1
|
Cabanilla MG, Briski MJ, Bruss Z, Saa L, Vasquez PC, Rodriguez CN, Mitchell JA, Bernauer ML, Argyropoulos CP, Crandall CS, Teixeira JP. The influence of continuous renal replacement therapy on 1,3-β-d-glucan levels in critically ill patients: a single-center retrospective propensity score study. Ren Fail 2023; 45:2255680. [PMID: 37781748 PMCID: PMC10547441 DOI: 10.1080/0886022x.2023.2255680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
1,3-β-d-Glucan (BDG) is commonly used for diagnosing invasive fungal infections (IFIs). While exposure to cellulose-based hemodialyzers is known to cause false-positive BDG results, the impact of modern hemofilters used in continuous renal replacement therapy (CRRT) remains unclear. This retrospective, single-center cohort study aimed to evaluate the effect of CRRT on BDG levels in critically ill patients. We included adult intensive care unit (ICU) patients with ≥1 BDG measurement between December 2019 and December 2020. The primary outcome was the rate of false-positive BDG results in patients exposed to CRRT compared to unexposed patients. Propensity score analysis was performed to control for confounding factors. A total of 103 ICU patients with ≥1 BDG level were identified. Most (72.8%) were medical ICU patients. Forty patients underwent CRRT using hemofilter membranes composed of sodium methallyl sulfonate copolymer (AN 69 HF) (82.5%) and of polyarylethersulfone (PAES) (17.5%). Among the 91 patients without proven IFI, 31 (34.1%) had false-positive BDG results. Univariable analysis showed an association between CRRT exposure and false-positive BDG results. However, the association between CRRT exposure and false-positive BDG results was no longer significant across three propensity score models employed: 1:1 match (n = 32) (odds ratio (OR) 1.65, p = .48), model-adjusted (n = 91) (OR 1.75, p = .38), quintile-adjusted (n = 91) (OR 1.78, p = .36). In this single-center retrospective analysis, exposure to synthetic CRRT membranes did not independently increase the risk of false-positive BDG results. Larger prospective studies are needed to further evaluate the association between CRRT exposure and false-positive BDG results in critically ill patients with suspected IFI.
Collapse
Affiliation(s)
- M. Gabriela Cabanilla
- Department of Internal Medicine and Department of Pharmacy, Division of Infectious Diseases, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J. Briski
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Zachary Bruss
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lisa Saa
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Pamela C. Vasquez
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chelsea N. Rodriguez
- Department of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessica A. Mitchell
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Christos P. Argyropoulos
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cameron S. Crandall
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - J. Pedro Teixeira
- Department of Internal Medicine, Division of Nephrology, Division of Pulmonary, Critical Care and Sleep Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
2
|
Yoo IY, Park YJ. Culture-independent diagnostic approaches for invasive aspergillosis in solid organ transplant recipients. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:155-164. [PMID: 37751964 PMCID: PMC10583980 DOI: 10.4285/kjt.23.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Prompt and accurate diagnosis of invasive aspergillosis (IA) is crucial for immunocompromised patients, including those who have received a solid organ transplant (SOT). Despite their low sensitivity, microscopic detection and conventional culture are considered the 'gold standard' methods. In conjunction with conventional culture, culture-independent assays such as serum galactomannan testing and Aspergillus polymerase chain reaction (PCR) have been incorporated into the diagnostic process for IA. The recently revised consensus definitions from the European Organization for Research and Treatment of Cancer and the Mycosis Study Group have adjusted the threshold for positive galactomannan testing based on the sample type, and have excluded 1,3-β-D-glucan testing as a mycological criterion. Following extensive standardization efforts, positive Aspergillus PCR tests using serum, plasma, or bronchoalveolar lavage fluid have been added. However, there are limited studies evaluating the clinical utility of these culture-independent assays for the early diagnosis of IA in SOT recipients. Therefore, further research is required to determine whether these assays could aid in the early diagnosis of IA in SOT recipients, particularly in relation to the organ transplanted. In this review, we examine the culture-independent diagnostic methods for IA in SOT recipients, as well as the clinical utility of these assays.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Lamoth F, Nucci M, Fernandez-Cruz A, Azoulay E, Lanternier F, Bremerich J, Einsele H, Johnson E, Lehrnbecher T, Mercier T, Porto L, Verweij PE, White L, Maertens J, Alanio A. Performance of the beta-glucan test for the diagnosis of invasive fusariosis and scedosporiosis: a meta-analysis. Med Mycol 2023; 61:myad061. [PMID: 37381179 PMCID: PMC10405209 DOI: 10.1093/mmy/myad061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
The (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in serum and used as an adjunctive tool for the diagnosis of invasive mold infections (IMI) in patients with hematologic cancer or other immunosuppressive conditions. However, its use is limited by modest sensitivity/specificity, inability to differentiate between fungal pathogens, and lack of detection of mucormycosis. Data about BDG performance for other relevant IMI, such as invasive fusariosis (IF) and invasive scedosporiosis/lomentosporiosis (IS) are scarce. The objective of this study was to assess the sensitivity of BDG for the diagnosis of IF and IS through systematic literature review and meta-analysis. Immunosuppressed patients diagnosed with proven or probable IF and IS, with interpretable BDG data were eligible. A total of 73 IF and 27 IS cases were included. The sensitivity of BDG for IF and IS diagnosis was 76.7% and 81.5%, respectively. In comparison, the sensitivity of serum galactomannan for IF was 27%. Importantly, BDG positivity preceded the diagnosis by conventional methods (culture or histopathology) in 73% and 94% of IF and IS cases, respectively. Specificity was not assessed because of lacking data. In conclusion, BDG testing may be useful in patients with suspected IF or IS. Combining BDG and galactomannan testing may also help differentiating between the different types of IMI.
Collapse
Affiliation(s)
- Frederic Lamoth
- To whom correspondence should be addressed. Frederic Lamoth, Infectious Diseases Service and Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland. Tel: +41 21 314 11 11; E-mail:
| | - Marcio Nucci
- University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo Oncoclinicas, Brazil
| | - Ana Fernandez-Cruz
- Infectious Disease Unit, Internal Medicine Department, Puerta de Hierro-Majadahonda University Hospital, Fundación de Investigación Puerta de Hierro-Segovia de Arana, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elie Azoulay
- Médecine Intensive et Réanimation, APHP, Hôpital Saint-Louis, Paris Cité University, Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Université Paris Cité, Paris, France
- Infectious Diseases Unit, Hopital Necker Enfants malades, APHP, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Paris, France
| | - Jens Bremerich
- Cardiothoracic Imaging Section, Department of Radiology, Basel University Hospital, 4031 Basel, Switzerland
| | - Hermann Einsele
- University Hospital Würzburg, Internal Medicine II, Würzburg, Germany
| | - Elizabeth Johnson
- UK Health Security Agency (UKHSA) Mycology Reference Laboratory, Southmead Hospital, Bristol, UK and MRC Centre for Medical Mycology, Exeter University, Exeter, UK
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Toine Mercier
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Luciana Porto
- Division of Neuroradiology, Pediatric Neuroradiology Department, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Center, Nijmegen, The Netherlands
| | - Lewis White
- Public Health Wales Mycology Reference Laboratory and Cardiff University Centre for Trials Research/Division of Infection and Immunity, UHW, Cardiff, UK
| | - Johan Maertens
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Alexandre Alanio
- To whom correspondence should be addressed. Alexandre Alanio, Laboratoire de parasitologie mycologie, Hôpital Saint Louis, Université Paris Cité Centre National de Référence Mycoses invasives et Antifongiques, Institut Pasteur, Paris France. Tel: +33142499501; E-mail:
| | | |
Collapse
|
4
|
Hua Y, Hu F, Ren X, Xiong Y, Hu J, Su F, Tang X, Wen Y. A novel aptamer-G-quadruplex/hemin self-assembling color system: rapid visual diagnosis of invasive fungal infections. Ann Clin Microbiol Antimicrob 2023; 22:35. [PMID: 37170137 PMCID: PMC10176924 DOI: 10.1186/s12941-023-00570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The clinical symptoms of invasive fungal infections (IFI) are nonspecific, and early clinical diagnosis is challenging, resulting in high mortality rates. This study reports the development of a novel aptamer-G-quadruplex/hemin self-assembling color system (AGSCS) based on (1 → 3)-β-D-glucans' detection for rapid, specific and visual diagnosis of IFI. METHODS We screened high affinity and specificity ssDNA aptamers binding to (1 → 3)-β-D-glucans, the main components of cell wall from Candida albicans via Systematic Evolution of Ligands by EXponential enrichment. Next, a comparison of diagnostic efficiency of AGSCS and the (1 → 3)-β-D-glucans assay ("G test") with regard to predicting IFI in 198 clinical serum samples was done. RESULTS Water-soluble (1 → 3)-β-D-glucans were successfully isolated from C. albicans ATCC 10,231 strain, and these low degree of polymerization glucans (< 1.7 kD) were targeted for aptamer screening with the complementary sequences of G-quadruplex. Six high affinity single stranded DNA aptamers (A1, A2, A3, A4, A5 and A6) were found. The linear detection range for (1 → 3)-β-D-glucans stretched from 1.6 pg/mL to 400 pg/mL on a microplate reader, and the detection limit was 3.125 pg/mL using naked eye observation. Using a microplate reader, the sensitivity and specificity of AGSCS for the diagnosis of IFI were 92.68% and 89.65%, respectively, which was higher than that of the G test. CONCLUSION This newly developed visual diagnostic method for detecting IFI showed promising results and is expected to be developed as a point-of-care testing kit to enable quick and cost effective diagnosis of IFI in the future.
