1
|
Veinović G, Sukara R, Mihaljica D, Penezić A, Ćirović D, Tomanović S. The Occurrence and Diversity of Tick-Borne Pathogens in Small Mammals from Serbia. Vector Borne Zoonotic Dis 2024; 24:285-292. [PMID: 38346321 DOI: 10.1089/vbz.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background: Despite abundance of small mammals in Serbia, there is no information on their role in the epidemiology of tick-borne diseases (TBDs). This retrospective study aimed to identify different tick-borne pathogens (TBPs) in small mammals in Serbia collected during 2011. Materials and Methods: A total of 179 small mammals were collected from seven different localities in Serbia. The five localities belong to the capital city of Serbia-Belgrade: recreational areas-Ada Ciganlija, Titov gaj, and Košutnjak as well as mountainous suburban areas used for hiking-Avala and Kosmaj. The locality Veliko Gradište is a tourist place in northeastern Serbia, whereas the locality Milošev Do is a remote area in western Serbia with minor human impact on the environment. Results: The results of the presented retrospective study are the first findings of Rickettsia helvetica, Rickettsia monacensis, Neoehrlichia mikurensis, Borrelia afzelii, Borrelia miyamotoi, Babesia microti, Hepatozoon canis, and Coxiella burnetii in small mammals in Serbia. The presence of R. helvetica was confirmed in two Apodemus flavicollis, the presence of one of the following pathogens, R. monacensis, B. afzelii, H. canis, Ba. microti, and N. mikurensis was confirmed in one A. flavicollis each, whereas the presence of B. miyamotoi was confirmed in one Apodemus agrarius. Coinfection with B. afzelii and Ba. microti was confirmed in one A. flavicollis. DNA of C. burnetii was detected in 3 of 18 pools. Conclusions: The results confirm that detected pathogens circulate in the sylvatic cycle in Serbia and point to small mammals as potential reservoir hosts for the detected TBPs. Further large-scale studies on contemporary samples are needed to clarify the exact role of particular small mammal species in the epidemiology of TBDs caused by the detected pathogens.
Collapse
Affiliation(s)
- Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
3
|
Corduneanu A, Zając Z, Kulisz J, Wozniak A, Foucault-Simonin A, Moutailler S, Wu-Chuang A, Peter Á, Sándor AD, Cabezas-Cruz A. Detection of bacterial and protozoan pathogens in individual bats and their ectoparasites using high-throughput microfluidic real-time PCR. Microbiol Spectr 2023; 11:e0153123. [PMID: 37606379 PMCID: PMC10581248 DOI: 10.1128/spectrum.01531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Among the most studied mammals in terms of their role in the spread of various pathogens with possible zoonotic effects are bats. These are animals with a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus maintaining and spreading the pathogens they may be carrying. These pathogens also include vector-borne parasites and bacteria that can be spread by ectoparasites such as ticks and bat flies. In the present study, high-throughput screening was performed and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phylogenetic diversity, demonstrating the importance of these mammals and the arthropods associated with them in maintaining the spread of pathogens. Previous studies have also reported the presence of these pathogens, with one exception, Neoehrlichia mikurensis, for which phylogenetic analysis revealed less genetic divergence. High-throughput screening can detect more bacteria and parasites at once, reduce screening costs, and improve knowledge of bats as reservoirs of vector-borne pathogens. IMPORTANCE The increasing number of zoonotic pathogens is evident through extensive studies and expanded animal research. Bats, known for their role as reservoirs for various viruses, continue to be significant. However, new findings highlight the emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in bat blood and ectoparasites raise concerns, as their impact remains uncertain. These discoveries underscore the urgency for heightened vigilance and proactive measures to understand and monitor zoonotic pathogens. By deepening our knowledge and collaboration, we can mitigate these risks, safeguarding human and animal well-being.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Áron Peter
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
4
|
Sawczyn-Domańska A, Zwoliński J, Kloc A, Wójcik-Fatla A. Prevalence of Borrelia, Neoehrlichia mikurensis and Babesia in ticks collected from vegetation in eastern Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 90:409-428. [PMID: 37389691 PMCID: PMC10406691 DOI: 10.1007/s10493-023-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
In Poland, tick-borne diseases constitute the majority of diseases related to exposure to biological agents with a predominance of Lyme borreliosis; therefore, research on ticks as a reservoir of various pathogens remains crucial in the epidemiology of human diseases after tick bites. This study aimed to identify the occurrence of Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Neoehrlichia mikurensis, and Babesia spp. in ticks collected from vegetation in eastern Poland. Additionally, the prevalence of co-infections in the adult Ixodes ricinus ticks was determined. Among I. ricinus ticks the predominantly detected pathogen was B. burgdorferi s.l. (23%) with B. burgdorferi sensu stricto as the most frequently identified species, followed by B. garinii. In 2013, the double or triple infections of B. burgdorferi s.s., B. afzelii, and B. garinii species did not exceed 9% in adult ticks, whereas in 2016, the prevalence of mixed infections reached 29%. The prevalence of N. mikurensis and B. miyamotoi in I. ricinus was determined at the same level of 2.8%. Four Babesia species were identified in the examined I. ricinus population: B. microti (1.5%), B. venatorum (1.2%), B. divergens (0.2%), and B. capreoli (0.1%). Co-infections were detected in 10.1% of all infected ticks with the highest prevalence of co-infections with B. burgdorferi s.l. and Babesia species. The changes in the prevalence and the distribution of particular pathogens within tick populations indicate the need for monitoring the current situation related to tick-borne pathogens from the aspect of risk to human health.
Collapse
Affiliation(s)
- Anna Sawczyn-Domańska
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Jacek Zwoliński
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Anna Kloc
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| |
Collapse
|
5
|
Ravindran R, Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol Res 2023; 122:691-704. [PMID: 36797442 PMCID: PMC9936132 DOI: 10.1007/s00436-023-07792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Transovarial transmission (TOT) is an efficient vertical transmission of pathogens that is observed in many arthropod vectors. This method seems to be an evolutionarily unique development observed only in Babesia sensu stricto (clade VI) and Rickettsia spp., whereas transstadial transmission is the common/default way of transmission. Transovarial transmission does not necessarily contribute to the amplification of tick-borne pathogens but does contribute to the maintenance of disease in the environment. This review aims to provide an updated summary of previous reports on TOT of tick-borne pathogens.
Collapse
Affiliation(s)
- Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India.
| | - Prabodh Kumar Hembram
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Gatchanda Shravan Kumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Chundayil Kalarickal Deepa
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| |
Collapse
|
6
|
Szczotko M, Kubiak K, Michalski MM, Moerbeck L, Antunes S, Domingos A, Dmitryjuk M. Neoehrlichia mikurensis-A New Emerging Tick-Borne Pathogen in North-Eastern Poland? Pathogens 2023; 12:pathogens12020307. [PMID: 36839579 PMCID: PMC9966005 DOI: 10.3390/pathogens12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Neoehrlichia mikurensis is a new emerging tick-borne Gram-negative bacterium, belonging to the family Anaplasmataceae, the main vector of which in Europe is the tick Ixodes ricinus. N. mikurensis is responsible for neoehrlichiosis, occurring mostly in patients with underlying diseases. In the present study, a total of 348 I. ricinus and Dermacentor reticulatus ticks collected in north-eastern Poland were analyzed for the prevalence of N. mikurensis. A total of 140 questing ticks (124 of I. ricinus ticks and 16 D. reticulatus) collected with the flagging method and 208 ticks (105 and 103 I. ricinus and D. reticulatus, respectively) removed from dogs were selected for the study. cDNA (questing ticks) and total DNA (questing and feeding ticks) were analyzed by qPCR targeting the 16S rRNA gene of N. mikurensis. Positive samples were further analyzed by nested PCR and sequencing. The prevalence differed between ticks collected from vegetation (19.3%; 27/140) and ticks removed from dogs (6.7%; 14/208). The presence of the pathogen in questing and feeding D. reticulatus ticks was proven in Poland for the first time. In summary, our research showed that infections of ticks of both the most common tick species I. ricinus and D. reticulatus in north-eastern Poland are present and ticks collected from urban areas were more often infected than ticks from suburban and natural areas. The detection of N. mikurensis in I. ricinus and D. reticulatus ticks from north-eastern Poland indicates potential transmission risk for tick-bitten humans at this latitude.
Collapse
Affiliation(s)
- Magdalena Szczotko
- Students’ Parasitology “Vermis” Science Club, Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Katarzyna Kubiak
- Department of Medical Biology, Collegium Medicum, School of Public Health, University of Warmia and Mazury in Olsztyn, Zolnierska 14c, 10-561 Olsztyn, Poland
| | - Mirosław Mariusz Michalski
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Leonardo Moerbeck
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
| | - Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University, 1349-008 Lisbon, Portugal
- Correspondence: (A.D.); (M.D.)
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
- Correspondence: (A.D.); (M.D.)
| |
Collapse
|
7
|
Moniuszko-Malinowska A, Dunaj J, Andersson MO, Chmielewski T, Czupryna P, Groth M, Grygorczuk S, Zajkowska J, Kondrusik M, Kruszewska E, Pancewicz S. Anaplasmosis in Poland - analysis of 120 patients. Ticks Tick Borne Dis 2021; 12:101763. [PMID: 34161867 DOI: 10.1016/j.ttbdis.2021.101763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The aim of our study was to clarify the clinical picture of anaplasmosis through analysis of the symptoms and clinical signs presented by infected patients in a cohort of tick-bitten individuals. The study included 1375 patients with suspicion of tick-borne disease. Finally, 120 patients (8.7%) were diagnosed with anaplasmosis (HGA). Blood samples were examined by PCR for Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato, Babesia spp., and Bartonella spp.. Based on analysis of 120 patients with HGA we concluded that anaplasmosis is not as rare in Europe, as it is thought to be and often appears as a co-infection with other tick-borne pathogens. The co-infection rate of patients with A. phagocytophilum infection in tick endemic areas is high. Co-infection of A. phagocytophilum with B. burgdorferi s.l. or tick-borne encephalitis virus may influence symptom frequency. PCR together with medical history, clinical picture and basic laboratory tests is a sufficient method for the diagnosis of anaplasmosis. Doxycycline is an effective drug leading to complete recovery.
