1
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
2
|
Kopper JJ. Equine Rotaviral Diarrhea. Vet Clin North Am Equine Pract 2023; 39:47-54. [PMID: 36737285 DOI: 10.1016/j.cveq.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Equine rotavirus is one of the most common causes of infectious diarrhea in foals. Although the infection itself is self-limiting, the resulting diarrhea is due to multiple mechanisms and can be severe, requiring supportive care including fluid and electrolyte support. Prompt diagnosis is important for treatment and biosecurity decisions and can be achieved by several means. Prevention, while imperfect, currently relies on vaccination of pregnant mares before parturition, ingestion of adequate colostrum from vaccinated mares and biosecurity measures.
Collapse
Affiliation(s)
- Jamie J Kopper
- Iowa State University, College of Veterinary Medicine, 1809 Christensen Drive, Ames Iowa 50010, USA.
| |
Collapse
|
3
|
Cheng X, Wu W, Teng F, Yan Y, Li G, Wang L, Wang X, Wang R, Zhou H, Jiang Y, Cui W, Tang L, Li Y, Qiao X. Isolation and Characterization of Bovine RVA from Northeast China, 2017-2020. Life (Basel) 2021; 11:life11121389. [PMID: 34947920 PMCID: PMC8703504 DOI: 10.3390/life11121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
Group A rotaviruses (RVAs) are major enteric pathogens causing infections in calves. To investigate the epidemiological characteristics and genetic diversity of bovine rotavirus (BRV), 233 fecal samples were collected from calves with diarrhea in northeast China. The samples were analyzed for sequences encoding the inner capsid protein VP6 (subgroup) and the outer capsid proteins VP7 and VP4 (G and P type, respectively) using RT-PCR. Ten of the 233 samples (4.3%) were identified as BRV positive and were used for virus isolation and sequence analysis, revealing that all strains analyzed were of the G6P[1] genotype. The isolates exhibited high VP6 sequence identity to the USA cow RVA NCDV strain (>99% amino acid identity) and were further shown to be closely related to Japanese cow RVA BRV101 and Israelian human RVA G6P[1] strains, with >99% amino acid identity to VP7 and VP4 proteins, respectively. Comparative analyses of genome-predicted amino acid sequences between the isolates and the NCDV strains indicated that the antigenicity and infectivity of the strains isolated had changed. In this study, BRV genotypes and the genetic diversity among vaccinated cattle herds were monitored to provide epidemiological data and references for early diagnosis, allowing for early detection of new, potentially pathogenic RVA strains.
Collapse
Affiliation(s)
- Xi Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Wei Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Fei Teng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Yue Yan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Guiwei Li
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China;
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Xiaona Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Ruichong Wang
- Department for Radiological Protection, Heilongjiang Province Center for Disease Control and Prevention, Harbin 150030, China;
| | - Han Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive, Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (X.C.); (W.W.); (F.T.); (Y.Y.); (L.W.); (X.W.); (H.Z.); (Y.J.); (W.C.); (L.T.); (Y.L.)
- Correspondence:
| |
Collapse
|
4
|
Uzal FA, Arroyo LG, Navarro MA, Gomez DE, Asín J, Henderson E. Bacterial and viral enterocolitis in horses: a review. J Vet Diagn Invest 2021; 34:354-375. [PMID: 34763560 DOI: 10.1177/10406387211057469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteritis, colitis, and enterocolitis are considered some of the most common causes of disease and death in horses. Determining the etiology of these conditions is challenging, among other reasons because different causes produce similar clinical signs and lesions, and also because some agents of colitis can be present in the intestine of normal animals. We review here the main bacterial and viral causes of enterocolitis of horses, including Salmonella spp., Clostridium perfringens type A NetF-positive, C. perfringens type C, Clostridioides difficile, Clostridium piliforme, Paeniclostridium sordellii, other clostridia, Rhodococcus equi, Neorickettsia risticii, Lawsonia intracellularis, equine rotavirus, and equine coronavirus. Diarrhea and colic are the hallmark clinical signs of colitis and enterocolitis, and the majority of these conditions are characterized by necrotizing changes in the mucosa of the small intestine, colon, cecum, or in a combination of these organs. The presumptive diagnosis is based on clinical, gross, and microscopic findings, and confirmed by detection of some of the agents and/or their toxins in the intestinal content or feces.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA.,Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Javier Asín
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, USA
| |
Collapse
|
5
|
Uprety T, Sreenivasan CC, Hause BM, Li G, Odemuyiwa SO, Locke S, Morgan J, Zeng L, Gilsenan WF, Slovis N, Metcalfe L, Carter CN, Timoney P, Horohov D, Wang D, Erol E, Adam E, Li F. Identification of a Ruminant Origin Group B Rotavirus Associated with Diarrhea Outbreaks in Foals. Viruses 2021; 13:1330. [PMID: 34372536 PMCID: PMC8310321 DOI: 10.3390/v13071330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Equine rotavirus group A (ERVA) is one of the most common causes of foal diarrhea. Starting in February 2021, there was an increase in the frequency of severe watery to hemorrhagic diarrhea cases in neonatal foals in Central Kentucky. Diagnostic investigation of fecal samples failed to detect evidence of diarrhea-causing pathogens including ERVA. Based on Illumina-based metagenomic sequencing, we identified a novel equine rotavirus group B (ERVB) in fecal specimens from the affected foals in the absence of any other known enteric pathogens. Interestingly, the protein sequence of all 11 segments had greater than 96% identity with group B rotaviruses previously found in ruminants. Furthermore, phylogenetic analysis demonstrated clustering of the ERVB with group B rotaviruses of caprine and bovine strains from the USA. Subsequent analysis of 33 foal diarrheic samples by RT-qPCR identified 23 rotavirus B-positive cases (69.69%). These observations suggest that the ERVB originated from ruminants and was associated with outbreaks of neonatal foal diarrhea in the 2021 foaling season in Kentucky. Emergence of the ruminant-like group B rotavirus in foals clearly warrants further investigation due to the significant impact of the disease in neonatal foals and its economic impact on the equine industry.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Solomon O. Odemuyiwa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Stephan Locke
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Jocelynn Morgan
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Li Zeng
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | | | - Nathan Slovis
- Hagyard Equine Medical Institute, Lexington, KY 40511, USA;
| | - Laurie Metcalfe
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA; (W.F.G.); (L.M.)
| | - Craig N. Carter
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Peter Timoney
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - David Horohov
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Erdal Erol
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40512, USA; (S.L.); (J.M.); (L.Z.); (C.N.C.)
| | - Emma Adam
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (T.U.); (C.C.S.); (P.T.); (D.H.); (D.W.)
| |
Collapse
|
6
|
Abstract
This review briefly describes the virus classification, clinical signs, epidemiology,
diagnosis, disinfection, and vaccines related equine group A rotavirus (RVA) infection.