Collapse
Affiliation(s)
- Ying Hua
- School of Nursing, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Feng Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, Anhui, China
| | - Xia Ren
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Yueling Xiong
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China
| | - Jian Hu
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Fan Su
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Xiaolei Tang
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China.
| | - Yufeng Wen
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
5
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
6
|
Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment. Eur Respir Rev 2022; 31:31/166/220114. [DOI: 10.1183/16000617.0114-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 12/05/2022] Open
Abstract
Aspergillusspecies are the most frequent cause of fungal infections of the lungs with a broad spectrum of clinical presentations including invasive pulmonary aspergillosis (IPA) and chronic pulmonary aspergillosis (CPA). IPA affects immunocompromised populations, which are increasing in number and diversity with the advent of novel anti-cancer therapies. Moreover, IPA has emerged as a complication of severe influenza and coronavirus disease 2019 in apparently immunocompetent hosts. CPA mainly affects patients with pre-existing lung lesions and is recognised increasingly frequently among patients with long-term survival following cure of tuberculosis or lung cancer. The diagnosis of pulmonary aspergillosis is complex as it relies on the presence of clinical, radiological and microbiological criteria, which differ according to the type of pulmonary aspergillosis (IPA or CPA) and the type of patient population. The management of pulmonary aspergillosis is complicated by the limited number of treatment options, drug interactions, adverse events and the emergence of antifungal resistance.
Collapse
|
7
|
Fungal Tracheobronchitis in Lung Transplant Recipients: Incidence and Utility of Diagnostic Markers. J Fungi (Basel) 2022; 9:jof9010003. [PMID: 36675824 PMCID: PMC9861951 DOI: 10.3390/jof9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal tracheobronchitis caused by Aspergillus and Candida spp. is a recognized complication after lung transplantation, but knowledge of the incidence of Candida tracheobronchitis is lacking. The diagnosis relies on fungal cultures in bronchoalveolar lavage fluid (BALF), but cultures have low specificity. We aimed to evaluate the one-year incidence of fungal tracheobronchitis after lung transplantation and to assess the utility of diagnostic markers in serum and BALF to discriminate fungal tracheobronchitis from colonization. Ninety-seven consecutively included adult lung-transplant recipients were prospectively followed. BALF and serum samples were collected at 1, 3 and 12 months after transplantation and analyzed for betaglucan (serum and BALF), neutrophils (BALF) and galactomannan (BALF). Fungal tracheobronchitis was defined according to consensus criteria, modified to include Candida as a mycologic criterion. The cumulative one-year incidence of Candida and Aspergillus tracheobronchitis was 23% and 16%, respectively. Neutrophils of >75% of total leukocytes in BALF had 92% specificity for Candida tracheobronchitis. The area under the ROC curves for betaglucan and galactomannan in BALF to discriminate Aspergillus tracheobronchitis from colonization or no fungal infection were high (0.86 (p < 0.0001) and 0.93 (p < 0.0001), respectively). To conclude, the one-year incidence of fungal tracheobronchitis after lung transplantation was high and dominated by Candida spp. Diagnostic markers in BALF could be useful to discriminate fungal colonization from tracheobronchitis.
Collapse
|
8
|
The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Sandhar TK, Chhina DK, Gupta V, Chaudhary J. Role of (1-3)-Β-D-Glucan Test in the Diagnosis of Invasive Fungal Infections among High-Risk Patients in a Tertiary Care Hospital. J Lab Physicians 2022; 14:306-311. [PMID: 36119434 PMCID: PMC9473937 DOI: 10.1055/s-0042-1742632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background
Invasive fungal infections (IFI) are associated with high mortality. Serum fungal biomarkers offer an advantage over the traditional methods in early diagnosis and better clinical outcomes. The aim of the study was to evaluate the role of (1–3)-β-D-glucan (BDG) assay in the patients suspected of IFI.
Materials and Methods
This prospective study was conducted in the Department of Microbiology, Dayanand Medical College and Hospital, Ludhiana, over a period of 1 year. A total of 862 serum samples were received from patients suspected of IFI, for the BDG test (Fungitell, Associates of Cape Cod Inc., USA). The test was performed as per kit protocol. Appropriate samples were processed for KOH fungal smear and fungal culture. Blood culture was done by Bactec (Biomerieux).
Statistical Analysis
Results were analyzed using descriptive statistical methods. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated at different cutoffs. In addition, the receiver operating characteristic (ROC) curve using SPSS 21.00 software was calculated and the diagnostic accuracy was shown by the area under the ROC curve (AUC).
Results
Among 862 patients, 546 (63.3%) were males. The predominant age group (25.6%) was between 61 and 70 years. The most common risk factor (54.8%) was prolonged intensive care unit stay. Out of the total samples, 455 (52.8%) samples were found positive for BDG. Fungal elements were seen in 48 (10.5%) KOH smears and fungal growth was obtained in 81 (17.8%) cultures. Comparison of BDG assay and culture at different cutoffs yielded AUC—0.823. Sensitivity (100%), specificity (51.3%), accuracy (55.6%), PPV (15.8%), and NPV (100%) were observed at the kit cutoff of 80 pg/mL. Optimum sensitivity and specificity of 79.2% and 70.3%, respectively, were observed at a cutoff of 142.4pg/mL. A significant correlation was observed between BDG positivity and piperacillin–tazobactam use and dialysis. Among BDG positive patients, 38(8.4%) succumbed to death.
Conclusion
Detection of BDG helps in the early diagnosis of IFI in critically ill patients. As the assay has a high NPV, a negative test can be used to stop the empirical antifungal drugs. The use of a higher cutoff can be useful to avoid false-positive results.
Collapse
Affiliation(s)
- Tanureet Kaur Sandhar
- Department of Microbiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Deepinder Kaur Chhina
- Department of Microbiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Veenu Gupta
- Department of Microbiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Microbiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
10
|
Fisher BT, Boge CLK, Xiao R, Shuster S, Chin-Quee D, Allen J, Shaheen S, Hayden R, Suganda S, Zaoutis TE, Chang YC, Yin DE, Huppler AR, Danziger-Isakov L, Muller WJ, Roilides E, Romero J, Sue PK, Berman D, Wattier RL, Halasa N, Pong A, Maron G, Soler-Palacin P, Hutto SC, Gonzalez BE, Salvatore CM, Rajan S, Green M, Doby Knackstedt E, Hauger SB, Steinbach WJ. Multicenter Prospective Study of Biomarkers for Diagnosis of Invasive Candidiasis in Children and Adolescents. Clin Infect Dis 2022; 75:248-259. [PMID: 35134165 PMCID: PMC9890499 DOI: 10.1093/cid/ciab928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diagnosis of invasive candidiasis (IC) relies on insensitive cultures; the relative utility of fungal biomarkers in children is unclear. METHODS This multinational observational cohort study enrolled patients aged >120 days and <18 years with concern for IC from 1 January 2015 to 26 September 2019 at 25 centers. Blood collected at onset of symptoms was tested using T2Candida, Fungitell (1→3)-β-D-glucan, Platelia Candida Antigen (Ag) Plus, and Platelia Candida Antibody (Ab) Plus assays. Operating characteristics were determined for each biomarker, and assays meeting a defined threshold considered in combination. Sterile site cultures were the reference standard. RESULTS Five hundred participants were enrolled at 22 centers in 3 countries, and IC was diagnosed in 13 (2.6%). Thirteen additional blood specimens were collected and successfully spiked with Candida species, to achieve a 5.0% event rate. Valid T2Candida, Fungitell, Platelia Candida Ag Plus, and Platelia Candida Ab Plus assay results were available for 438, 467, 473, and 473 specimens, respectively. Operating characteristics for T2Candida were most optimal for detecting IC due to any Candida species, with results as follows: sensitivity, 80.0% (95% confidence interval, 59.3%-93.2%), specificity 97.1% (95.0%-98.5%), positive predictive value, 62.5% (43.7%-78.9%), and negative predictive value, 98.8% (97.2%-99.6%). Only T2Candida and Platelia Candida Ag Plus assays met the threshold for combination testing. Positive result for either yielded the following results: sensitivity, 86.4% (95% confidence interval, 65.1%- 97.1%); specificity, 94.7% (92.0%-96.7%); positive predictive value, 47.5% (31.5%-63.9%); and negative predictive value, 99.2% (97.7%-99.8%). CONCLUSIONS T2Candida alone or in combination with Platelia Candida Ag Plus may be beneficial for rapid detection of Candida species in children with concern for IC. CLINICAL TRIALS REGISTRATION NCT02220790.