Collapse
Affiliation(s)
- Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland.
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Tomasz Chmielewski
- National Institute of Public Health - National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Maciej Kondrusik
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections Medical University of Bialystok, Zurawia, 14 15-540 Bialystok, Poland
| |
Collapse
|
8
|
Tufa TB, Wölfel S, Zubriková D, Víchová B, Andersson M, Rieß R, Rutaihwa L, Fuchs A, Orth HM, Häussinger D, Feldt T, Poppert S, Dobler G, Bakkes DK, Chitimia-Dobler L. Tick species from cattle in the Adama Region of Ethiopia and pathogens detected. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:459-471. [PMID: 33909190 PMCID: PMC8190025 DOI: 10.1007/s10493-021-00623-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/21/2021] [Indexed: 06/01/2023]
Abstract
Ticks will diminish productivity among farm animals and transmit zoonotic diseases. We conducted a study to identify tick species infesting slaughter bulls from Adama City and to screen them for tick-borne pathogens. In 2016, 291 ticks were collected from 37 bulls in Adama, which were ready for slaughter. Ticks were identified morphologically. Total genomic DNA was extracted from ticks and used to test for Rickettsia spp. with real-time PCR. Species identification was done by phylogenetic analysis using sequencing that targeted the 23S-5S intergenic spacer region and ompA genes. Four tick species from two genera, Amblyomma and Rhipicephalus, were identified. Amblyomma cohaerens was the dominant species (n = 241, 82.8%), followed by Amblyomma variegatum (n = 22, 7.5%), Rhipicephalus pulchellus (n = 19, 6.5%), and Rhipicephalus decoloratus (n = 9, 3.0%). Among all ticks, 32 (11%) were positive for Rickettsia spp. and 15 (5.2%) of these were identified as R. africae comprising at least two genetic clades, occurring in A. variegatum (n = 10) and A. cohaerens (n = 5). The remainder of Rickettsia-positive samples could not be amplified due to low DNA yield. Furthermore, another 15 (5.2%) samples carried other pathogenic bacteria: Ehrlichia ruminantium (n = 9; 3.1%) in A. cohaerens, Ehrlichia sp. (n = 3; 1%) in Rh. pulchellus and A. cohaerens, Anaplasma sp. (n = 1; 0.5%) in A. cohaerens, and Neoehrlichia mikurensis (n = 2; 0.7%) in A. cohaerens. All ticks were negative for Bartonella spp., Babesia spp., Theileria spp., and Hepatozoon spp. We reported for the first time E. ruminatium, N. mikurensis, Ehrlichia sp., and Anaplasma sp. in A. cohaerens. Medically and veterinarily important pathogens were mostly detected from A. variegatum and A. cohaerens. These data are relevant for a One-health approach for monitoring and prevention of tick-borne disease transmission.
Collapse
Affiliation(s)
- Tafese Beyene Tufa
- College of Health Science, Arsi University, Asella, Ethiopia.
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia.
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany.
| | - Silke Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
- Amedes MVZ for Laboratory Medicine and Microbiology, Fürstenfeldbruck, Germany
| | - Dana Zubriková
- Institute of Parasitology, Slovak Academy of Sciences, Kosice, Slovakia
| | | | | | - Ramona Rieß
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - André Fuchs
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | - Hans Martin Orth
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | - Torsten Feldt
- Hirsch Institute of Tropical Medicine, Asella, Ethiopia
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University Basel, Basel, Switzerland
| | | | - Deon K Bakkes
- Gertrud Theiler Tick Museum, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
9
|
Springer A, Glass A, Topp AK, Strube C. Zoonotic Tick-Borne Pathogens in Temperate and Cold Regions of Europe-A Review on the Prevalence in Domestic Animals. Front Vet Sci 2020; 7:604910. [PMID: 33363242 PMCID: PMC7758354 DOI: 10.3389/fvets.2020.604910] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ticks transmit a variety of pathogens affecting both human and animal health. In temperate and cold regions of Europe (Western, Central, Eastern, and Northern Europe), the most relevant zoonotic tick-borne pathogens are tick-borne encephalitis virus (TBEV), Borrelia spp. and Anaplasma phagocytophilum. More rarely, Rickettsia spp., Neoehrlichia mikurensis, and zoonotic Babesia spp. are identified as a cause of human disease. Domestic animals may also be clinically affected by these pathogens, and, furthermore, can be regarded as sentinel hosts for their occurrence in a certain area, or even play a role as reservoirs or amplifying hosts. For example, viraemic ruminants may transmit TBEV to humans via raw milk products. This review summarizes the role of domestic animals, including ruminants, horses, dogs, and cats, in the ecology of TBEV, Borrelia spp., A. phagocytophilum, Rickettsia spp., N. mikurensis, and zoonotic Babesia species. It gives an overview on the (sero-)prevalence of these infectious agents in domestic animals in temperate/cold regions of Europe, based on 148 individual prevalence studies. Meta-analyses of seroprevalence in asymptomatic animals estimated an overall seroprevalence of 2.7% for TBEV, 12.9% for Borrelia burgdorferi sensu lato (s.l.), 16.2% for A. phagocytophilum and 7.4% for Babesia divergens, with a high level of heterogeneity. Subgroup analyses with regard to animal species, diagnostic test, geographical region and decade of sampling were mostly non-significant, with the exception of significantly lower B. burgdorferi s.l. seroprevalences in dogs than in horses and cattle. More surveillance studies employing highly sensitive and specific test methods and including hitherto non-investigated regions are needed to determine if and how global changes in terms of climate, land use, agricultural practices and human behavior impact the frequency of zoonotic tick-borne pathogens in domestic animals.
Collapse
Affiliation(s)
| | | | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
10
|
Levytska VA, Mushinsky AB, Zubrikova D, Blanarova L, Długosz E, Vichova B, Slivinska KA, Gajewski Z, Gizinski S, Liu S, Zhou L, Rogovskyy AS. Detection of pathogens in ixodid ticks collected from animals and vegetation in five regions of Ukraine. Ticks Tick Borne Dis 2020; 12:101586. [PMID: 33059172 DOI: 10.1016/j.ttbdis.2020.101586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The distribution and prevalence of zoonotic pathogens infecting ixodid ticks in Western Europe have been extensively examined. However, data on ticks and tick-borne pathogens in Eastern Europe, particularly Ukraine are scarce. The objective of the current study was, therefore, to investigate the prevalence of Anaplasma phagocytophilum, Anaplasmataceae, Rickettsia spp., Babesia spp., Bartonella spp., and Borrelia burgdorferi sensu lato in engorged and questing ixodid ticks collected from five administrative regions (oblasts) of Ukraine, namely Chernivtsi, Khmelnytskyi, Kyiv, Ternopil, and Vinnytsia. The ticks were collected from both wild and domestic animals and from vegetation. Of 524 ixodid ticks collected, 3, 99, and 422 ticks were identified as Ixodes hexagonus, Ixodes ricinus, and Dermacentor reticulatus, respectively. DNA samples individually extracted from 168 questing and 354 engorged adult ticks were subjected to pathogen-specific PCR analyses. The mean prevalence in I. ricinus and D. reticulatus were, respectively: 10 % (10/97) and 3 % (12/422) for A. phagocytophilum; 69 % (67/97) and 52 % (220/422) for members of the Anaplasmataceae family; 25 % (24/97) and 28 % (117/422) for Rickettsia spp.; 3 % (3/97) and 1 % (6/422) for Babesia spp.; and 9 % (9/97) and 5 % (20/422) for Bartonella spp. Overall, between the five cities, there was no significant difference in the prevalence of any of the pathogens for the respective ticks (p > 0.05). The prevalence of B. burgdorferi s. l. in the questing and engorged I. ricinus varied from 0 to 27 % and 14-44%, respectively, with no statistical significance identified between the five cities (p > 0.05). In addition to reporting the updated data for Kyiv and Ternopil, this study is the first to provide the prevalences of the tick-borne pathogens for Chernivtsi, Khmelnytskyi, and Vinnytsia. This investigation is also the first to detect Neoehrlichia mikurensis in ixodid ticks from Ukraine. These new data will be useful for medical and veterinary practitioners as well as public health officials when diagnosing infections and when implementing measures to combat tick-borne diseases in Ukraine.