Equine RVA is one of the most important pathogens causing diarrhoea in foals. The main
transmission route is faecal–oral, and the clinical signs are diarrhoea, fever, lethargy,
and anorexia (decreased suckling). Some human RVA rapid antigen detection kits based on
the principles of the immunochromatographic assay are useful for the diagnosis of equine
RVA infection. The kits are used in daily clinical practice because of their rapidity and
ease of handling. Equine RVA is a non-enveloped virus and is more resistant to
disinfectants than enveloped viruses such as equine influenza virus and equine
herpesvirus. Although amphoteric soaps and quaternary ammonium compounds are commonly used
in veterinary hygiene, they are generally ineffective against equine RVA. Alcohol
products, aldehydes, and chlorine- and iodine-based compounds are effective against equine
RVA. Inactivated vaccines have been used for equine RVA infection in some countries.
Pregnant mares are intramuscularly inoculated with a vaccine, and thus their colostrum has
abundant antibodies against RVA at the time of birth. According to G and P classification
defined in accordance with the VP7 and VP4 genes, respectively, the predominant equine
RVAs circulating in horse populations globally are G3P[12] and G14P[12] equine RVAs, but
the vaccines contain only the G3P[12] equine RVA strain. Ideally, a G14P[12] equine RVA
should be added as a vaccine strain to obtain a better vaccine effect.
Collapse
Affiliation(s)
- Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Tomio Matsumura
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| |
Collapse
|
7
|
Katz EM, Esona MD, Betrapally NS, De La Cruz De Leon LA, Neira YR, Rey GJ, Bowen MD. Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: Emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology 2019; 534:114-131. [PMID: 31228725 DOI: 10.1016/j.virol.2019.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
Inter-genogroup reassortant group A rotavirus (RVA) strains possessing a G3 VP7 gene of putative equine origin (EQL-G3) have been detected in humans since 2013. Here we report detection of EQL-G3P[8] RVA strains from the Dominican Republic collected in 2014-16. Whole-gene analysis of RVA in stool specimens revealed 16 EQL-G3P[8] strains, 3 of which appear to have acquired an N1 NSP1 gene from locally-circulating G9P[8] strains and a novel G2P[8] reassortant possessing 7 EQL-G3-associated genes and 3 genes from a locally-circulating G2P[4] strain. Phylogenetic/genetic analyses of VP7 gene sequences revealed nine G3 lineages (I-IX) with newly-assigned lineage IX encompassing all reported human EQL-G3 strains along with the ancestral equine strain. VP1 and NSP2 gene phylogenies suggest that EQL-G3P[8] strains were introduced into the Dominican Republic from Thailand. The emergence of EQL-G3P[8] strains in the Dominican Republic and their reassortment with locally-circulating RVA could have implications for current vaccination strategies.
Collapse
Affiliation(s)
- Eric M Katz
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Arlington, VA, USA; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mathew D Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naga S Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Yenny R Neira
- Pan American Health Organization/World Health Organization, Santo Domingo, Dominican Republic
| | - Gloria J Rey
- Pan American Health Organization, Washington, D.C, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
8
|
Nemoto M, Niwa H, Murakami S, Miki R, Higuchi T, Bannai H, Tsujimura K, Kokado H. Molecular analyses of G3A/G3B and G14 equine group A rotaviruses detected between 2012 and 2018 in Japan. J Gen Virol 2019; 100:913-931. [PMID: 31090536 DOI: 10.1099/jgv.0.001265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine group A rotaviruses (RVAs) cause diarrhoea in foals. We investigated the G genotypes of 360 RVA-positive samples obtained from diarrhoeic foals between 2012 and 2018 in the Hidaka district of Hokkaido, Japan, through sequence analysis of VP7. All samples were classified into genotypes G3A, G3B and G14. G3B RVAs were detected until 2016, and G3A RVAs were detected from 2016 to 2018. G14 RVAs were detected from 2012 to 2018. Although G3B RVAs had been circulating in Japan for a long time, G3A RVAs suddenly emerged in 2016, and have replaced G3B RVAs since 2017. Molecular analyses of VP7 and VP4 showed that these Japanese G3A RVAs are closely related to North American G3A RVAs detected in 2017. Additionally, whole-genome analyses suggested that genetic reassortments occurred between G3A and G14 RVAs in NSP1, NSP2, NSP4 and NSP5.
Collapse
Affiliation(s)
- Manabu Nemoto
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hidekazu Niwa
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | | | - Ryoka Miki
- 2 Thermo Fisher Scientific, Tokyo, Japan
| | - Tohru Higuchi
- 3 Mitsuishi Animal Medical Center, Hokkaido South Agricultural Mutual Aid Association, Shinhidaka-cho, Hokkaido, Japan
| | - Hiroshi Bannai
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hiroshi Kokado
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
9
|
Carossino M, Barrandeguy ME, Erol E, Li Y, Balasuriya UBR. Development and evaluation of a one-step multiplex real-time TaqMan ® RT-qPCR assay for the detection and genotyping of equine G3 and G14 rotaviruses in fecal samples. Virol J 2019; 16:49. [PMID: 31023319 PMCID: PMC6482509 DOI: 10.1186/s12985-019-1149-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and has a negative impact on equine breeding enterprises worldwide. Among ERVA strains infecting foals, the genotypes G3P[12] and G14P[12] are the most prevalent, while infections by strains with other genomic arrangements are infrequent. The identification of circulating strains of ERVA is critical for diagnostic and surveillance purposes, as well as to understand their molecular epidemiology. Current genotyping methods available for ERVA and rotaviruses affecting other animal species rely on Sanger sequencing and are significantly time-consuming, costly and labor intensive. Here, we developed the first one-step multiplex TaqMan® real-time reverse transcription polymerase chain reaction (RT-qPCR) assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes for the rapid detection and G-typing directly from fecal specimens. METHODS A one-step multiplex TaqMan® RT-qPCR assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes was designed. The analytical sensitivity was assessed using serial dilutions of in vitro transcribed RNA containing the target sequences while the analytical specificity was determined using RNA and DNA derived from a panel of group A rotaviruses along with other equine viruses and bacteria. The clinical performance of this multiplex assay was evaluated using a panel of 177 fecal samples and compared to a VP7-specific standard RT-PCR assay and Sanger sequencing. Limits of detection (LOD), sensitivity, specificity, and agreement were determined. RESULTS The multiplex G3 and G14 VP7 assays demonstrated high specificity and efficiency, with perfect linearity. A 100-fold difference in their analytical sensitivity was observed when compared to the singleplex assays; however, this difference did not have an impact on the clinical performance. Clinical performance of the multiplex RT-qPCR assay demonstrated that this assay had a high sensitivity/specificity for every target (100% for NSP3, > 90% for G3 VP7 and > 99% for G14 VP7, respectively) and high overall agreement (> 98%) compared to conventional RT-PCR and sequencing. CONCLUSIONS This new multiplex RT-qPCR assay constitutes a useful, very reliable tool that could significantly aid in the rapid detection and G-typing of ERVA strains circulating in the field.