Collapse
Affiliation(s)
- Brian T Fisher
- Correspondence: B. T. Fisher, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Roberts Pediatric Research Center, 2716 South St, Room 10-362, Philadelphia, PA 19146 ()
| | - Craig L K Boge
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Shuster
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - John Allen
- Duke University, Durham, North Carolina, USA
| | | | - Randall Hayden
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sri Suganda
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Theoklis E Zaoutis
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Dwight E Yin
- Children’s Mercy and University of Missouri–Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Anna R Huppler
- Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, Wisconsin, USA
| | | | - William J Muller
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, School of Medicine, Aristotle University and Hippokration Hospital, Thessaloniki, Greece
| | - José Romero
- Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, USA
| | - Paul K Sue
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David Berman
- John Hopkins All Children’s Hospital, St Petersburg, Florida, USA
| | - Rachel L Wattier
- University of California–San Francisco, San Francisco, California, USA
| | - Natasha Halasa
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alice Pong
- University of California San Diego, San Diego, California, USA
| | - Gabriela Maron
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Susan C Hutto
- University of Alabama, Birmingham, Birmingham, Alabama, USA
| | | | | | - Sujatha Rajan
- Cohen Children’s Medical Center of New York, New Hyde Park, New York, USA
| | - Michael Green
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
11
|
Samanta P, Clancy CJ, Nguyen MH. Fungal infections in lung transplantation. J Thorac Dis 2022; 13:6695-6707. [PMID: 34992845 PMCID: PMC8662481 DOI: 10.21037/jtd-2021-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Lung transplant is a potential life-saving procedure for chronic lung diseases. Lung transplant recipients (LTRs) are at the greatest risk for invasive fungal infections (IFIs) among solid organ transplant (SOT) recipients because the allograft is directly exposed to fungi in the environment, airway and lung host defenses are impaired, and immunosuppressive regimens are particularly intense. IFIs occur within a year of transplant in 3-19% of LTRs, and they are associated with high mortality, prolonged hospital stays, and excess healthcare costs. The most common causes of post-LT IFIs are Aspergillus and Candida spp.; less common pathogens are Mucorales, other non-Aspergillus moulds, Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The majority of IFIs occur in the first year following transplant, although later onset is observed with prolonged antifungal prophylaxis. The most common manifestations of invasive mould infections (IMIs) include tracheobronchial (particularly at anastomotic sites), pulmonary and disseminated infections. The mortality rate of tracheobronchitis is typically low, but local complications such as bronchomalacia, stenosis and dehiscence may occur. Mortality rates associated with lung and disseminated infections can exceed 40% and 80%, respectively. IMI risk factors include mould colonization, single lung transplant and augmented immunosuppression. Candidiasis is less common than mould infections, and manifests as bloodstream or other non-pulmonary invasive candidiasis; tracheobronchial infections are encountered uncommonly. Risk factors for and outcomes of candidiasis are similar to those of non lung transplant recipients. There is evidence that IFIs and fungal colonization are risk factors for allograft failure due to chronic rejection. Mould-active azoles are frontline agents for treatment of IMIs, with local debridement as needed for tracheobronchial disease. Echinocandins and azoles are treatments for invasive candidiasis, in keeping with guidelines in other patient populations. Antifungal prophylaxis is commonly administered, but benefits and optimal regimens are not defined. Universal mould-active azole prophylaxis is used most often. Other approaches include targeted prophylaxis of high-risk LTRs or pre-emptive therapy based on culture or galactomannan (GM) (or other biomarker) results. Prophylaxis trials are needed, but difficult to perform due to heterogeneity in local epidemiology of IFIs and standard LT practices. The key to devising rational strategies for preventing IFIs is to understand local epidemiology in context of institutional clinical practices.
Collapse
Affiliation(s)
- Palash Samanta
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Hong Nguyen
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Tschopp J, Brunel AS, Spertini O, Croxatto A, Lamoth F, Bochud PY. High false-positive rate of (1,3)-β-D-glucan in onco-hematological patients receiving immunoglobulins and therapeutic antibodies. Clin Infect Dis 2022; 75:330-333. [PMID: 34996098 DOI: 10.1093/cid/ciab1028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
Immunoglobulins and/or therapeutic antibody preparations are associated with a high rate of false-positive (1,3)-β-D-glucan (BDG) tests in onco-hematological patients routinely screened for fungal infections. The benefit of BDG monitoring shall be balanced against the risk of false-positive tests leading to unnecessary investigations and costs in this population.
Collapse
Affiliation(s)
- Jonathan Tschopp
- Infectious Diseases Service, University Hospital and University of Lausanne, Switzerland
| | - Anne-Sophie Brunel
- Infectious Diseases Service, University Hospital and University of Lausanne, Switzerland
| | - Olivier Spertini
- Hematology Service, University Hospital and University of Lausanne, Switzerland
| | | | - Frederic Lamoth
- Infectious Diseases Service, University Hospital and University of Lausanne, Switzerland.,Institute of Microbiology, University Hospital and University of Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Switzerland
| |
Collapse
|
13
|
Challenges with Utilizing the 1,3-Beta-d-Glucan and Galactomannan Assays To Diagnose Invasive Mold Infections in Immunocompromised Children. J Clin Microbiol 2021; 59:e0327620. [PMID: 33883182 DOI: 10.1128/jcm.03276-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Establishing the diagnosis of invasive mold infections (IMI) in immunocompromised children is challenging due to nonspecific clinical presentations and the limited sensitivity of traditional culture-based methods. Rapid non-culture-based diagnostics such as the 1,3-beta-d-glucan and galactomannan assays have emerged as promising adjuncts to conventional diagnostic tests in adults. Available data suggest that 1,3-beta-d-glucan has limited accuracy in the pediatric population and is not recommended to be used for the diagnosis of IMI in children. On the other hand, the diagnostic performance of the serum and bronchoalveolar lavage galactomannan in immunocompromised children is comparable to results observed in adults and can be used as a screening tool in children at high risk of developing invasive aspergillosis (IA) who are not receiving mold-active antifungal prophylaxis and as a diagnostic tool in symptomatic children suspected of having IA. Herein, we summarize the available evidence for the use of these rapid non-culture-based diagnostics in immunocompromised children. We also summarize potential causes of false positivity for the 1,3-beta-d-glucan and galactomannan assays.
Collapse
|
14
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
15
|
Candida Contamination in Kidney and Liver Organ Preservation Solution: Does It Matter? J Clin Med 2021; 10:jcm10092022. [PMID: 34065096 PMCID: PMC8125956 DOI: 10.3390/jcm10092022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Fungal infections remain a major challenge affecting outcomes after kidney (KT) and liver transplantation (LT). METHODS In this retrospective single center study, the incidence of Candida contamination in renal and hepatic graft preservation solution (PS) was evaluated. In addition, Candida associated infections in recipients and related complications were analyzed. RESULTS Overall, the PS of 1248 hepatic and 1273 renal grafts were evaluated. The incidence of fungal contamination in the PS of hepatic and renal grafts was 1.2% and 0.86%, respectively. Additionally, the hepatic PS of one patient who underwent a combined liver-kidney transplant had Candida contamination. Candida albicans was the most common organism (70.4%) and 65.4% of the patients received antifungal treatment. Candida-associated complications in the recipients was 19%. Complications in LT patients included Candida peritonitis and Candida sepsis. Two KT recipients with contaminated PS developed a mycotic aneurysm at the anastomotic site resulting in severe bleeding. The 1-year mortality in patients with PS contamination for LT and KT recipients was 33% and 18%, respectively. Although the incidence of fungal contamination of PS was low, contaminated PS was associated with a high mortality. CONCLUSION The results of the study suggest that PS should be evaluated for fungal growth.
Collapse
|
16
|
Song J, Kim S, Park J, Park Y, Kim HS. Comparison of two β-D-glucan assays for detecting invasive fungal diseases in immunocompromised patients. Diagn Microbiol Infect Dis 2021; 101:115415. [PMID: 34082306 DOI: 10.1016/j.diagmicrobio.2021.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 11/26/2022]
Abstract
(1-3)-β-D-glucan (BDG) is a major biomarker of invasive fungal diseases (IFDs), which are life-threatening for immunodeficient patients. We compared the clinical performance of two BDG-detection assays. The precision, linearity, reference interval, and limit of quantitation of the Wako BDG assay were analyzed and the performance was compared with that of the Goldstream BDG assay using 272 clinical serum samples. The repeatability, within-laboratory imprecision, and limit of quantitation of the Wako BDG assay were 3.8%, 5.9%, and 7.35 pg/mL, respectively (linearity, 23.8-557 pg/mL; R2 = 0.998). The correlation coefficient, slope, and y-intercept for the Wako BDG assay versus Goldstream BDG assay were 0.29, 3.82, and 0.04, respectively. The sensitivity and specificity were 43.8% and 94.9% for the Wako BDG assay and 39.6% and 83.5% for the Goldstream BDG assay, respectively. In clinical settings, the Wako BDG assay is suitable for diagnosing patients with IFDs.
