1
|
Barua SR, Das T, Rakib TM, Nath BK, Gupta SD, Sarker S, Chowdhury S, Raidal SR, Das S. Complete genome constellation of a dominant Bovine rotavirus genotype circulating in Bangladesh reveals NSP4 intragenic recombination with human strains. Virology 2024; 598:110195. [PMID: 39089050 DOI: 10.1016/j.virol.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.
Collapse
Affiliation(s)
- Shama Ranjan Barua
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh; Department of Livestock Services, Ministry of Fisheries and Livestock, Bangladesh
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD-4814, Australia
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia.
| |
Collapse
|
2
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Wang D, Gao H, Zhao L, Lv C, Dou W, Zhang X, Liu Y, Kang X, Guo K. Detection of the dominant pathogens in diarrheal calves of Ningxia, China in 2021-2022. Front Vet Sci 2023; 10:1155061. [PMID: 37138922 PMCID: PMC10149748 DOI: 10.3389/fvets.2023.1155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Calf diarrhea is a complex disease that has long been an unsolved problem in the cattle industry. Ningxia is at the forefront of China in the scale of cattle breeding, and calf diarrhea gravely restricts the development of Ningxia's cattle industry. Methods From July 2021 to May 2022, we collected diarrhea stool samples from calves aged 1-103 days from 23 farms in five cities in Ningxia, and performed PCR using specific primers for 15 major reported pathogens of calf diarrhea, including bacteria, viruses, and parasites. The effect of different seasons on the occurrence of diarrhea in calves was explored, the respective epidemic pathogens in different seasons were screened, and more detailed epidemiological investigations were carried out in Yinchuan and Wuzhong. In addition, we analyzed the relationship between different ages, river distributions and pathogen prevalence. Results Eventually, 10 pathogens were detected, of which 9 pathogens were pathogenic and 1 pathogen was non-pathogenic. The pathogens with the highest detection rate were Cryptosporidium (50.46%), Bovine rotavirus (BRV) (23.18%), Escherichia coli (E. coli) K99 (20.00%), and Bovine coronavirus (BCoV) (11.82%). The remaining pathogens such as Coccidia (6.90%), Bovine Astrovirus (BoAstV) (5.46%), Bovine Torovirus (BToV) (4.09%), and Bovine Kobuvirus (BKoV) (3.18%) primarily existed in the form of mixed infection. Discussion The analysis showed that different cities in Ningxia have different pathogens responsible for diarrhea, with Cryptosporidium and BRV being the most important pathogens responsible for diarrhea in calves in all cities. Control measures against those pathogens should be enforced to effectively prevent diarrhea in calves in China.
Collapse
Affiliation(s)
- Dong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Haihui Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Long Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Changrong Lv
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wei Dou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yong Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xiaodong Kang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- *Correspondence: Xiaodong Kang
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Kangkang Guo
| |
Collapse
|
4
|
Analysis of RNA virome in rectal swabs of healthy and diarrheic pigs of different age. Comp Immunol Microbiol Infect Dis 2022; 90-91:101892. [DOI: 10.1016/j.cimid.2022.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
|
5
|
Abstract
Rotaviruses are the most common viral agents associated with foal diarrhea. Between 2014 and 2017, the annual prevalence of rotavirus in diarrheic foals ranged between 18 and 28% in Haryana (India). Whole-genome sequencing of two equine rotavirus A (ERVA) isolates (RVA/Horse-wt/IND/ERV4/2017 and RVA/Horse-wt/IND/ERV6/2017) was carried out to determine the genotypic constellations (GCs) of ERVAs. The GCs of both the isolates were G3-P[3]-I8-R3-C3-M3-A9-N3-T3-E3-H6, a unique combination reported for ERVAs so far. Both the isolates carried VP6 of genotype I8, previously unreported from equines. Upon comparison with RVAs of other species, the GC of both isolates was identical to that of a bat rotavirus strain, MSLH14, isolated from China in 2012. The nucleotide sequences of the genes encoding VP3, NSP2, and NSP3 shared >95.81% identity with bat RVA strains isolated from Africa (Gabon). The genes encoding VP1, VP2, VP7, NSP1, and NSP4 shared 94.82% to 97.12% nucleotide identities with the human strains which have zoonotic links to bats (RCH272 and MS2015-1-0001). The VP6 genes of both strains were distinct and had the highest similarity of only 87.08% with that of CMH222, a human strain of bat origin. The phylogenetic analysis and lineage studies revealed that VP7 of both isolates clustered in a new lineage (lineage X) of the G3 genotype with bat, human, and alpaca strains. Similarly, VP4 clustered in a distinct P[3] lineage. These unusual findings highlight the terra incognita of the genomic diversity of equine rotaviruses and support the need for the surveillance of RVAs in animals and humans with a "one health" approach. IMPORTANCE Rotaviruses are globally prevalent diarrheal pathogens in young animals including foals, piglets, calves, goats, sheep, cats, and dogs along with humans. The genome of rotaviruses consists of 11 segments, which enables them to undergo reshuffling by reassortment of segments from multiple species during mixed infections. In this study, the prevalence of equine rotaviruses was 32.11% in organized equine farms of North India. The complete genome analysis of two ERVA isolates revealed an unusual genomic constellation, which was previously reported only in a bat RVA strain. A segment-wise phylogenetic analysis revealed that most segments of both isolates were highly similar either to bat or to bat-like human rotaviruses. The occurrence of unusual bat-like rotaviruses in equines emphasizes the need of extensive surveillance of complete genomes of both animal and human rotaviruses with a "one health" approach.
Collapse
|
6
|
HASAN MA, KABIR MH, MIYAOKA Y, YAMAGUCHI M, TAKEHARA K. G and P genotype profiles of rotavirus A field strains circulating in a vaccinated bovine farm as parameters for assessing biosecurity level. J Vet Med Sci 2022; 84:929-937. [PMID: 35527015 PMCID: PMC9353085 DOI: 10.1292/jvms.22-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
After improvement of hygiene protocols on boots in a bovine operation (farm A) in Ibaraki, Japan in September 2017, mortality of calves and the detection of 4 viral pathogen indicators,
including bovine rotavirus A (RVA), became significantly low for one year. Subsequently, in the present study, these indicators and mortality were monitored and confirmed all were still low,
except for the detection rate of bovine RVA in calves less than 3 weeks old. The present study aimed to investigate G and P genotypic profiles of RVAs in farm A from 2018 to 2020. Molecular
analysis using semi-nested multiplex RT-PCR of positive RVAs (n=122) and sequencing of selected samples revealed the presence of G6, G8, G10, P[1], P[5] and P[11] genotypes and the
prevalence of G and/or P combination and mixed infections. The most common combination of G and P types was G10P[11] (41.8%), followed by mixed infection with G6+G10P[5] (11.5%).