Collapse
Affiliation(s)
- Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Maria E Barrandeguy
- Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, (1712) Castelar, Buenos Aires, Argentina
| | - Erdal Erol
- Department of Veterinary Science, University of Kentucky Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, USA
| | - Yanqiu Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
10
|
Nemoto M, Inagaki M, Tamura N, Bannai H, Tsujimura K, Yamanaka T, Kokado H. Evaluation of inactivated vaccines against equine group A rotaviruses by use of a suckling mouse model. Vaccine 2018; 36:5551-5555. [PMID: 30076106 DOI: 10.1016/j.vaccine.2018.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equine group A rotaviruses (RVAs) cause diarrhea in suckling foals. The dominant RVAs circulating among horses worldwide, including Japan, are G3P[12] and/or G14P[12] genotypes. Inactivated vaccines containing a G3P[12] RVA are commercially available in some countries for prevention of diarrhea caused by equine RVAs. However, there is no reported evidence whether vaccines containing a G3P[12] RVA are effective against G14P[12] RVAs or whether using a G14P[12] RVA results in a more effective vaccine. This study used a suckling mouse model to evaluate the effectiveness of inactivated vaccines containing G3P[12] (G3 vaccine) or G14P[12] (G14 vaccine) RVAs against G3P[12] and G14P[12] RVAs. METHODS Female mice were inoculated twice with G3 or G14 vaccines, and were then mated. After parturition, suckling mice were challenged with one of either two G3P[12] RVAs, two G14P[12] RVAs, or one G13P[18] RVA. After virus inoculation, suckling mice were observed for diarrhea, and the incidence rates of diarrhea in the vaccinated groups were compared with those in the non-vaccinated groups. RESULTS Following G3P[12] RVA challenge, suckling mice in the G3 and G14 vaccinated groups had significantly lower rates of diarrhea incidence than did those in the non-vaccinated group, and the rates in the G3 vaccinated group tended to be lower than in the G14 vaccinated group. Following G14P[12] RVA challenge, suckling mice in the G14 vaccinated group had significantly lower rates of diarrhea incidence than did those in the non-vaccinated and G3 vaccinated groups. The G3 and G14 vaccines did not reduce the rate when challenged with the G13P[18] RVA. CONCLUSION The mouse model showed that the G3 and G14 vaccines were both effective against G3P[12] RVAs, and that the G14 vaccine was effective against G14P[12] RVAs. These results suggest that at least a G14 RVA strain should be included in as a vaccine strain.
Collapse
Affiliation(s)
- Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan.
| | - Mizuho Inagaki
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Norihisa Tamura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Hiroshi Kokado
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| |
Collapse
|
11
|
Carossino M, Barrandeguy ME, Li Y, Parreño V, Janes J, Loynachan AT, Balasuriya UBR. Detection, molecular characterization and phylogenetic analysis of G3P[12] and G14P[12] equine rotavirus strains co-circulating in central Kentucky. Virus Res 2018; 255:39-54. [PMID: 29864502 DOI: 10.1016/j.virusres.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022]
Abstract
Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and a major health problem to the equine breeding industry worldwide. The G3P[12] and G14P[12] ERVA genotypes are the most prevalent in foals with diarrhea. Control and prevention strategies include vaccination of pregnant mares with an inactivated vaccine containing a prototype ERVA G3P[12] strain with limited and controversial field efficacy. Here, we performed the molecular characterization of ERVA strains circulating in central Kentucky using fecal samples collected during the 2017 foaling season. The data indicated for the first time that the G14P[12] genotype is predominant in this region in contrast to a previous serotyping study where only G3 genotype strains were reported. Overall, analysis of antigenic sites in the VP7 protein demonstrated the presence of several amino acid substitutions in the epitopes exposed on the surface including a non-conserved N-linked glycosylation site (D123N) in G14P[12] strains, while changes in antigenic sites of VP8* were minor. Also, we report the successful isolation of three ERVA G14P[12] strains which presented a high identity with other G14 strains from around the world. These may constitute ideal reference strains to comparatively study the molecular biology of G3 and G14 strains and perform vaccine efficacy studies following heterologous challenge in the future.
Collapse
Affiliation(s)
- Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Maria E Barrandeguy
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Yanqiu Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina
| | - Jennifer Janes
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Nemoto M, Ryan E, Lyons P, Cullinane A. Molecular characterisation of equine group A rotaviruses in Ireland (2011-2015). Vet J 2017; 226:12-14. [PMID: 28911835 DOI: 10.1016/j.tvjl.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
Abstract
The molecular epidemiology of equine group A rotaviruses (RVAs) in Ireland from 2011 to 2015 was investigated. Of 438 diagnostic specimens submitted from foals with enteric disease, 102 (23.3%) were positive for RVA using an immunochromatographic assay. G genotypes were determined for 76 equine RVAs, of which 68 (89.5%) were G3 and eight (10.5%) were G14. Of 18 RVAs (12 G3 and six G14) characterised by P genotyping, all were P[12]. G3P[12] and G14P[12] were the most prevalent genotypes of RVA in foals in Ireland, similar to other countries and consistent with previous studies in Ireland from 1999 to 2005. Phylogenetic analysis showed that G3P[12] and G14P[12] RVAs were related to equine RVAs recently detected in Europe, Brazil and South Africa, and to the vaccine strain H-2.
