby P. Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
32
|
Rinaldi E, Drenkhahn C, Gebel B, Saleh K, Tönnies H, von Loewenich FD, Thoma N, Baier C, Boeker M, Hinske LC, Diaz LAP, Behnke M, Ingenerf J, Thun S. Towards interoperability in infection control: a standard data model for microbiology. Sci Data 2023; 10:654. [PMID: 37741862 PMCID: PMC10517923 DOI: 10.1038/s41597-023-02560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.
Collapse
Affiliation(s)
- Eugenia Rinaldi
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany.
| | - Cora Drenkhahn
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Benjamin Gebel
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kutaiba Saleh
- Data Integration Center, Jena University Hospital, Jena, Germany
| | | | | | - Norbert Thoma
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Claas Baier
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | | | | | - Luis Alberto Peña Diaz
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Michael Behnke
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Josef Ingenerf
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Sylvia Thun
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
33
|
Lee EB, Abbas MA, Park J, Tassew DD, Park SC. Optimizing tylosin dosage for co-infection of Actinobacillus pleuropneumoniae and Pasteurella multocida in pigs using pharmacokinetic/pharmacodynamic modeling. Front Pharmacol 2023; 14:1258403. [PMID: 37808183 PMCID: PMC10556534 DOI: 10.3389/fphar.2023.1258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Formulating a therapeutic strategy that can effectively combat concurrent infections of Actinobacillus pleuropneumoniae (A. pleuropneumoniae) and Pasteurella multocida (P. multocida) can be challenging. This study aimed to 1) establish minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time kill curve, and post-antibiotic effect (PAE) of tylosin against A. pleuropneumoniae and P. multocida pig isolates and employ the MIC data for the development of epidemiological cutoff (ECOFF) values; 2) estimate the pharmacokinetics (PKs) of tylosin following its intramuscular (IM) administration (20 mg/kg) in healthy and infected pigs; and 3) establish a PK-pharmacodynamic (PD) integrated model and predict optimal dosing regimens and PK/PD cutoff values for tylosin in healthy and infected pigs. The MIC of tylosin against both 89 and 363 isolates of A. pleuropneumoniae and P. multocida strains spread widely, ranging from 1 to 256 μg/mL and from 0.5 to 128 μg/mL, respectively. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) ECOFFinder analysis ECOFF value (≤64 µg/mL), 97.75% (87 strains) of the A. pleuropnumoniae isolates were wild-type, whereas with the same ECOFF value (≤64 µg/mL), 99.72% (363 strains) of the P. multicoda isolates were considered wild-type to tylosin. Area under the concentration time curve (AUC), T1/2, and Cmax values were significantly greater in healthy pigs than those in infected pigs (13.33 h × μg/mL, 1.99 h, and 5.79 μg/mL vs. 10.46 h × μg/mL, 1.83 h, and 3.59 μg/mL, respectively) (p < 0.05). In healthy pigs, AUC24 h/MIC values for the bacteriostatic activity were 0.98 and 1.10 h; for the bactericidal activity, AUC24 h/MIC values were 1.97 and 1.99 h for A. pleuropneumoniae and P. multocida, respectively. In infected pigs, AUC24 h/MIC values for the bacteriostatic activity were 1.03 and 1.12 h; for bactericidal activity, AUC24 h/MIC values were 2.54 and 2.36 h for A. pleuropneumoniae and P. multocida, respectively. Monte Carlo simulation lead to a 2 μg/mL calculated PK/PD cutoff. Managing co-infections can present challenges, as it often demands the administration of multiple antibiotics to address diverse pathogens. However, using tylosin, which effectively targets both A. pleuropneumoniae and P. multocida in pigs, may enhance the control of bacterial burden. By employing an optimized dosage of 11.94-15.37 mg/kg and 25.17-27.79 mg/kg of tylosin can result in achieving bacteriostatic and bactericidal effects in 90% of co-infected pigs.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jonghyun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- DIVA Bio Incorporation, Daegu, Republic of Korea
| | | | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
34
|
Zhang MM, Stevens RW, Adema JL, Mara KC, Schuetz AN, Tande AJ, Rivera CG. A Pharmacovigilance Analysis of Daptomycin Use Based on CLSI Susceptible Dose-Dependent Category. Infect Dis Ther 2023; 12:2295-2305. [PMID: 37751018 PMCID: PMC10581971 DOI: 10.1007/s40121-023-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Daptomycin doses 8-12 mg/kg are recommended for susceptible dose-dependent Enterococcus species. However, data remain limited on safety outcomes of such dosing, compared to standard 4-6 mg/kg dosing. METHODS In this retrospective cohort study, patients were stratified into daptomycin standard-dose (≤ 6.5 mg/kg) versus high-dose (≥ 7.5 mg/kg) groups. The primary outcome was daptomycin safety based on a composite of creatine kinase elevation, daptomycin-related peripheral blood eosinophilia, eosinophilic pneumonitis, alanine aminotransferase elevation, and alkaline phosphatase elevation. A secondary aim was to identify risk factors for daptomycin adverse effects. Inclusion criteria were age ≥ 18 years old, daptomycin receipt for ≥ 48 h, and Enterococcus cultures with a daptomycin minimal inhibitory concentration 2-4 mg/L. RESULTS A total of 119 patients were included for analysis. Median daptomycin doses were 6.0 mg/kg (IQR 5.4, 6.1) and 8.1 mg/kg (IQR 7.9, 9.6) in the standard- and high-dose cohorts, respectively. Median durations were 13.5 days (standard-dose) and 16 days (high-dose) (p = 0.02). The composite safety endpoint occurred in 32.0% of the standard-dose group and 32.5% of the high-dose group (p = 0.96). Daptomycin was dose-reduced or held in 8.1% of patients experiencing an adverse effect. Concurrent antihistamine usage was associated with the composite outcome; however, there was no association with daptomycin dose or concurrent statin use. CONCLUSION High-dose daptomycin was not associated with increased laboratory abnormalities or adverse drug reactions compared to standard-dose daptomycin.