Phylogenetic analysis of RVAs showed clustering with bovine and other animal-derived RVA strains, suggesting the possibility of multiple reassortant events with strains of bovine and others
animal origins. Noteworthy as well is that vaccinated cattle might fail to provide their offspring with maternal immunity against RVA infections, due to insufficient colostrum feeding. Our
findings further highlight the importance of RVA surveillance in bovine populations, which may be useful to improving effective routine vaccination and hygiene practices on bovine farms.
Collapse
Affiliation(s)
- Md. Amirul HASAN
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Md. Humayun KABIR
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Yu MIYAOKA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Makiko YAMAGUCHI
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazuaki TAKEHARA
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
7
|
Ali K, Gadzama G, Zailani S, Mohammed Y, Daggash B, Yakubu Y, Sadiq B, Baba S, Usman K. The risk factors associated with rotavirus gastroenteritis among children under five years at university of maiduguri teaching hospital, Borno State, Nigeria. NIGERIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4103/njm.njm_114_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Abdou NEMI, Majeed QAH, Saad AA, Mijatovic-Rustempasic S, Bowen MD, Samy A. Cross-sectional study and genotyping of rotavirus-A infections in ruminants in Kuwait. BMC Vet Res 2021; 17:245. [PMID: 34273992 PMCID: PMC8286158 DOI: 10.1186/s12917-021-02944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Group A rotaviruses (RVA) are zoonotic pathogens responsible for acute enteritis in human and neonatal ruminants. This research aimed to determine the prevalence of RVA in ruminants (cattle, sheep, and goats) and investigate the circulating RVA genotypes in these animals in Kuwait. We conducted a cross-sectional study to detect RVA in ruminants, using an immunochromatography test (IC), direct sandwich ELISA test, and real-time RT-PCR (RT-qPCR) assay using fecal samples. Results A total of 400 cattle, 334 sheep, and 222 goats were examined. The prevalence of RVA was 5.3, 1.2, and 2.3%, respectively, using IC. The ELISA test detected RVA from 4.3% of cattle, 0.9% of sheep, and 1.8% of goats. There was a significant association between the occurrence of diarrhea and the presence of RVA in bovine fecal samples (p-value = 0.0022), while no statistical association between diarrhea and the presence of RVA in fecal samples of sheep and goats was observed (p-value = 0.7250; p-value = 0.4499, respectively). Twenty-three of the IC-positive samples (17 from cattle, two from sheep, and four from goats) were tested using a RT-qPCR RVA detection assay targeting the NSP3 gene. The results showed that 21 of 23 IC-positive samples tested positive by RT-qPCR. Detection of RVA genotypes revealed that G10P[11] was the predominant strain in cattle (58.8%), followed by G8P[1] (11.7%). One sheep sample was genotyped as G8P[1]. In addition, G6P[1] and G6P[14] were detected in goat samples. Conclusion The present study revealed that the IC was more sensitive in detecting RVA antigen in fecal samples than the ELISA test. A higher occurrence of RVA infection was observed in cattle than in sheep and goats. This study suggests that RVA might be a risk factor of diarrhea in bovine calves less than 2 weeks old. This research also demonstrates the circulation of RVA in sheep and goat populations in Kuwait. Finally, the G10P[11] RVA genotype was the most prevalent genotype identified from cattle samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02944-4.
Collapse
Affiliation(s)
- Nadra-Elwgoud M I Abdou
- Early Warning Center for Transboundary Animal Diseases-Gulf Cooperation Council, PAAFR, P.O. box 21422, 1307 Safat,, Rabyia, Farwanyia, Kuwait. .,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Qais A H Majeed
- Department of Science, College of Basic Education, PAAET, 23167,, Aridyia, Farwanyia, Kuwait
| | - Ashraf A Saad
- Virology lab., Veterinary Laboratories, PAAFR, 1307 Safat,, Rabyia, Farwanyia, Kuwait.,Department of Virology, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Slavica Mijatovic-Rustempasic
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Michael D Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Attia Samy
- Virology lab., Veterinary Laboratories, PAAFR, 1307 Safat,, Rabyia, Farwanyia, Kuwait.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
9
|
Yan N, Li R, Wang Y, Zhang B, Yue H, Tang C. High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. J Gen Virol 2021; 101:701-711. [PMID: 32427092 DOI: 10.1099/jgv.0.001426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Yak is an iconic species of the Qinghai-Tibet Plateau, which is the world's highest plateau. Here, a total of 541 yak diarrhoeic samples were collected from 69 farms in four provinces in the Qinghai-Tibet Plateau from April 2015 to June 2018, and 73.6 % of samples were detected as Bovine Rotavirus A (BRVA) positive by RT-PCR assay. Two G genotypes (G6, G10) and two P genotypes (P[1], P[11]) were determined, in which G6P[1] BRVA was the predominant strain. Moreover, VP7 and VP4 of these G6P[1] strains showed unique amino acid mutations, such that they clustered into an independent branch in the phylogenetic tree. A strain of BRVA designated as RVA/Yak-tc/CHN/QH-1/2015/G6P[1] was isolated successfully using MA104 cells, and the virus titre was determined as 105.84 TCID50 ml-1. The genome of strain QH-1 had a G6-P[1]-I2-R2-C2-M2-A3-N3-T6-E2-H3 genotype constellation. QH-1 was identified as a reassortment strain of BRVA, human RVA and ovine RVA based on the nucleotide identity and phylogenetic tree of 11 gene segments, indicating its public health significance. To the best of our knowledge, this is the first report on the molecular prevalence and genome characteristics of BRVA in yak, contributing to further understanding of the epidemic and genetic evolution of BRVA.
Collapse
Affiliation(s)
- Nan Yan
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China
| | - Ran Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China
| | - Yuanwei Wang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China
| | - Bin Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China.,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China
| | - Hua Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China.,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, PR China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| |
Collapse
|
10
|
Yan N, Yue H, Wang Y, Zhang B, Tang C. Genomic analysis reveals G3P[13] porcine rotavirus A interspecific transmission to human from pigs in a swine farm with diarrhoea outbreak. J Gen Virol 2020; 102. [PMID: 33295864 DOI: 10.1099/jgv.0.001532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rotavirus A (RVA) is a major diarrhoea-causing pathogen in young animals and children. The zoonotic potential of RVA has received extensive attention in recent years. In May 2018, an outbreak of diarrhoea among piglets occurred on a swine farm in Sichuan province, PR China. RVA was detected in 95.7 % (22/23) of piglet samples, 60 % (9/15) of sow samples and 100 % (3/3) of pig-breeder faecal samples. The predominant RVA genotype on this swine farm was G3P[13], and G3P[13] RVA was also detected in the three breeder faecal samples. Three G3P[13] RVA strains were isolated from a piglet faecal sample, a sow faecal sample and a pig-breeder faecal sample, and were named SCLS-X1, SCLS-3 and SCLS-R3, respectively. The complete sequences of 11 gene segments of these three isolates were derived. Phylogenetic analysis showed that ten gene segments (VP7, VP4, VP1-VP3 and NSP1-NSP5) of pig-breeder isolate SCLS-R3 were closely related to pig isolates SCLS-X1 and SCLS-3 from this farm. Only the VP6 gene shared higher homology with human RVA strain I321. Therefore, a G3P[13] porcine RVA strain most likely infected pig breeders. These results provided the first complete epidemiological link demonstrating interspecies transmission of G3P[13] RVA from pigs to human. Our data contribute to an improved understanding of the genetic evolution and interspecies transmission of RVA.
