1
|
Cheng J, Wu S, Ye Q, Gu Q, Zhang Y, Ye Q, Lin R, Liang X, Liu Z, Bai J, Zhang J, Chen M, Wu Q. A novel multiplex PCR based method for the detection of Listeria monocytogenes clonal complex 8. Int J Food Microbiol 2024; 409:110475. [PMID: 37976619 DOI: 10.1016/j.ijfoodmicro.2023.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen worldwide, which could cause listeriosis with a 20-30 % fatality rate in immunocompromised individuals. Listeria monocytogenes MLST clonal complex (CC) 8 strain is a common clone in food and clinical cases. The aim of this study was to develop multiplex PCR (mPCR) and high-resolution melting (HRM) qPCR to simultaneously detect L. monocytogenes CC8 and the other L. monocytogenes strains based on pan-genome analysis. A novel multiplex PCR and HRM qPCR targeted for the genes LM5578_1180 (specific for CC8) and LM5578_2262 (for L. monocytogenes) were developed. The specificity of this multiplex PCR and HRM qPCR were verified with other CCs of L. monocytogenes and other species strains. The detection limit of this multiplex PCR and HRM qPCR is 2.1 × 103 CFU/mL and 2.1 × 100 CFU/mL, respectively. This multiplex PCR and HRM qPCR could accurately detect CC8 strains with the interference of different ratios of L. monocytogenes CC9, CC87, CC121, CC155, and L. innocua strains. Subsequently, the detection ability of mPCR and HRM qPCR were also evaluated in spiked samples. The mPCR method could successfully detect 6.2 × 103 CFU/mL of CC8 L. monocytogenes after 6 h enrichment while the multiplex HRM qPCR method could successfully detect 6.2 × 104 CFU/mL of CC8 L. monocytogenes after 3 h enrichment. The feasibility of these methods were satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 12 mushroom samples and was consistent with that of the National Standard Detection Method (GB4789.30-2016). In conclusion, the developed assays could be applied for rapid screening and detection of L. monocytogenes CC8 strains both in food and food production environments, providing accurate results to adopt monitoring measures to improve microbiological safety.
Collapse
Affiliation(s)
- Jianheng Cheng
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Zhang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinglei Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruoqin Lin
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinwen Liang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zihao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jianling Bai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
2
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
3
|
A novel multiplex PCR method for simultaneous identification of hypervirulent Listeria monocytogenes clonal complex 87 and CC88 strains in China. Int J Food Microbiol 2022; 366:109558. [DOI: 10.1016/j.ijfoodmicro.2022.109558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
|
4
|
Virulence characterization and comparative genomics of Listeria monocytogenes sequence type 155 strains. BMC Genomics 2020; 21:847. [PMID: 33256601 PMCID: PMC7708227 DOI: 10.1186/s12864-020-07263-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Listeria (L.) monocytogenes strains show a high diversity regarding stress tolerance and virulence potential. Genome studies have mainly focused on specific sequence types (STs) predominantly associated with either food or human listeriosis. This study focused on the prevalent ST155, showing equal distribution among clinical and food isolates. We evaluated the virulence potential of 20 ST155 strains and performed comparative genomic analysis of 130 ST155 strains isolated from food, food processing environments and human listeriosis cases in different countries and years. RESULTS The in vitro virulence assays using human intestinal epithelial Caco2 and hepatocytic HEPG2 cells showed an impaired virulence phenotype for six of the 20 selected ST155 strains. Genome analysis revealed no distinct clustering of strains from the same source category (food, food processing environment, and clinical isolates). All strains harbored an intact inlA and inlB locus, except four strains, which had an internal deletion in the inlA gene. All strains harbored LIPI-1, but prfA was present in a longer variant in six strains, all showing impaired virulence. The longer PrfA variant resulted in lower expression of inlA, inlB, and prfA, and no expression of hly and actA. Regarding stress-related gene content, SSI-1 was present, whereas qacH was absent in all strains. 34.6% of the strains harbored a plasmid. All but one ST155 plasmids showed high conservation and harbored cadA2, bcrABC, and a triphenylmethane reductase. CONCLUSIONS This study contributes to an enhanced understanding of L. monocytogenes ST155 strains, being equally distributed among isolates from humans, food, and food processing environments. The conservation of the present genetic traits and the absence of unique inherent genetic features makes these types of STs especially interesting since they are apparently equally adapted to the conditions in food processing environments, as well as in food as to the human host environment. However, a ST155-specific mutation resulting in a longer PrfA variant impaired the virulence potential of several ST155 strains.