Collapse
Affiliation(s)
- Ming M Zhang
- Department of Pharmacy, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ryan W Stevens
- Department of Pharmacy, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jennifer L Adema
- Department of Pharmacy, East Carolina University Health Medical Center, 2100 Stantonsburg Rd., Greenville, NC, 27834, USA
| | - Kristin C Mara
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Audrey N Schuetz
- Laboratory Medicine and Pathology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Aaron J Tande
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Christina G Rivera
- Department of Pharmacy, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
Kalpana S, Lin WY, Wang YC, Fu Y, Wang HY. Alternate Antimicrobial Therapies and Their Companion Tests. Diagnostics (Basel) 2023; 13:2490. [PMID: 37568853 PMCID: PMC10417861 DOI: 10.3390/diagnostics13152490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
New antimicrobial approaches are essential to counter antimicrobial resistance. The drug development pipeline is exhausted with the emergence of resistance, resulting in unsuccessful trials. The lack of an effective drug developed from the conventional drug portfolio has mandated the introspection into the list of potentially effective unconventional alternate antimicrobial molecules. Alternate therapies with clinically explicable forms include monoclonal antibodies, antimicrobial peptides, aptamers, and phages. Clinical diagnostics optimize the drug delivery. In the era of diagnostic-based applications, it is logical to draw diagnostic-based treatment for infectious diseases. Selection criteria of alternate therapeutics in infectious diseases include detection, monitoring of response, and resistance mechanism identification. Integrating these diagnostic applications is disruptive to the traditional therapeutic development. The challenges and mitigation methods need to be noted. Applying the goals of clinical pharmacokinetics that include enhancing efficacy and decreasing toxicity of drug therapy, this review analyses the strong correlation of alternate antimicrobial therapeutics in infectious diseases. The relationship between drug concentration and the resulting effect defined by the pharmacodynamic parameters are also analyzed. This review analyzes the perspectives of aligning diagnostic initiatives with the use of alternate therapeutics, with a particular focus on companion diagnostic applications in infectious diseases.
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Wan-Ying Lin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA;
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
36
|
Maganga R, Sindiyo E, Musyoki VM, Shirima G, Mmbaga BT. Comparative analysis of clinical breakpoints, normalized resistance interpretation and epidemiological cut-offs in interpreting antimicrobial resistance of Escherichia coli isolates originating from poultry in different farm types in Tanzania. Access Microbiol 2023; 5:acmi000540.v4. [PMID: 37601443 PMCID: PMC10436012 DOI: 10.1099/acmi.0.000540.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/13/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Existing breakpoint guidelines are not optimal for interpreting antimicrobial resistance (AMR) data from animal studies and low-income countries, and therefore their utility for analysing such data is limited. There is a need to integrate diverse data sets, such as those from low-income populations and animals, to improve data interpretation. Gap statement There is very limited research on the relative merits of clinical breakpoints, epidemiological cut-offs (ECOFFs) and normalized resistance interpretation (NRI) breakpoints in interpreting microbiological data, particularly in animal studies and studies from low-income countries. Aim The aim of this study was to compare antimicrobial resistance in Escherichia coli isolates using ECOFFs, CLSI and NRI breakpoints. Methodology A total of 59 non-repetitive poultry isolates were selected for investigation based on lactose fermentation on MacConkey agar and subsequent identification and confirmation as E. coli using chromogenic agar and uidA PCR. Kirby Bauer disc diffusion was used for susceptibility testing. For each antimicrobial agent, inhibition zone diameters were measured, and ECOFFs, CLSI and NRI bespoke breakpoints were used for resistance interpretation. Results According to the interpretation of all breakpoints except ECOFFs, tetracycline resistance was significantly higher (TET) (67.8 -69.5 %), than those for ciprofloxacin (CIPRO) (18.6 -32.2 %), imipenem (IMI) (3.4 -35 %) and ceftazidime (CEF) (1.7 -45.8 %). Prevalence estimates of AMR using CLSI and NRI bespoke breakpoints did not differ for CEF (1.7 % CB and 1.7 % COWT), IMI (3.4 % CB and 4.0 % COWT) and TET (67.8 % CB and 69.5 % COWT). However, with ECOFFs, AMR estimates for CEF, IMI and CIP were significantly higher (45.8, 35.6 and 64.4 %, respectively; P<0.05). Across all the three breakpoints, resistance to ciprofloxacin varied significantly (32.2 % CB, 64.4 % ECOFFs and 18.6 % COWT, P<0.05). Conclusion AMR interpretation is influenced by the breakpoint used, necessitating further standardization, especially for microbiological breakpoints, in order to harmonize outputs. The AMR ECOFF estimates in the present study were significantly higher compared to CLSI and NRI.