Collapse
Affiliation(s)
- Nan Yan
- College of Life Science and Technology, Southwest Minzu University, Chengdu, PR China
| | - Hua Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, PR China
| | - Yuanwei Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, PR China
| | - Bin Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, PR China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, PR China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| |
Collapse
|
11
|
Tamim S, Heylen E, Zeller M, Ranst MV, Matthijnssens J, Salman M, Aamir UB, Sharif S, Ikram A, Hasan F. Phylogenetic analysis of open reading frame of 11 gene segments of novel human-bovine reassortant RVA G6P[1] strain in Pakistan. J Med Virol 2020; 92:3179-3186. [PMID: 31696948 DOI: 10.1002/jmv.25625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/30/2019] [Indexed: 11/05/2022]
Abstract
Multiple Rotavirus A (RVA) strains are linked with gastrointestinal infections in children that fall in age bracket of 0 to 60 months. However, the problem is augmented with emergence of unique strains that reassort with RVA strains of animal origin. The study describes the sequence analysis of a rare G6P[1] rotavirus strain isolated from a less than 1 year old child, during rotavirus surveillance in Rawalpindi district, Pakistan in 2010. Extracted RNA from fecal specimen was subjected to high throughput RT-PCR for structural and nonstructural gene segments. The complete rotavirus genome of one isolate RVA/Human-wt/PAK/PAK99/2010/G6P[1] was sequenced for phylogenetic analysis to elucidate the evolutionary linkages and origin. Full genome examination of novel strain RVA/Human-wt/PAK/PAK99/2010/G6P[1] revealed the unique genotype assemblage: G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H1. The evolutionary analyses of VP7, VP4, NSP1 and NSP3 gene segments revealed that PAK99 clustered with bovine, or cattle-like rotavirus strains from other closely related species, in the genotypes G6, P[1], A3 and T6 respectively. Gene segments VP6, VP1, VP2, VP3, NSP2 and NSP4 all possessed the DS-1-like bovine genotype 2 and bovine (-like) RVA strains instead of RVA strains having human origin. However, the NSP5 gene was found to cluster closely with contemporary human Wa-like rotavirus strains of H1 genotype. This is the first report on bovine-human (Wa-like reassortant) genotype constellation of G6P[1] strain from a human case in Pakistan (and the second description worldwide). Our results emphasize the significance of incessant monitoring of circulating RVA strains in humans and animals for better understanding of RV evolution.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Muhammad Salman
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Uzma Bashir Aamir
- IHP unit Health Emergencies, WHO Country Office, Islamabad, Pakistan
| | - Salman Sharif
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Genetic characterisation of novel G29P[14] and G10P[11] rotavirus strains from African buffalo. INFECTION GENETICS AND EVOLUTION 2020; 85:104463. [PMID: 32693063 DOI: 10.1016/j.meegid.2020.104463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/22/2022]
Abstract
We report the first description of rotavirus A strains in African buffalo (Syncerus caffer). Following RNA extraction from stool samples, cDNA was prepared, followed either by sequence-independent amplification and 454 pyrosequencing or direct sequencing on an Illumina MiSeq platform. RVA/Buffalo-wt/ZAF/4426/2002/G29P[14] exhibited a novel G29P[14] combination and an artiodactyl backbone: I2-R2-C2-M2-A11-N2-T6-E2-H3. RVA/Buffalo-wt/ZAF/1442/2007/G10P[11] also exhibited an artiodactyl backbone: I2-R2-C2-M2-A13-N2-T6-E2-H3. Characterisation of these genome constellations indicate that the two buffalo strains are moderately diverse from each other and related to South African bovine RVA strains. The detection of RVA in buffalo contribute to our understanding of the host range of rotavirus in animals.
Collapse
|
13
|
Shoeib A, Velasquez Portocarrero DE, Wang Y, Jiang B. First isolation and whole-genome characterization of a G9P[14] rotavirus strain from a diarrheic child in Egypt. J Gen Virol 2020; 101:896-901. [PMID: 32552988 DOI: 10.1099/jgv.0.001455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unusual group A rotavirus (RVA) strain (RVA/Human-tc/EGY/AS997/2012/G9[14]) was isolated for the first time in a faecal sample from a 6-month-old child who was hospitalized for treatment of acute gastroenteritis in Egypt in 2012. Whole-genome analysis showed that the strain AS997 had a unique genotype constellation: G9-P[14]-I2-R2-C2-M2-A11-N2-T1-E2-H1. Phylogenetic analysis indicated that the strain AS997 had the consensus P[14] genotype constellation with the G9, T1 and H1 reassortment. This suggests either a mixed gene configuration originated from a human Wa-like strain and a P[14]-containing animal virus, or that this P[14] could have been acquired via reassortment of human strains only. The study shows the possible roles of interspecies transmission and multiple reassortment events leading to the generation of novel rotavirus genotypes and underlines the importance of whole-genome characterization of rotavirus strains in surveillance studies.
Collapse
Affiliation(s)
- Ashraf Shoeib
- Environmental Research Division, National Research Center, 12311 Dokki, Egypt
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| | | | - Yuhuan Wang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Strydom A, Motanyane L, Nyaga MM, João ED, Cuamba A, Mandomando I, Cassocera M, de Deus N, O'Neill H. Whole-genome characterization of G12 rotavirus strains detected in Mozambique reveals a co-infection with a GXP[14] strain of possible animal origin. J Gen Virol 2019; 100:932-937. [PMID: 31140967 DOI: 10.1099/jgv.0.001270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A high prevalence of G12 rotavirus strains has previously been reported in southern Mozambique. In this study, the full genomes of five Mozambican G12 strains were determined directly from stool using an Illumina Miseq platform. One sample (0060) contained an intergenogroup co-infection of a G12P[8] Wa-like strain and a GXP[14] DS-1-like strain. The sequences of seven genome segments, detected for the GXP[14] strain, clustered with a diverse group of mostly animal strains, suggesting co-infection with a strain of possible animal origin. The stool samples contained G12P[6] rotavirus strains with Wa-like backbones. Phylogenetic analyses of the VP4 and VP7 encoding segments of the G12P[6] strains suggested that they were reassortants containing backbones that are similar to that of the G12P[8] strain. The study confirms previous observations of interspecies transmission and emphasizes the importance of whole-genome sequencing in order to evaluate rotavirus co-infections and reassortants.