Collapse
Affiliation(s)
- Junhyup Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Jungyong Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - Younhee Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea.
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
17
|
Lamoth F, Akan H, Andes D, Cruciani M, Marchetti O, Ostrosky-Zeichner L, Racil Z, Clancy CJ. Assessment of the Role of 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Fungal Infections in Adults. Clin Infect Dis 2021; 72:S102-S108. [PMID: 33709130 DOI: 10.1093/cid/ciaa1943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detection of 1,3-β-d-glucan (BDG) in serum has been evaluated for its inclusion as a mycological criterion of invasive fungal infections (IFI) according to EORTC and Mycoses Study Group (MSG) definitions. BDG testing may be useful for the diagnosis of both invasive aspergillosis and invasive candidiasis, when interpreted in conjunction with other clinical/radiological signs and microbiological markers of IFI. However, its performance and utility vary according to patient population (hematologic cancer patients, solid-organ transplant recipients, intensive care unit patients) and pretest likelihood of IFI. The objectives of this article are to provide a systematic review of the performance of BDG testing and to assess recommendations for its use and interpretation in different clinical settings.
Collapse
Affiliation(s)
- F Lamoth
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - H Akan
- Ankara University, Faculty of Medicine, Cebeci Campus, Hematology Clinical Research Unit, Ankara, Turkey
| | - D Andes
- Department of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - M Cruciani
- Infectious Diseases Unit, G. Fracastoro Hospital, San Bonifacio, Verona, Italy
| | - O Marchetti
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Ensemble Hospitalier de La Côte, Morges, Switzerland
| | - L Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, Houston, Texas, USA
| | - Z Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - C J Clancy
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Neofytos D, Garcia-Vidal C, Lamoth F, Lichtenstern C, Perrella A, Vehreschild JJ. Invasive aspergillosis in solid organ transplant patients: diagnosis, prophylaxis, treatment, and assessment of response. BMC Infect Dis 2021; 21:296. [PMID: 33761875 PMCID: PMC7989085 DOI: 10.1186/s12879-021-05958-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a rare complication in solid organ transplant (SOT) recipients. Although IA has significant implications on graft and patient survival, data on diagnosis and management of this infection in SOT recipients are still limited. METHODS Discussion of current practices and limitations in the diagnosis, prophylaxis, and treatment of IA and proposal of means of assessing treatment response in SOT recipients. RESULTS Liver, lung, heart or kidney transplant recipients have common as well as different risk factors to the development of IA, thus each category needs a separate evaluation. Diagnosis of IA in SOT recipients requires a high degree of awareness, because established diagnostic tools may not provide the same sensitivity and specificity observed in the neutropenic population. IA treatment relies primarily on mold-active triazoles, but potential interactions with immunosuppressants and other concomitant therapies need special attention. CONCLUSIONS Criteria to assess response have not been sufficiently evaluated in the SOT population and CT lesion dynamics, and serologic markers may be influenced by the underlying disease and type and severity of immunosuppression. There is a need for well-orchestrated efforts to study IA diagnosis and management in SOT recipients and to develop comprehensive guidelines for this population.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland.
| | - Carolina Garcia-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, FungiCLINIC Research group (AGAUR), Barcelona, Spain
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
- Department of Laboratories, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christoph Lichtenstern
- Department of Anaesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Alessandro Perrella
- VII Department of Infectious Disease and Immunology, Hospital D. Cotugno, Naples, Italy
- CLSE-Liver Transplant Unit, Hospital A. Cardarelli, Naples, Italy
| | - Jörg Janne Vehreschild
- Medical Department II, Hematology and Oncology, University Hospital of Frankfurt, Frankfurt, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Dupuis C, Le Bihan C, Maubon D, Calvet L, Ruckly S, Schwebel C, Bouadma L, Azoulay E, Cornet M, Timsit JF. Performance of Repeated Measures of (1-3)-β-D-Glucan, Mannan Antigen, and Antimannan Antibodies for the Diagnosis of Invasive Candidiasis in ICU Patients: A Preplanned Ancillary Analysis of the EMPIRICUS Randomized Clinical Trial. Open Forum Infect Dis 2021; 8:ofab080. [PMID: 33816643 PMCID: PMC8002176 DOI: 10.1093/ofid/ofab080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to assess the prognostic value of repeated measurements of serum (1–3)-β-D-glucan (BDG), mannan-antigen (mannan-Ag), and antimannan antibodies (antimannan-Ab) for the occurrence of invasive candidiasis (IC) in a high-risk nonimmunocompromised population. Methods This was a preplanned ancillary analysis of the EMPIRICUS Randomized Clinical Trial, including nonimmunocompromised critically ill patients with intensive care unit–acquired sepsis, multiple Candida colonization, and multiple organ failure who were exposed to broad-spectrum antibacterial agents. BDG (>80 and >250 pg/mL), mannan-Ag (>125 pg/mL), and antimannan-Ab (>10 AU) were collected repeatedly. We used cause-specific hazard models. Biomarkers were assessed at baseline in the whole cohort (cohort 1). Baseline covariates and/or repeated measurements and/or increased biomarkers were then studied in the subgroup of patients who were still alive at day 3 and free of IC (cohort 2). Results Two hundred thirty-four patients were included, and 215 were still alive and free of IC at day 3. IC developed in 27 patients (11.5%), and day 28 mortality was 29.1%. Finally, BDG >80 pg/mL at inclusion was associated with an increased risk of IC (CSHR[IC], 4.67; 95% CI, 1.61–13.5) but not death (CSHR[death], 1.20; 95% CI, 0.71–2.02). Conclusions Among high-risk patients, a first measurement of BDG >80 pg/mL was strongly associated with the occurrence of IC. Neither a cutoff of 250 pg/mL nor repeated measurements of fungal biomarkers seemed to be useful to predict the occurrence of IC. The cumulative risk of IC in the placebo group if BDG >80 pg/mL was 25.39%, which calls into question the efficacy of empirical therapy in this subgroup.
Collapse
Affiliation(s)
- Claire Dupuis
- Medical ICU, Gabriel Montpied University Hospital, Clermont-Ferrand, France.,UMR1137-IAME Inserm, Paris Diderot University, Paris, France
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University and Montpellier University Health Care Center, Montpellier, France
| | - Daniele Maubon
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Laure Calvet
- Medical ICU, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | | | - Carole Schwebel
- Medical ICU, Albert Michallon University Hospital, Grenoble, France
| | - Lila Bouadma
- UMR1137-IAME Inserm, Paris Diderot University, Paris, France.,Medical and Infectious Diseases ICU, Bichat-Claude Bernard University Hospital, Paris, France
| | - Elie Azoulay
- Saint-Louis University Hospital, Medical ICU, Paris, France
| | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jean-Francois Timsit
- UMR1137-IAME Inserm, Paris Diderot University, Paris, France.,Medical and Infectious Diseases ICU, Bichat-Claude Bernard University Hospital, Paris, France
| | | |
Collapse
|
20
|
Lee N, Kym D. Clinical Usefulness of Serum (1,3)-β-D-glucan to predict invasive candidiasis in patients with severe burn trauma. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:138-146. [PMID: 33676863 DOI: 10.1016/j.jmii.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/09/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND (1,3)-β-D-glucan (BD) assays were developed as a method to rapidly diagnose invasive candidiasis (IC). The incidence of fungal infections and the demands for BD assay are gradually increasing in patients with severe trauma and under intensive care. However, the ideal BD cut-off value to predict IC has not been clarified. In this study, we evaluate the predictability of the BD assay and investigate the optimal cut-off value in patients with severe burn injuries. METHODS From July to December 2018, 134 samples from 86 patients with severe burns were analyzed. Serum BD levels were measured utilizing a Fungitell (Cape Cod Inc.) assay. A receiver operator characteristic (ROC) curve was generated, and the cumulative progression of IC was studied using a Cox proportional hazards model. Partial dependence plots (PDP) was applied to predict the risk of IC. RESULTS Eleven patients were diagnosed with IC. BD over 120 pg/mL (HR = 5.11; P = 0.001) was found to be independent predictor of the occurrence of IC, when the multivariable Cox model was adjusted for age, total body surface area, and inhalation injury. The area under the ROC curve was 0.658 (95% CI, 0.513-0.803), at an optimal cut-off value of 124.7 pg/mL. PDP analysis showed the higher predicted IC occurrence at a BD level of ∼120-150 pg/mL and TBSA over 60%. CONCLUSION Our findings suggest that BD is an independent predictor for IC, and that a BD level between 120 and 150 pg/mL could be utilized for IC prediction.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Dohern Kym
- Department of Burn Surgery and Critical Care, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea.
| |
Collapse
|
21
|
Strategies for the Prevention of Invasive Fungal Infections after Lung Transplant. J Fungi (Basel) 2021; 7:jof7020122. [PMID: 33562370 PMCID: PMC7914704 DOI: 10.3390/jof7020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Long-term survival after lung transplantation is lower than that associated with other transplanted organs. Infectious complications, most importantly invasive fungal infections, have detrimental effects and are a major cause of morbidity and mortality in this population. Candida infections predominate in the early post-transplant period, whereas invasive mold infections, usually those related to Aspergillus, are most common later on. This review summarizes the epidemiology and risk factors for invasive fungal diseases in lung transplant recipients, as well as the current evidence on preventive measures. These measures include universal prophylaxis, targeted prophylaxis, and preemptive treatment. Although there is consensus that a preventive strategy should be implemented, current data show no superiority of one preventive measure over another. Data are also lacking regarding the optimal antifungal regimen and the duration of treatment. As all current recommendations are based on observational, single-center, single-arm studies, it is necessary that this longstanding debate is settled with a multicenter randomized controlled trial.