Collapse
Affiliation(s)
- Manabu Nemoto
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland; Equine Research Institute, Japan Racing Association, Shiba 1400-4, Shimotsuke, Tochigi, 3290412, Japan
| | - Evelyn Ryan
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Pamela Lyons
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Ann Cullinane
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Ma Y. Identification of G and P genotype-specific motifs in the predicted VP7 and VP4 amino acid sequences. Virus Res 2015; 210:271-8. [PMID: 26321159 DOI: 10.1016/j.virusres.2015.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Equine rotavirus (ERV) strain L338 (G13P[18]) has a unique G and P genotype. However, the evolutionary relationship of L338 with other ERVs is still unknown. Here whole genome analysis of the L338 ERV strain was independently performed. Its genotype constellations were determined as G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11, confirming previous genotype assignments. The L338 strain only shared the P[18] and I6 genotypes with other ERVs. The nucleotide sequences of the other 9 RNA segments were different from those of cogent genes of all other group A rotavirus (RVA) strains including ERVs and formed unique phylogenetic lineages. The L338 evolutionary footprints were tentatively identified in both VP7 and VP4 amino acid sequences: two regions were found in VP7 and twelve in VP4. The conserved regions shared between L338 and other group A rotavirus strains (RVAs) indicated that L338 was more closely related genomically to animal and human RVAs other than ERVs, suggesting that L338 may not be an endogenous equine RV but have emerged as an interspecies reassortant with other RVA strains. Furthermore, genotype-specific motifs of all 27 G and 37 P types were identified in regions 7-1a (aa 91-100) of VP7 and regions 8-1 (aa146-151) and 8-3 (aa113-118 and 125-135) of VP4 (VP8*).
Collapse
Affiliation(s)
- Yongping Ma
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Yu Zhong District, Yi Xue Yuan Road #1, Chongqing 400016, China.
| |
Collapse
|
14
|
Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Gunn L, Collins PJ, Fanning S, McKillen J, Morgan J, Staines A, O'Shea H. Detection and characterisation of novel bocavirus (genus Bocaparvovirus) and gastroenteritis viruses from asymptomatic pigs in Ireland. Infect Ecol Epidemiol 2015; 5:27270. [PMID: 26065833 PMCID: PMC4462827 DOI: 10.3402/iee.v5.27270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background Livestock animals have been the assumed source of several human epidemics in recent years, for example, influenza H1N1, rotavirus G8/G9, and MERS-CoV. Surveillance of novel viruses in animals is essential to evaluate the risk to human and animal health and to determine any economic impact, for example, failure to thrive. There is a paucity of data regarding detection and characterisation of gastroenteritis viruses, particularly novel viruses, in porcines in Ireland. Recently, a number of small novel porcine DNA viruses have emerged globally, for example, torque teno sus virus, porcine bocavirus, and parvoviruses 2 & 4, and little is known about the biology and potential pathogenicity of these viruses. Bocaparvovirus is a genetically distinct group of viruses which has been recently detected in humans and animals. Methods In this study, the presence of gastroenteritis viruses (rotavirus A, porcine circovirus, adenovirus, and porcine bocavirus) was investigated in a selection of archived faecal samples from asymptomatic piglets from a commercial farm in Ireland. A total of 104 specimens were pooled and screened using conventional molecular techniques (PCR and RT-PCR), a subset of specimens (n=44) were then examined individually. Viral diversity was then investigated using statistical and phylogenetic techniques. Results Initial screening showed a high prevalence of PBoV in this farm, with the formation of three distinct groups in phylogenetic analysis. Other viruses were also investigated in this study with the first report of PCV, PAdV and lineage I G5 RVA in Ireland. Some specimens contained >1 virus, with statistical analysis indicating a strong correlation for mixed infections of PBoV and PAdV on this farm. Conclusion Investigating the diversity of circulating enteric viruses on Irish porcine farms is important to improve the prophylactic tools available and to facilitate the early detection of changes in circulating viruses.
Collapse
Affiliation(s)
- Lynda Gunn
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | | | - Séamus Fanning
- School of Public Health, Physio & Pop Sc, Science Centre - South, Dublin 4, Ireland
| | - John McKillen
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - John Morgan
- School of Microbiology, University College Cork, Cork, Ireland
| | - Anthony Staines
- School of Nursing, Dublin City University, Dublin 9, Ireland
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland;
| |
Collapse
|
16
|
Miño S, Kern A, Barrandeguy M, Parreño V. Comparison of two commercial kits and an in-house ELISA for the detection of equine rotavirus in foal feces. J Virol Methods 2015; 222:1-10. [PMID: 25979610 DOI: 10.1016/j.jviromet.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Group A rotaviruses (RVA) are important infectious agents associated with diarrhea in the young of several animal species including foals. Currently, a variety of diagnosis methods are commercially available, like ELISA, latex agglutination and immunochromatographic assays. These commercial tests are mainly designed for the detection of human RVA; its applicability in veterinary diagnosis has been poorly studied. The aim of this study was to compare the sensitivity and specificity of two commercial diagnostic kits, Pathfinder™ Rotavirus and FASTest Rota® strip, with an in-house KERI ELISA, for the detection of equine RVA. A total of 172 stool samples from Thoroughbred foals with diarrhea were analyzed. The presence of equine RVA in samples in which only one of the three methods showed positive results was confirmed by RT-PCR. A sample was considered "true positive" when RVA was detected by at least two of the methods, and "true negative" when it tested negative by the three assays. Following these criteria, 50 samples were found positive and 122 were found negative, and were handled as reference population for the assay validation. Pathfinder™ Rotavirus assay showed 32% sensitivity and 97% specificity, FASTest Rota® strip, 92% sensitivity and 97% specificity, and KERI ELISA, 76% sensitivity and 93% specificity. Pathfinder™ Rotavirus showed 77%, FASTest Rota® strip 95%, and KERI ELISA 88% accuracy to correctly classify the samples as equine RVA positive or negative. Pathfinder failed specifically to detect equine RVA G3P12I6 genotype; such performance might be related to the specificity of the monoclonal antibody included in this kit. According to our results, differences among VP6 genotypes could influence the sensitivity to detect equine RVA in foal feces, and thus assay validation of diagnostic kits for each species is necessary. In conclusion, FASTest Rota® strip is more suitable than ELISA Pathfinder™ Rotavirus for the screening of rotavirus infection in foals. The KERI ELISA showed an acceptable performance, and could be considered a proper economic alternative for equine RVA diagnosis.