Collapse
Affiliation(s)
- Viktoriya A Levytska
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilya, Kamyanets-Podilskyi, 32300, Ukraine.
| | - Andriy B Mushinsky
- Department of Infection and Invasive Diseases, Faculty of Veterinary Medicine and Technology in Animal Husbandry, State Agrarian and Engineering University in Podilya, Kamyanets-Podilskyi, 32300, Ukraine
| | - Dana Zubrikova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Lucia Blanarova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Ewa Długosz
- Department of Preclinical Sciences, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Bronislava Vichova
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovakia
| | - Kateryna A Slivinska
- I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01030, Ukraine
| | - Zdzislaw Gajewski
- Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Slawomir Gizinski
- Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences (SGGW), 02-787, Warsaw, Poland
| | - Shuling Liu
- Department of Statistics, Texas A&M University, College Station, TX 77845, USA
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX 77845, USA
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
11
|
Langenwalder DB, Schmidt S, Silaghi C, Skuballa J, Pantchev N, Matei IA, Mihalca AD, Gilli U, Zajkowska J, Ganter M, Hoffman T, Salaneck E, Petrovec M, von Loewenich FD. The absence of the drhm gene is not a marker for human-pathogenicity in European Anaplasma phagocytophilum strains. Parasit Vectors 2020; 13:238. [PMID: 32381072 PMCID: PMC7206706 DOI: 10.1186/s13071-020-04116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that replicates in neutrophil granulocytes. It is transmitted by ticks of the Ixodes ricinus complex and causes febrile illness in humans and animals. The geographical distribution of A. phagocytophilum spans the Americas, Europe, Africa and Asia. However, human disease predominantly occurs in North America but is infrequently reported from Europe and Asia. In North American strains, the absence of the drhm gene has been proposed as marker for pathogenicity in humans whereas no information on the presence or absence of the drhm gene was available for A. phagocytophilum strains circulating in Europe. Therefore, we tested 511 European and 21 North American strains for the presence of drhm and compared the results to two other typing methods: multilocus sequence typing (MLST) and ankA-based typing. RESULTS Altogether, 99% (478/484) of the analyzable European and 19% (4/21) of the North American samples from different hosts were drhm-positive. Regarding the strains from human granulocytic anaplasmosis cases, 100% (35/35) of European origin were drhm-positive and 100% (14/14) of North American origin were drhm-negative. Human strains from North America and Europe were both part of MLST cluster 1. North American strains from humans belonged to ankA gene clusters 11 and 12 whereas European strains from humans were found in ankA gene cluster 1. However, the North American ankA gene clusters 11 and 12 were highly identical at the nucleotide level to the European cluster 1 with 97.4% and 95.2% of identity, respectively. CONCLUSIONS The absence of the drhm gene in A. phagocytophilum does not seem to be associated with pathogenicity for humans per se, because all 35 European strains of human origin were drhm-positive. The epidemiological differences between North America and Europe concerning the incidence of human A. phagocytophilum infection are not explained by strain divergence based on MLST and ankA gene-based typing.
Collapse
Affiliation(s)
- Denis B Langenwalder
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany
| | - Sabine Schmidt
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, 76187, Karlsruhe, Germany
| | - Nikola Pantchev
- IDEXX Laboratories, Mörikestrasse 28/3, 71636, Ludwigsburg, Germany
| | - Ioana A Matei
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manastur 3-5, 400372, Cluj-Napoca, Romania
| | - Urs Gilli
- IDEXX Diavet AG, Schlyffistrasse 10, 8806, Bäch, Switzerland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, ul.Żurawia 14, 15-345, Białystok, Poland
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Tove Hoffman
- Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Erik Salaneck
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacherstrasse 67, 55131, Mainz, Germany.
| |
Collapse
|
12
|
Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasit Vectors 2020; 13:176. [PMID: 32264920 PMCID: PMC7140504 DOI: 10.1186/s13071-020-04049-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Ixodes ricinus constitutes the main European vector tick for the Lyme borreliosis pathogen Borrelia burgdorferi (sensu lato), the relapsing fever borrelia Borrelia miyamotoi, as well as Anaplasma phagocytophilum and several Rickettsia species. Under laboratory conditions, a transovarial transmission to the next tick generation is described for Rickettsia spp. and Borrelia spp., especially regarding B. miyamotoi, whereas the efficiency of transovarial transfer under field conditions is largely unstudied. Methods In order to better estimate the potential infection risk by tick larvae for humans and animals, 1500 I. ricinus larvae from 50 collected “nests” (larvae adhering to the flag in a clumped manner) were individually examined for Borrelia, Rickettsia and A. phagocytophilum DNA using quantitative real-time PCR (qPCR). Results Thirty-nine of 50 nests each (78.0%, 95% CI: 64.0–88.5%) were positive for Borrelia spp. and Rickettsia spp. DNA, and in three nests (6.0%, 95% CI: 1.3–16.5%) A. phagocytophilum DNA was detected. Overall, DNA from at least one pathogen could be detected in 90.0% (45/50, 95% CI: 78.2–96.7%) of the nests. Of the 1500 larvae, 137 were positive for Borrelia spp. DNA (9.1%, 95% CI: 7.7–10.7%), 341 for Rickettsia spp. DNA (22.7%, 95% CI: 20.6–24.9%) and three for A. phagocytophilum DNA (0.2%, 95% CI: 0–0.6%). Quantity of Borrelia spp. and Anaplasma spp. DNA in positive larvae was low, with 2.7 × 100Borrelia 5S-23S gene copies and 2.4 × 101A. phagocytophilum msp2/p44 gene copies detected on average, while Rickettsia-positive samples contained on average 5.4 × 102gltA gene copies. Coinfections were found in 66.0% (33/50, 95% CI: 51.2–78.8%) of the nests and 8.6% (38/443, 95% CI: 6.1–11.6%) of positive larvae. In fact, larvae had a significantly higher probability of being infected with Borrelia spp. or Rickettsia spp. when both pathogens were present in the nest. Conclusions This study provides evidence for transovarial transmission of Rickettsia spp. and Borrelia spp. in I. ricinus under field conditions, possibly facilitating pathogen persistence in the ecosystem and reducing the dependence on the presence of suitable reservoir hosts. Further studies are needed to prove transovarial transmission and to explain the surprisingly high proportion of nests containing Rickettsia and/or Borrelia DNA-positive larvae compared to infection rates in adult ticks commonly reported in other studies.![]()
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | | | - Volker Fingerle
- National Reference Centre for Borrelia, Veterinaerstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
13
|
Moniuszko-Malinowska A, Dunaj J, Andersson MO, Czupryna P, Zajkowska J, Guziejko K, Garkowski A, Grygorczuk S, Kondrusik M, Pancewicz S. Assessment of Anaplasma phagocytophilum presence in early Lyme borreliosis manifested by erythema migrans skin lesions. Travel Med Infect Dis 2020; 36:101648. [PMID: 32247015 DOI: 10.1016/j.tmaid.2020.101648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate to what extent early Lyme borreliosis patients with erythema migrans are infected with Anaplasma phagocytophilum. METHODS Three hundred ten patients from Poland with erythema migrans were included in the study. One hundred and eighty-three patients (59%) agreed to have both skin biopsy and blood samples analysed for Borrelia burgdorferi, A. phagocytophilum and 'Candidatus Neoehrlichia mikurensis', with PCR. Positive samples were confirmed with sequencing. RESULTS B. burgdorferi DNA was detected in 49.7% of the skin samples and in 1.1% of the blood samples. A. phagocytophilum DNA was found in 7.1% blood samples, and in 8.2% of the skin biopsies. In four patients, A. phagocytophilum DNA was detected only in blood; in one case A. phagocytophilum DNA was found simultaneously in blood and skin, and additionally in this patients' blood Borrelia DNA was detected. In four skin samples B. burgdorferi DNA was detected simultaneously with A. phagocytophilum DNA, indicative of a co-infection. CONCLUSIONS A. phagocytophilum may be present in early Lyme borreliosis characterized by erythema migrans and should always be considered as a differential diagnostic following a tick bite and considered in treatment schemes, as these differs (in early stage of Lyme borreliosis doxycycline, amoxicillin, cefuroxime axetil and azithromycin are recommended, while in anaplasmosis the most effective courses of treatment are doxycycline, rifampin and levofloxacin). Consequently, the role of A. phagocytophilum in erythema migrans should be further studied.
Collapse
Affiliation(s)
- Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Katarzyna Guziejko
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Adam Garkowski
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Maciej Kondrusik
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections Medical University in Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
14
|
Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 2020; 11:101371. [PMID: 32057703 DOI: 10.1016/j.ttbdis.2020.101371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
Abstract
Candidatus Neoehrlichia mikurensis, the causative agent of tick-borne "neoehrlichiosis" has recently been reported in humans, mammals and ticks in Europe. The aim of this study was to map the distribution of this bacterium in questing ticks in the Czech Republic. A total of 13,325 Ixodes ricinus including 445 larvae, 5270 nymphs and 7610 adults were collected from vegetation by flagging in 140 Czech towns and villages from every region of the Czech Republic. The ticks were pooled into 2665 groups of 5 individuals respecting life stage or sex and tested for the presence of Ca. Neoehrlichia mikurensis by conventional PCR targeting of the groEL gene. The bacterium was detected in 533/2665 pools and 125/140 areas screened, showing an overall estimated prevalence of 4.4 % in ticks of all life stages. Phylogenetic analysis revealed only small genetic diversity among the strains found. Two pools of questing larvae tested positive, suggesting transovarial transmission. According to this study, Ca. Neoehrlichia mikurensis is another tick-borne pathogen widespread in I. ricinus ticks in the Czech Republic.
Collapse
|
15
|
Matei IA, Estrada-Peña A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, Potkonjak A, Zeller H, Mihalca AD. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors 2019; 12:599. [PMID: 31864403 PMCID: PMC6925858 DOI: 10.1186/s13071-019-3852-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone.