Collapse
|
22
|
Garnham K, Halliday CL, Joshi Rai N, Jayawadena M, Hasan T, Kok J, Nayyar V, Gottlieb DJ, Gilroy NM, Chen SCA. Introducing 1,3-Beta-D-glucan for screening and diagnosis of invasive fungal diseases in Australian high risk haematology patients: is there a clinical benefit? Intern Med J 2020; 52:426-435. [PMID: 32896984 DOI: 10.1111/imj.15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine Garnham
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales, Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales, Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Neela Joshi Rai
- Clinical Trials Unit, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia
| | - Menuk Jayawadena
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales, Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia
| | - Tasnim Hasan
- Clinical Trials Unit, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia.,Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales, Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.,Clinical Trials Unit, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia.,Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Vineet Nayyar
- Department of Intensive Care Medicine, Westmead Hospital, Sydney, Australia
| | - David J Gottlieb
- Department of Haematology Medicine, Westmead Hospital, Sydney, Australia
| | - Nicole M Gilroy
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.,Clinical Trials Unit, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia.,Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales, Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.,Clinical Trials Unit, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, Australia.,Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| |
Collapse
|
23
|
White SK, Schmidt RL, Walker BS, Hanson KE. (1→3)-β-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev 2020; 7:CD009833. [PMID: 32693433 PMCID: PMC7387835 DOI: 10.1002/14651858.cd009833.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Invasive fungal infections (IFIs) are life-threatening opportunistic infections that occur in immunocompromised or critically ill people. Early detection and treatment of IFIs is essential to reduce morbidity and mortality in these populations. (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in the serum of infected individuals. The serum BDG test is a way to quickly detect these infections and initiate treatment before they become life-threatening. Five different versions of the BDG test are commercially available: Fungitell, Glucatell, Wako, Fungitec-G, and Dynamiker Fungus. OBJECTIVES To compare the diagnostic accuracy of commercially available tests for serum BDG to detect selected invasive fungal infections (IFIs) among immunocompromised or critically ill people. SEARCH METHODS We searched MEDLINE (via Ovid) and Embase (via Ovid) up to 26 June 2019. We used SCOPUS to perform a forward and backward citation search of relevant articles. We placed no restriction on language or study design. SELECTION CRITERIA We included all references published on or after 1995, which is when the first commercial BDG assays became available. We considered published, peer-reviewed studies on the diagnostic test accuracy of BDG for diagnosis of fungal infections in immunocompromised people or people in intensive care that used the European Organization for Research and Treatment of Cancer (EORTC) criteria or equivalent as a reference standard. We considered all study designs (case-control, prospective consecutive cohort, and retrospective cohort studies). We excluded case studies and studies with fewer than ten participants. We also excluded animal and laboratory studies. We excluded meeting abstracts because they provided insufficient information. DATA COLLECTION AND ANALYSIS We followed the standard procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened studies, extracted data, and performed a quality assessment for each study. For each study, we created a 2 × 2 matrix and calculated sensitivity and specificity, as well as a 95% confidence interval (CI). We evaluated the quality of included studies using the Quality Assessment of Studies of Diagnostic Accuracy-Revised (QUADAS-2). We were unable to perform a meta-analysis due to considerable variation between studies, with the exception of Candida, so we have provided descriptive statistics such as receiver operating characteristics (ROCs) and forest plots by test brand to show variation in study results. MAIN RESULTS We included in the review 49 studies with a total of 6244 participants. About half of these studies (24/49; 49%) were conducted with people who had cancer or hematologic malignancies. Most studies (36/49; 73%) focused on the Fungitell BDG test. This was followed by Glucatell (5 studies; 10%), Wako (3 studies; 6%), Fungitec-G (3 studies; 6%), and Dynamiker (2 studies; 4%). About three-quarters of studies (79%) utilized either a prospective or a retrospective consecutive study design; the remainder used a case-control design. Based on the manufacturer's recommended cut-off levels for the Fungitell test, sensitivity ranged from 27% to 100%, and specificity from 0% to 100%. For the Glucatell assay, sensitivity ranged from 50% to 92%, and specificity ranged from 41% to 94%. Limited studies have used the Dynamiker, Wako, and Fungitec-G assays, but individual sensitivities and specificities ranged from 50% to 88%, and from 60% to 100%, respectively. Results show considerable differences between studies, even by manufacturer, which prevented a formal meta-analysis. Most studies (32/49; 65%) had no reported high risk of bias in any of the QUADAS-2 domains. The QUADAS-2 domains that had higher risk of bias included participant selection and flow and timing. AUTHORS' CONCLUSIONS We noted considerable heterogeneity between studies, and these differences precluded a formal meta-analysis. Because of wide variation in the results, it is not possible to estimate the diagnostic accuracy of the BDG test in specific settings. Future studies estimating the accuracy of BDG tests should be linked to the way the test is used in clinical practice and should clearly describe the sampling protocol and the relationship of time of testing to time of diagnosis.
Collapse
Affiliation(s)
- Sandra K White
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | | | - Kimberly E Hanson
- Director, Transplant Infectious Diseases and Immunocompromised Host Service, Section Head, Clinical Microbiology, Director, Medical Microbiology Fellowship Program, University of Utah and ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
|
25
|
Efficacy of Cerebrospinal Fluid Beta-d-Glucan Diagnostic Testing for Fungal Meningitis: a Systematic Review. J Clin Microbiol 2020; 58:JCM.02094-19. [PMID: 31996446 DOI: 10.1128/jcm.02094-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022] Open
Abstract
Several case reports and cohort studies have examined the use of (1,3)-beta-d-glucan measurement with cerebrospinal fluid to diagnose fungal meningitis. This systematic review aims to characterize the evidence regarding cerebrospinal fluid (1,3)-beta-d-glucan measurement to detect fungal meningitis. We searched PubMed for (1,3)-beta-d-glucan and each of several distinct fungi, cerebrospinal fluid, and meningitis. Summary data including diagnostic performance (where applicable) were recorded. A total of 939 records were examined via a PubMed search. One hundred eighteen records remained after duplicates were removed, and 104 records were excluded, as they did not examine cerebrospinal fluid, included animals, or focused on nonfungal infections. Fourteen studies were included in this systematic review. A variety of fungi, including species of Candida, Aspergillus, Exserohilum, Cryptococcus, Histoplasma, and Coccidioides, were studied, although most were case reports. Diagnostic accuracy was examined in 5 studies. Cerebrospinal fluid (CSF) (1,3)-beta-d-glucan measurement showed >95% sensitivity in the corticosteroid injection-related outbreak of Exserohilum rostratum One study in Histoplasma meningitis found 53% (53/87) sensitivity and 87% (133/153) specificity, while another study of Cryptococcus meningitis found 89% (69/78) sensitivity and 85% (33/39) specificity. CSF (1,3)-beta-d-glucan testing may be useful, primarily as a nonspecific marker of fungal meningitis. Although the FDA black box warning states that Cryptococcus spp. do not make (1,3)-beta-d-glucan, the current evidence shows that (1,3)-beta-d-glucan is detectable in cryptococcal meningitis. Organism-specific testing should be used in conjunction with (1,3)-beta-d-glucan measurement.