Collapse
Affiliation(s)
- Amy Strydom
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Lithabiso Motanyane
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Martin M Nyaga
- 2 Next Generation Sequencing Unit, Department of Medical Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Eva Dora João
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,4 Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | - Assa Cuamba
- 5 Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Inácio Mandomando
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,6 Instituto Nacional de Saúde, Maputo, Mozambique
| | - Marta Cassocera
- 3 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Hester O'Neill
- 1 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Rojas M, Dias HG, Gonçalves JLS, Manchego A, Rosadio R, Pezo D, Santos N. Genetic diversity and zoonotic potential of rotavirus A strains in the southern Andean highlands, Peru. Transbound Emerg Dis 2019; 66:1718-1726. [PMID: 31002476 DOI: 10.1111/tbed.13207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Interspecies transmission is an important mechanism of evolution and contributes to rotavirus A (RVA) diversity. In order to evaluate the detection frequency, genetic diversity, epidemiological characteristics and zoonotic potential of RVA strains in faecal specimens from humans and animals cohabiting in the same environment in the department of Cusco, Peru, by molecular analysis, 265 faecal specimens were obtained from alpacas, llamas, sheep and shepherd children, and tested for RVA by RT-PCR. Genotyping was performed by multiplex PCR and sequence analysis. Rotavirus A was detected in 20.3% of alpaca, 47.5% of llama, 100% of sheep and 33.3% of human samples. The most common genetic constellations were G3-P[40]-I8-E3-H6 in alpacas, G1/G3-P[8]-I1-E1-H1 in llamas, G1/G3/G35-P[1]/P[8]-I1-E1-H1 in sheep and G3-P[40]-I1/I8-E3-H1 in humans. The newly described genotypes P[40] and P[50] were identified in all host species, including humans. Genotyping showed that the majority of samples presented coinfection with two or more RVA strains. These data demonstrate the great genetic diversity of RVA in animals and humans in Cusco, Peru. Phylogenetic analysis suggested that the strains represent zoonotic transmission among the species studied. Due to the characteristics of the human and animal populations in this study (cohabitation of different host species in conditions of poor sanitation and hygiene), the occurrence of zoonoses is a real possibility.
Collapse
Affiliation(s)
- Miguel Rojas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Helver G Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Luiz S Gonçalves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Manchego
- Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raul Rosadio
- Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Danilo Pezo
- Instituto Veterinario de Investigaciones Tropicales y de Altura, Cusco, Peru
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Tamim S, Matthijnssens J, Heylen E, Zeller M, Van Ranst M, Salman M, Hasan F. Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010. Arch Virol 2019; 164:1781-1791. [PMID: 31079214 DOI: 10.1007/s00705-019-04271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/30/2019] [Indexed: 10/26/2022]
Abstract
Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan.
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Herestraat 49 box 1040, 3000, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
de Barros BDCV, Chagas EN, Bezerra LW, Ribeiro LG, Duarte Júnior JWB, Pereira D, da Penha Junior ET, Silva JR, Bezerra DAM, Bandeira RS, Pinheiro HHC, Guerra SDFDS, Guimarães RJDPSE, Mascarenhas JDP. Rotavirus A in wild and domestic animals from areas with environmental degradation in the Brazilian Amazon. PLoS One 2018; 13:e0209005. [PMID: 30562373 PMCID: PMC6298726 DOI: 10.1371/journal.pone.0209005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Acute gastroenteritis is one of the main causes of mortality in humans and young animals. Domestic and mainly wild animals such as bats, small rodents and birds are highly diversified animals in relation to their habitats and ecological niches and are widely distributed geographically in environments of forest fragmentation in some areas of the Amazon, being considered important sources for viruses that affect humans and other animals. Due to the anthropical activities, these animals changed their natural habitat and adapted to urbanized environments, thus representing risks to human and animal health. Although the knowledge of the global diversity of enteric viruses is scarce, there are reports demonstrating the detection of rotavirus in domestic animals and animals of productive systems, such as bovines and pigs. The present study investigated the prevalence of Rotavirus A in 648 fecal samples of different animal species from the northeastern mesoregion of the state of Pará, Brazil, which is characterized as an urbanized area with forest fragments. The fecal specimens were collected from October 2014 to April 2016 and subjected to a Qualitative Real-Time Polymerase Chain Reaction (RT-qPCR), using the NSP3 gene as a target. It was observed that 27.5% (178/648) of the samples presented positive results for RVA, with 178 samples distributed in birds (23.6%), canines (21.35%), chiropterans (17.98%), bovines (14.6%), horses (8.43%), small rodents (6.74%), pigs (3.93%) and felines (3.37%), demonstrating the circulation of RVA in domestic animals and suggesting that such proximity could cause transmissions between different species and the occurrence of rearrangements in the genome of RVA as already described in the literature, associated to the traces of environmental degradation in the studied areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Pereira
- Amazon Metropolitan University Center, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kumar N, Malik YS, Sharma K, Dhama K, Ghosh S, Bányai K, Kobayashi N, Singh RK. Molecular characterization of unusual bovine rotavirusAstrains having high genetic relatedness with human rotavirus: evidence for zooanthroponotic transmission. Zoonoses Public Health 2018; 65:431-442. [DOI: 10.1111/zph.12452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- N. Kumar
- National Institute of High Security Animal Diseases Bhopal Madhya Pradesh India
- Indian Veterinary Research Institute Izatnagar Uttar Pradesh India
| | - Y. S. Malik
- Indian Veterinary Research Institute Izatnagar Uttar Pradesh India
| | - K. Sharma
- National Institute of Research in Tribal Health Jabalpur Madhya Pradesh India
| | - K. Dhama
- Indian Veterinary Research Institute Izatnagar Uttar Pradesh India
| | - S. Ghosh
- Department of Biomedical SciencesOne Health Center for Zoonoses and Tropical Veterinary MedicineRoss University School of Veterinary Medicine Basseterre, St. Kitts West Indies
| | - K. Bányai
- Institute for Veterinary Medical ResearchCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - N. Kobayashi
- Sapporo Medical University School of Medicine Chuo‐Ku, Sapporo Japan
| | - R. K. Singh
- Indian Veterinary Research Institute Izatnagar Uttar Pradesh India
| |
Collapse
|
19
|
Jing Z, Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L. A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transbound Emerg Dis 2017; 65:e317-e328. [PMID: 29148270 PMCID: PMC7169750 DOI: 10.1111/tbed.12756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Group A rotaviruses (RVAs) are a major cause of serious intestinal disease in piglets. In this study, a novel pig strain was identified in a stool sample from China. The strain was designated RVA/Pig/China/LNCY/2016/G3P[13] and had a G3-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genome. The viral protein 7 (VP7) and non-structural protein 4 (NSP4) genes of RVA/Pig/China/LNCY/2016/G3P[13] were closely related to cogent genes of human RVAs, suggesting that a reassortment between pig and human strains had occurred. Recombination analysis showed that RVA/Pig/China/LNCY/2016/G3P[13] is a natural recombinant strain between the P[23] and P[7] RVA strains, and crossover points for recombination were found at nucleotides (nt) 456 and 804 of the VP4 gene. Elucidating the biological characteristics of porcine rotavirus (PoRV) will be helpful for further analyses of the epidemic characteristics of this virus. The results of this study provide valuable information for RVA recombination and evolution and will facilitate future investigations into the molecular pathogenesis of RVAs.