Collapse
Affiliation(s)
- S Miño
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina
| | - A Kern
- MEGACOR Diagnostk GmbH Lochauer Str. 2 A 6912 Hörbranz, Austria
| | - M Barrandeguy
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - V Parreño
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina.
| |
Collapse
|
17
|
Nemoto M, Nagai M, Tsunemitsu H, Omatsu T, Furuya T, Shirai J, Kondo T, Fujii Y, Todaka R, Katayama K, Mizutani T. Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010. Arch Virol 2015; 160:1171-9. [DOI: 10.1007/s00705-015-2374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
|
18
|
Matthijnssens J, Ons E, De Coster S, Conceição-Neto N, Gryspeerdt A, Van Ranst M, Raue R. Molecular characterization of equine rotaviruses isolated in Europe in 2013: implications for vaccination. Vet Microbiol 2015; 176:179-85. [PMID: 25637313 PMCID: PMC7126753 DOI: 10.1016/j.vetmic.2015.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/23/2022]
Abstract
Diarrhea samples from 65 foals were collected in Europe and screened for rotavirus. From 26 qPCR positive stool samples, 11 could be (partially) genotyped. In addition to the common G3/G14P[12] strains, the rare P[18] genotype was detected. A vaccine based on an inactivated G3P[12] genotype is still relevant in Europe.
Equine group A rotavirus (RVAs) mainly cause disease in foals under the age of 3 months. Only sporadic data are available on the circulation of RVAs in equine populations in Europe. In this study, 65 diarrheic samples from foals under 4 months of age were collected in Belgium (n = 32), Germany (n = 17), Slovenia (n = 5), Sweden (n = 4), Hungary (n = 3), Italy (n = 2), France (n = 1) and The Netherlands (n = 1). Forty percent of these samples (n = 26) were found to be RVA positive by a quantitative RT-PCR assay. The viral load in 11 of these samples was sufficiently high to be (partially) genotyped. G3, G14 and P[12] were the main genotypes detected, and phylogenetic analyses revealed that they were closely related to contemporary equine RVA strains detected in Europe as well as in Brazil and South Africa. Regional variation was observed with only G14 and P[12] being detected in Germany, whereas mainly G3P[12] was encountered in Belgium. Surprisingly the only G14P[12] RVA strain detected in Belgium was also found to possess the very rare P[18] genotype, which has been described only once from equine RVA strain L338 detected in the UK in 1991. Despite the identification of this uncommon P[18] genotype, G3P[12] and G14P[12] RVA strains remained the most important genotypes in Europe during the study period. Based on this finding and the knowledge that G3P[12] and G14P[12] serotypes are partially cross-reactive it can be assumed that a vaccine based on an inactivated virus of the G3P[12] genotype is still relevant in the current European epidemiological situation, although the addition of a G14 strain would most likely be beneficial.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- KU Leuven - University of Leuven, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Ellen Ons
- Zoetis Belgium S.A., Mercuriusstraat 20, B-1930 Zaventem, Belgium.
| | - Sarah De Coster
- KU Leuven - University of Leuven, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Nádia Conceição-Neto
- KU Leuven - University of Leuven, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Annick Gryspeerdt
- Dierengezondheidszorg Vlaanderen, Industrielaan 29, B-8820 Torhout, Belgium.
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Rudiger Raue
- Zoetis Belgium S.A., Mercuriusstraat 20, B-1930 Zaventem, Belgium.
| |
Collapse
|
19
|
Collins PJ, Mulherin E, Cashman O, Lennon G, Gunn L, O'Shea H, Fanning S. Detection and characterisation of bovine rotavirus in Ireland from 2006-2008. Ir Vet J 2014; 67:13. [PMID: 24987518 PMCID: PMC4076433 DOI: 10.1186/2046-0481-67-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
Background Worldwide, Group A bovine rotavirus (RVA boRV) is one of the main causes of neonatal calf diarrhoea. Currently, limited epidemiological and sequence data exists on the RVA disease in bovines in Southern Ireland only. The aim of the study was to generate epidemiological and sequence data of RVA boRV distributed over a wide geographical area in Ireland. Findings 272 stool samples were obtained from symptomatic calves and analysed to identify the prevalent G and P genotypes. Viral type combinations including G6P[5], G6P[11] and G10P[11] genotype were the most frequently identified. The G6P[5] combination was predominant throughtout the study, accounting for 70% (n = 191). Sequence analysis of the VP7 gene revealed that Irish G6 strains fell within Lineage IV, similiar to previous reports in Ireland. Conclusion The detection of unusual G and P combinations may have an impact on rotavirus control programmes and current vaccines may need to incorporate new strains, as the current vaccine available may not offer protection against all of these circulating types.
Collapse
Affiliation(s)
- P J Collins
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Emily Mulherin
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Olivia Cashman
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Grainne Lennon
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Lynda Gunn
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland.,Herd and Veterinary Public Health Unit, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Slovis NM, Elam J, Estrada M, Leutenegger CM. Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: a comprehensive molecular study. Equine Vet J 2013; 46:311-6. [PMID: 23773143 PMCID: PMC7163618 DOI: 10.1111/evj.12119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reasons for performing study Diarrhoea caused by infectious agents is common in foals but there is no comprehensive molecular work‐up of the relative prevalence of common agents and appearance of coinfections. Objectives To determine the prevalence of 9 infectious agents in gastrointestinal (GI)‐diseased and healthy foals with ages ranging from 1 to 20 weeks of age and to what degree coinfections are associated with clinical signs of GI disease. Study design Retrospective controlled observational study. Methods The population consisted of 88 Thoroughbred foals aged 2 days to 17 weeks born on 32 different studfarms in Kentucky. Healthy (n = 37) and GI‐diseased (n = 51) foals were identified based on clinical presentation. Faecal samples were analysed for 9 infectious agents by real‐time PCR: equine rotavirus, equine coronavirus, Clostridium difficile toxins A & B, Neorickettsia risticii, Clostridium perfringens alpha toxin, Lawsonia intracellularis, Rhodococcus equi, Cryptosporidium spp., and Salmonella spp. Salmonella was also cultured from overnight selenite enrichment broth. Results The prevalence of infectious pathogens under study was between 0% (Lawsonia intracellularis) and 34.6% (equine rotavirus). The overall prevalence for any infectious agent was 63.2% in the GI‐diseased group and 43.2% in the healthy group. Coinfections were significantly more frequent in the sick group (15 monoinfections vs. 22 coinfections) than in the healthy group (12 vs. 4, respectively, P = 0.0002). Six of the 8 infectious agents were associated with the GI‐diseased group, the other 2 were not (equine coronavirus and R. equi). Conclusions The use of panels rather than individual tests in combination with quantitative toxin gene analysis enables detection of coinfections significantly associated with risk of disease. Several infectious diseases previously not tested for or considered unimportant were found at high prevalence and require further investigation.
