1
|
Wigmore SM, Greenhill AR, Bean DC. Isolation and characterization of enterococci from poultry reveals high incidence of Enterococcus thailandicus in Victoria, Australia. J Appl Microbiol 2024; 135:lxae194. [PMID: 39081072 DOI: 10.1093/jambio/lxae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
AIMS Antibiotic resistance is a global health crisis. Roughly two-thirds of all antibiotics used are in production animals, which have the potential to impact the development of antibiotic resistance in bacterial pathogens of humans. There is little visibility on the extent of antibiotic resistance in the Australian food chain. This study sought to establish the incidence of antibiotic resistance among enterococci from poultry in Victoria. METHODS AND RESULTS In 2016, poultry from a Victorian processing facility were swabbed immediately post-slaughter and cultured for Enterococcus species. All isolates recovered were speciated and tested for antibiotic susceptibility to 12 antibiotics following the Clinical Laboratory Standards Institute guidelines. A total of 6 farms and 207 birds were sampled and from these 285 isolates of Enterococcus were recovered. Eight different enterococcal species were identified as follows: E. faecalis (n = 122; 43%), E. faecium (n = 92; 32%), E. durans (n = 35; 12%), E. thailandicus (n = 23; 8%), E. hirae (n = 10; 3%), and a single each of E. avium, E. gallinarum, and E. mundtii. Reduced susceptibility to older classes of antibiotics was common, in particular: erythromycin (73%), rifampin (49%), nitrofurantoin (40%), and ciprofloxacin (39%). Two vancomycin-intermediate isolates were recovered, but no resistance was detected to either linezolid or gentamicin. CONCLUSIONS The relatively high numbers of a recently described species, E. thailandicus, suggest this species might be well adapted to colonize poultry. The incidence of antibiotic resistance is lower in isolates from poultry than in human medicine in Australia. These results suggest that poultry may serve as a reservoir for older antibiotic resistance genes but is not driving the emergence of antimicrobial resistance in human bacterial pathogens. This is supported by the absence of resistance to linezolid and gentamicin.
Collapse
Affiliation(s)
- Sarah M Wigmore
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Mount Helen Campus, PO Box 663, Ballarat, VIC 3353, Australia
| | - Andrew R Greenhill
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Gippsland Campus, PO Box 3191, Churchill, VIC 3841, Australia
| | - David C Bean
- Microbiology Research Group, Institute of Innovation, Science and Sustainability, Federation University Australia, Mount Helen Campus, PO Box 663, Ballarat, VIC 3353, Australia
| |
Collapse
|
2
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Lin JN, Lai CH, Lin SY, Lee CC, Lee NY, Liu PY, Yang CH, Huang YH. Effect of Intragenomic Sequence Heterogeneity among Multiple 16S rRNA Genes on Species Identification of Elizabethkingia. Microbiol Spectr 2022; 10:e0133822. [PMID: 36036645 PMCID: PMC9604143 DOI: 10.1128/spectrum.01338-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Accurate identification of Elizabethkingia species mostly requires the use of molecular techniques, and 16S rRNA gene sequencing is generally considered the method of choice. In this study, we evaluated the effect of intraspecific diversity among the multiple copies of the 16S rRNA gene on the accuracy of species identification in the genus Elizabethkingia. Sequences of 16S rRNA genes obtained from the 32 complete whole-genome sequences of Elizabethkingia deposited in GenBank and from 218 clinical isolates collected from 5 hospitals in Taiwan were analyzed. Four or five copies of 16S rRNA were identified in the Elizabethkingia species with complete genome sequences. The dissimilarity among the copies of the16S rRNA gene was <1% in all Elizabethkingia strains. E. meningoseptica demonstrated a significantly higher rate of nucleotide variations in the 16S rRNA than did E. anophelis (P = 0.011). Nucleotide alterations occurred more frequently in regions V2 and V6 than in other hypervariable regions (P < 0.001). E. meningoseptica, E. anophelis, and E. argenteiflava strains were clustered distinctly in the phylogenetic tree inferred from 16S rRNA genes, and the intragenomic variation of gene sequences had no profound effect on the classification of taxa. However, E. miricola, E. bruuniana, E. ursingii, and E. occulta were grouped closely in the phylogenetic analysis, and the variation among the multiple copies of the 16S rRNA in one E. ursingii strain affected species classification. Other marker genes may be required to supplement the species classification of closely related taxa in the genus Elizabethkingia. IMPORTANCE Incorrect identification of bacterial species would influence the epidemiology and clinical analysis of patients infected with Elizabethkingia. The results of the present study suggest that 16S rRNA gene sequencing should not be considered the gold standard for the accurate identification of Elizabethkingia species.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Yi-Han Huang
- College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C. Appl Microbiol Biotechnol 2022; 106:4801-4811. [PMID: 35759034 DOI: 10.1007/s00253-022-12042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
