1
|
Katati B, Kovács S, Njapau H, Kachapulula PW, Zwaan BJ, van Diepeningen AD, Schoustra SE. Maize Aspergillus section Flavi isolate diversity may be distinct from that of soil and subsequently the source of aflatoxin contamination. Mycotoxin Res 2024; 40:351-367. [PMID: 38647834 PMCID: PMC11258066 DOI: 10.1007/s12550-024-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Aspergillus section Flavi (Flavi) is a diverse group of fungal species whose common members include A. flavus and A. parasiticus. These are well-known for the production of aflatoxin (AF) B and G and other toxic metabolites, like cyclopiazonic acid (CPA). They are saprophytic soil dwellers and also become crop opportunistic epiphytes. The consequence is contamination of the crop with mycotoxins, such as carcinogenic AF. We investigated the Flavi community structure of maize and that of their surrounding soil, including their mycotoxigenicity. Furthermore, we investigated the link of the maize Flavi diversity with preharvest maize AF levels. The study was carried out in four selected districts of Zambia, in a low rainfall zone. The Flavi characterisation was triphasic, involving morphological (colony colour and sclerotia formation), metabolic (AF and CPA production) and genetic (calmodulin gene polymorphism) analyses. Flavi abundance was determined by dilution plate technique on modified rose Bengal agar. Results showed that Flavi communities on maize and in soil differed. Maize had a higher Flavi species diversity than soil. A. parasiticus dominated the soil community by frequency of field appearance (85%), while maize was dominated by A. minisclerotigenes (45%). CPA-producers with or without AF production dominated the maize (65%) while producers of only AF (B/G) dominated the soil (88%). The ratio between maize A. parasiticus and A. minisclerotigenes abundance seemed to have had a bearing on the levels of AF in maize, with a ratio close to 1:1 having higher levels than a pure community of either A. parasiticus or A. minisclerotigenes.
Collapse
Affiliation(s)
- Bwalya Katati
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands.
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka, Zambia.
| | - Stan Kovács
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Henry Njapau
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka, Zambia
| | | | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Anne D van Diepeningen
- Biointeractions and Plant Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
2
|
Tan XT, Mokhtar NNB, Hii S, Amran F. Antifungal Susceptibility and Genotypic Analysis of cyp51A Mutations in Aspergillus fumigatus Isolates in Malaysia. Infect Drug Resist 2024; 17:2159-2168. [PMID: 38828376 PMCID: PMC11144424 DOI: 10.2147/idr.s452619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Azole resistance in Aspergillus fumigatus poses a significant challenge in the management of invasive aspergillosis. This study aimed to investigate the antifungal susceptibility and cyp51A mutation profiles of A. fumigatus isolates in Malaysia. Patients and Methods Sixty clinical A. fumigatus isolates were collected and subjected to antifungal susceptibility testing (AFST) and molecular analysis. The antifungal susceptibility testing was performed according to CLSI M38 guideline. The geometric mean (GM) minimum inhibitory concentration (MIC), MIC50/MIC90 for voriconazole, itraconazole, posaconazole, amphotericin B, and isavuconazole against A. fumigatus in non-invasive cases and invasive cases were calculated. In addition, the presence of cyp51A mutations was also identified. Results The present study revealed an overall resistance rate of 6.7% among the isolates. In non-invasive cases, isavuconazole and posaconazole demonstrated the lowest GM MIC of 0.08 µg/mL. Following them were itraconazole, voriconazole, and amphotericin B with concentrations of 0.15µg/mL, 0.16µg/mL and 0.90µg/mL, respectively. Similarly, in invasive cases, isavuconazole and posaconazole exhibited the lowest GM MIC of 0.09µg/mL. Following them were itraconazole, voriconazole, and amphotericin B with concentrations of 0.14µg/mL, 0.17µg/mL and 0.80µg/mL, respectively. Genotypic analysis revealed various cyp51A mutations, including F46Y, M172V, N248K, R34L, V244A, V244S, and E427K. However, not all mutations corresponded to antifungal resistance. Conclusion The majority of clinical Aspergillus fumigatus isolates demonstrated susceptibility to the antifungal agents tested, with isavuconazole and posaconazole demonstrating the lowest MIC values. However, cyp51A mutations were discovered without a consistent correlation to antifungal resistance, emphasising the need for additional research.