Collapse
Affiliation(s)
- Ruth Maganga
- University of Birmingham, Birmingham, B15 2TT, UK
- University of Glasgow, Glasgow, G12 8QQ, UK
- Kilimanjaro Christian Medical Center/Kilimanjaro Clinical Research Institute, PO Box 2236, Moshi, Tanzania
| | - Emmanuel Sindiyo
- The Nelson Mandela African Institution of Science and Technology, PO Box 447, Arusha, Tanzania
| | - Victor Moses Musyoki
- Department of Medical Microbiology, University of Nairobi, PO Box 19676-00202, Nairobi, Kenya
| | - Gabriel Shirima
- The Nelson Mandela African Institution of Science and Technology, PO Box 447, Arusha, Tanzania
| | - Blandina T. Mmbaga
- Kilimanjaro Christian Medical Center/Kilimanjaro Clinical Research Institute, PO Box 2236, Moshi, Tanzania
| |
Collapse
|
37
|
Al-Zubairy SA. Microbiologic Cure with a Simplified Dosage of Intravenous Colistin in Adults: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:4237-4249. [PMID: 37404254 PMCID: PMC10317528 DOI: 10.2147/idr.s411381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Colistin's FDA weight-based dosing (WBD) and frequency are both expressed in a broad range. Therefore, a simplified fixed-dose regimen (SFDR) of intravenous colistin based on three body-weight segments has been established for adults. The SFDR falls within the WBD range of each body-weight segment and accounts for the pharmacokinetic features. This study compared microbiologic cure with colistin SFDR to WBD in critically ill adults. Patients and Methods A retrospective cohort study was conducted for colistin orders from January 2014 to February 2022. The study included ICU patients who received intravenous colistin for carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections. Patients received the SFDR after the protocol was implemented, as the WBD was previously used. The primary endpoint was microbiologic cure. Secondary endpoints were 30-day infection recurrence and acute kidney injury (AKI). Results Of the 228 screened patients, 84 fulfilled the inclusion and matching criteria (42 in each group). The microbiologic cure rate was 69% with the SFDR and 36% with the WBD [p=0.002]. Infection recurred in four of the 29 patients who had a microbiologic cure with the SFDR (14%), and in six of the 15 patients with WBD (40%); [p=0.049]. AKI occurred in seven of the 36 SFDR patients who were not on hemodialysis (19%) and 15 of the 33 WBD patients (46%); [p=0.021]. Conclusion In this study, colistin SFDR was associated with a higher microbiologic cure in carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections and with a lower incidence of AKI in critically ill adults compared to WBD.
Collapse
|
38
|
Mitiku A, Solomon Z, Gidisa B, Gebeyhu K, Tewabe H, Shenkute D, Kassa M, Gize A. Prevalence, Antibiotic Susceptibility Pattern, and Associated Factors of Enteric Bacterial Pathogens Among HIV Infected Patients with Diarrhea Attending the ART Clinic of Dilla University Referral Hospital, Southern Ethiopia. Infect Drug Resist 2023; 16:4227-4236. [PMID: 37404258 PMCID: PMC10317522 DOI: 10.2147/idr.s410759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Background In people with human immunodeficiency virus infection, diarrhea is reportedly associated with significant morbidity and mortality. Therefore, the aim of this study was to determine the prevalence, antibiotic susceptibility pattern, and associated factors of enteric bacterial pathogens among HIV infected patients with diarrhea attending the antiretroviral treatment (ART) clinic of Dilla University Referral Hospital, southern Ethiopia. Methods This institutional-based cross-sectional study was conducted on 422 study participants attending at ART clinic of Dilla University Referral Hospital from March to August 2022. Demographic and clinical data were collected by using a semi-structured questionnaire. Stool specimens were inoculated on selective media like Butzller's medium and Xylose Lysine Deoxycholate (XLD) agar. Antimicrobial resistance pattern was assessed by using Kirby-Bauer disk diffusion techniques. Adjusted odds ratio (AOR) and 95% Confidence Interval (CI) was used to determine the presence of association. Results A total of 422 adult patients were enrolled in this study, 51.7% were females. The mean age of the study participants was 27.4 (±15.6 SD) years. The overall prevalence of enteric pathogens was 14.7% (95% CI=11.4-18.2). Shigella spp was the most prevalent organism. Being a farmer (AOR=5.1; 95% CI=1.4-19.1; p<0.015), the habit of hand washing after toilet (AOR=1.9; 95% CI=1.02-3.47; p<0.04), low CD4 cell count of <200 cells (AOR=2.22; 95% CI=1.15-4.27; p<0.02), and longer duration of diarrhea (AOR=2.68; 95% CI=1.23-5.85; p<0.01) were statistically associated. In total, 98.4% of enteric bacterial isolates were sensitive for Meropenem, whereas 82.5% were resistant against Ampicillin. Multidrug resistance was detected in 49.2% of enteric bacteria. Conclusion We found that enteric bacteria are common causative agents of diarrhea in immune-compromised patients. The high rate of drug resistance calls for escalating antimicrobial susceptibility testing before prescribing antimicrobial agent.