The electricity production via psychrophilic microbial fuel cell (PMFC) for wastewater treatment in cold regions offers an alternative to avoid the unwanted methane dissolution of traditional anaerobic fermentation. But, it is seldom reported by mixed-culture, especially closed to 0 °C. Thus, a two-chamber mixed-culture PMFC at 4 °C was successfully operated in this study using acetate as an electron donor. The main results demonstrated a good performance of PMFC, including the maximum voltage of 513 mV at 1000 Ω, coulombic efficiency of 53%, and power density of 689 mW/m2. The cyclic voltammetry curves of enriched biofilm showed a direct electron transfer pathway. These good performances of mixed-culture PMFC were due to the high psychrophilic activity of enriched biofilm, including exoelectrogens genera of Geobacter (6.1%), Enterococcus (17.5%), and Clostridium_sensu_stricto_12 (3.8%). Consequently, a mixed-culture PMFC provides a reasonable strategy to enrich exoelectrogens with high activity. For low-temperature regions, the mixed-culture PMFC involved biotechnologies shall benefit energy generation and valuable chemical production in the future. KEY POINTS: • PMFC showed a maximum voltage of around 513 mV under a resistance of 1000 Ω. • The coulombic efficiency was 53% and the max power density was 689 mW/m2. • Geobacter, Enterococcus, and Clostridium_sensu_stricto_12 were key exoelectrogens.
Collapse
|
5
|
Wu X, Wu B, Li Y, Jin X, Wang X. Identification and safety assessment of Enterococcus thailandicus TC1 isolated from healthy pigs. PLoS One 2021; 16:e0254081. [PMID: 34197541 PMCID: PMC8248690 DOI: 10.1371/journal.pone.0254081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Enterococci have the dual characteristics of being opportunistic pathogens and promising probiotics. The isolation from patients of CDC PNS-E2, a newly described Enterococcus species Enterococcus sanguinicola, may pose potential hazards. Enterococcus thailandicus from fermented sausage is a senior subjective synonym of E. sanguinicola. In this study, Enterococcus thailandicus TC1 was first isolated in healthy pigs in Tongcheng, China and identified by phenotypic analysis and 16S rRNA-based techniques. To evaluate the strain safety, an approach including virulence factors, antibiotic resistance, and animal experiments was adopted. The results show that cylA, gelE, esp, agg, ace, efaAfm, efaAfs, ptsD genes were undetected, and that the strain was sensitive or poorly resistant to some clinically relevant antibiotics. However, the isolated strain demonstrated β-hemolytic activity in rabbit blood agar plates. Analysis of animal experiments revealed that the isolated strain had no adverse effect on translocation and the internal organ indices, though significant differences in histology (villi height, crypts height) of ileum were observed. The data acquired suggest that E. thailandicus TC1 may be associated with a potential health risk.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Biology, Taiyuan Normal College, Taiyuan, PR China
| | - Bei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, P.R. China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Graham K, Stack H, Rea R. Safety, beneficial and technological properties of enterococci for use in functional food applications - a review. Crit Rev Food Sci Nutr 2020; 60:3836-3861. [PMID: 31924117 DOI: 10.1080/10408398.2019.1709800] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterococci are ubiquitous lactic acid bacteria (LAB) that predominantly reside in the gastrointestinal tract of humans and animals but are also widespread in food and the environment due to their robust nature. Enterococci have the paradoxical position of providing several benefits of technological interest in food fermentations but are also considered as opportunistic pathogens capable of causing infection in immunocompromised patients. Several species of the genus have been correlated with disease development in humans such as bacteremia, urinary tract infections, and endocarditis. The pathogenesis of enterococci has been attributed to the increasing incidence of antibiotic resistance and the possession of virulence determinants. On the contrary, enterococci have led to improvements in the aroma, texture, and flavor of fermented dairy products, while their beneficial use as probiotic and protective cultures has also been documented. Furthermore, they have emerged as important candidates for the generation of bioactive peptides, particularly from milk, which provide new opportunities for the development of functional foods and nutraceuticals for human nutrition and health. The detection of pathogenic traits among some species is compromising their use in food applications and subsequently, the genus neither has Generally Regarded as Safe (GRAS) status nor has it been included in the Qualified Presumption of Safety (QPS) list. Nevertheless, the use of certain enterococcal strains in food has been permitted on the basis of a case-by-case assessment. Promisingly, enterococcal virulence factors appear strain specific and food isolates harbor fewer determinants than clinical isolates, while they also remain largely susceptible to clinically relevant antibiotics and thus, have a lower potential for pathogenicity. Ideally, strains considered for use in foods should not possess any virulence determinants and should be susceptible to clinically relevant antibiotics. Implementation of an appropriate risk/benefit analysis, establishment of a strain's innocuity, and consideration for relevant guidelines, legislation, and regulatory aspects surrounding functional food development, may help industry, health-staff and consumers accept enterococci, like other LAB, as important candidates for useful and beneficial applications in food biotechnology.