Collapse
Affiliation(s)
- Xue Ting Tan
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Nurin Nazirah Binti Mokhtar
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Shirley Yi Fen Hii
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Fairuz Amran
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Steenwyk JL, Balamurugan C, Raja HA, Gonçalves C, Li N, Martin F, Berman J, Oberlies NH, Gibbons JG, Goldman GH, Geiser DM, Houbraken J, Hibbett DS, Rokas A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. Microbiol Spectr 2024; 12:e0398023. [PMID: 38445873 PMCID: PMC10986620 DOI: 10.1128/spectrum.03980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ningxiao Li
- Department of Plant Pathology, University of California, Davis, California, USA
- USDA-ARS, Salinas, California, USA
| | | | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, Pennsylvania, USA
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| |
Collapse
|
4
|
Zhiyuan H, Lin C, Yihan W, Meng D, Yanzi L, Zhenggang X. Reexamination of Aspergillus cristatus phylogeny in dark tea: Characteristics of the mitochondrial genome. Open Life Sci 2024; 19:20220838. [PMID: 38585639 PMCID: PMC10997147 DOI: 10.1515/biol-2022-0838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
To enhance our understanding of Aspergillus cristatus, an important functional microorganism, the characteristics of its mitochondrial genome were analyzed and compared with related species. The mitochondrial genome of A. cristatus was determined to be 77,649 bp in length, with 15 protein-coding regions. Notably, its length surpassed that of the other species, primarily attributable to the intron length. Gene order exhibited significant variations, with greater conservation observed in the genus Penicillium compared to Aspergillus. Phylogenetic tree analyses indicated that the genera Aspergillus and Penicillium are closely related but monophyletic. Furthermore, the phylogenetic tree constructed based on protein-coding genes effectively distinguished all strains with high branching confidence. This approach provides a robust reflection of the evolutionary relationship between A. cristatus and its related species, offering potential for the development of molecular markers suitable for Aspergillus and Penicillium.
Collapse
Affiliation(s)
- Hu Zhiyuan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Chen Lin
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Wang Yihan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Dong Meng
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Li Yanzi
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Xu Zhenggang
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
- College of Forestry, Northwest A & F University, Yangling712100, Shaanxi, China
| |
Collapse
|
5
|
Halue G, Chieochanthanakij R, Kittipanyaworakun T, Passorn P, Kaewboonsert D, Tharavichitkul T, Banjongjit A, Kanjanabuch T, Eiam-Ong S. Peritonitis Caused by Various Species of Diaporthe in Peritoneal Dialysis Patients: A Plant Pathogen to Human Infection. Cureus 2024; 16:e57016. [PMID: 38681421 PMCID: PMC11046254 DOI: 10.7759/cureus.57016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Peritonitis caused by dematiaceous molds is uncommon but poses a significant threat to patients undergoing peritoneal dialysis (PD), leading to high mortality and morbidity. This report highlights three cases of peritonitis caused by three distinct species of Diaporthe (D. amygdali, D. eucalyptorum, and D. phaseolorum), initially unidentified through conventional culture methods. The nucleotide sequences of internal transcribed spacer regions (ITS), 18S nuclear ribosomal small subunit (SSU), and 28S nuclear ribosomal large subunit (LSU) of the ribosomal DNA gene correctly identified the isolates. Despite early catheter removal and administration of appropriate antifungal medications, all patients experienced fatal outcomes. DNA barcoding emerges as a valuable tool for accurately diagnosing species within the genus of pathogenic microbes, aiding in identifying the root causes of infections. It emphasizes the importance of strict adherence to aseptic techniques during PD exchanges to prevent peritonitis caused by plant-borne pathogens.