Collapse
Affiliation(s)
- Asaye Mitiku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Zerihin Solomon
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Berhanu Gidisa
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Kasie Gebeyhu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Demissew Shenkute
- Department of Medical Laboratory Science, College of Health Sciences, Debre Birhan University, Debre Berhan, Ethiopia
| | - Melkayehu Kassa
- Department of Microbiology, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Addisu Gize
- Department of Microbiology, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
39
|
Liao JX, Appaneal HJ, Menon A, Lopes V, LaPlante KL, Caffrey AR. Decreasing Antibiotic Resistance Trends Nationally in Gram-Negative Bacteria Across United States Veterans Affairs Medical Centers, 2011-2020. Infect Dis Ther 2023:10.1007/s40121-023-00827-9. [PMID: 37326931 PMCID: PMC10390413 DOI: 10.1007/s40121-023-00827-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Gram-negative resistance is a well-acknowledged public health threat. Surveillance data can be used to monitor resistance trends and identify strategies to mitigate their threat. The objective of this study was to assess antibiotic resistance trends in Gram-negative bacteria. METHODS The first cultures of Pseudomonas aeruginosa, Citrobacter, Escherichia coli, Enterobacter, Klebsiella, Morganella morganii, Proteus mirabilis, and Serratia marcescens per hospitalized patient per month collected from 125 Veterans Affairs Medical Centers (VAMCs) between 2011 to 2020 were included. Time trends of resistance phenotypes (carbapenem, fluoroquinolone, extended-spectrum cephalosporin, multi-drug, and difficult-to-treat) were analyzed with Joinpoint regression to estimate average annual percent changes (AAPC) with 95% confidence intervals and p values. A 2020 antibiogram of reported antibiotic percent susceptibilities was also created to evaluate resistance rates at the beginning of the COVID-19 pandemic. RESULTS Among 40 antimicrobial resistance phenotype trends assessed in 494,593 Gram-negative isolates, there were no noted increases; significant decreases were observed in 87.5% (n = 35), including in all P. aeruginosa, Citrobacter, Klebsiella, M. morganii, and S. marcescens phenotypes (p < 0.05). The largest decreases were seen in carbapenem-resistant phenotypes of P. mirabilis, Klebsiella, and M. morganii (AAPCs: - 22.9%, - 20.7%, and - 20.6%, respectively). In 2020, percent susceptibility was over 80% for all organisms tested against aminoglycosides, cefepime, ertapenem, meropenem, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. CONCLUSION We observed significant decreases in antibiotic resistance for P. aeruginosa and Enterobacterales over the past decade. According to the 2020 antibiogram, in vitro antimicrobial activity was observed for most treatment options. These results may be related to the robust infection control and antimicrobial stewardship programs instituted nationally among VAMCs.
Collapse
Affiliation(s)
- J Xin Liao
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Haley J Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Anupama Menon
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Section of Infectious Diseases, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Vrishali Lopes
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA
| | - Kerry L LaPlante
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA.
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI, 02881, USA.
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI, USA.
- School of Public Health, Brown University, Providence, RI, USA.
| | - Aisling R Caffrey
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02908, USA.
- College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI, 02881, USA.
- School of Public Health, Brown University, Providence, RI, USA.
| |
Collapse
|
40
|
Yang MR, Su SF, Wu YW. Using bacterial pan-genome-based feature selection approach to improve the prediction of minimum inhibitory concentration (MIC). Front Genet 2023; 14:1054032. [PMID: 37323667 PMCID: PMC10267731 DOI: 10.3389/fgene.2023.1054032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Predicting the resistance profiles of antimicrobial resistance (AMR) pathogens is becoming more and more important in treating infectious diseases. Various attempts have been made to build machine learning models to classify resistant or susceptible pathogens based on either known antimicrobial resistance genes or the entire gene set. However, the phenotypic annotations are translated from minimum inhibitory concentration (MIC), which is the lowest concentration of antibiotic drugs in inhibiting certain pathogenic strains. Since the MIC breakpoints that classify a strain to be resistant or susceptible to specific antibiotic drug may be revised by governing institutes, we refrained from translating these MIC values into the categories "susceptible" or "resistant" but instead attempted to predict the MIC values using machine learning approaches. Results: By applying a machine learning feature selection approach on a Salmonella enterica pan-genome, in which the protein sequences were clustered to identify highly similar gene families, we showed that the selected features (genes) performed better than known AMR genes, and that models built on the selected genes achieved very accurate MIC prediction. Functional analysis revealed that about half of the selected genes were annotated as hypothetical proteins (i.e., with unknown functional roles), and that only a small portion of known AMR genes were among the selected genes, indicating that applying feature selection on the entire gene set has the potential of uncovering novel genes that may be associated with and may contribute to pathogenic antimicrobial resistances. Conclusion: The application of the pan-genome-based machine learning approach was indeed capable of predicting MIC values with very high accuracy. The feature selection process may also identify novel AMR genes for inferring bacterial antimicrobial resistance phenotypes.