Collapse
Affiliation(s)
- Ken Graham
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Helena Stack
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Rosemary Rea
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
7
|
Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Graziano J, Emery B, Bell M, Loparev V, Juieng P, Gartin J, Bizet C, Clermont D, Criscuolo A, Brisse S, McQuiston JR. Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov. Antonie van Leeuwenhoek 2017; 111:55-72. [PMID: 28856455 DOI: 10.1007/s10482-017-0926-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
The genus Elizabethkingia is genetically heterogeneous, and the phenotypic similarities between recognized species pose challenges in correct identification of clinically derived isolates. In addition to the type species Elizabethkingia meningoseptica, and more recently proposed Elizabethkingia miricola, Elizabethkingia anophelis and Elizabethkingia endophytica, four genomospecies have long been recognized. By comparing historic DNA-DNA hybridization results with whole genome sequences, optical maps, and MALDI-TOF mass spectra on a large and diverse set of strains, we propose a comprehensive taxonomic revision of this genus. Genomospecies 1 and 2 contain the type strains E. anophelis and E. miricola, respectively. Genomospecies 3 and 4 are herein proposed as novel species named as Elizabethkingia bruuniana sp. nov. (type strain, G0146T = DSM 2975T = CCUG 69503T = CIP 111191T) and Elizabethkingia ursingii sp. nov. (type strain, G4122T = DSM 2974T = CCUG 69496T = CIP 111192T), respectively. Finally, the new species Elizabethkingia occulta sp. nov. (type strain G4070T = DSM 2976T = CCUG 69505T = CIP 111193T), is proposed.
Collapse
Affiliation(s)
- Ainsley C Nicholson
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Christopher A Gulvik
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Anne M Whitney
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Ben W Humrighouse
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - James Graziano
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Brian Emery
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Melissa Bell
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Vladimir Loparev
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Phalasy Juieng
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Jarrett Gartin
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Chantal Bizet
- Microbiology Department, Institut Pasteur, Collection de L'Institut Pasteur (CIP), Paris, France
| | - Dominique Clermont
- Microbiology Department, Institut Pasteur, Collection de L'Institut Pasteur (CIP), Paris, France
| | - Alexis Criscuolo
- Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Sylvain Brisse
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR 3525, Paris, France.,Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - John R McQuiston
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| |
Collapse
|
8
|
McLaughlin RW, Shewmaker PL, Whitney AM, Humrighouse BW, Lauer AC, Loparev VN, Gulvik CA, Cochran PA, Dowd SE. Enterococcus crotali sp. nov., isolated from faecal material of a timber rattlesnake. Int J Syst Evol Microbiol 2017. [PMID: 28632114 DOI: 10.1099/ijsem.0.001900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultatively anaerobic, Gram-stain-positive bacterium, designated ETRF1T, was found in faecal material of a timber rattlesnake (Crotalus horridus). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Enterococcus. The 16S rRNA gene sequence of strain ETRF1T showed >97 % similarity to that of the type strains of Enterococcus rotai, E. caccae, E. silesiacus, E haemoperoxidus, E. ureasiticus, E. moraviensis, E. plantarum, E. quebecensis, E. ureilyticus, E. termitis, E. rivorum and E. faecalis. The organism could be distinguished from these 12 phylogenetically related enterococci using conventional biochemical testing, the Rapid ID32 Strep system, comparative pheS and rpoA gene sequence analysis, and comparative whole genome sequence analysis. The estimated in silico DNA-DNA hybridization values were <70 %, and average nucleotide identity values were <96 %, when compared to these 12 species, further validating that ETRF1T represents a unique species within the genus Enterococcus. On the basis of these analyses, strain ETRF1T (=CCUG 65857T=LMG 28312T) is proposed as the type strain of a novel species, Enterococcus crotali sp. nov.