Collapse
Affiliation(s)
- Ioana A Matei
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sally J Cutler
- School of Health, Sport & Bioscience, University of East London, London, UK.
| | - Muriel Vayssier-Taussat
- Department of Animal Health, French National Institute for Agricultural Research, Maisons-Alfort, France
| | - Lucía Varela-Castro
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Herve Zeller
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Pedersen BN, Jenkins A, Paulsen KM, Okbaldet YB, Edgar KS, Lamsal A, Soleng A, Andreassen ÅK. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: The western seaboard is a low-prevalence region. Zoonoses Public Health 2019; 67:130-137. [PMID: 31705635 DOI: 10.1111/zph.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Neoehrlichia mikurensis is a tick-borne pathogen widespread among ticks and rodents in Europe and Asia. A previous study on Ixodes ricinus ticks in Norway suggested that N. mikurensis was scarce or absent on the south-west coast of Norway, but abundant elsewhere. The aim of this study was to further investigate the prevalence and distribution of N. mikurensis along the western seaboard of Norway in comparison with more eastern and northern areas. The second aim of the study was to examine seasonal variation of the bacterium in one specific location in the south-eastern part of Norway. Questing I. ricinus were collected from 13 locations along the coast of Norway, from Brønnøysund in Nordland County to Spjaerøy in Østfold County. In total, 11,113 nymphs in 1,113 pools and 718 individual adult ticks were analysed for N. mikurensis by real-time PCR. The mean prevalence of N. mikurensis in adult ticks was 7.9% while the estimated pooled prevalence in nymphs was 3.5%. The prevalence ranged from 0% to 25.5%, with the highest prevalence in the southernmost and the northernmost locations. The pathogen was absent, or present only at low prevalence (<5%), at eight locations, all located in the west, from 58.9°N to 64.9°N. The prevalence of N. mikurensis was significantly different between counties (p < .0001). No significant seasonal variation of N. mikurensis prevalence was observed in the period May to October 2015. Our results confirm earlier findings of a low prevalence of N. mikurensis in the western seaboard of Norway.
Collapse
Affiliation(s)
- Benedikte N Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Katrine M Paulsen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.,Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Yohannes B Okbaldet
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristin S Edgar
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Alaka Lamsal
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnulf Soleng
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Åshild K Andreassen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Fischer T, Myalkhaa M, Krücken J, Battsetseg G, Batsukh Z, Baumann MPO, Clausen PH, Nijhof AM. Molecular detection of tick-borne pathogens in bovine blood and ticks from Khentii, Mongolia. Transbound Emerg Dis 2019; 67 Suppl 2:111-118. [PMID: 31464102 DOI: 10.1111/tbed.13315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/30/2022]
Abstract
Recent studies reported the detection of DNA from tick-borne pathogens (TBPs) of veterinary relevance such as Anaplasma marginale, Babesia bigemina, Babesia bovis and Theileria orientalis in bovine blood samples from Mongolia. These findings were unexpected, as the known tick vectors of these pathogens are not known to occur in Mongolia. We therefore conducted a study in May and June 2013 in six districts of Khentii province where DNA of the said TBPs was previously found. Ticks collected from the vegetation and rodents, as well as blood samples from cattle, were screened for the presence of TBPs by reverse line blot (RLB) hybridization. Tick larvae collected from rodents were pooled. A total of 310 adult ticks were collected from the vegetation, and 249 tick larvae were collected from 24 rodents. Adult ticks (n = 2,318) and blood samples were collected from 481 heads of cattle. All adult ticks were identified as Dermacentor nuttalli. DNA from Rickettsia raoultii (252/310; 81.3%), an uncharacterized Anaplasma species preliminary named Anaplasma sp. Mongolia (26/310; 8.4%), Candidatus Midichloria sp. (18/310; 5.8%), Theileria equi (16/310; 5.2%), Babesia caballi (5/310; 1.6%), T. orientalis (1/310; 0.3%), Borrelia afzelii (1/310; 0.3%) and Candidatus Neoehrlichia mikurensis (1/310; 0.3%) was detected in ticks collected from the vegetation. DNA of R. raoultii (27/28; 96.4%) and Midichloria sp. (2/28; 7.1%) was detected in the pooled tick larvae. Anaplasma sp. Mongolia, a species related to Anaplasma ovis based on a multi-locus analysis, was also detected in 153/481 (31.8%) of the bovine blood samples. DNA of B. bovis, B. bigemina and A. marginale was not detected in the ticks or bovine blood samples from Khentii district.
Collapse
Affiliation(s)
- Timon Fischer
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mungunbariya Myalkhaa
- Institute of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gonchigoo Battsetseg
- Institute of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Zayat Batsukh
- Institute of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Maximilian P O Baumann
- FAO Reference Centre for Veterinary Public Health, Freie Universitaet Berlin, Berlin, Germany
| | - Peter-Henning Clausen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Kohn M, Krücken J, McKay-Demeler J, Pachnicke S, Krieger K, von Samson-Himmelstjerna G. Dermacentor reticulatus in Berlin/Brandenburg (Germany): Activity patterns and associated pathogens. Ticks Tick Borne Dis 2018; 10:191-206. [PMID: 30385074 DOI: 10.1016/j.ttbdis.2018.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/03/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Dermacentor reticulatus is one of the most important European tick species. However, its spatial distribution, seasonality and regional vector role are not well known. This study aimed to gather information about abundance patterns of questing ticks and associated pathogens in unfed female adult D. reticulatus in the Berlin/Brandenburg area. Using the flagging method, questing ticks were collected at four sites in 2010-2012 and 2000 D. reticulatus were analysed regarding infection with Rickettsia, Babesia, Borrelia and Anaplasmataceae by conventional or real-time PCR. Dermacentor reticulatus showed a bimodal activity pattern: highest numbers of adult ticks were recorded between March and end of May (mean 50 ticks/h) and from mid-August until end of November (mean 102 ticks/h). During summer, almost complete inactivity was observed (mean 0.4 ticks/h). Sporadic samplings from December to February revealed tick activity also during winter (mean 47 ticks/h), which was characterised by large fluctuations. Using negative binomial regression analysis, significant influences of the variables sampling site, season and temperature on the abundance of questing D. reticulatus were determined. The parameters relative humidity and year were not of significant importance. PCR analyses showed an average prevalence of 64% for Rickettsia sp. Large differences in pathogen frequencies were observed between sampling sites (31.4-78.3%). Regression analysis demonstrated a significant influence of the sampling site but not of season and year. Examinations regarding other pathogen groups indicated prevalences of 0.25% (Borrelia sp.) and 0.05% (Anaplasmataceae) but absence of Babesia sp. Sequencing of positive samples revealed infections with Rickettsia raoultii, Borrelia miyamotoi, Borrelia afzelii and Anaplasma phagocytophilum. The study shows stable populations of D. reticulatus in Berlin/Brandenburg. People should be aware of ticks throughout the year since Ixodes ricinus is co-endemic and active in spring, summer and autumn while adult D. reticulatus are active throughout the year and even in winter during periods of frost as long as it is warming up during the day. Prevalence of R. raoultii in the present study is among the highest described for D. reticulatus. Borrelia miyamotoi was detected for the first time in D. reticulatus, illustrating the importance of screening studies to evaluate the pathogen structure in D. reticulatus populations.
Collapse
Affiliation(s)
- Mareen Kohn
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Janina McKay-Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | | | - Klemens Krieger
- Bayer Animal Health GmbH, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
19
|
Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLoS One 2018; 13:e0199385. [PMID: 29940047 PMCID: PMC6016914 DOI: 10.1371/journal.pone.0199385] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/06/2018] [Indexed: 11/19/2022] Open
Abstract
Wild rodents are important hosts for tick larvae but co-infestations with other mites and insects are largely neglected. Small rodents were trapped at four study sites in Berlin, Germany, to quantify their ectoparasite diversity. Host-specific, spatial and temporal occurrence of ectoparasites was determined to assess their influence on direct and indirect zoonotic risk due to mice and voles in an urban agglomeration. Rodent-associated arthropods were diverse, including 63 species observed on six host species with an overall prevalence of 99%. The tick Ixodes ricinus was the most prevalent species, found on 56% of the rodents. The trapping location clearly affected the presence of different rodent species and, therefore, the occurrence of particular host-specific parasites. In Berlin, fewer temporary and periodic parasite species as well as non-parasitic species (fleas, chiggers and nidicolous Gamasina) were detected than reported from rural areas. In addition, abundance of parasites with low host-specificity (ticks, fleas and chiggers) apparently decreased with increasing landscape fragmentation associated with a gradient of urbanisation. In contrast, stationary ectoparasites, closely adapted to the rodent host, such as the fur mites Myobiidae and Listrophoridae, were most abundant at the two urban sites. A direct zoonotic risk of infection for people may only be posed by Nosopsyllus fasciatus fleas, which were prevalent even in the city centre. More importantly, peridomestic rodents clearly supported the life cycle of ticks in the city as hosts for their subadult stages. In addition to trapping location, season, host species, body condition and host sex, infestation with fleas, gamasid Laelapidae mites and prostigmatic Myobiidae mites were associated with significantly altered abundance of I. ricinus larvae on mice and voles. Whether this is caused by predation, grooming behaviour or interaction with the host immune system is unclear. The present study constitutes a basis to identify interactions and vector function of rodent-associated arthropods and their potential impact on zoonotic diseases.
Collapse
|
20
|
Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania. Parasitol Res 2018; 117:1591-1597. [PMID: 29589118 DOI: 10.1007/s00436-018-5848-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 01/14/2023]
Abstract
Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.