Collapse
Affiliation(s)
- Z Jing
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - D Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Dong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.,Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Liège, Belgium
| | - L Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
20
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
22
|
Dynamics of Virus Distribution in a Defined Swine Production Network Using Enteric Viruses as Molecular Markers. Appl Environ Microbiol 2017; 83:AEM.03187-16. [PMID: 27940545 DOI: 10.1128/aem.03187-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Modern swine production systems represent complex and dynamic networks involving numerous stakeholders. For instance, livestock transporters carry live animals between fattening sites, abattoirs, and other premises on a daily basis. This interconnected system may increase the risk of microbial spread within and between networks, although little information is available in that regard. In the present study, a swine network composed of 10 finishing farms, one abattoir, and three types of stakeholders (veterinarians, livestock transporters, and nutritional technicians) in Quebec, Canada, was selected to investigate specific vectors and reservoirs of enteric viruses. Environmental samples were collected from the premises over a 12-month period. Samples were screened using targeted reverse transcription-PCR and sequencing of two selected viral markers, group A rotaviruses (RVA) and porcine astroviruses (PoAstV), both prevalent and genetically heterogeneous swine enteric viruses. The results revealed frequent contamination of farm sites (21.4 to 100%), livestock transporter vehicles (30.6 to 68.8%) and, most importantly, the abattoir yard (46.7 to 94.1%), depending on the sample types. Although high levels of strain diversity for both viruses were found, identical PoAstV and RVA strains were detected in specific samples from farms, the abattoir yard, and the livestock transporter vehicle, suggesting interconnections between these premises and transporters. Overall, the results from this study underscore the potential role of abattoirs and livestock transport as a reservoir and transmission route for enteric viruses within and between animal production networks, respectively. IMPORTANCE Using rotaviruses and astroviruses as markers of enteric contamination in a swine network has revealed the potential role of abattoirs and livestock transporters as a reservoir and vectors of enteric pathogens. The results from this study highlight the importance of tightening biosecurity measures. For instance, implementing sanitary vacancy between animal batches and emphasizing washing, disinfection, and drying procedures on farms and for transportation vehicles, as well as giving limited access and circulation of vehicles throughout the production premises, are some examples of measures that should be applied properly. The results also emphasize the need to closely monitor the dynamics of enteric contamination in the swine industry in order to better understand and potentially prevent the spread of infectious diseases. This is especially relevant when a virulent and economically damaging agent is involved, as seen with the recent introduction of the porcine epidemic diarrhea virus in the country.
Collapse
|
23
|
Do LP, Kaneko M, Nakagomi T, Gauchan P, Agbemabiese CA, Dang AD, Nakagomi O. Molecular epidemiology of Rotavirus A, causing acute gastroenteritis hospitalizations among children in Nha Trang, Vietnam, 2007-2008: Identification of rare G9P[19] and G10P[14] strains. J Med Virol 2016; 89:621-631. [PMID: 27611738 DOI: 10.1002/jmv.24685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
Rotavirus A (RVA) causes acute diarrhea in children as well as animals. As part of a cross-sectional study of children less than 5 years of age hospitalized for acute diarrhea in Vietnam during a 15-month period (2007-2008), 322 (43.5%) of 741 fecal specimens contained RVA with 92% either G1P[8] or G3P[8]. This study was undertaken to further characterize strains that remained untypeable to complete the G and P genotypes of the 322 rotavirus-positive specimens. While 307 (95.3%) strains possessed the common human RVA genotypes: G1P[8] (45.0%), G2P[4] (2.8%), G3P[8] (46.9%), and G9P[8] (0.6%), sequencing of initially untypeable specimens revealed the presence of two unusual strains designated NT0073 and NT0082 possessing G9P[19] and G10P[14], respectively. The genotype constellation of NT0073 (G9-P[19]-I5-R1-C1-M1-A8-N1-T7-E1-H1) and the phylogenetic trees suggested its origin as a porcine RVA strain causing diarrhea in a 24-month-old girl whereas the genotype constellation of NT0082 (G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3) and the phylogenetic trees suggested its origin as an RVA strain of artiodactyl origin (such as cattle, sheep and goats) causing diarrhea in a 13-month-old boy. This study showed that RVA strains of animal host origin were not necessarily attenuated in humans. A hypothesis may be postulated that P[19] and P[14] VP4 spike proteins helped the virus to replicate in the human intestine but that efficient onward human-to-human spread after crossing the host species barrier may require the virus to obtain some additional features as there was no evidence of widespread transmission with the limited sampling performed over the study period. J. Med. Virol. 89:621-631, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Miho Kaneko
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Punita Gauchan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chantal Ama Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Anh Duc Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
24
|
Pourasgari F, Kaplon J, Karimi-Naghlani S, Fremy C, Otarod V, Ambert-Balay K, Mirjalili A, Pothier P. The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study. Arch Virol 2016; 161:3483-3494. [PMID: 27654669 DOI: 10.1007/s00705-016-3051-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/04/2016] [Indexed: 11/26/2022]
Abstract
Bovine group A rotavirus (bovine RVA) is recognized as a major cause of severe gastroenteritis in newborn calves. The purpose of this study was to estimate the prevalence and identify the genotypes of circulating bovine RVA in newborn diarrheic calves. Two hundred fifty-three stool samples of diarrheic calves up to 1 month old were collected from 42 industrial dairy farms in two Iranian provinces during March 2010 to February 2012. All collected samples were screened for the presence of bovine RVA by RT-PCR, and the G and P genotypes were determined by semi-nested multiplex RT-PCR assay. The results of RT-PCR indicated that 49.4 % (125 out of 253) of the samples were positive for bovine RVA. The G and P genotyping of a subset of positive samples (n = 85) by semi-nested multiplex RT-PCR revealed that G6 (55.3 %) and G10 (43.5 %) and P[5] (51.8 %) and P[11] (27 %) were the most prevalent G and P genotypes, respectively. G6P[5] was the dominant genotype (35.3 %), followed by G10P[5], G10P[11] and G6P[11], with prevalence rates of 16.5 %, 15.3 % and 10.6 %, respectively. Sequence analysis of 20 VP7 and four VP4 genes showed highest nucleotide sequence identity with the corresponding genes of strains RVA/Cow-tc/GBR/UK/1973/G6P7[5] and RVA/Cow-tc/USA/B223/XXXX/G10P[11]. The results of this study reveal the diversity of G and P genotypes in bovine RVA samples from diarrheic Iranian calves and expands our knowledge of bovine RVA infections in the Middle East. These results also highlight the importance of producing of an effective rotavirus vaccine and its inclusion in the national cattle immunization program.