Collapse
|
26
|
Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia 2020; 185:207-231. [PMID: 31894501 PMCID: PMC7223441 DOI: 10.1007/s11046-019-00413-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Fungal disease is an increasingly recognised global clinical challenge associated with high mortality. Early diagnosis of fungal infection remains problematic due to the poor sensitivity and specificity of current diagnostic modalities. Advances in sequencing technologies hold promise in addressing these shortcomings and for improved fungal detection and identification. To translate such emerging approaches into mainstream clinical care will require refinement of current sequencing and analytical platforms, ensuring standardisation and consistency through robust clinical benchmarking and its validation across a range of patient populations. In this state-of-the-art review, we discuss current diagnostic and therapeutic challenges associated with fungal disease and provide key examples where the application of sequencing technologies has potential diagnostic application in assessing the human ‘mycobiome’. We assess how ready access to fungal sequencing may be exploited in broadening our insight into host–fungal interaction, providing scope for clinical diagnostics and the translation of emerging mycobiome research into clinical practice.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Karlyn Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenny J X Lau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
27
|
Dulek DE, Mueller NJ. Pneumonia in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13545. [PMID: 30900275 PMCID: PMC7162188 DOI: 10.1111/ctr.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
These guidelines from the AST Infectious Diseases Community of Practice review the diagnosis and management of pneumonia in the post-transplant period. Clinical presentations and differential diagnosis for pneumonia in the solid organ transplant recipient are reviewed. A two-tier approach is proposed based on the net state of immunosuppression and the severity of presentation. With a lower risk of opportunistic, hospital-acquired, or exposure-specific pathogens and a non-severe presentation, empirical therapy may be initiated under close clinical observation. In all other patients, or those not responding to the initial therapy, a more aggressive diagnostic approach including sampling of tissue for microbiological and pathological testing is warranted. Given the broad range of potential pathogens, a microbiological diagnosis is often key for optimal care. Given the limited literature comparatively evaluating diagnostic approaches to pneumonia in the solid organ transplant recipient, much of the proposed diagnostic algorithm reflects clinical experience rather than evidence-based data. It should serve as a template which may be modified according to local needs. The same holds true for the suggested empiric therapies, which need to be adapted to the local resistance patterns. Further study is needed to comparatively evaluate diagnostic and empiric treatment strategies in SOT recipients.
Collapse
Affiliation(s)
- Daniel E Dulek
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
| | | |
Collapse
|
28
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
29
|
Herrera S, Husain S. Current State of the Diagnosis of Invasive Pulmonary Aspergillosis in Lung Transplantation. Front Microbiol 2019; 9:3273. [PMID: 30687264 PMCID: PMC6333628 DOI: 10.3389/fmicb.2018.03273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
As the number of lung transplants performed worldwide each year continues to grow, the success of this procedure is threatened by the incidence of non-CMV infections such as invasive aspergillosis. Despite tremendous efforts and the availability of numerous diagnostic tests (especially in hematological malignancies) the diagnosis of invasive aspergillosis continues to be a challenge. Lung transplantation remains a unique clinical scenario, where additional host defenses are immunocompromized, making many of the available tests unsuitable. In this review we will navigate through the myriad of diagnostic tests currently available and how they apply to this unique patient population, as well as have a look into what the future holds.
Collapse
Affiliation(s)
- Sabina Herrera
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Turgut M, Challa S, Akhaddar A. Histopathology. FUNGAL INFECTIONS OF THE CENTRAL NERVOUS SYSTEM 2019. [PMCID: PMC7123394 DOI: 10.1007/978-3-030-06088-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During the last 30 years, advances in intensive and critical care units, organ transplantation, concomitant use of immunosuppressive drugs, and increasing prevalence of chronic diseases, malnutrition, and other debilitating conditions, as well as the human immunodeficiency virus pandemic, have increased the incidence of systemic mycotic diseases, the most serious form of fungal diseases are the ones that comprise the central nervous system, representing the most dangerous clinical situations. In those cases, starting an adequate therapy through a rapid and assertive diagnosis is absolutely necessary. Considering the fastidious microbiological nature of some fungi (longtime requirement, specific culture conditions, and biohazard issues), as well as the lack of alternative testing availability, a rapid diagnosis is always challenging. When a tissue or liquid specimen is available, its pathological analysis constitutes a rapid and cost-effective way to provide a presumptive or definitive diagnosis of an invasive fungal infection; however, microbiologists, pathologists, and clinicians need to be aware of the limitations of microscopical diagnosis. In this chapter, we review the usual histological presentation of the most frequent central nervous system fungal infections.
Collapse
Affiliation(s)
- Mehmet Turgut
- Department of Neurosurgery, Aydın Adnan Menderes University, School of Medicine, Aydın, Turkey
| | - Sundaram Challa
- Department of Pathology, Basavatarakam Indo-American Hospital & Research Institute, Hyderabad, Telangana India
| | - Ali Akhaddar
- Department of Neurosurgery, Avicenne Military Hospital, Mohammed V University in Rabat, Marrakech, Morocco
| |
Collapse
|
31
|
Xiaoling L, Tingyu T, Caibao H, Tian Z, Changqin C. Diagnostic Efficacy of Serum 1,3-β-D-glucan for Invasive Fungal Infection: An Update Meta-Analysis Based on 37 Case Or Cohort Studies. Open Med (Wars) 2018; 13:329-337. [PMID: 30211316 PMCID: PMC6132083 DOI: 10.1515/med-2018-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/21/2018] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of this study was to investigate the diagnostic performance of serum 1,3-β-D-gluan as biomarker for invasive fungal infection through meta-analysis. Methods The electronic databases of Medline, Cochrane, Embase, Web of Science, OVID and CNKI were systematic searched to identified the case-control or Cohort studies relevant to diagnostic efficacy of serum 1,3-β-D-glucan for invasive fungal infection. The data of true positive (tp), false positive (fp), false negative (fn) and true negative (tn) patients number were extracted from each of the original included studies. The diagnostic sensitivity, specificity and systematic receiver operating characteristic (SROC) curve were calculated and pooled through random or fixed effect method. The publication bias was evaluated by the Deek's funnel plot. Results Thirty-seven relevant studies were fulfilled the inclusion criteria and included in our present meta-analysis. The combined sensitivity, specificity, positive likely hood ratio (+lr), negative likely hood ratio (-lr) and diagnostic odds ratio(dor) for 1,3-β-D-glucan in diagnosis of invasive fungal infectionwere 0.83 (95%CI:0.38-0.61), 0.81 (95%CI:0.80-0.82), 5.13 (95%CI:3.98-6.62), 0.23 (95%CI:0.18-0.30), and 29.68 (95%CI:18.94-46.52) respectively. The pooled area under the ROC curve (AUC) was 0.91.The Deek's funnel plot asymmetry test showed there was no publication bias for 1,3-β-D-glucan in diagnosis of invasive fungal infection of the included 37 studies. Conclusion Serum 1,3-β-D-glucan assay was a promising biomarker for invasive fungal infection diagnosis.
Collapse
Affiliation(s)
- Lu Xiaoling
- Department of Respiratory, Zhejiang Hospital, Hangzhou, China, 310013
| | - Tang Tingyu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, China, 310013
| | - Hu Caibao
- Department of ICU, Zhejiang Hospital, Hangzhou, China, 310013
| | - Zhao Tian
- Department of Respiratory, Zhejiang Hospital, Hangzhou, China, 310013
| | - Chen Changqin
- Department of ICU, Zhejiang Hospital, China 310013, Address: No.12 Lingyin Road, Hangzhou City, Zhejiang Province 310013, China
| |
Collapse
|
32
|
Morad HOJ, Wild AM, Wiehr S, Davies G, Maurer A, Pichler BJ, Thornton CR. Pre-clinical Imaging of Invasive Candidiasis Using ImmunoPET/MR. Front Microbiol 2018; 9:1996. [PMID: 30190717 PMCID: PMC6115526 DOI: 10.3389/fmicb.2018.01996] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
The human commensal yeast Candida is the fourth most common cause of hospital-acquired bloodstream infections, with Candida albicans accounting for the majority of the >400,000 life-threatening infections annually. Diagnosis of invasive candidiasis (IC), a disease encompassing candidemia (blood-borne yeast infection) and deep-seated organ infections, is a major challenge since clinical manifestations of the disease are indistinguishable from viral, bacterial and other fungal diseases, and diagnostic tests for biomarkers in the bloodstream such as PCR, ELISA, and pan-fungal β-D-glucan lack either standardization, sensitivity, or specificity. Blood culture remains the gold standard for diagnosis, but test sensitivity is poor and turn-around time slow. Furthermore, cultures can only be obtained when the yeast resides in the bloodstream, with samples recovered from hematogenous infections often yielding negative results. Consequently, there is a pressing need for a diagnostic test that allows the identification of metastatic foci in deep-seated Candida infections, without the need for invasive biopsy. Here, we report the development of a highly specific mouse IgG3 monoclonal antibody (MC3) that binds to a putative β-1,2-mannan epitope present in high molecular weight mannoproteins and phospholipomannans on the surface of yeast and hyphal morphotypes of C. albicans, and its use as a [64Cu]NODAGA-labeled tracer for whole-body pre-clinical imaging of deep-seated C. albicans infections using antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI). When used in a mouse intravenous (i.v.) challenge model that faithfully mimics disseminated C. albicans infections in humans, the [64Cu]NODAGA-MC3 tracer accurately detects infections of the kidney, the principal site of blood-borne candidiasis in this model. Using a strain of the emerging human pathogen Candida auris that reacts with MC3 in vitro, but which is non-infective in i.v. challenged mice, we demonstrate the accuracy of the tracer in diagnosing invasive infections in vivo. This pre-clinical study demonstrates the principle of using antibody-guided molecular imaging for detection of deep organ infections in IC, without the need for invasive tissue biopsy.