Collapse
Affiliation(s)
- N M Slovis
- Hagyard Equine Medical Institute, Kentucky, USA
| | | | | | | |
Collapse
|
21
|
Papp H, Matthijnssens J, Martella V, Ciarlet M, Bányai K. Global distribution of group A rotavirus strains in horses: a systematic review. Vaccine 2013; 31:5627-33. [PMID: 23994380 DOI: 10.1016/j.vaccine.2013.08.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022]
Abstract
Group A rotavirus (RVA) is a major cause of diarrhea and diarrhea-related mortality in foals in parts of the world. In addition to careful horse farm management, vaccination is the only known alternative to reduce the RVA associated disease burden on horse farms. The precise evaluation of vaccine effectiveness against circulating strains needs enhanced surveillance of equine RVAs in areas where vaccine is already available or vaccine introduction is anticipated. Therefore, we undertook the overview of relevant information on epidemiology of equine RVA strains through systematic search of public literature databases. Our findings indicated that over 99% of equine RVA strains characterized during the past three decades belonged to two common genotypes, G3P[12] and G14P[12], whereas most of the minority equine RVA strains were probably introduced from a heterologous host by interspecies transmission. These baseline data on RVA strains in horses shall contribute to a better understanding of the spatiotemporal dynamics of strain prevalence in vaccinated and non-vaccinated herds.
Collapse
Affiliation(s)
- Hajnalka Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary.
| | | | | | | | | |
Collapse
|
22
|
Ghosh S, Taniguchi K, Aida S, Ganesh B, Kobayashi N. Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol 2013; 166:474-85. [PMID: 23938116 DOI: 10.1016/j.vetmic.2013.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 11/15/2022]
Abstract
Equine group A rotaviruses (RVA) are a major cause of severe diarrhea in foals. The whole genomes of only six common and three unusual equine RVA strains have been analyzed so far. To date, there are no reports on whole genomic analyses of equine RVAs from Asian countries. We report here the whole genomic analyses of three common (strains RVA/Horse-tc/JPN/BI/1981/G3P[12], RVA/Horse-tc/JPN/HH-22/1989/G3P[12] and RVA/Horse-tc/JPN/CH-3/1987/G14P[12]) and an unusual (RVA/Horse-tc/JPN/OH-4/1982/G6P[5]) equine RVA strains isolated from diarrheic foals in Japan. Strains BI, HH-22 and CH-3 shared a largely conserved genotype constellation (G3/G14-P[12]-I2/I6-R2-C2-M3-A10-N2-T3-E2-H7) with each other and with those of common equine RVAs from other continents. Phylogenetically, most of the genes of BI, HH-22 and CH-3 were closely related to those of other common equine RVAs. On the other hand, the NSP2 genes of BI and CH-3 formed a distinct lineage, and were distantly related to the other, major equine RVA cluster within the NSP2-N2 genotype. The NSP4 gene of HH-22 appeared to originate from possible reassortment events involving common equine RVAs and co-circulating bovine or bovine-like equine RVAs, revealing the presence of a bovine RVA-like NSP4 gene on a typical equine RVA genetic backbone. All the 11 gene segments of the unusual equine RVA strain OH-4 were found to be more closely related to those of bovine and bovine-like human RVAs than to those of other RVAs, providing the first conclusive evidence for artiodactyl(likely bovine)-to-equine interspecies transmission events. Taken together, these observations provided important insights into the genetic diversity of equine RVAs.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Bailey KE, Gilkerson JR, Browning GF. Equine rotaviruses--current understanding and continuing challenges. Vet Microbiol 2013; 167:135-44. [PMID: 23932076 PMCID: PMC7117381 DOI: 10.1016/j.vetmic.2013.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 11/20/2022]
Abstract
Equine rotaviruses were first detected in foals over 30 years ago and remain a major cause of infectious diarrhoea in foals. During this time, there has been substantial progress in the development of sensitive methods to detect rotaviruses in foals, enabling surveillance of the genotypes present in various horse populations. However, there has been limited epidemiological investigation into the significance of these circulating genotypes, their correlation with disease and the use of vaccination in these animal populations. Our knowledge of the pathogenesis of rotavirus infection in foals is based on a limited number of studies on a small number of foals and, therefore, most of our understanding in this area has been extrapolated from studies in other species. Questions such as the concentrations of rotavirus particles shed in the faeces of infected foals, both with and without diarrhoea, and factors determining the presence or absence of clinical disease remain to be investigated, as does the relative and absolute efficacy of currently available vaccines. The answer to these questions may help direct research into the development of more effective control measures.
Collapse
Affiliation(s)
- Kirsten E Bailey
- Centre for Equine Infectious Diseases, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
24
|
Antibody response in vaccinated pregnant mares to recent G3BP[12] and G14P[12] equine rotaviruses. Acta Vet Scand 2012; 54:63. [PMID: 23130609 PMCID: PMC3523035 DOI: 10.1186/1751-0147-54-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022] Open
Abstract
Background Both the G3P[12] and the G14P[12] type of equine group A rotavirus (RVA) have recently become predominant in many countries, including Japan. G3 types are classified further into G3A and G3B. The G3A viruses have been circulating in Europe, Australia, and Argentina, and the G3B viruses have been circulating in Japan. However, only an inactivated vaccine containing a single G3BP[12] strain is commercially available in Japan. To assess the efficacy of the current vaccine against recently circulating equine RVA strains, we examined antibody responses in pregnant mares to recent G3BP[12] and G14P[12] strains by virus neutralization test. Findings After vaccination in five pregnant mares, the geometric mean serum titers of virus-neutralizing antibody to recent G3BP[12] strains increased 5.3- to 7.0-fold and were similar to that against homologous vaccine strain. Moreover, antibody titers to recent G14P[12] strains were also increased 3.0- to 3.5-fold. Conclusions These results suggest that inoculation of mares with the current vaccine should provide foals with virus-neutralizing antibodies against not only the G3BP[12] but also the G14P[12] RVA strain via the colostrum.