Collapse
Affiliation(s)
- Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran.
- Division of Advanced Diagnostics, Toronto General Research Institute, UHN, Toronto, Canada.
| | - Jérôme Kaplon
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, France
- AgroSup Dijon, PAM UMR A 02.102, Université de Bourgogne Franche-Comte, Dijon, France
| | | | - Céline Fremy
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, France
- Queen's Elizabeth Hospital, Birmingham, UK
| | | | - Katia Ambert-Balay
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, France
- AgroSup Dijon, PAM UMR A 02.102, Université de Bourgogne Franche-Comte, Dijon, France
| | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Pierre Pothier
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, France.
- AgroSup Dijon, PAM UMR A 02.102, Université de Bourgogne Franche-Comte, Dijon, France.
| |
Collapse
|
25
|
Malik YS, Kumar N, Sharma K, Saurabh S, Dhama K, Prasad M, Ghosh S, Bányai K, Kobayashi N, Singh RK. Multispecies reassortant bovine rotavirus strain carries a novel simian G3-like VP7 genotype. INFECTION GENETICS AND EVOLUTION 2016; 41:63-72. [PMID: 27033751 DOI: 10.1016/j.meegid.2016.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Rotavirus-A (RVAs), are the major cause of severe gastroenteritis in the young of mammals and birds. RVA strains possessing G6, G8, and G10 genotypes in combination with P[1] or P[11] have been commonly detected in cattle. During a routine surveillance for enteric viruses in a bovine population on North-Western temperate Himalayan region of India, an uncommon bovine RVA strain, designated as RVA/Cow-wt/IND/M1/09/2009 was detected in a diarrhoeic crossbred calf. The examination of nearly complete genome sequence of this RVA strain revealed an unusual G-P combination (G3P[11]) on a typical bovine RVA genotype backbone (I2-R2-C2-M2-A11-N2-T6-E2-H3). The VP7 gene of M1/09 isolate displayed a maximum nucleotide sequence identity of 73.8% with simian strain (RVA/Simian-tc/USA/RRV/1975/G3P[3]). The VP4 and NSP5 genes clustered with an Indian pig strain, RVA/Pig-wt/IND/AM-P66/2012/G10P[11] (99.6%), and a caprine strain, RVA/Goat-tc/BGD/GO34/1999/G6P[1] (98.9%) from Bangladesh, respectively, whilst the, VP6, NSP1, NSP3 and NSP4 genes were identical or nearly identical to Indian bovine strains (RVA/Cow-wt/IND/B-72/2008/G10P[X], RVA/Cow-wt/IND/B85/2010/GXP[X], and RVA/Cow-wt/IND/C91/2011/G6P[X]). The remaining four genes (VP1, VP2, VP3 and NSP2) were more closely related to RVA/Human-wt/ITA/PAI11/1996/G2P[4] (93.5%), RVA/Sheep-wt/CHN/LLR/1985/G10P[15] (88.8%), RVA/Human-tc/SWE/1076/1983/G2P2A[6] (93.2%) and RVA/Human-wt/AUS/CK20003/2000/G2P[4] (91.2%), respectively. Altogether, these findings are suggestive of multiple independent interspecies transmission and reassortment events between co-circulating bovine, porcine, ovine and human rotaviruses. The complete genome sequence information is necessary to establish the evolutionary relationship, interspecies transmission and ecological features of animal RVAs from different geographical regions.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| | - Naveen Kumar
- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India.
| | - Kuldeep Sharma
- National Institute of Research in Tribal Health, Jabalpur -482 003, Madhya Pradesh, India.
| | - Sharad Saurabh
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| | - Kuldeep Dhama
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| | - Minakshi Prasad
- Department of Animal Biotechnology, LUVAS, Hisar 125 001, Haryana, India.
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P. O. Box 334, Basseterre, Saint Kitts, West Indies.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt 21, Budapest 1143, Hungary.
| | | | - Raj Kumar Singh
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| |
Collapse
|
26
|
Lin J, Singh A. Detection of human enteric viruses in Umgeni River, Durban, South Africa. JOURNAL OF WATER AND HEALTH 2015; 13:1098-112. [PMID: 26608771 DOI: 10.2166/wh.2015.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The prevalence of adenovirus (AdV), rotaviruses (RV) and enteroviruses (EV) in Umgeni River waters of Durban, South Africa was assessed qualitatively and quantitatively during April 2011 to January 2012 using polymerase chain reaction (PCR)/reverse transcription-polymerase chain reaction (RT-PCR), nested PCR and quantitative PCR (qPCR), as well as nested integrated cell culture PCR (nested ICC-PCR). The phylogenetic analysis of the adenovirus and enterovirus amplicons was also performed. The nested PCR results effectively detected the presence of AdV and EV in all water samples. The results of qPCR demonstrated that higher populations of EV and of AdV were widely found in the Umgeni River. Rotavirus could only be detected in the upper Umgeni River, mainly during drier seasons. Nested ICC-PCR further confirmed the presence of infectious AdV and EV particles in 100% of water samples using various cell lines. The present study identifies potential viral hazards of Umgeni River water for domestic water supply and recreational activities.