Collapse
|
5
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
6
|
Genomic Diversity of Common Sequence Types of Listeria monocytogenes Isolated from Ready-to-Eat Products of Animal Origin in South Africa. Genes (Basel) 2019; 10:genes10121007. [PMID: 31817243 PMCID: PMC6947032 DOI: 10.3390/genes10121007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes is a highly fatal foodborne causative agent that has been implicated in numerous outbreaks and related deaths of listeriosis in the world. In this study, six L. monocytogenes isolated from ready-to-eat (RTE) meat products were analysed using Whole Genome Sequencing (WGS) to identify virulence and resistance genes, prophage sequences, PCR-serogroups, and sequence types (STs). The WGS identified four different STs (ST1, ST121, ST204, and ST876) that belonged to serogroup 4b (lineage I) and 1/2a (lineage II). Core genome, and average nucleotide identity (ANI) phylogenetic analyses showed that the majority of strains from serogroup 4b (lineage I) clustered together. However, two isolates that belong to serogroup 1/2a (lineage II) grouped far from each other and the other strains. Examination of reference-guided scaffolds for the presence of prophages using the PHAge Search Tool Enhanced Release (PHASTER) software identified 24 diverse prophages, which were either intact or incomplete/questionable. The National Center for Biotechnology Information- Nucleotide Basic Local Alignment Search Tool (NCBI-BLASTn) revealed that Listeria monocytogenes strains in this study shared some known major virulence genes that are encoded in Listeria pathogenicity islands 1 and 3. In general, the resistance profiles for all the isolates were similar and encoded for multidrug, heavy metal, antibiotic, and sanitizer resistance genes. All the isolates in this study possessed genes that code for resistance to common food processing antiseptics such as Benzalkonium chloride.
Collapse
|
7
|
Gelbíčová T, Zobaníková M, Tomáštíková Z, Van Walle I, Ruppitsch W, Karpíšková R. An outbreak of listeriosis linked to turkey meat products in the Czech Republic, 2012-2016. Epidemiol Infect 2018; 146:1407-1412. [PMID: 29909819 PMCID: PMC9133684 DOI: 10.1017/s0950268818001565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/30/2018] [Accepted: 05/18/2018] [Indexed: 11/05/2022] Open
Abstract
Since 2012-2016 an increased number of listeriosis cases, especially from one region of the Czech Republic, were observed. Most of them were caused by strains of serotype 1/2a, clonal complex 8, indistinguishable by pulsed-field gel electrophoresis. Twenty-six human cases were reported, including two neonatal cases in twins. Three cases were fatal. The typing of Listeria monocytogenes isolates from food enabled to confirm a turkey meat delicatessen as the vehicle of infection for this local outbreak in the Moravian-Silesian Region. The food strains belonging to identical pulsotype were isolated from ready-to-eat turkey meat products packaged by the same producer between 2012 and 2016. This fact confirms that the described L. monocytogenes outbreak strain probably persisted in the environment of the aforementioned food-processing plant over several years. Whole-genome sequencing confirmed a very close relationship (zero to seven different alleles) between isolates from humans, foods and swabs from the environment of the food-processing plant under investigation.
Collapse
Affiliation(s)
- T. Gelbíčová
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - M. Zobaníková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Z. Tomáštíková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - I. Van Walle
- European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973 Solna, Sweden
| | - W. Ruppitsch
- Austrian Agency for Health and Food Safety, Währingerstrasse 25a, 1090 Vienna, Austria
| | - R. Karpíšková
- Department of Bacteriology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
8
|
Thouvenot P, Vales G, Bracq-Dieye H, Tessaud-Rita N, Maury MM, Moura A, Lecuit M, Leclercq A. MALDI-TOF mass spectrometry-based identification of Listeria species in surveillance: A prospective study. J Microbiol Methods 2017; 144:29-32. [PMID: 29066314 DOI: 10.1016/j.mimet.2017.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to evaluate MALDI-TOF MS for species discrimination of Listeria in the context of routine surveillance. MALDI-TOF MS yielded 100% accuracy for the identification of L. monocytogenes, L. innocua, L. ivanovii, L. fleischmannii, L. grayi, L. seeligeri, L. weihenstephanensis and L. welshimeri, as confirmed by whole genome sequence analyses.
Collapse
Affiliation(s)
- Pierre Thouvenot
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Guillaume Vales
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Hélène Bracq-Dieye
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Nathalie Tessaud-Rita
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France.