Collapse
Affiliation(s)
- Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shun-Feng Su
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
41
|
Humphries RM, Bragin E, Parkhill J, Morales G, Schmitz JE, Rhodes PA. Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data. J Clin Microbiol 2023; 61:e0143122. [PMID: 36840604 PMCID: PMC10035297 DOI: 10.1128/jcm.01431-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 μg/mL) or not susceptible (MIC of ≥4 μg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 μg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 μg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 μg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.
Collapse
Affiliation(s)
| | - Eugene Bragin
- Next Gen Diagnostics, LLC, Cambridge, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Grace Morales
- Vanderbilt University Medical Center, Nashville, Tennesee, USA
| | | | | |
Collapse
|
42
|
Shafigh Kheljan F, Sheikhzadeh Hesari F, Aminifazl MS, Skurnik M, Goladze S, Zarrini G. Design of Phage-Cocktail-Containing Hydrogel for the Treatment of Pseudomonas aeruginosa-Infected Wounds. Viruses 2023; 15:803. [PMID: 36992511 PMCID: PMC10051971 DOI: 10.3390/v15030803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the treatment of infected wounds has become a global problem due to increased antibiotic resistance in bacteria. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is often present in chronic skin infections, and it has become a threat to public health as it is increasingly multidrug resistant. Due to this, new measures to enable treatment of infections are necessary. Treatment of bacterial infections with bacteriophages, known as phage therapy, has been in use for a century, and has potential with its antimicrobial effect. The main purpose of this study was to create a phage-containing wound dressing with the ability to prevent bacterial infection and rapid wound healing without side effects. Several phages against P. aeruginosa were isolated from wastewater, and two polyvalent phages were used to prepare a phage cocktail. The phage cocktail was loaded in a hydrogel composed of polymers of sodium alginate (SA) and carboxymethyl cellulose (CMC). To compare the antimicrobial effects, hydrogels containing phages, ciprofloxacin, or phages plus ciprofloxacin were produced, and hydrogels without either. The antimicrobial effect of these hydrogels was investigated in vitro and in vivo using an experimental mouse wound infection model. The wound-healing process in different mouse groups showed that phage-containing hydrogels and antibiotic-containing hydrogels have almost the same antimicrobial effect. However, in terms of wound healing and pathological process, the phage-containing hydrogels performed better than the antibiotic alone. The best performance was achieved with the phage-antibiotic hydrogel, indicating a synergistic effect between the phage cocktail and the antibiotic. In conclusion, phage-containing hydrogels eliminate efficiently P. aeruginosa in wounds and may be a proper option for treating infectious wounds.
Collapse
Affiliation(s)
- Fatemeh Shafigh Kheljan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Farzam Sheikhzadeh Hesari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| | - Mohammad Sadegh Aminifazl
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Sophia Goladze
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 HUS Helsinki, Finland; (M.S.); (S.G.)
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (F.S.K.); (F.S.H.)
| |
Collapse
|
43
|
Asempa TE, Kois AK, Gill CM, Nicolau DP. Phenotypes, genotypes and breakpoints: an assessment of β-lactam/β-lactamase inhibitor combinations against OXA-48. J Antimicrob Chemother 2023; 78:636-645. [PMID: 36626311 DOI: 10.1093/jac/dkac425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Two of the three recently approved β-lactam agent (BL)/β-lactamase inhibitor (BLI) combinations have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS OXA-48-positive (n = 51) and OXA-48-negative (KPC, n = 5; Klebsiella pneumoniae wild-type, n = 1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1-log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs, and 96% (49/51) of isolates exceeded the ≥1-log bacterial reduction threshold. CONCLUSIONS Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Abigail K Kois
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
44
|
Li YX, Li Y, Bao SY, Xue N, Ding XQ, Fang Y. The application of new complex indicators in the detection of urine. BMC Nephrol 2023; 24:45. [PMID: 36849937 PMCID: PMC9972632 DOI: 10.1186/s12882-023-03087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Accurate diagnosis and assessment of hematuria is crucial for the early detection of chronic kidney disease(CKD). As instability of urinary RBC count (URBC) often results with clinical uncertainty, therefore new urinary indexes are demanded to improve the accuracy of diagnosis of hematuria. In this study, we aimed to investigate the benefit of applying new complex indicators based on random urine red blood cell counts confirmed in hematuric kidney diseases. METHODS All patients enrolled underwent renal biopsy, and their clinical information was collected. Urinary and blood biomedical indexes were implemented with red blood cell counts to derive complex indicators. Patients were divided into two groups (hematuria-dominant renal histologic lesions and non-hematuria-dominant renal histologic lesions) based on their renal pathological manifestations. The target index was determined by comparing the predictive capabilities of the candidate parameters for hematuric kidney diseases. Hematuria stratification was divided into four categories based on the scale of complex indicators and distributional features. The practicality of the new complex indicators was demonstrated by fitting candidate parameters to models comprising demographic information. RESULTS A total of 1,066 cases (678 hematuria-dominant renal histologic lesions) were included in this study, with a mean age of 44.9 ± 15 years. In differentiating hematuria-dominant renal histologic lesion from the non-hematuria-dominant renal histologic lesion, the AUC value of "The ratio of the random URBC to 24-h albumin excretion" was 0.76, higher than the standard approach of Lg (URBC) [AUC = 0.744] (95% Confidence interval (CI) 0.712 ~ 0.776). The odds ratio of hematuria-dominant renal histologic lesion (Type I) increased from Q2 (3.81, 95% CI 2.66 ~ 5.50) to Q4 (14.17, 95% CI 9.09 ~ 22.72). The predictive model, composed of stratification of new composite indexes, basic demographic characteristics, and biochemical parameters, performed best with AUC value of 0.869 (95% CI 0.856-0.905). CONCLUSION The new urinary complex indicators improved the diagnostic accuracy of hematuria and may serve as a useful parameter for screening hematuric kidney diseases.