Collapse
|
25
|
Miño S, Matthijnssens J, Badaracco A, Garaicoechea L, Zeller M, Heylen E, Van Ranst M, Barrandeguy M, Parreño V. Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Vet Microbiol 2012; 161:239-46. [PMID: 22959604 DOI: 10.1016/j.vetmic.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
Abstract
Equine group A rotavirus (RVA) strains are the most important cause of gastroenteritis in equine neonates and foals worldwide, and G3P[12] and G14P[12] are epidemiologically the most important genotypes. The genotype constellation of an unusual Argentinean G3P[3] RVA strain (RVA/Horse-wt/E3198/2008/G3P[3]) detected in fecal samples of a diarrheic foal in 2008 was shown to be G3-P[3]-I3-R3-C3-M3-A9-N3-T3-E3-H6. Each of these genotypes has been found typically in feline and canine RVA strains, and the genotype constellation is reminiscent to those of Cat97-like RVA strains. However, the phylogenetic analyses revealed only a distant relationship between E3198 and known feline, canine and feline/canine-like human RVA strains. Surprisingly, a rather close relationship was found between E3198 and simian RVA strains RVA/Simian-tc/USA/RRV/1975/G3P[3] for at least 5 gene segments. RRV is believed to be a reassortant between a bovine-like RVA strain and a RVA strains distantly related to feline/canine RVA strains. These analyses indicate that E3198 is unlikely to be of equine origin, and most likely represents a RVA interspecies transmitted virus, possibly in combination with one or more reassortments, from a feline, canine or related host species to a horse. Further studies are in progress to evaluate if this strain was a single interspecies transmission event, or if this strain started to circulate in the equine population.
Collapse
Affiliation(s)
- S Miño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghosh S, Shintani T, Kobayashi N. Evidence for the porcine origin of equine rotavirus strain H-1. Vet Microbiol 2012; 158:410-4. [DOI: 10.1016/j.vetmic.2012.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/08/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
27
|
Matthijnssens J, Miño S, Papp H, Potgieter C, Novo L, Heylen E, Zeller M, Garaicoechea L, Badaracco A, Lengyel G, Kisfali P, Cullinane A, Collins PJ, Ciarlet M, O’Shea H, Parreño V, Bányai K, Barrandeguy M, Van Ranst M. Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 2012; 93:866-875. [DOI: 10.1099/vir.0.039255-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, the complete genome sequences of seven equine group A rotavirus (RVA) strains (RVA/Horse-tc/GBR/L338/1991/G13P[18], RVA/Horse-wt/IRL/03V04954/2003/G3P[12] and RVA/Horse-wt/IRL/04V2024/2004/G14P[12] from Europe; RVA/Horse-wt/ARG/E30/1993/G3P[12], RVA/Horse-wt/ARG/E403/2006/G14P[12] and RVA/Horse-wt/ARG/E4040/2008/G14P[12] from Argentina; and RVA/Horse-wt/ZAF/EqRV-SA1/2006/G14P[12] from South Africa) were determined. Multiple novel genotypes were identified and genotype numbers were assigned by the Rotavirus Classification Working Group: R9 (VP1), C9 (VP2), N9 (NSP2), T12 (NSP3), E14 (NSP4), and H7 and H11 (NSP5). The genotype constellation of L338 was unique: G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11. The six remaining equine RVA strains showed a largely conserved genotype constellation: G3/G14-P[12]-I2/I6-R2-C2-M3-A10-N2-T3-E2/E12-H7, which is highly divergent from other known non-equine RVA genotype constellations. Phylogenetic analyses revealed that the sequences of these equine RVA strains are related distantly to non-equine RVA strains, and that at least three lineages exist within equine RVA strains. A small number of reassortment events were observed. Interestingly, the three RVA strains from Argentina possessed the E12 genotype, whereas the three RVA strains from Ireland and South Africa possessed the E2 genotype. The unusual E12 genotype has until now only been described in Argentina among RVA strains collected from guanaco, cattle and horses, suggesting geographical isolation of this NSP4 genotype. This conserved genetic configuration of equine RVA strains could be useful for future vaccine development or improvement of currently used equine RVA vaccines.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Samuel Miño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Hajnalka Papp
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Luis Novo
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mark Zeller
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | - György Lengyel
- Dr György Radó Military Medical Centre, Budapest, Hungary
| | - Péter Kisfali
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Ann Cullinane
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - P. J. Collins
- Molecular Epidemiology Laboratory, Cork Institute of Technology, Cork, Ireland
| | - Max Ciarlet
- Clinical Research and Development, Novartis Vaccines and Diagnostics, Inc., Cambridge, MA 02139, USA
| | - Helen O’Shea
- Molecular Epidemiology Laboratory, Cork Institute of Technology, Cork, Ireland
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - María Barrandeguy
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Molecular characterization and analysis of equine rotavirus circulating in Japan from 2003 to 2008. Vet Microbiol 2011; 152:67-73. [PMID: 21565456 DOI: 10.1016/j.vetmic.2011.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/31/2011] [Accepted: 04/14/2011] [Indexed: 11/21/2022]
Abstract
Using a total of 2018 fecal samples collected between 2003 and 2008 from foals with diarrhea, the molecular epidemiology of group A equine rotaviruses circulating in Japan was investigated by the reverse transcription-polymerase chain reaction (RT-PCR) typing and sequence analysis of the VP4 (P type) and VP7 (G type) genes. A total of 1149 samples showed positive reactions with RT-PCR, of which 462 samples (40.2%) were positive for G3 type, 502 samples (43.7%) were positive for G14 type, and 185 samples (16.1%) were positive for both G3 and G14 types. To examine P types, 59 G3 and 56 G14 positive samples were used. The majority of the samples (96.5%) were characterized as P[12] type. In a phylogenetic analysis, the VP4 gene of the P[12] type in Japan was found to be conserved for a long time. The VP7 sequences of the G3 type were found to be clustered in the same group as the HO-5 strain, which is a G3 strain that was isolated in 1982 in Japan. In contrast, the VP7 sequences of the G14 type, which were in circulation between 2003 and 2008, were clustered differently from those of the G14 type strains isolated in Japan in the late 1990 s. These results suggest that the VP7 gene of the G3 type has been conserved over 25 years, while the VP7 gene of the G14 type circulating between 2003 and 2008 appears to have re-emerged in or invaded Japan around 2000.