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.
| |
Collapse
|
9
|
Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Björkman JT, Dallman T, Reimer A, Enouf V, Larsonneur E, Carleton H, Bracq-Dieye H, Katz LS, Jones L, Touchon M, Tourdjman M, Walker M, Stroika S, Cantinelli T, Chenal-Francisque V, Kucerova Z, Rocha EPC, Nadon C, Grant K, Nielsen EM, Pot B, Gerner-Smidt P, Lecuit M, Brisse S. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2016; 2:16185. [PMID: 27723724 DOI: 10.1038/nmicrobiol.2016.185] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/30/2016] [Indexed: 01/31/2023]
Abstract
Listeria monocytogenes (Lm) is a major human foodborne pathogen. Numerous Lm outbreaks have been reported worldwide and associated with a high case fatality rate, reinforcing the need for strongly coordinated surveillance and outbreak control. We developed a universally applicable genome-wide strain genotyping approach and investigated the population diversity of Lm using 1,696 isolates from diverse sources and geographical locations. We define, with unprecedented precision, the population structure of Lm, demonstrate the occurrence of international circulation of strains and reveal the extent of heterogeneity in virulence and stress resistance genomic features among clinical and food isolates. Using historical isolates, we show that the evolutionary rate of Lm from lineage I and lineage II is low (∼2.5 × 10-7 substitutions per site per year, as inferred from the core genome) and that major sublineages (corresponding to so-called 'epidemic clones') are estimated to be at least 50-150 years old. This work demonstrates the urgent need to monitor Lm strains at the global level and provides the unified approach needed for global harmonization of Lm genome-based typing and population biology.
Collapse
Affiliation(s)
- Alexandra Moura
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France.,Biology of Infection Unit, Institut Pasteur, 75724 Paris, France.,Inserm U1117, 75015 Paris, France.,Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,CNRS, UMR 3525, 75015 Paris, France
| | - Alexis Criscuolo
- Institut Pasteur-Hub Bioinformatique et Biostatistique-C3BI, USR 3756 IP CNRS, 75724 Paris, France
| | | | - Mylène M Maury
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France.,Biology of Infection Unit, Institut Pasteur, 75724 Paris, France.,Inserm U1117, 75015 Paris, France.,Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,CNRS, UMR 3525, 75015 Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Paris Diderot University, 75013 Paris, France
| | - Alexandre Leclercq
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France.,Biology of Infection Unit, Institut Pasteur, 75724 Paris, France
| | - Cheryl Tarr
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | - Aleisha Reimer
- Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Vincent Enouf
- Pasteur International Bioresources network (PIBnet), Mutualized Microbiology Platform (P2M), Institut Pasteur, 75724 Paris, France
| | - Elise Larsonneur
- Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,Institut Pasteur-Hub Bioinformatique et Biostatistique-C3BI, USR 3756 IP CNRS, 75724 Paris, France.,CNRS, UMS 3601 IFB-Core, 91198 Gif-sur-Yvette, France
| | - Heather Carleton
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Hélène Bracq-Dieye
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France.,Biology of Infection Unit, Institut Pasteur, 75724 Paris, France
| | - Lee S Katz
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Louis Jones
- Institut Pasteur-Hub Bioinformatique et Biostatistique-C3BI, USR 3756 IP CNRS, 75724 Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,CNRS, UMR 3525, 75015 Paris, France
| | | | - Matthew Walker
- Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Steven Stroika
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Thomas Cantinelli
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France
| | - Viviane Chenal-Francisque
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France
| | - Zuzana Kucerova
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,CNRS, UMR 3525, 75015 Paris, France
| | - Celine Nadon
- Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | | | | | - Bruno Pot
- Applied-Maths, 9830 Sint-Martens-Latem, Belgium
| | | | - Marc Lecuit
- National Reference Centre and World Health Organization Collaborating Center for Listeria, Institut Pasteur, 75724 Paris, France.,Biology of Infection Unit, Institut Pasteur, 75724 Paris, France.,Inserm U1117, 75015 Paris, France.,Sorbonne Paris Cité, Institut Imagine, 75006 Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Paris Descartes University, 75015 Paris, France
| | - Sylvain Brisse
- Microbial Evolutionary Genomics Unit, Institut Pasteur, 75724 Paris, France.,CNRS, UMR 3525, 75015 Paris, France
| |
Collapse
|
11
|
Rawool DB, Doijad SP, Poharkar KV, Negi M, Kale SB, Malik SVS, Kurkure NV, Chakraborty T, Barbuddhe SB. A multiplex PCR for detection of Listeria monocytogenes and its lineages. J Microbiol Methods 2016; 130:144-147. [PMID: 27671346 DOI: 10.1016/j.mimet.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes.
Collapse
Affiliation(s)
- Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Swapnil P Doijad
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - Krupali V Poharkar
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Mamta Negi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Satyajit B Kale
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - S V S Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Nitin V Kurkure
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | | |
Collapse
|