Collapse
Affiliation(s)
- Ying-Xiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney Disease, Shanghai, 200032, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China.,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Si-Yu Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney Disease, Shanghai, 200032, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China.,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Xiao-Qiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney Disease, Shanghai, 200032, China.,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China.,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China. .,Shanghai Medical Center of Kidney Disease, Shanghai, 200032, China. .,Shanghai Institute of Kidney Disease and Dialysis, Shanghai, 200032, China. .,Shanghai Key laboratory of Kidney and Blood Purification, Shanghai, 200032, China.
| |
Collapse
|
45
|
McAlister MJ, Rose DT, Hudson FP, Padilla-Tolentino E, Jaso TC. Oral β-lactams vs fluoroquinolones and trimethoprim/sulfamethoxazole for step-down therapy for Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae bacteremia. Am J Health Syst Pharm 2023; 80:S33-S41. [PMID: 35868628 DOI: 10.1093/ajhp/zxac202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
PURPOSE To compare rates of treatment failure for patients with bloodstream infections (BSIs) due to Escherichia coli, Klebsiella pneumoniae, or Proteus mirabilis who received oral step-down antibiotic therapy with either a fluoroquinolone (FQ) or trimethoprim/sulfamethoxazole (SXT) to rates for those who received an oral β-lactam (BL). METHODS This retrospective, multicenter, cohort study included 397 unique adult hospitalized patients with a BSI due to E. coli, K. pneumoniae, or P. mirabilis at 6 hospitals in central Texas between July 11, 2016, and July 11, 2018. The primary outcome was a composite of treatment failure comprising 30-day readmission due to recurrence, 30-day all-cause mortality, and change in oral antibiotic. Secondary outcomes included 90-day development of Clostridioides difficile infection, 90-day colonization with a multidrug-resistant organism, 90-day all-cause readmission, hospital length of stay, and the individual components of the primary outcome. RESULTS Of the 397 patients included, 200 received oral step-down therapy with a BL while 197 received an FQ or SXT. Most patients had an infection due to E. coli (82.8%) and a urinary source of infection (85%). Median total duration of therapy was 14 days in both groups. No difference in treatment failure was identified between the groups treated with a BL and FQ/SXT (7% vs 5.8%, P = 0.561). Median hospital length of stay was the only secondary endpoint in which there was an observed difference (6 vs 5 days, P = 0.04). CONCLUSION We observed no difference in treatment failure rates for patients receiving an oral BL compared to an oral FQ or SXT for step-down therapy of BSIs due to E. coli, K. pneumoniae, and P. mirabilis.
Collapse
Affiliation(s)
- Michael J McAlister
- Department of Pharmacy, Dr. P. Phillips Hospital/Orlando Health, Orlando, FL, USA
| | - Dusten T Rose
- Department of Pharmacy, Dell Seton Medical Center at the University of Texas, Austin, TX, USA
| | - F Parker Hudson
- Department of Internal Medicine, Dell Medical School at the University of Texas at Austin, Austin, TX, USA
| | | | - Theresa C Jaso
- Department of Pharmacy, Ascension Seton Medical Center Austin, Austin, TX, USA
| |
Collapse
|
46
|
Mousavi SM, Mousavi SMA, Moeinizadeh M, Aghajanidelavar M, Rajabi S, Mirshekar M. Evaluation of biosynthesized silver nanoparticles effects on expression levels of virulence and biofilm-related genes of multidrug-resistant Klebsiella pneumoniae isolates. J Basic Microbiol 2023. [PMID: 36658772 DOI: 10.1002/jobm.202200612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
The emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae is associated with high morbidity and mortality due to limited treatment options. This study attempts to biologically synthesize silver nanoparticles (AgNPs) and investigate their effect on expression levels of virulence and biofilm-related genes in clinically isolated K. pneumoniae. In this study, biofilm formation ability, antibiotic resistance pattern, extended-spectrum β-lactamases (ESBLs), and carbapenemases production were investigated for 200 clinical isolates of K. pneumoniae using phenotypic methods. Polymerase chain reaction (PCR) was used to detect virulence and biofilm-related genes, ESBL-encoding genes, and carbapenem resistance genes. AgNPs were synthesized using the bio-reduction method. The antibacterial effects of AgNPs were investigated by microdilution broth. In addition, the cytotoxic effect of AgNPs on L929 fibroblast cell lines was determined. The effects of AgNPs on K. pneumoniae virulence and biofilm-related genes (fimH, rmpA, and mrkA) were determined using quantitative real-time PCR. Thirty percent of the isolates produced a strong biofilm. The highest and lowest levels of resistance were observed against amoxicillin/clavulanic acid (95.4%) and tigecycline (96%), respectively. About 31% of isolates were considered positive for carbapenemases, and 75% of the isolates produced an ESBLs enzyme. Different frequencies of mentioned genes were observed. The synthesized AgNPs had a spherical morphology and varied in size. AgNPs inhibited the growth of MDR K. pneumoniae at 128 µg/ml. In addition, AgNPs downregulated the expression of fimH, rmpA, and mrkA genes by 10, 7, and 14-fold, respectively (p < 0.05), also exerted no cytotoxic effect on L929 fibroblast cell lines. It was revealed that AgNPs lead to a decrease in expression levels of virulence and biofilm-related genes; therefore, it was concluded that AgNPs had an excellent antibacterial effect on MDR K. pneumoniae.