Collapse
|
29
|
Saiada F, Rahman HNA, Moni S, Karim MM, Pourkarim MR, Azim T, Rahman M. Clinical presentation and molecular characterization of group B rotaviruses in diarrhoea patients in Bangladesh. J Med Microbiol 2010; 60:529-536. [PMID: 21183601 DOI: 10.1099/jmm.0.025981-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 1106 stool samples collected from diarrhoea patients admitted to Dhaka hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh, during January-December 2008 were analysed for the presence of rotavirus-specific RNA by PAGE. The group B-specific RNA migration pattern was detected in 26 patients (2.4%) and group A-specific pattern in 259 patients (23.4%). Clinical data from group A and group B rotavirus-infected patients indicated that episodes did not differ much in the prevalence of diarrhoea, number of stools, outcome or differences in gender. However, abdominal pain was more common in group B rotavirus infections (36 vs 15%, P=0.02) and the virus was responsible for more severe dehydration compared with group A-infected patients (12 vs 3%, P=0.04). Sequence analyses of VP4, VP7 and NSP2 indicated that an Indian-Bangladeshi lineage of the virus, which is different from both the prototype (Chinese) lineage and from the animal group B rotaviruses, has been circulating in Bangladesh. Continuous monitoring of group B rotaviruses both in hospitals and in the community will be helpful to determine the true burden of group B rotaviruses.
Collapse
Affiliation(s)
- Farjana Saiada
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh
| | - H N Ashiqur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh
| | - Sayra Moni
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh
| | - M Manjurul Karim
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Tasnim Azim
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
30
|
Monini M, Biasin A, Valentini S, Cattoli G, Ruggeri FM. Recurrent rotavirus diarrhoea outbreaks in a stud farm, in Italy. Vet Microbiol 2010; 149:248-53. [PMID: 21129862 DOI: 10.1016/j.vetmic.2010.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 11/25/2022]
Abstract
A total of 47 stool samples were collected at the same stud farm from young foals with rotavirus diarrhoea and from their stud mares. Illness involved foals during three consecutive winter seasons. Infection in the farm appeared firstly in January-February 2008. After vanishing in the warm seasons, cases reappeared in March 2009 and 2010. Determination of the rotavirus G- and P-types was carried out using nested RT-PCR in samples collected in 2009 and 2010. A total of 19 of 47 samples resulted positive for rotavirus. The G type was determined in 19/47 samples, whereas the P genotype was determined in 17/47 samples. All equine strains presented a G14 VP7 in combination with a P[12] VP4, suggesting persistence of the same viral strain in the stud farm, during at least two consecutive winter periods. Sequence analysis of the genes encoding the outer capsid rotavirus proteins VP7 and VP4 revealed that the virus had a close relationship between strains recently isolated in the rest of Europe.
Collapse
Affiliation(s)
- M Monini
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|
31
|
Ntafis V, Fragkiadaki E, Xylouri E, Omirou A, Lavazza A, Martella V. Rotavirus-associated diarrhoea in foals in Greece. Vet Microbiol 2010; 144:461-5. [DOI: 10.1016/j.vetmic.2010.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 11/25/2022]
|
32
|
Nemoto M, Hata H, Higuchi T, Imagawa H, Yamanaka T, Niwa H, Bannai H, Tsujimura K, Kondo T, Matsumura T. Evaluation of rapid antigen detection kits for diagnosis of equine rotavirus infection. J Vet Med Sci 2010; 72:1247-50. [PMID: 20453452 DOI: 10.1292/jvms.10-0064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated antigen detection kits for human rotavirus with regard to their usefulness for diagnosing equine rotavirus infection. Limiting dilution analyses showed that of the seven kits investigated the Dipstick `Eiken' Rota (Dipstick) had the highest sensitivity to two serotypes of equine rotavirus. The Dipstick did not cross-react with several equine intestinal pathogens. An investigation using 249 fecal samples indicated that the sensitivity of the Dipstick was 81.9% and 47.3%, and its specificity was 98.2% and 99.0%, and its concordance rate was 92.8% and 68.3%, compared with values obtained using reverse transcription polymerase chain reaction and reverse transcription loop-mediated isothermal amplification, respectively. Although a negative result does not preclude the possibility of equine rotavirus infection, the Dipstick would be useful as routine test for diagnosing equine rotavirus infection in daily clinical practice because of its ease of handling.
Collapse
Affiliation(s)
- Manabu Nemoto
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nemoto M, Imagawa H, Tsujimura K, Yamanaka T, Kondo T, Matsumura T. Detection of equine rotavirus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). J Vet Med Sci 2010; 72:823-6. [PMID: 20160420 DOI: 10.1292/jvms.09-0446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) was applied to detection of equine rotavirus. Because equine rotavirus of the single P genotype, P[12], is predominant in the equine population worldwide, an RT-LAMP primer set was designed to target the genotype P[12] sequence and thus detect equine rotavirus. The detection limit of the RT-LAMP assay was 10(3) copies of viral RNA, whereas that of semi-nested RT-PCR for genotype P[12] was 10(5) copies. The RT-LAMP assay specifically amplified genotype P[12] but did not amplify the other P genotype strains. The RT-LAMP assay did not amplify any pathogens related to equine intestinal disorder other than rotavirus. Using 96 diarrheal stools, the RT-LAMP assay detected equine rotavirus in 58 samples, whereas semi-nested RT-PCR only detected equine rotavirus in 25 samples. The RT-LAMP assay did not detect equine rotavirus with fecal samples collected from nine healthy foals. These results indicate that the RT-LAMP assay is specific for equine rotavirus and more sensitive than semi-nested RT-PCR. Because it is easy to manipulate without the need for a thermal cycler or gel electrophoresis, the RT-LAMP assay should be applicable to diagnosis of equine rotavirus infections in diagnostic laboratories.
Collapse
Affiliation(s)
- Manabu Nemoto
- Epizootic Research Center, Equine Research Institute, Japan Racing Association, Shiba, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|