Collapse
Affiliation(s)
- Johnson Lin
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| | - Atheesha Singh
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville), Private Bag X54001, Durban, South Africa E-mail:
| |
Collapse
|
27
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-50. [DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Evolution of a G6P[6] rotavirus strain isolated from a child with acute gastroenteritis in Ghana, 2012. J Gen Virol 2015; 96:2219-2231. [DOI: 10.1099/vir.0.000174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
30
|
Abstract
Rotaviruses are leading causes of gastroenteritis in the young of many species. Molecular epidemiological studies in children suggest that interspecies transmission contributes to rotavirus strain diversity in people. However, population-based studies of rotaviruses in animals are few. We investigated the prevalence, risk factors for infection, and genetic diversity of rotavirus A in a cross-sectional survey of cats housed within 25 rescue catteries across the United Kingdom. Morning litter tray fecal samples were collected during the winter and summer in 2012 from all pens containing kittens and a random sample of those housing adult cats. Group A rotavirus RNA was detected by real-time reverse transcription-PCR, and positive samples were G and P genotyped using nested VP4 and VP7 PCR assays. A total of 1,727 fecal samples were collected from 1,105 pens. Overall, the prevalence of rotavirus was 3.0% (95% confidence interval [CI], 1.2 to 4.9%). Thirteen out of 25 (52%; 95% CI, 31.3 to 72.2%) centers housed at least one rotavirus-positive cat. The prevalence of rotavirus was associated with season (odds ratio, 14.8 [95% CI, 1.1 to 200.4]; P = 0.04) but not age or diarrhea. It was higher during the summer (4.7%; 95% CI, 1.2 to 8.3%) than in winter (0.8%; 95% CI, 0.2 to 1.5%). Asymptomatic epidemics of infection were detected in two centers. G genotypes were characterized for 19 (33.3%) of the 57 rotavirus-positive samples and P genotypes for 36 (59.7%). Two rotavirus genotypes were identified, G3P[9] and G6P[9]. This is the first population-based study of rotavirus in cats and the first report of feline G6P[9], which questions the previous belief that G6P[9] in people is of bovine origin.
Collapse
|
31
|
Chandler-Bostock R, Hancox LR, Nawaz S, Watts O, Iturriza-Gomara M, Mellits KH, Mellits KM. Genetic diversity of porcine group A rotavirus strains in the UK. Vet Microbiol 2014; 173:27-37. [PMID: 25123085 PMCID: PMC4158422 DOI: 10.1016/j.vetmic.2014.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/28/2022]
Abstract
This is the first study of rotavirus genotypes circulating in UK pigs. Rotavirus transmission between pigs and humans is not thought to be common in the UK. Human rotavirus genotype P[8] found in a UK pig. The uncommon rotavirus genotype P[32] is widespread in UK pig herds.
Rotavirus is endemic in pig farms where it causes a loss in production. This study is the first to characterise porcine rotavirus circulating in UK pigs. Samples from diarrheic pigs with rotavirus enteritis obtained between 2010 and 2012 were genotyped in order to determine the diversity of group A rotavirus (GARV) in UK pigs. A wide range of rotavirus genotypes were identified in UK pigs: six G types (VP7); G2, G3, G4, G5, G9 and G11 and six P types (VP4); P[6], P[7], P[8], P[13], P[23], and P[32]. With the exception of a single P[8] isolate, there was less than 95% nucleotide identity between sequences from this study and any available rotavirus sequences. The G9 and P[6] genotypes are capable of infecting both humans and pigs, but showed no species cross-over within the UK as they were shown to be genetically distinct, which suggested zoonotic transmission is rare within the UK. We identified the P[8] genotype in one isolate, this genotype is almost exclusively found in humans. The P[8] was linked to a human Irish rotavirus isolate in the same year. The discovery of human genotype P[8] rotavirus in a UK pig confirms this common human genotype can infect pigs and also highlights the necessity of surveillance of porcine rotavirus genotypes to safeguard human as well as porcine health.
Collapse
Affiliation(s)
- Rebecca Chandler-Bostock
- University of Nottingham, School of Biosciences, Division of Food Science, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Laura R Hancox
- University of Nottingham, School of Biosciences, Division of Food Science, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Sameena Nawaz
- Virus Reference Department, Public Health England, London, NW9 5HT, UK
| | - Oliver Watts
- University of Nottingham, School of Biosciences, Division of Food Science, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | - Kenneth M Mellits
- University of Nottingham, School of Biosciences, Division of Food Science, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
32
|
Cui J, Fu X, Xie J, Gao M, Hong M, Chen Y, Su S, Li S. Critical role of cellular cholesterol in bovine rotavirus infection. Virol J 2014; 11:98. [PMID: 24884772 PMCID: PMC4053397 DOI: 10.1186/1743-422x-11-98] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Background Bovine rotavirus (BRV) is a non-enveloped dsRNA virus that cause neonatal calf diarrhea. Lipid rafts are cholesterol-enrich membrane mircodomains that play a vital role in many cellular processes. In this study, the effect of cellular cholesterol depletion on infection of MA-104 cells with bovine rotavirus was investigated. Results We demonstrated that cholesterol depletion of the plasma membrane by MβCD had no effect on BRV binding to cells but significantly impaired BRV entry in a dose-dependent manner and the effect was partially reversed by addition of exogenous cholesterol, suggesting the reduction of BRV infection by MβCD was specifically due to cholesterol depletion. Cholesterol depletion after virus entry did not reduce BRV replication, whereas affected virus assembly. Conclusions Taken together, our results demonstrate that cell membrane cholesterol is essential to BRV infectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
33
|
Machnowska P, Ellerbroek L, Johne R. Detection and characterization of potentially zoonotic viruses in faeces of pigs at slaughter in Germany. Vet Microbiol 2013; 168:60-8. [PMID: 24247020 DOI: 10.1016/j.vetmic.2013.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022]
Abstract
Pigs can harbour a variety of viruses in their gastrointestinal tract. Some of them are closely related to human viruses and are therefore suspected to have a zoonotic potential. Only little is known about the presence of those viruses in pigs at slaughter. However, by contamination of meat with zoonotic viruses during the slaughtering process, food-borne transmission to humans may be possible. Here we analyzed 120 faecal samples of pigs at slaughter from 3 different geographical regions of Germany for the presence of astrovirus (AstV), encephalomyocarditis virus (EMCV), hepatitis E virus (HEV), norovirus genogroup II (NoV GII) and group A rotavirus (GARV). Using real-time RT-PCR, the most frequently detected virus was AstV, which was present in 20.8% of the samples, followed by NoV GII with a detection rate of 14.2%. EMCV, HEV and GARV were found only occasionally with detection rates of 4.2%, 2.5% and 0.8%, respectively. Analyses of partial genome sequences of the viruses indicated that the detected AstV and NoV GII mainly represented typical pig virus strains, which have not been detected in humans so far. However, the GARV and HEV strains were more closely related to human strains. The results indicate that enteric viruses, some of them with zoonotic potential, are present in pig faeces at slaughter. Application of good hygiene practice is necessary to minimize the risk of introducing these viruses into the food and to prevent virus transmission to highly exposed persons such as slaughterers and veterinarians.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Federal Institute for Risk Assessment, Department of Biological Safety, 12277 Berlin, Germany
| | - Lüppo Ellerbroek
- Federal Institute for Risk Assessment, Department of Biological Safety, 12277 Berlin, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Department of Biological Safety, 12277 Berlin, Germany.