Collapse
Affiliation(s)
- Guttiga Halue
- Department of Medicine, Phayao Hospital, Phayao, THA
| | | | | | | | | | - Tanyalak Tharavichitkul
- Division of Nephrology, Department of Medicine, Chiangrai Prachanukroh Hospital, Chiangrai, THA
| | | | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
- Continuous Ambulatory Peritoneal Dialysis (CAPD) Excellent Center, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, THA
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
| |
Collapse
|
6
|
Djenontin E, Costa JM, Mousavi B, Nguyen LDN, Guillot J, Delhaes L, Botterel F, Dannaoui E. The Molecular Identification and Antifungal Susceptibility of Clinical Isolates of Aspergillus Section Flavi from Three French Hospitals. Microorganisms 2023; 11:2429. [PMID: 37894087 PMCID: PMC10609271 DOI: 10.3390/microorganisms11102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Aspergillus flavus is a cosmopolitan mold with medical, veterinary, and agronomic concerns. Its morphological similarity to other cryptic species of the Flavi section requires molecular identification techniques that are not routinely performed. For clinical isolates of Aspergillus section Flavi, we present the molecular identification, susceptibility to six antifungal agents, and clinical context of source patients. (2) Methods: One hundred forty fungal clinical isolates were included in the study. These isolates, recovered over a 15-year period (2001-2015), were identified based on their morphological characteristics as belonging to section Flavi. After the subculture, sequencing of a part of the β-tubulin and calmodulin genes was performed, and resistance to azole antifungals was screened on agar plates containing itraconazole and voriconazole. Minimum inhibitory concentrations were determined for 120 isolates by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. (3) Results: Partial β-tubulin and calmodulin sequences analysis showed that 138/140 isolates were A. flavus sensu stricto, 1 isolate was A. parasiticus/sojae, and 1 was A. nomiae. Many of the isolates came from samples collected in the context of respiratory tract colonization. Among probable or proven aspergillosis, respiratory infections were the most frequent, followed by ENT infections. Antifungal susceptibility testing was available for isolates (n = 120, all A. flavus ss) from one hospital. The MIC range (geometric mean MIC) in mg/L was 0.5-8 (0.77), 0.5-8 (1.03), 0.125-2 (0.25), 0.03-2 (0.22), 0.25-8 (1.91), and 0.03-0.125 (0.061) for voriconazole, isavuconazole, itraconazole, posaconazole, amphotericin B, and caspofungin, respectively. Two (1.67%) isolates showed resistance to isavuconazole according to current EUCAST breakpoints with MICs at 8 mg/L for isavuconazole and voriconazole. One of these two isolates was also resistant to itraconazole with MIC at 2 mg/L. (4) Conclusions: The present characterization of a large collection of Aspergillus belonging to the Flavi section confirmed that A. flavus ss is the predominant species. It is mainly implicated in respiratory and ENT infections. The emergence of resistance highlights the need to perform susceptibility tests on section Flavi isolates.
Collapse
Affiliation(s)
- Elie Djenontin
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Jean-Marc Costa
- Laboratoire CERBA, 11 Rue de l’Équerre, 95310 Saint-Ouen-l’Aumône, France;
| | - Bita Mousavi
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
| | | | - Jacques Guillot
- Unité pédagogique de Dermatologie, Parasitologie, Mycologie, Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique, Oniris, 44300 Nantes, France;
| | - Laurence Delhaes
- Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques—CHU de Bordeaux, INSERM U1045—Univ. Bordeaux, 33000 Bordeaux, France;
| | - Françoise Botterel
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Service de Parasitologie-Mycologie, Hôpital Universitaire Mondor, AP-HP, 8 Rue du Général Sarrail, 94010 Créteil, France
| | - Eric Dannaoui
- Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94010 Créteil, France; (E.D.); (B.M.); (F.B.)