Collapse
|
21
|
Andersson MO, Tolf C, Tamba P, Stefanache M, Radbea G, Frangoulidis D, Tomaso H, Waldenström J, Dobler G, Chitimia-Dobler L. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania. Parasit Vectors 2018; 11:144. [PMID: 29554947 PMCID: PMC5859542 DOI: 10.1186/s13071-018-2756-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. Results We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen “Candidatus Neoehrlichia mikurensis”. An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. Conclusions We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. “Candidatus Neoehrlichia mikurensis” was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania. Electronic supplementary material The online version of this article (10.1186/s13071-018-2756-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Paula Tamba
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Gabriel Radbea
- Sal-Vet Private Veterinary Clinics, Timis County, Timisoara, Romania
| | | | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Strasse 96a, 07743, Jena, Germany
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, -391 82, Kalmar, SE, Sweden
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany. .,German Center of Infection Research (DZIF) Partner Munich, Neuherbergstrasse 11, D-80937, Munich, Germany.
| | - Lidia Chitimia-Dobler
- Institute for Diagnosis and Animal Health, Bucharest, Romania.,Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany.,German Center of Infection Research (DZIF) Partner Munich, Neuherbergstrasse 11, D-80937, Munich, Germany
| |
Collapse
|
22
|
Matei IA, D'Amico G, Ionică AM, Kalmár Z, Corduneanu A, Sándor AD, Fiţ N, Bogdan L, Gherman CM, Mihalca AD. New records for Anaplasma phagocytophilum infection in small mammal species. Parasit Vectors 2018; 11:193. [PMID: 29558990 PMCID: PMC5859413 DOI: 10.1186/s13071-018-2791-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022] Open
Abstract
Background Tick-borne diseases pose a major threat in public health. The epidemiological dynamics of these diseases depends on the tick vector species and their hosts, as well as the geographical distribution and ecology of both. Among many possible hosts for ticks, small mammals have a major role in the development of immature stages of several tick species. Small mammals are also important reservoir hosts for several pathogenic agents and possible reservoirs for Anaplasma phagocytophilum. In this context, the aim of our study was to evaluate the prevalence of A. phagocytophilum in small mammal species in Romania. Results A total of 791 small mammals of 31 species were tested by PCR, targeting the rrs gene for detection of A. phagocytophilum DNA. Positive results were obtained in 20 small mammals: five Apodemus flavicollis (6.49%), three Sorex araneus (9.09%), three A. uralensis (4.84%), two A. sylvaticus (3.92%), and one of each Spermophilus cittelus (7.14%), Microtus agrestis (3.85%), Sorex minutus (3.85%), Muscardinus avellanarius (3.13%), Crocidura suaveolens (2.44%), Mus spicilegus (2%) and M. arvalis (1.75%). Conclusions Eleven small mammal species were found to be carriers of A. phagocytophilum, suggesting a possible involvement of these species in its epidemiology. To our knowledge, this is the first report of A. phagocytophilum in S. minutus, C. suaveolens, M. spicilegus, M. avellanarius and S. citellus. Electronic supplementary material The online version of this article (10.1186/s13071-018-2791-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Adriana Matei
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. .,Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
| | - Gianluca D'Amico
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Angela Monica Ionică
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zsuzsa Kalmár
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Alexandra Corduneanu
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Attila D Sándor
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Nicodim Fiţ
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Liviu Bogdan
- Department of Reproduction, Obstetrics and Pathology of Animal Reproduction, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Călin M Gherman
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Dunaj J, Moniuszko-Malinowska A, Swiecicka I, Andersson M, Czupryna P, Rutkowski K, Zambrowski G, Zajkowska J, Grygorczuk S, Kondrusik M, Świerzbińska R, Pancewicz S. Tick-borne infections and co-infections in patients with non-specific symptoms in Poland. Adv Med Sci 2018; 63:167-172. [PMID: 29120859 DOI: 10.1016/j.advms.2017.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/28/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
Abstract
AIM The aim of the study was the evaluation of the frequency of infections and co-infections among patients hospitalized because of non-specific symptoms after a tick bite. MATERIALS AND METHODS Whole blood, serum and cerebrospinal fluid samples from 118 patients hospitalised for non-specific symptoms up to 8 weeks after tick bite from 2010 to 2013 were examined for tick-borne infections. ELISA, Western blot and/or molecular biology (PCR; fla gene; 16S rRNA; sequencing) and thin blood smears (MDD) were used. Control group included 50 healthy blood donors. All controls were tested with PCR and serology according to the same procedure as in patients. RESULTS Out of 118 patients 85 (72%) experienced headaches, 15 (13%) vertigo, 32 (27%) nausea, 17 (14%) vomiting, 37 (31%) muscle pain, 73 (62%) fever and 26 (22%) meningeal signs. 47.5% were infected with at least one tick-borne pathogen. Borrelia burgdorferi sensu lato infection was confirmed with ELISA, Western blot in serum and/or (PCR (fla gene) in whole blood in 29.7% cases. In blood of 11.9% patients Anaplasma phagocytophilum DNA (16S rRNA gene) was detected; in 0.9% patients 1/118 Babesia spp. DNA (18S rRNA gene) was also detected. Co-infections were observed in 5.1% of patients with non-specific symptoms. B. burgdorferi s.l. - A. phagocytophilum co-infection (5/118; 4.2%) was most common. In 1/118 (0.8%) A. phagocytophilum - Babesia spp. co-infection was detected. All controls were negative for examined pathogens. CONCLUSIONS Non-specific symptoms after tick bite may be caused by uncommon pathogens or co-infection, therefore it should be considered in differential diagnosis after tick bite.
Collapse
|
24
|
Andersson MO, Radbea G, Frangoulidis D, Tomaso H, Rubel F, Nava S, Chitimia-Dobler L. New records and host associations of the tick Ixodes apronophorus and the first detection of Ehrlichia sp. HF in Romania. Parasitol Res 2018; 117:1285-1289. [PMID: 29453647 DOI: 10.1007/s00436-018-5800-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
Abstract
Ixodes (Ixodes) apronophorus is a neglected tick species and its geographical distribution, host associations, and role as a disease vector are not well known. We collected I. apronophorus from several locations in Romania. Morphological identification of ticks was confirmed by analysis of 16S rDNA and 12S rDNA gene sequences. We report new host associations of I. apronophorus, which was collected from dogs, foxes, and a hare-all new hosts for this tick species in Romania. Furthermore, we report for the first time occurrence of Ehrlichia sp. HF in I. apronophorus. Ehrlichia sp. HF was identified by sequencing a part of the 16S rDNA gene and was found in 16% (3/19) of the tested ticks. Ehrlichia sp. HF has not been previously reported in Eastern Europe and seems to have a much larger geographic distribution than previously known. Currently, it is unknown whether I. apronophorus is a competent vector for Ehrlichia sp. HF, or if the findings in this study represent infection in the hosts, namely dogs and fox.
Collapse
Affiliation(s)
- Martin O Andersson
- Center for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82, Kalmar, Sweden
| | - Gabriel Radbea
- Sal-Vet Private Veterinary Clinics, Timisoara, Timis County, Romania
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany.,German Center of Infection Research (DZIF) Partner Munich, Munich, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Strasse 96a, 07743, Jena, Germany
| | - Franz Rubel
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Santiago Nava
- Estación Experimental Agropecuaria Rafaela, and Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937, Munich, Germany. .,German Center of Infection Research (DZIF) Partner Munich, Munich, Germany. .,Institute for Diagnosis and Animal Health, Bucharest, Romania.
| |
Collapse
|
25
|
Obiegala A, Silaghi C. Candidatus Neoehrlichia Mikurensis—Recent Insights and Future Perspectives on Clinical Cases, Vectors, and Reservoirs in Europe. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0085-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. ' Candidatus Neoehrlichia mikurensis' in Europe. New Microbes New Infect 2018; 22:30-36. [PMID: 29556406 PMCID: PMC5857181 DOI: 10.1016/j.nmni.2017.12.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
'Candidatus Neoehrlichia mikurensis' is an uncultured emerging bacterium that is provisionally included in the family Anaplasmataceae. In Europe, it is transmitted by Ixodes ricinus ticks. Rodents are the reservoirs. It is widely distributed in mammals (both wild and domestic) and birds. It causes an inflammatory disease in humans with underlying diseases, but the microorganism also affects immunocompetent individuals in which asymptomatic infection has been recognized. A high degree of suspicion and the use of molecular tools are needed for the correct diagnosis. Efforts to cultivate it and to investigate its pathogenesis should be a priority.
Collapse
Affiliation(s)
- A Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - P Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - A M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - S Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| | - J A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), La Rioja, Spain
| |
Collapse
|
27
|
Andersson MO, Víchová B, Tolf C, Krzyzanowska S, Waldenström J, Karlsson ME. Co-infection with Babesia divergens and Anaplasma phagocytophilum in cattle ( Bos taurus ), Sweden. Ticks Tick Borne Dis 2017; 8:933-935. [DOI: 10.1016/j.ttbdis.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022]
|
28
|
Rosso F, Tagliapietra V, Baráková I, Derdáková M, Konečný A, Hauffe HC, Rizzoli A. Prevalence and genetic variability of Anaplasma phagocytophilum in wild rodents from the Italian alps. Parasit Vectors 2017; 10:293. [PMID: 28615038 PMCID: PMC5471728 DOI: 10.1186/s13071-017-2221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Human granulocytic anaplasmosis is a zoonotic bacterial disease with increasing relevance for public health in Europe. The understanding of its sylvatic cycle and identification of competent reservoir hosts are essential for improving disease risk models and planning preventative measures. Results In 2012 we collected single ear biopsy punches from 964 live-trapped rodents in the Province of Trento, Italy. Genetic screening for Anaplasma phagocytophilum (AP) was carried out by PCR amplification of a fragment of the 16S rRNA gene. Fifty-two (5.4%) samples tested positive: 49/245 (20%) from the bank vole (Myodes glareolus) and 3/685 (0.4%) samples collected from the yellow-necked mouse (Apodemus flavicollis). From these 52 positive samples, we generated 38 groEL and 39 msp4 sequences. Phylogenetic analysis confirmed the existence of a distinct rodent strain of AP. Conclusions Our results confirm the circulation of a specific strain of AP in rodents in our study area; moreover, they provide further evidence of the marginal role of A. flavicollis compared to M. glareolus as a reservoir host for this pathogen.