Collapse
Affiliation(s)
- Hassan O J Morad
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Anna-Maria Wild
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Wiehr
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Genna Davies
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andreas Maurer
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christopher R Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
33
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
34
|
Abstract
Cultures are negative in ∼50% of invasive candidiasis. Data are emerging for the performance of nonculture tests such as mannan/antimannan, Candida albicans germ tube antibody, 1,3-β-d-glucan, PCR, and the T2Candida panel in diagnosing both candidemia and deep-seated candidiasis. In most settings, positive predictive values of nonculture test are low, and negative predictive values are high. For tests to be useful, clinicians must understand the pretest likelihood of invasive candidiasis and test performance for the most common disease manifestation in a given patient. This paper reviews nonculture Candida diagnostics and discusses how they might be used effectively in patient care.
Collapse
|
35
|
Rautemaa V, Green HD, Jones AM, Rautemaa-Richardson R. High level of β-(1,3)- d -glucan antigenaemia in cystic fibrosis in the absence of invasive fungal disease. Diagn Microbiol Infect Dis 2017. [DOI: 10.1016/j.diagmicrobio.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Lamoth F, Calandra T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother 2017; 72:i19-i28. [PMID: 28355464 DOI: 10.1093/jac/dkx030] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Invasive mould infections (IMIs), such as invasive aspergillosis or mucormycosis, are a major cause of death in patients with haematological cancer and in patients receiving long-term immunosuppressive therapy. Early diagnosis and prompt initiation of antifungal therapy are crucial steps in the management of patients with IMI. The diagnosis of IMI remains a major challenge, with an increased spectrum of fungal pathogens and a diversity of clinical and radiological presentations within the expanding spectrum of immunocompromised hosts. Diagnosis is difficult to establish and is expressed on a scale of probability (proven, probable and possible). Imaging (CT scan), microbiological tools (direct examination, culture, PCR, fungal biomarkers) and histopathology are the pillars of the diagnostic work-up of IMI. None of the currently available diagnostic tests provides sufficient sensitivity and specificity alone, so the optimal approach relies on a combination of multiple diagnostic strategies, including imaging, fungal biomarkers (galactomannan and 1,3-β-d-glucan) and molecular tools. In recent years, the development of PCR for filamentous fungi (primarily Aspergillus or Mucorales) and the progress made in the standardization of fungal PCR technology, may lead to future advances in the field. The appropriate diagnostic approach for IMI should be individualized to each centre, taking into account the local epidemiology of IMI and the availability of diagnostic tests.
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Measuring (1,3)-β-D-glucan in tracheal aspirate, bronchoalveolar lavage fluid, and serum for detection of suspected Candida pneumonia in immunocompromised and critically ill patients: a prospective observational study. BMC Infect Dis 2017; 17:252. [PMID: 28390391 PMCID: PMC5385026 DOI: 10.1186/s12879-017-2364-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background While Candida pneumonia is life-threatening, biomarker measurements to early detect suspected Candida pneumonia are lacking. This study compared the diagnostic values of measuring levels of (1, 3)-β-D-glucan in endotracheal aspirate, bronchoalveolar lavage fluid, and serum to detect suspected Candida pneumonia in immunocompromised and critically ill patients. Methods This prospective, observational study enrolled immunocompromised, critically ill, and ventilated patients with suspected fungal pneumonia in mixed intensive care units from November 2010 to October 2011. Patients with D-glucan confounding factors or other fungal infection were excluded. Endotracheal aspirate, bronchoalveolar lavage fluid and serum were collected from each patient to perform a fungal smear, culture, and D-glucan assay. Results After screening 166 patients, 31 patients completed the study and were categorized into non-Candida pneumonia/non-candidemia (n = 18), suspected Candida pneumonia (n = 9), and non-Candida pneumonia/candidemia groups (n = 4). D-glucan levels in endotracheal aspirate or bronchoalveolar lavage were highest in suspected Candida pneumonia, while the serum D-glucan level was highest in non-Candida pneumonia/candidemia. In all patients, the D-glucan value in endotracheal aspirate was positively correlated with that in bronchoalveolar lavage fluid. For the detection of suspected Candida pneumonia, the predictive performance (sensitivity/specificity/D-glucan cutoff [pg/ml]) of D-glucan in endotracheal aspirate and bronchoalveolar lavage fluid was 67%/82%/120 and 89%/86%/130, respectively, accounting for areas under the receiver operating characteristic curve of 0.833 and 0.939 (both P < 0.05), respectively. Measuring serum D-glucan was of no diagnostic value (area under curve =0.510, P = 0.931) for the detection of suspected Candida pneumonia in the absence of concurrent candidemia. Conclusions D-glucan levels in both endotracheal aspirate and bronchoalveolar lavage, but not in serum, provide good diagnostic values to detect suspected Candida pneumonia and to serve as potential biomarkers for early detection in this patient population. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2364-2) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Zheng F, Gu Y, Zha H, Deng J, Zhang Z. The Diagnostic Value of (1 → 3)-Beta-d-glucans and Galactomannan Assays in Children Suffering from Bacteremia in Pediatric Intensive Care Unit. Mycopathologia 2016; 182:555-560. [DOI: 10.1007/s11046-016-0096-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|
39
|
Abstract
Fungal diagnostics that utilize antibody, antigen or nucleic acid detection offer several advantages that supplement traditional culture-based methods. As a group, nonculture assays can help identify patients with invasive fungal infection (IFI) sooner than is possible with culture, are often more sensitive, and can be used to guide early interventions. Challenges associated with these techniques include the possibility for contamination or cross-reactivity as well as the potential for false negative tests. This review summarized the test characteristics and clinical utility of nonculture-based laboratory methods.
Collapse
Affiliation(s)
| | - Kimberly E Hanson
- Department of Medicine, Division of Infectious Diseases, University of Utah School of Medicine, 30 N 1900E, Room 4B319, Salt Lake City, UT 84132, USA; Department of Pathology, University of Utah School of Medicine, 15 N Medical Drive East, Suite 1100, Salt Lake City, UT 84122, USA.
| |
Collapse
|
40
|
Diagnostic Values and Limitations of (1,3)-β-D-Glucans and Galactomannan Assays for Invasive Fungal Infection in Patients Admitted to Pediatric Intensive Care Unit. Mycopathologia 2016; 182:331-338. [PMID: 27664106 DOI: 10.1007/s11046-016-0063-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
The relationship among (1,3)-β-D-glucans (BG), galactomannan (GM), and the risk of developing invasive fungal infections (IFI) has been observed in adult ICU and in children with hematological malignancies. Only scant data evaluated the value of BG/GM assays for diagnosis of IFI in patients with nonhematological diseases in pediatric intensive care unit (PICU). In this study, we assessed the diagnostic value of these markers for IFI in PICU. The records of 230 patients were retrospectively evaluated. Out of 117 patients (7 proven, 23 probable, and 87 cases without evidence of IFI) performed GM and BG assays. The results showed many factors were associated with false-positive test results. Patients who aged over 3 years had higher levels of GM and BG than younger infants. The levels of BG were higher in subjects with dairy, human blood products, antibiotics, and corticosteroids therapy than in cases without these treatments. Unlike BG assay, GM assay was less susceptible to above-mentioned factors expect blood products. The levels of BG and GM in IFI cases were dramatically higher than in controls. The diagnostic performance of these assays showed that GM assay had better results when compared with BG assay. On the whole, negative predictive value in both GM and BG assays was dramatically higher than other diagnostic parameters. In conclusion, BG assay was highly susceptible to many factors, and GM assay could be useful for diagnosis of IFI for its high sensitivity, but the over benefit of this assay limited in its inadequate specificity. The comparative advantage of BG and BG assays lied in excluding IFI in non-hematological PICU patients.
Collapse
|
41
|
Bhaskaran A, Kabbani D, Singer LG, Prochnow T, Bhimji A, Rotstein C, Finkelman MA, Keshavjee S, Husain S. (1,3) β-D-Glucan in Bronchoalveolar Lavage of Lung Transplant Recipients for the Diagnosis of Invasive Pulmonary Aspergillosis. Med Mycol 2016; 55:173-179. [DOI: 10.1093/mmy/myw052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/30/2015] [Accepted: 05/08/2016] [Indexed: 11/13/2022] Open
|
42
|
Galactomannan and 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Aspergillosis. J Fungi (Basel) 2016; 2:jof2030022. [PMID: 29376937 PMCID: PMC5753135 DOI: 10.3390/jof2030022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022] Open
Abstract
Invasive aspergillosis (IA) is a severe complication among hematopoietic stem cell transplant recipients or patients with hematological malignancies and neutropenia following anti-cancer therapy. Moreover, IA is increasingly observed in other populations, such as solid-organ transplant recipients, patients with solid tumors or auto-immune diseases, and among intensive care unit patients. Frequent delay in diagnosis is associated with high mortality rates. Cultures from clinical specimens remain sterile in many cases and the diagnosis of IA often only relies on non-specific radiological signs in the presence of host risk factors. Tests for detection of galactomannan- (GM) and 1,3-β-d-glucan (BDG) are useful adjunctive tools for the early diagnosis of IA and may have a role in monitoring response to therapy. However, the sensitivity and specificity of these fungal biomarkers are not optimal and variations between patient populations are observed. This review discusses the role and interpretation of GM and BDG testing for the diagnosis of IA in different clinical samples (serum, bronchoalveolar lavage fluid, cerebrospinal fluid) and different groups of patients (onco-hematological patients, solid-organ transplant recipients, other patients at risk of IA).