| |
Collapse
|
34
|
Genetic characterization of a rare bovine-like human VP4 mono-reassortant G6P[8] rotavirus strain detected from an infant in Bangladesh. INFECTION GENETICS AND EVOLUTION 2013; 19:120-6. [PMID: 23851022 DOI: 10.1016/j.meegid.2013.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 01/23/2023]
Abstract
During an ongoing diarrhea etiology surveillance in Mirzapur, Bangladesh, a rare human G6P[8] RVA strain (RVA/Human-wt/BGD/KH2288/2011/G6P[8]) was detected in a stool sample of a 7-month-old infant with acute diarrhea. Complete genotype analyses revealed that KH2288 possessed the G6-P[8]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotype constellation. Sequence analysis of the VP7 gene revealed a close phylogenetic relationship with bovine G6 strains from India, whereas, the VP4 gene segment was nearly identical to typical human P[8] strain circulating in Bangladesh and the rest of the world. Phylogenetic analysis of the remaining nine gene segments revealed a close relatedness to either animal or animal derived human RVA strain. We speculated that, strain KH2288 was a monoreassortant between a human RVA strain and a RVA strain typically infecting member of the Artiodactyla, such as cattle, goat or sheep. To our knowledge, this is the first complete genotyping report of a naturally occurring G6P[8] RVA strain, worldwide.
Collapse
|
35
|
Schoondermark-van de Ven E, Van Ranst M, de Bruin W, van den Hurk P, Zeller M, Matthijnssens J, Heylen E. Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Vet Microbiol 2013; 166:154-64. [PMID: 23830050 DOI: 10.1016/j.vetmic.2013.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Group A rotaviruses (RVAs) are the main etiological agent of infantile diarrhea in both humans and animals worldwide. A limited number of studies have investigated the molecular characteristics of RVA strains in stool specimens of rabbits, with only a few lapine RVA strains isolated and (partially) characterized to date. The most common G/P-genotype combinations found in rabbits are G3P[14] and G3P[22]. In this study a RVA strain was isolated from the small intestine of a 9-week-old rabbit from an infected laboratory rabbit colony. The RVA strain RVA/Rabbit-tc/NLD/K1130027/2011/G6P[11] was shown to possess the typical bovine G6 and P[11] genotypes. The complete genome of this unusual lapine strain was sequenced and characterized. Phylogenetic analyses of all 11 gene segments revealed the following genotype constellation: G6-P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3. The VP1, VP2, VP3, VP6, NSP2 and NSP4 genes all belonged to DS-1-like genotype 2, but clustered more closely to bovine RVA strains than to lapine RVA strains. The NSP1 genotype A13 is typically associated with bovine RVAs, while the NSP3 genotype T6 and the NSP5 genotype H3 have been found in a wide variety of species. However, the isolated strain clustered within bovine(-like) T6 and H3 subclusters. Overall, the data indicate that the RVA strain is most closely related to bovine-like RVA strains and most likely represents a direct interspecies transmission from a cow to a rabbit. Altogether, these findings indicate that a RVA strain with an entirely bovine genome constellation was able to infect and spread in a laboratory rabbit colony.
Collapse
|
36
|
Papp H, Borzák R, Farkas S, Kisfali P, Lengyel G, Molnár P, Melegh B, Matthijnssens J, Jakab F, Martella V, Bányai K. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period. INFECTION GENETICS AND EVOLUTION 2013; 19:71-80. [PMID: 23792183 DOI: 10.1016/j.meegid.2013.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Genotype G4P[6] Rotavirus A (RVA) strains collected from children admitted to hospital with gastroenteritis over a 15 year period in the pre rotavirus vaccine era in Hungary were characterized in this study. Whole genome sequencing and phylogenetic analysis was performed on eight G4P[6] RVA strains. All these RVA strains shared a fairly conservative genomic configuration (G4-P[6]-I1/I5-R1-C1-M1-A1/A8-N1-T1/T7-E1-H1) and showed striking similarities to porcine and porcine-derived human RVA strains collected worldwide, although genetic relatedness to some common human RVA strains was also seen. The resolution of phylogenetic relationship between porcine and human RVA genes was occasionally low, making the evaluation of host species origin of individual genes sometimes difficult. Yet the whole genome constellations and overall phylogenetic analyses indicated that these eight Hungarian G4P[6] RVA strains may have originated by independent zoonotic transmission, probably from pigs. Future surveillance studies of human and animal RVA should go parallel to enable the distinction between direct interspecies transmission events and those that are coupled with reassortment of cognate genes.
Collapse
Affiliation(s)
- Hajnalka Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakagomi T, Doan YH, Dove W, Ngwira B, Iturriza-Gómara M, Nakagomi O, Cunliffe NA. G8 rotaviruses with conserved genotype constellations detected in Malawi over 10 years (1997-2007) display frequent gene reassortment among strains co-circulating in humans. J Gen Virol 2013; 94:1273-1295. [PMID: 23407423 PMCID: PMC3945219 DOI: 10.1099/vir.0.050625-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Rotavirus A, the most common cause of severe diarrhoea in children worldwide, occurs in five major VP7 (G) and VP4 (P) genotype combinations, comprising G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. However, G8, a common bovine rotavirus genotype, has been reported frequently among children in African countries. Surveillance of rotavirus gastroenteritis conducted in a sentinel hospital in Blantyre, Malawi between 1997 and 2007 provided a rare opportunity to examine the whole genotype constellation of G8 strains and their evolution over time. A sample of 27 (9.0 %) of 299 G8 strains was selected to represent each surveillance year and a range of P genotypes, which shifted in predominance from P[6] to P[4] and P[8] during the study period. Following cell culture adaptation, whole genome sequencing demonstrated that the genetic background of 26 strains possessed the DS-1 genotype constellation. A single G8P[6] strain was a reassortant in which both NSP2 and NSP5 genes from strains with the Wa genotype constellation had been inserted into a strain with the DS-1 genotype background. Phylogenetic analysis suggested frequent reassortment among co-circulating strains with the DS-1 genotype constellation. Little evidence was identified to suggest the introduction of contemporary bovine rotavirus genes into any of the 27 G8 strains examined. In conclusion, Malawian G8 strains are closely related to other human strains with the DS-1 genotype constellation. They have evolved over the last decade through genetic reassortment with other human rotaviruses, changing their VP4 genotypes while maintaining a conserved genotype constellation for the remaining structural and non-structural proteins.
Collapse
Affiliation(s)
- Toyoko Nakagomi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, and the Global Centre of Excellence, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, and the Global Centre of Excellence, Nagasaki University, Nagasaki, Japan
| | - Winifred Dove
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bagrey Ngwira
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miren Iturriza-Gómara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Osamu Nakagomi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, and the Global Centre of Excellence, Nagasaki University, Nagasaki, Japan
| | - Nigel A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|