Collapse
Affiliation(s)
- Fausta Rosso
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy.
| | - Valentina Tagliapietra
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy
| | - Ivana Baráková
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy.,Slovak Academy of Science, Bratislava, Slovakia
| | | | - Adam Konečný
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy.,Masaryk University, Brno, Czech Republic
| | - Heidi Christine Hauffe
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, TN, Italy
| |
Collapse
|
29
|
Matei IA, Kalmár Z, Lupşe M, D'Amico G, Ionică AM, Dumitrache MO, Gherman CM, Mihalca AD. The risk of exposure to rickettsial infections and human granulocytic anaplasmosis associated with Ixodes ricinus tick bites in humans in Romania: A multiannual study. Ticks Tick Borne Dis 2016; 8:375-378. [PMID: 28063832 DOI: 10.1016/j.ttbdis.2016.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 01/03/2023]
Abstract
Anaplasma phagocytophilum and spotted fever group Rickettsia are obligate intracellular Gram-negative tick-borne bacteria, among which several may cause clinical infections in humans. Several Rickettsia spp. and A. phagocytophilum are transmitted in Europe by Ixodes ricinus, the most common tick species feeding on humans in this area. The aim of this study was to evaluate the annual prevalence of Rickettsia spp. and A. phagocytophilum in I. ricinus collected from humans during three consecutive years. The mean prevalences of the infection with the investigated pathogens in I. ricinus ticks collected from human patients were as follows: A. phagocytophilum (5.56%), R. helvetica (4.79%) and R. monacensis (1.53%). In the present study, no significant differences of pathogens prevalence between the three years study period were observed, except the prevalence of R. helvetica, which had a significant increase in 2015, suggesting an increasing risk for humans to be exposed to this zoonotic pathogen.
Collapse
Affiliation(s)
- Ioana Adriana Matei
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Zsuzsa Kalmár
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania.
| | - Mihaela Lupşe
- University of Medicine and Pharmacy "Iuliu Haţieganu", Department of Infectious Diseases, Cluj-Napoca, Romania
| | - Gianluca D'Amico
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Angela Monica Ionică
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Mirabela Oana Dumitrache
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Călin Mircea Gherman
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| | - Andrei Daniel Mihalca
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Department of Parasitology and Parasitic Diseases, Cluj Napoca, Cluj, Romania
| |
Collapse
|
30
|
Król N, Obiegala A, Pfeffer M, Lonc E, Kiewra D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration, South-West Poland. Parasit Vectors 2016; 9:351. [PMID: 27329450 PMCID: PMC4915085 DOI: 10.1186/s13071-016-1632-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Tick-borne infections are no longer confined to rural areas, they are documented with increasing frequency in urban settlements across the world. They are known to cause diseases in humans as well as in their companion animals. Methods During a period of 2 years, from January 2013 until December 2014, ticks were collected from dogs and cats in 18 veterinary clinics in the Wrocław Agglomeration, Poland. In total, 1455 ticks were found on 931 pets: 760 domestic dogs and 171 cats. For molecular examinations 127 I. ricinus ticks (115 females and 12 males) were randomly selected, all collected I. hexagonus (n = 137, 32 females, 98 nymphs, 7 larvae) and all collected D. reticulatus (n = 46, 31 females, 15 males) were taken. Ixodes ricinus and I. hexagonus ticks were tested for Rickettsia spp., Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis and Babesia spp., while D. reticulatus ticks were investigated for Rickettsia spp. and Babesia spp. only. Results In total, 65.4 % I. ricinus ticks were infected with at least one pathogen. Over 50 % of I. ricinus were positive for Rickettsia spp. (R. helvetica and R. monacensis). The infection level with A. phagocytophilum was 21.3 %. DNA of Cand. N. mikurensis was detected in 8.1 % I. ricinus ticks. Interestingly only female ticks were infected. The prevalence of Babesia spp. was confirmed in 9.0 % of I. ricinus involving the species B. microti and B. venatorum. A total of nineteen double, one triple and two quadruple infections were found in I. ricinus ticks only. Almost 11 % of I. hexagonus ticks were positive for at least one of the tested pathogens. Rickettsia spp. infection was found in 2.2 %, while A. phagocytophilum was detected in 8.1 % of I. hexagonus ticks. Only one nymph was positive for Cand. N. mikurensis and none of I. hexagonus ticks harbored a Babesia spp. Over 60 % of D. reticulatus ticks were positive for rickettsial DNA, exclusively belonging to the species R. raoultii. Conclusion The high tick infestation rates and the prevalence of pathogens found in these ticks demonstrate a serious level of encounter to tick-borne diseases in urban dogs in the Wroclaw area, and provide evidence that dogs and cats themselves may substantially contribute to the circulation of the ticks and pathogens in the urban area.
Collapse
Affiliation(s)
- Nina Król
- Department of Microbial Ecology and Environmental Protection, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Elżbieta Lonc
- Department of Microbial Ecology and Environmental Protection, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Dorota Kiewra
- Department of Microbial Ecology and Environmental Protection, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
31
|
Liesner JM, Krücken J, Schaper R, Pachnicke S, Kohn B, Müller E, Schulze C, von Samson-Himmelstjerna G. Vector-borne pathogens in dogs and red foxes from the federal state of Brandenburg, Germany. Vet Parasitol 2016; 224:44-51. [PMID: 27270389 DOI: 10.1016/j.vetpar.2016.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022]
Abstract
Dirofilaria repens is endemic in eastern and southern European regions but was recently found in Germany in dogs, mosquitoes and one human patient. Since some of the positive dog and mosquito samples were collected in Brandenburg, it was aimed to systematically assess the prevalence of D. repens and other canine vector-borne pathogens in Brandenburg. Dog owners also received a questionnaire and were asked to provide more information about the dogs including travel history. In total, 1023 dog blood samples as well as 195 fox spleen and 179 fox blood samples were collected. DNA was analysed by PCR for the presence of filariae, piroplasms, anaplasmataceae and Rickettsia spp. Filariae were detected in six dogs (0.6%), two were positive for DNA from D. repens, two from Dirofilaria immitis and two from Acanthocheilonema reconditum. One of the D. repens positive dogs originated from an animal shelter in Brandenburg, but the origin of the other one remained unknown. Interestingly, both D. repens ITS-1 sequences showed 100% identity to a D. repens sample obtained from a Japanese woman that travelled in Europe and were 97% identical to a newly proposed species Dirofilaria sp. 'hongkongensis' described from Hong Kong. However, identity to other D. repens sequences from Thailand was considerably lower (81%). Identity of 12S rRNA and cytochrome oxidase I to D. repens samples from southern Europe was 99%. Due to the low number of Dirofilaria spp. positive dogs and since the origin of these was unknown, endemic occurrence of Dirofilaria in Brandenburg could not be confirmed. Anaplasma phagocytophilum was found in 15 dogs (1.5%), Candidatus Neoehrlichia mikurensis in three dogs (0.3%) and E. canis in one dog (0.1%), which was co-infected with D. repens. Rickettsia spp. were detected in 8 dogs (0.8%), seven were Rickettsia raoultii and one was Rickettsia felis. To the author's knowledge, R. raoultii DNA was detected for the first time in dogs in Germany in this study and Candidatus N. mikurensis for the second time. In spleen samples of red foxes with 47.5% a high prevalence of piroplasms was found. Sequencing of 11 samples identified 10 as Theileria annae. Despite the high prevalence of this pathogen in its reservoir host, it was absent in dog samples. In one dog (0.1%), Babesia canis was detected but there was no further information about the dog's origin. Evaluation of the questionnaire identified a high proportion of dogs (74.2%, n=233) which was not protected by ectoparasiticides. Moreover, 21.2% (n=236) of the dogs originated from inland or abroad shelters, and therefore might potentially come from areas endemic for dirofilariosis or babesiosis.
Collapse
Affiliation(s)
- Jana M Liesner
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Str. 7-13, 14163 Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Str. 7-13, 14163 Berlin, Germany
| | - Roland Schaper
- Bayer Animal Health GmbH, Alfred-Nobel-Str. 50, Monheim, 40789, Germany
| | - Stefan Pachnicke
- Bayer Vital GmbH, Kaiser-Wilhelm-Allee 70, 51373 Leverkusen, Germany
| | - Barbara Kohn
- Small Animal Clinic, Freie Universität Berlin, Oertzenweg 19, 14163 Berlin, Germany
| | - Elisabeth Müller
- LABOKLIN GmbH & Co. KG, Steubenstr. 4, Bad Kissingen, 97688, Germany
| | - Christoph Schulze
- Landeslabor Berlin-Brandenburg, Gerhard-Neumann-Str. 2, Frankfurt (Oder), 15236, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag Str. 7-13, 14163 Berlin, Germany.
| |
Collapse
|
32
|
Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes. Infect Immun 2016; 84:1274-1286. [PMID: 26883594 PMCID: PMC4862734 DOI: 10.1128/iai.01309-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides. We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii. Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii. An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease.