Collapse
Affiliation(s)
- Seyed M Mousavi
- Scool of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | | | - Sajjad Rajabi
- International Campus, Iran University of Medical Science, Tehran, Iran
| | - Maryam Mirshekar
- Microbiology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
47
|
Lim S, Yoo YM, Kim KH. No more tears from surgical site infections in interventional pain management. Korean J Pain 2023; 36:11-50. [PMID: 36581597 PMCID: PMC9812697 DOI: 10.3344/kjp.22397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
As the field of interventional pain management (IPM) grows, the risk of surgical site infections (SSIs) is increasing. SSI is defined as an infection of the incision or organ/space that occurs within one month after operation or three months after implantation. It is also common to find patients with suspected infection in an outpatient clinic. The most frequent IPM procedures are performed in the spine. Even though primary pyogenic spondylodiscitis via hematogenous spread is the most common type among spinal infections, secondary spinal infections from direct inoculation should be monitored after IPM procedures. Various preventive guidelines for SSI have been published. Cefazolin, followed by vancomycin, is the most commonly used surgical antibiotic prophylaxis in IPM. Diagnosis of SSI is confirmed by purulent discharge, isolation of causative organisms, pain/tenderness, swelling, redness, or heat, or diagnosis by a surgeon or attending physician. Inflammatory markers include traditional (C-reactive protein, erythrocyte sedimentation rate, and white blood cell count) and novel (procalcitonin, serum amyloid A, and presepsin) markers. Empirical antibiotic therapy is defined as the initial administration of antibiotics within at least 24 hours prior to the results of blood culture and antibiotic susceptibility testing. Definitive antibiotic therapy is initiated based on the above culture and testing. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria infections appears to be superior to monotherapy in mortality with the risk of increasing antibiotic resistance rates. The never-ending war between bacterial resistance and new antibiotics is continuing. This article reviews prevention, diagnosis, and treatment of infection in pain medicine.
Collapse
Affiliation(s)
- Seungjin Lim
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yeong-Min Yoo
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kyung-Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea,Correspondence: Kyung-Hoon Kim Pain Clinic, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea, Tel: +82-55-360-1422, Fax: +82-55-360-2149, E-mail:
| |
Collapse
|
48
|
Paauw A, Scholz HC, Mars-Groenendijk RH, Dekker LJM, Luider TM, van Leeuwen HC. Expression of virulence and antimicrobial related proteins in Burkholderia mallei and Burkholderia pseudomallei. PLoS Negl Trop Dis 2023; 17:e0011006. [PMID: 36607891 PMCID: PMC9821509 DOI: 10.1371/journal.pntd.0011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are both potential biological threat agents. Melioidosis caused by B. pseudomallei is endemic in Southeast Asia and Northern Australia, while glanders caused by B. mallei infections are rare. Here we studied the proteomes of different B. mallei and B. pseudomallei isolates to determine species specific characteristics. METHODS The expressed proteins of 5 B. mallei and 6 B. pseudomallei strains were characterized using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Subsequently, expression of potential resistance and virulence related characteristics were analyzed and compared. RESULTS Proteome analysis can be used for the identification of B. mallei and B. pseudomallei. Both species were identified based on >60 discriminative peptides. Expression of proteins potentially involved in antimicrobial resistance, AmrAB-OprA, BpeAB-OprB, BpeEF-OprC, PenA as well as several other efflux pump related proteins and putative β-lactamases was demonstrated. Despite, the fact that efflux pump BpeAB-OprB was expressed in all isolates, no clear correlation with an antimicrobial phenotype and the efflux-pump could be established. Also consistent with the phenotypes, no amino acid mutations in PenA known to result in β-lactam resistance could be identified. In all studied isolates, the expression of virulence (related) factors Capsule-1 and T2SS was demonstrated. The expression of T6SS-1 was demonstrated in all 6 B. pseudomallei isolates and in 2 of the 5 B. mallei isolates. In all, except one B. pseudomallei isolate, poly-beta-1,6 N-acetyl-D-glucosamine export porin (Pga), important for biofilm formation, was detected, which were absent in the proteomes of B. mallei. Siderophores, iron binding proteins, malleobactin and malleilactone are possibly expressed in both species under standard laboratory growth conditions. Expression of multiple proteins from both the malleobactin and malleilactone polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) clusters was demonstrated in both species. All B. pseudomallei expressed at least seven of the nine proteins of the bactobolin synthase cluster (bactobolin, is a ribosome targeting antibiotic), while only in one B. mallei isolate expression of two proteins of this synthase cluster was identified. CONCLUSIONS Analyzing the expressed proteomes revealed differences between B. mallei and B. pseudomallei but also between isolates from the same species. Proteome analysis can be used not only to identify B. mallei and B. pseudomallei but also to characterize the presence of important factors that putatively contribute to the pathogenesis of B. mallei and B. pseudomallei.