Collapse
Affiliation(s)
- Richard W McLaughlin
- General Studies, Gateway Technical College, Kenosha, WI 53144, USA.,Biology Department, Saint Mary's University of Minnesota, Winona, MN 55987-1399, USA
| | | | - Anne M Whitney
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Ana C Lauer
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - P A Cochran
- Biology Department, Saint Mary's University of Minnesota, Winona, MN 55987-1399, USA
| | - Scot E Dowd
- MR DNA (Molecular Research LP), Shallowater, TX, USA
| |
Collapse
|
9
|
Nowakiewicz A, Ziółkowska G, Zięba P, Trościańczyk A, Banach T, Kowalski C. Modified 16S-23S rRNA intergenic region restriction endonuclease analysis for species identification of Enterococcus strains isolated from pigs, compared with identification using classical methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 2015; 64:217-223. [PMID: 25587074 DOI: 10.1099/jmm.0.000008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast and reliable identification of bacteria to at least the species level is currently the basis for correct diagnosis and appropriate treatment of infections. This is particularly important in the case of bacteria of the genus Enterococcus, whose resistance profile is often correlated with their species (e.g. resistance to vancomycin). In this study, we evaluated restriction endonuclease analysis of the 16S-23S rRNA gene intergenic transcribed spacer (ITS) region for species identification of Enterococcus. The utility of the method was compared with that of phenotypic methods [biochemical profile evaluation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)]. Identification was based on 21 Enterococcus reference strains, of the species E. faecalis, E. faecium, E. hirae, E. durans, E. casseliflavus, E. gallinarum, E. avium, E. cecorum and E. columbae, and 47 Enterococcus field strains isolated from pigs. Restriction endonuclease analysis of the ITS-PCR product using HinfI, RsaI and MboI, in the order specified, enabled species differentiation of the Enterococcus reference and field strains, and in the case of the latter, the results of species identification were identical (47/47) to those obtained by MALDI-TOF MS. Moreover, as a result of digestion with MboI, a unique restriction profile was also obtained for the strains (3/3) identified by MALDI-TOF MS as E. thailandicus. In our opinion, restriction endonuclease analysis of the 16S-23S rRNA gene ITS region of Enterococcus may be a simple and relatively fast (less than 4 h) alternative method for identifying the species occurring most frequently in humans and animals.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Grażyna Ziółkowska
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Tomasz Banach
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, Głęboka 30, 20-612 Lublin, Poland
| | - Cezary Kowalski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pharmacology, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
10
|
Abstract
Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens.
Collapse
|
11
|
Lin YH, Chen YS, Wu HC, Pan SF, Yu B, Chiang CM, Chiu CM, Yanagida F. Screening and characterization of LAB-produced bacteriocin-like substances from the intestine of grey mullet (Mugil cephalus
L.) as potential biocontrol agents in aquaculture. J Appl Microbiol 2012; 114:299-307. [DOI: 10.1111/jam.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/24/2012] [Accepted: 10/10/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Y.-H. Lin
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - Y.-S. Chen
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - H.-C. Wu
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - S.-F. Pan
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - B. Yu
- Department of Animal Science; National Chung Hsing University; Taichung Taiwan
| | - C.-M. Chiang
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - C.-M. Chiu
- Department of Biotechnology; Ming Chuan University; Gui-Shan Taiwan
| | - F. Yanagida
- The Institute of Enology and Viticulture, Yamanashi University; Kofu Japan
| |
Collapse
|
12
|
Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother 2012; 57:42-8. [PMID: 23070165 DOI: 10.1128/aac.01605-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seventy-seven porcine Enterococcus isolates with florfenicol MICs of ≥16 μg of were/ml screened for the presence of the multiresistance gene cfr, its location on plasmids, and its genetic environment. Three isolates-Enterococcus thailandicus 3-38 (from a porcine rectal swab collected at a pig farm), Enterococcus thailandicus W3, and Enterococcus faecalis W9-2 (the latter two from sewage at a different farm), carried the cfr gene. The SmaI pulsed-field gel electrophoresis patterns of the three isolates differed distinctly. In addition, E. faecalis W9-2 was assigned to a new multilocus sequence type ST469. Mating experiments and Southern blot analysis indicated that cfr is located on conjugative plasmids pW3 (∼75 kb) from E. thailandicus W3, p3-38 (∼72 kb) from E. thailandicus 3-38, and pW9-2 (∼55 kb) from E. faecalis W9-2; these plasmids differed in their sizes, additional resistance genes, and the analysis of the segments encompassing the cfr gene. Sequence analysis revealed that all plasmids harbored a 4,447-bp central region, in which cfr was bracketed by two copies of the novel insertion sequence ISEnfa4 located in the same orientation. The sequences flanking the central regions of these plasmids, including the partial tra gene regions and a ω-ε-ζ toxin-antitoxin module, exhibited >95% nucleotide sequence identity to the conjugative plasmid pAMβ1 from E. faecalis. Conjugative plasmids carrying cfr appear to play an important role in the dissemination and maintenance of the multiresistance gene cfr among enterococcal isolates and possibly other species of Gram-positive bacteria.
Collapse
|