Collapse
|
33
|
Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:279-97. [PMID: 26081117 DOI: 10.1007/s10493-015-9935-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/27/2015] [Indexed: 05/17/2023]
Abstract
Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen causing a systemic inflammatory syndrome mostly in persons with underlying hematologic or autoimmune diseases. As it is neither well-known nor well-recognized, it might be misdiagnosed as recurrence of the underlying disease or as an unrelated arteriosclerotic vascular event. The pathogen is transmitted by hard ticks of the genus Ixodes and is closely associated with rodents in which transplacental transmission occurs. Transovarial transmission in ticks has not yet been shown. Infection rates vary greatly in ticks and rodents, but the causes for its spatiotemporal variations are largely unknown. This review summarizes the current state of knowledge on the geographical distribution and clinical importance of Ca. N. mikurensis. By elucidating the life history traits of this pathogen and determining more accurately its incidence in the human population, a better assessment of its public health relevance can be made. Most urgent research needs are the in vitro-cultivation of the pathogen, the development of specific serological tests, the determination of the full genomic sequence, the routine implementation of molecular diagnosis in diseased patients with a particular panel of underlying diseases, and promoting the knowledge about neoehrlichiosis among general practitioners, hospital physicians and the risk groups such as forest workers or immune-compromised people to raise awareness about this disease that can easily be treated when correctly diagnosed.
Collapse
Affiliation(s)
- Cornelia Silaghi
- National Center for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - José A Oteo
- Center of Rickettsiosis and Arthropod-borne Diseases, Hospital San Pedro-Center of Biomedical Research of La Rioja, Logroño, Spain
| | - Martin Pfeffer
- Institute for Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
34
|
Pantchev N, Pluta S, Huisinga E, Nather S, Scheufelen M, Vrhovec MG, Schweinitz A, Hampel H, Straubinger RK. Tick-borne Diseases (Borreliosis, Anaplasmosis, Babesiosis) in German and Austrian Dogs: Status quo and Review of Distribution, Transmission, Clinical Findings, Diagnostics and Prophylaxis. Parasitol Res 2016; 114 Suppl 1:S19-54. [PMID: 26152408 DOI: 10.1007/s00436-015-4513-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tick-borne diseases (TBD) in dogs have gained in significance in German and Austrian veterinary practices. The widespread European tick species Ixodes ricinus represents an important vector for spirochaetes of the Borrelia burgdorferi sensu lato group and Rickettsiales such as Anaplasma phagocytophilum. The meadow or ornate dog tick (Dermacentor reticulatus) is an important vector for Babesia canis, as is the brown dog tick (Rhipicephalus sanguineus) for Babesia vogeli in the Mediterranean region. The present work covers pathogen transmission by tick vectors, including the mechanisms and the minimum intervals required, in conjunction with possible non-vector-borne transmission routes. It also addresses the incubation periods, pathogenicity and clinical findings associated with each pathogen and genospecies and presents case examples. Current data on prevalence, annual fluctuations and distribution in various pre-selected dog populations (symptomatic versus asymptomatic) in both countries are depicted in maps. Reasons for changes in prevalence (especially of Borrelia) are discussed. Criteria and algorithms for clinical diagnosis and monitoring in dogs, including case history, direct detection (blood smears, molecular detection by species-specific PCR and sequencing) and indirect methods (whole-cell and peptide-based antibody tests), are presented, together with laboratory abnormalities (haematology, clinical chemistry, urine). The role of anti-C6 antibody concentration (ACAC) and its correlation with proteinuria and Lyme nephritis are assessed on the basis of new data. Consideration is also given to the importance of blood smears, PCR and serology in the case of anaplasmosis and babesiosis, and the diagnostic value of combining these methods. The relevance of molecular differentiation of Anaplasma species (A. phagocytophilum versus A. platys) and Babesia spp. (large versus small forms) in cases of serological cross-reaction is emphasized. A summary is given of methods for prophylaxis using acaricide products (collars, spot-on solutions and oral treatments in both countries), vaccination (Borrelia and Babesia vaccines) and imidocarb-based chemoprophylaxis for large Babesia.
Collapse
|
35
|
Svitálková ZH, Haruštiaková D, Mahríková L, Mojšová M, Berthová L, Slovák M, Kocianová E, Vayssier-Taussat M, Kazimírová M. Candidatus Neoehrlichia mikurensis in ticks and rodents from urban and natural habitats of South-Western Slovakia. Parasit Vectors 2016; 9:2. [PMID: 26728197 PMCID: PMC4700745 DOI: 10.1186/s13071-015-1287-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023] Open
Abstract
Background Candidatus Neoehrlichia mikurensis (CNM) is an emerging tick-borne pathogen causing severe disease in immunocompromised patients. In Europe, Ixodes ricinus is the primary vector and rodents act as reservoir hosts. New data on the prevalence of CNM in ticks and rodents contribute to the knowledge on the distribution of endemic areas and circulation of the bacterium in natural foci. Methods Questing ticks were collected and rodents were trapped in urban/suburban and natural habitats in South-Western Slovakia from 2011 to 2014. DNA from questing and rodent-attached ticks and rodent tissues were screened for CNM by real-time PCR. Rodent spleen samples positive for CNM were characterised at the groEL gene locus. Spatial and temporal differences in CNM prevalence in ticks and rodents and co-infections of ticks with CNM and Anaplasma phagocytophilum were analysed. Results The presence of CNM was confirmed in questing and rodent-attached I. ricinus ticks and in rodents. Total prevalence in both ticks and rodents was significantly higher in the natural habitat (2.3 % and 10.1 %, respectively) than in the urban/suburban habitat (1.0 % and 3.3 %, respectively). No seasonal pattern in CNM prevalence in ticks was observed, but prevalence in rodents was higher in autumn than in spring. CNM was detected in Apodemus flavicollis, Myodes glareolus, Microtus arvalis and Micromys minutus, with the highest prevalence in M. arvalis (30 %). By screening CNM dissemination in rodent tissues, infection was detected in lungs of all specimens with positive spleens and in blood, kidney, liver and skin of part of those individuals. Infection with CNM was detected in 1.3 % of rodent attached I. ricinus ticks. Sequences of a fragment of the groEL gene from CNM-positive rodents showed a high degree of identity with sequences of the gene amplified from ticks and infected human blood from Europe. Only 0.1 % of CNM-positive questing ticks carried A. phagocytophilum. Ticks infected with CNM prevailed in the natural habitat (67.2 %), whereas ticks infected with A. phagocytophilum prevailed in the urban/suburban habitat (75.0 %). Conclusion The study confirmed the circulation of CNM between I. ricinus ticks and rodents in South-Western Slovakia, and indicates a potential risk of contracting human infections.
Collapse
Affiliation(s)
| | - Danka Haruštiaková
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| | - Michala Mojšová
- Department of Zoology, Faculty of Natural Sciences, Comenius University, Mlynská Dolina B-1, 84215, Bratislava, Slovakia.
| | - Lenka Berthová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| | - Elena Kocianová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.
| | | | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia.
| |
Collapse
|
36
|
Krawczyk AI, van Leeuwen AD, Jacobs-Reitsma W, Wijnands LM, Bouw E, Jahfari S, van Hoek AHAM, van der Giessen JWB, Roelfsema JH, Kroes M, Kleve J, Dullemont Y, Sprong H, de Bruin A. Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas. Parasit Vectors 2015; 8:210. [PMID: 25885888 PMCID: PMC4406014 DOI: 10.1186/s13071-015-0814-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 02/04/2023] Open
Abstract
Background European hedgehogs (Erinaceus europaeus) are hosts for Ixodes hexagonus and I. ricinus ticks, which are vectors for zoonotic microorganisms. In addition, hedgehogs may carry several enteric zoonoses as well. It is unclear to what extent a presence of pathogens in hedgehogs poses a risk to public health, as information on the presence of zoonotic agents in hedgehogs in urban areas is relatively scarce. Methods Engorged ticks and hedgehog faeces were collected from rehabilitating hedgehogs. Ticks were screened individually for presence of Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum, and Candidatus Neoehrlichia mikurensis using PCR-based assays. Faecal samples were screened for presence of Campylobacter, Salmonella, Giardia, Cryptosporidium, and extended-spectrum cephalosporin-resistant-Escherichia coli (ESC)-resistant E. coli, using both culture-based and PCR-based methods. Results Anaplasma phagocytophilum and Borrelia genospecies B. afzelii, B. spielmanii, B. garinii, and B. burgdorferi sensu stricto were detected in both I. hexagonus and I. ricinus ticks. Despite their widespread distribution in the Netherlands, B. miyamotoi and Candidatus N. mikurensis were not detected in collected ticks. Analysis of hedgehog faecal samples revealed the presence of Salmonella enterica subspecies enterica and Campylobacter jejuni. In addition, ESC-resistant E. coli were observed in high prevalence in faecal samples, but no Shiga-toxin producing-E.coli were detected. Finally, potentially zoonotic protozoan parasites were observed in hedgehog faecal samples as well, including Giardia duodenalis assemblage A, Cryptosporidium parvum subtypes IIaA17G1R1 and IIcA5G3, and C. hominis subtype IbA10G2. Conclusions European hedgehogs in (sub)urban areas harbor a number of zoonotic agents, and therefore may contribute to the spread and transmission of zoonotic diseases. The relatively high prevalence of B. burgdorferi s.l. and A. phagocytophilum in engorged ticks, suggests that hedgehogs contribute to their enzootic cycles in (sub)urban areas. To what extent can hedgehogs maintain the enteric zoonotic agents in natural cycles, and the role of (spill-back from) humans remains to be investigated.