Collapse
|
43
|
Abstract
ABSTRACT
Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the
Mucorales
, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.
Collapse
|
44
|
Husain S, Sole A, Alexander BD, Aslam S, Avery R, Benden C, Billaud EM, Chambers D, Danziger-Isakov L, Fedson S, Gould K, Gregson A, Grossi P, Hadjiliadis D, Hopkins P, Luong ML, Marriott DJ, Monforte V, Muñoz P, Pasqualotto AC, Roman A, Silveira FP, Teuteberg J, Weigt S, Zaas AK, Zuckerman A, Morrissey O. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J Heart Lung Transplant 2016; 35:261-282. [DOI: 10.1016/j.healun.2016.01.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023] Open
|
45
|
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62:e1-50. [PMID: 26679628 PMCID: PMC4725385 DOI: 10.1093/cid/civ933] [Citation(s) in RCA: 1934] [Impact Index Per Article: 241.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
| | - Carol A Kauffman
- Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical School, Ann Arbor
| | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Thomas J Walsh
- Weill Cornell Medical Center and Cornell University, New York, New York
| | | | - Jack D Sobel
- Harper University Hospital and Wayne State University, Detroit, Michigan
| |
Collapse
|
46
|
Invasive Candidiasis in Various Patient Populations: Incorporating Non-Culture Diagnostic Tests into Rational Management Strategies. J Fungi (Basel) 2016; 2:jof2010010. [PMID: 29376927 PMCID: PMC5753091 DOI: 10.3390/jof2010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
Mortality rates due to invasive candidiasis remain unacceptably high, in part because the poor sensitivity and slow turn-around time of cultures delay the initiation of antifungal treatment. β-d-glucan (Fungitell) and polymerase chain reaction (PCR)-based (T2Candida) assays are FDA-approved adjuncts to cultures for diagnosing invasive candidiasis, but their clinical roles are unclear. We propose a Bayesian framework for interpreting non-culture test results and developing rational patient management strategies, which considers test performance and types of invasive candidiasis that are most common in various patient populations. β-d-glucan sensitivity/specificity for candidemia and intra-abdominal candidiasis is ~80%/80% and ~60%/75%, respectively. In settings with 1%–10% likelihood of candidemia, anticipated β-d-glucan positive and negative predictive values are ~4%–31% and ≥97%, respectively. Corresponding values in settings with 3%–30% likelihood of intra-abdominal candidiasis are ~7%–51% and ~78%–98%. β-d-glucan is predicted to be useful in guiding antifungal treatment for wide ranges of populations at-risk for candidemia (incidence ~5%–40%) or intra-abdominal candidiasis (~7%–20%). Validated PCR-based assays should broaden windows to include populations at lower-risk for candidemia (incidence ≥~2%) and higher-risk for intra-abdominal candidiasis (up to ~40%). In the management of individual patients, non-culture tests may also have value outside of these windows. The proposals we put forth are not definitive treatment guidelines, but rather represent starting points for clinical trial design and debate by the infectious diseases community. The principles presented here will be applicable to other assays as they enter the clinic, and to existing assays as more data become available from different populations.
Collapse
|
47
|
Improved detection of deeply invasive candidiasis with DNA aptamers specific binding to (1→3)-β-D-glucans from Candida albicans. Eur J Clin Microbiol Infect Dis 2016; 35:587-95. [PMID: 26810058 DOI: 10.1007/s10096-015-2574-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 01/02/2023]
Abstract
Deeply invasive or disseminated candidiasis is a serious and often fatal complication that can occur frequently in immuno-compromised individuals. However, conventional diagnostic methods of Candida albicans display low sensitivity and lack of specificity; the development of rapid and accurate detection methods remains a high priority. Aptamers are single-strand DNA or RNA oligonucleotides that specifically bind to target molecules with high affinity. In this study, we sought to screen high-affinity DNA aptamers that specifically bound to (1→3)-β-D-glucans from cell wall of Candida albicans using a systematic evolution of ligands by exponential enrichment (SELEX) technique, and further evaluate the diagnostic potential for invasive or disseminated candidiasis with selected aptamers. (1→3)-β-D-glucans was purified from Candida albicans, and two single DNA aptamers (designated as AU1 and AD1) were selected. Analysis of dissociation constants and binding domains further revealed that these two selected single DNA aptamers (AU1 and AD1) showed high binding affinity (AD1: Kd = 79.76 nM, AD1: Kd = 103.7 nM) and did not bind to the same domain of (1→3)-β-D-glucans. Next, we further detected (1→3)-β-D-glucans in serum samples from different groups of patients with Candida albicans infection or simple bacterial infection by using a double-aptamer sandwich enzyme-linked oligonucleotide assay (ELONA). The results showed that the sensitivity and specificity of this aptamer-based sandwich ELONA were 92.31 % and 91.94 % respectively. Thus, our study suggests that AU1 and AD1 have potential application for the differentiate diagnosis of deeply invasive candidiasis and provide valuable clues for designing diagnostic agents for the identification of invasive fungal infection.
Collapse
|
48
|
Anesi JA, Baddley JW. Approach to the Solid Organ Transplant Patient with Suspected Fungal Infection. Infect Dis Clin North Am 2015; 30:277-96. [PMID: 26739603 DOI: 10.1016/j.idc.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In solid organ transplant (SOT) recipients, invasive fungal infections (IFIs) are associated with significant morbidity and mortality. Detection of IFIs can be difficult because the signs and symptoms are similar to those of viral or bacterial infections, and diagnostic techniques have limited sensitivity and specificity. Clinicians must rely on knowledge of the patient's risk factors for fungal infection to make a diagnosis. The authors describe their approach to the SOT recipient with suspected fungal infection. The epidemiology of IFIs in the SOT population is reviewed, and a syndromic approach to suspected IFI in SOT recipients is described.
Collapse
Affiliation(s)
- Judith A Anesi
- Division of Infectious Diseases, University of Pennsylvania, 3400 Spruce Street, 3 Silverstein, Suite E, Philadelphia, PA 19104, USA
| | - John W Baddley
- Department of Medicine, University of Alabama at Birmingham, 1900 University Boulevard, 229 THT, Birmingham, AL 35294, USA; Medical Service, Birmingham VA Medical Center, 700 South 19th street, Birmingham, AL 35233, USA.
| |
Collapse
|
49
|
Performance Characteristics of Galactomannan and β-d-Glucan in High-Risk Liver Transplant Recipients. Transplantation 2015; 99:2543-50. [DOI: 10.1097/tp.0000000000000763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Bronchoalveolar Lavage Fluid (1,3)β-D-Glucan for the Diagnosis of Invasive Fungal Infections in Solid Organ Transplantation: A Prospective Multicenter Study. Transplantation 2015; 99:e140-4. [PMID: 25710608 DOI: 10.1097/tp.0000000000000635] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prompt diagnosis of invasive fungal infections (IFI) remains a challenge. (1,3)β-D-glucan detection in bronchoalveolar lavage (BAL) fluid by Fungitell assay aims to further improve upon the test's utility by directly applying it to specimens from the target organ. METHODS A prospective multicenter analysis of the Fungitell assay was performed on BAL and serum samples obtained from nonselected solid-organ transplantation patients suffering from probable, proven or no IFI according to the revised criteria of the European Organisation for Research and Treatment of Cancer / Mycosis Study Group. RESULTS Two hundred thirty-three BAL and 109 serum specimens from 135 patients with proven, probable, or no IFI were tested. Based on a 100 pg/mL: cutoff per test sensitivity, specificity, positive and negative predictive values were 79.2%, 38.5%, 27.6%, and 86.3% in BALs and 79.2%, 81.8%, 69.2%, and 83.1% in sera investigated. CONCLUSIONS The accuracy of the (1,3)β-D-glucan test is marginal so that its utility as a clinical test for early diagnosis of IFI is questionable in the lung transplant population. Although the high negative predictive value of the Fungitell assay in both, BALs and sera, may support exclusion of pulmonary IFI in solid-organ transplantation patients, the low positive predictive value limits its utility as a screening tool for early diagnosis of IFI.
Collapse
|