Collapse
Affiliation(s)
- Armand Paauw
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| | - Holger C. Scholz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Roos H. Mars-Groenendijk
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| | | | - Theo M. Luider
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Hans C. van Leeuwen
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
| |
Collapse
|
49
|
Lerdsittikul V, Thongdee M, Chaiwattanarungruengpaisan S, Atithep T, Apiratwarrasakul S, Withatanung P, Clokie MRJ, Korbsrisate S. A novel virulent Litunavirus phage possesses therapeutic value against multidrug resistant Pseudomonas aeruginosa. Sci Rep 2022; 12:21193. [PMID: 36476652 PMCID: PMC9729221 DOI: 10.1038/s41598-022-25576-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a notable nosocomial pathogen that can cause severe infections in humans and animals. The emergence of multidrug resistant (MDR) P. aeruginosa has motivated the development of phages to treat the infections. In this study, a novel Pseudomonas phage, vB_PaeS_VL1 (VL1), was isolated from urban sewage. Phylogenetic analyses revealed that VL1 is a novel species in the genus Litunavirus of subfamily Migulavirinae. The VL1 is a virulent phage as no genes encoding lysogeny, toxins or antibiotic resistance were identified. The therapeutic potential of phage VL1 was investigated and revealed that approximately 56% (34/60 strains) of MDR P. aeruginosa strains, isolated from companion animal diseases, could be lysed by VL1. In contrast, VL1 did not lyse other Gram-negative and Gram-positive bacteria suggesting its specificity of infection. Phage VL1 demonstrated high efficiency to reduce bacterial load (~ 6 log cell number reduction) and ~ 75% reduction of biofilm in pre-formed biofilms of MDR P. aeruginosa. The result of two of the three MDR P. aeruginosa infected Galleria mellonella larvae showed that VL1 could significantly increase the survival rate of infected larvae. Taken together, phage VL1 has genetic and biological properties that make it a potential candidate for phage therapy against P. aeruginosa infections.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- grid.494627.a0000 0004 4684 9800Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Sukanya Apiratwarrasakul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- grid.9918.90000 0004 1936 8411Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sunee Korbsrisate
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Creasy-Marrazzo A, Saber MM, Kamat M, Bailey LS, Brinkley L, Cato E, Begum Y, Rashid MM, Khan AI, Qadri F, Basso KB, Shapiro BJ, Nelson EJ. Genome-wide association studies reveal distinct genetic correlates and increased heritability of antimicrobial resistance in Vibrio cholerae under anaerobic conditions. Microb Genom 2022; 8:mgen000905. [PMID: 36748512 PMCID: PMC9837564 DOI: 10.1099/mgen.0.000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 12/07/2022] Open
Abstract
The antibiotic formulary is threatened by high rates of antimicrobial resistance (AMR) among enteropathogens. Enteric bacteria are exposed to anaerobic conditions within the gastrointestinal tract, yet little is known about how oxygen exposure influences AMR. The facultative anaerobe Vibrio cholerae was chosen as a model to address this knowledge gap. We obtained V. cholerae isolates from 66 cholera patients, sequenced their genomes, and grew them under anaerobic and aerobic conditions with and without three clinically relevant antibiotics (ciprofloxacin, azithromycin, doxycycline). For ciprofloxacin and azithromycin, the minimum inhibitory concentration (MIC) increased under anaerobic conditions compared to aerobic conditions. Using standard resistance breakpoints, the odds of classifying isolates as resistant increased over 10 times for ciprofloxacin and 100 times for azithromycin under anaerobic conditions compared to aerobic conditions. For doxycycline, nearly all isolates were sensitive under both conditions. Using genome-wide association studies, we found associations between genetic elements and AMR phenotypes that varied by oxygen exposure and antibiotic concentrations. These AMR phenotypes were more heritable, and the AMR-associated genetic elements were more often discovered, under anaerobic conditions. These AMR-associated genetic elements are promising targets for future mechanistic research. Our findings provide a rationale to determine whether increased MICs under anaerobic conditions are associated with therapeutic failures and/or microbial escape in cholera patients. If so, there may be a need to determine new AMR breakpoints for anaerobic conditions.
Collapse
Affiliation(s)
- Ashton Creasy-Marrazzo
- Departments of Pediatrics, University of Florida, Gainesville, FL, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Morteza M. Saber
- Department of Microbiology and Immunology, McGill University, Gainesville, FL, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Emilee Cato
- Departments of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Yasmin Begum
- Infectious Diseases Division (IDD) and Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Mahbubur Rashid
- Infectious Diseases Division (IDD) and Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) and Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) and Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Gainesville, FL, USA
| | - Eric J. Nelson
- Departments of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|