Collapse
Affiliation(s)
- Aleksandra I Krawczyk
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Arieke Docters van Leeuwen
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Wilma Jacobs-Reitsma
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Lucas M Wijnands
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - El Bouw
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Setareh Jahfari
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands. .,Centre for Research Infectious Diseases Diagnostics and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Angela H A M van Hoek
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Joke W B van der Giessen
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Jeroen H Roelfsema
- Centre for Research Infectious Diseases Diagnostics and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Michiel Kroes
- Centre for Research Infectious Diseases Diagnostics and Screening, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Jenny Kleve
- Stichting Egelbescherming Nederland, Naarden, the Netherlands.
| | | | - Hein Sprong
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Arnout de Bruin
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| |
Collapse
|
37
|
Wennerås C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin Microbiol Infect 2015; 21:621-30. [PMID: 25770773 DOI: 10.1016/j.cmi.2015.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 01/19/2023]
Abstract
Candidatus Neoehrlichia mikurensis, which has rodents as its natural hosts, is an emerging tick-borne pathogen in Europe and Asia. This intracellular bacterium causes the infectious disease neoehrlichiosis. Immunocompromised patients may contract a severe form of neoehrlichiosis with high fever and vascular/thromboembolic events. As it is not detected with routine culture-based methods, neoehrlichiosis is underdiagnosed.
Collapse
Affiliation(s)
- C Wennerås
- Department of Clinical Microbiology at Sahlgrenska University Hospital, Göteborg, Sweden; Department of Infectious Diseases at Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
38
|
Obiegala A, Pfeffer M, Pfister K, Tiedemann T, Thiel C, Balling A, Karnath C, Woll D, Silaghi C. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasit Vectors 2014; 7:563. [PMID: 25465390 PMCID: PMC4264555 DOI: 10.1186/s13071-014-0563-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Background Small mammals are crucial for the life history of ixodid ticks, but their role and importance in the transmission cycle of tick-borne pathogens is mostly unknown. Candidatus Neoehrlichia mikurensis (CNM) and Anaplasma phagocytophilum are both tick-borne pathogens, and rodents are discussed to serve as main reservoir hosts for CNM but not for the latter especially in Germany. Analysing the prevalence of both pathogens in small mammals and their ticks in endemic regions may help to elucidate possible transmission paths in small mammal populations and between small mammals and ticks. Methods In 2012 and 2013, small mammals were trapped at three different sites in Germany. DNA was extracted from different small mammal tissues, from rodent neonates, foetuses and from questing and attached ticks. DNA samples were tested for CNM and A. phagocytophilum by real-time PCR. Samples positive for A. phagocytophilum were further characterized at the 16S rRNA gene locus. Results CNM was detected in 28.6% of small mammals and in 2.2% of questing and 3.8% of attached ticks. Altogether 33 positive ticks were attached to 17 different hosts, while positive ticks per host ranged between one and seven. The prevalences for this pathogen differed significantly within small mammal populations comparing sites (χ2: 13.3987; p: 0.0004) and between sexes. Male rodents had an approximately two times higher chance of infection than females (OR: 1.9652; 95% CI: 1.32-2.92). The prevalence for CNM was 31.8% (95% CI: 22-44) in rodent foetuses and neonates (23 of 67) from positive dams, and 60% (95% CI: 35.7-80.25) of positive gravid or recently parturient rodents (9 out of 15) had at least one positive foetus or neonate. Anaplasma phagocytophilum was detected at a low percentage in rodents (0-5.6%) and host-attached ticks (0.5-2.9%) with no significant differences between rodent species. However, attached nymphs were significantly more often infected than attached larvae (χ2: 25.091; p: <0.0001). Conclusion This study suggests that CNM is mainly a rodent-associated pathogen and provides evidence for a potential transplacental transmission in rodents. In contrast, most of the rodent species captured likely represent only accidental hosts for A. phagocytophilum at the investigated sites.
Collapse
Affiliation(s)
- Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany. .,Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Kurt Pfister
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Tim Tiedemann
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Claudia Thiel
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Anneliese Balling
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Carolin Karnath
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Dietlinde Woll
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany.
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany. .,National Reference Center of Vector Entomology, Institute of Parasitology, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
39
|
Schreiber C, Krücken J, Beck S, Maaz D, Pachnicke S, Krieger K, Gross M, Kohn B, von Samson-Himmelstjerna G. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit Vectors 2014; 7:535. [PMID: 25441762 PMCID: PMC4262381 DOI: 10.1186/s13071-014-0535-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne diseases are a major health risk for humans and dogs. In addition to collection and analysis of questing ticks, analysis of host-associated ticks for the presence of pathogens is a valuable method to gain insight into transmission patterns of tick-borne diseases. METHODS Ticks were collected from dogs living in the Berlin/Brandenburg area. The three tick species Ixodes ricinus, Ixodes hexagonus and Dermacentor reticulatus were examined for the presence of Babesia spp., Borrelia spp., Rickettsia spp. and Anaplasmataceae. Conventional PCR followed by sequencing was used for pathogen detection and characterization. RESULTS Babesia spp. were found in 2.5% and 3% of I. ricinus and I. hexagonus, respectively. Sequencing revealed the presence of Babesia microti, Babesia capreoli and Babesia venatorum. D. reticulatus were free of Babesia canis. Rickettsia spp. were detected in 61% of I. ricinus, 44% of I. hexagonus and 39% of D. reticulatus. Specifically detected were Rickettsia raoulti in D. reticulatus and I. hexagonus, Rickettsia helvetica in I. ricinus and I. hexagonus and Rickettsia monacensis in I. hexagonus. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis have been reported previously in I. ricinus (6.5% and 4.3%, respectively) and I. hexagonus (3.9% and 5.9%). Borrelia spp. were found in 11.6% of I. ricinus and 11.2% of I. hexagonus. Subsequent genospecies analysis revealed Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto and Borrelia miyamotoi. Simultanous presence of more than one pathogen was found in 20% of I. ricinus and in 59% of I. hexagonus whereas the total frequency of any pathogen was 65% in I. ricinus, 59% in I. hexagonus and 64% in D. reticulatus. Ticks in which A. phagocytophilum was detected had a significantly increased risk of also containing Rickettsia. Ticks harbouring a pathogen had significantly higher scutal indices than ticks without presence of any pathogen. CONCLUSIONS Frequencies of potential human or canine pathogens in ticks were considerable and DNA of all four groups of pathogens was detected. Differences in scutal indices might suggest that pathogens are frequently taken up by ticks when feeding on dogs in Berlin/Brandenburg.
Collapse
Affiliation(s)
- Cécile Schreiber
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany. .,Small Animal Clinic, Freie Universität Berlin, Berlin, Germany.
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Stephanie Beck
- Small Animal Clinic, Freie Universität Berlin, Berlin, Germany.
| | - Denny Maaz
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany. .,Institute of Immunology, Freie Universität Berlin, Berlin, Germany.
| | | | | | - Marcus Gross
- Institute for Statistics and Economy, Freie Universität Berlin, Berlin, Germany.
| | - Barbara Kohn
- Small Animal Clinic, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
40
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014; 2:251. [PMID: 25520947 PMCID: PMC4248671 DOI: 10.3389/fpubh.2014.00251] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/09/2014] [Indexed: 12/30/2022] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
41
|
Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengeveld P, Heylen D, Heyman P, van Maanen C, Butler CM, Földvári G, Szekeres S, van Duijvendijk G, Tack W, Rijks JM, van der Giessen J, Takken W, van Wieren SE, Takumi K, Sprong H. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 2014; 7:365. [PMID: 25127547 PMCID: PMC4153903 DOI: 10.1186/1756-3305-7-365] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/27/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is the etiological agent of granulocytic anaplasmosis in humans and animals. Wild animals and ticks play key roles in the enzootic cycles of the pathogen. Potential ecotypes of A. phagocytophilum have been characterized genetically, but their host range, zoonotic potential and transmission dynamics has only incompletely been resolved. METHODS The presence of A. phagocytophilum DNA was determined in more than 6000 ixodid ticks collected from the vegetation and wildlife, in 289 tissue samples from wild and domestic animals, and 69 keds collected from deer, originating from various geographic locations in The Netherlands and Belgium. From the qPCR-positive lysates, a fragment of the groEL-gene was amplified and sequenced. Additional groEL sequences from ticks and animals from Europe were obtained from GenBank, and sequences from human cases were obtained through literature searches. Statistical analyses were performed to identify A. phagocytophilum ecotypes, to assess their host range and their zoonotic potential. The population dynamics of A. phagocytophilum ecotypes was investigated using population genetic analyses. RESULTS DNA of A. phagocytophilum was present in all stages of questing and feeding Ixodes ricinus, feeding I. hexagonus, I. frontalis, I. trianguliceps, and deer keds, but was absent in questing I. arboricola and Dermacentor reticulatus. DNA of A. phagocytophilum was present in feeding ticks and tissues from many vertebrates, including roe deer, mouflon, red foxes, wild boar, sheep and hedgehogs but was rarely found in rodents and birds and was absent in badgers and lizards. Four geographically dispersed A. phagocytophilum ecotypes were identified, that had significantly different host ranges. All sequences from human cases belonged to only one of these ecotypes. Based on population genetic parameters, the potentially zoonotic ecotype showed significant expansion. CONCLUSION Four ecotypes of A. phagocytophilum with differential enzootic cycles were identified. So far, all human cases clustered in only one of these ecotypes. The zoonotic ecotype has the broadest range of wildlife hosts. The expansion of the zoonotic A. phagocytophilum ecotype indicates a recent increase of the acarological risk of exposure of humans and animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, P,O, Box 1, Bilthoven, The Netherlands.
| |
Collapse
|
42
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014. [PMID: 25520947 DOI: 10.3389/fpubh.2014.00251.pmid:25520947;pmcid:pmc4248671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|