- Faculté de Médecine, Université Paris Cité, 75006 Paris, France
- Unité de Parasitologie-Mycologie, Hôpital Necker Enfants Malades, AP-HP, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
7
|
Moura-Mendes J, Cazal-Martínez CC, Rojas C, Ferreira F, Pérez-Estigarribia P, Dias N, Godoy P, Costa J, Santos C, Arrua A. Species Identification and Mycotoxigenic Potential of Aspergillus Section Flavi Isolated from Maize Marketed in the Metropolitan Region of Asunción, Paraguay. Microorganisms 2023; 11:1879. [PMID: 37630439 PMCID: PMC10458825 DOI: 10.3390/microorganisms11081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Zea mays var. amylacea and Zea mays var. indurata are maize ecotypes from Paraguay. Aspergillus section Flavi is the main spoilage fungus of maize under storage conditions. Due to its large intraspecific genetic variability, the accurate identification of this fungal taxonomic group is difficult. In the present study, potential mycotoxigenic strains of Aspergillus section Flavi isolated from Z. mays var. indurata and Z. mays var. amylacea that are marketed in the metropolitan region of Asunción were identified by a polyphasic approach. Based on morphological characters, 211 isolates were confirmed to belong to Aspergillus section Flavi. A subset of 92 strains was identified as Aspergillus flavus by mass spectrometry MALDI-TOF and the strains were classified by MALDI-TOF MS into chemotypes based on their aflatoxins and cyclopiazonic acid production. According to the partial sequencing of ITS and CaM genes, a representative subset of 38 A. flavus strains was confirmed. Overall, 75 A. flavus strains (86%) were characterized as producers of aflatoxins. The co-occurrence of at least two mycotoxins (AF/ZEA, FUM/ZEA, and AF/ZEA/FUM) was detected for five of the Z. mays samples (63%). Considering the high mycological bioburden and mycotoxin contamination, maize marketed in the metropolitan region of Asunción constitutes a potential risk to food safety and public health and requires control measures.
Collapse
Affiliation(s)
- Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
| | - Cinthia C. Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Cinthia Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Francisco Ferreira
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Pastor Pérez-Estigarribia
- Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
- Facultad de Medicina, Universidad Sudamericana, Pedro Juan Caballero 130112, Paraguay
| | - Nathalia Dias
- BIOREN-UFRO Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patrício Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrea Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
8
|
Stewart AG, Isler B, Simos P, Farquhar D, George N, Golmayo M, Heney C. Aspergillus Species Causing Invasive Fungal Disease in Queensland, Australia. Mycopathologia 2023:10.1007/s11046-023-00713-5. [PMID: 37067664 DOI: 10.1007/s11046-023-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Aspergillus species are important causes of invasive fungal disease, particularly among those with an impaired immune system. Increasing reports have revealed a rising incidence of antifungal drug resistance among Aspergillus spp., particularly among cryptic species. Understanding local antifungal susceptibility patterns is paramount to delivering optimal clinical care. METHODS Aspergillus spp. recovered from clinical specimens between 2000 and 2021 from Pathology Queensland were collected. Aspergillus spp. were identified routinely morphologically, and where there was ambiguity or a lack of sporulation, by sequencing of the internal transcribed spacer (ITS) region. All Aspergillus spp. that underwent antifungal susceptibility testing according to the CLSI M38-A3 method and were recorded and included in the study. Amphotericin B, voriconazole, posaconazole, isavuconazole, micafungin, caspofungin, and anidulafungin were tested. Pathology Queensland services all public healthcare facilities in Queensland, Australia. RESULTS 236 Aspergillus spp. were identified from clinical specimens during the study period. The most frequent species identified were Aspergillus section Fumigati (n = 119), Aspergillus section Flavi (n = 35), Aspergillus terreus (n = 32) and Aspergillus niger (n = 29). Overall, MIC50/90 values for voriconazole, posaconazole, itraconazole, and isavuconazole were 0.25/1, 0.25/0.5, 0.25/0.5, and 0.5/2 mg/L respectively. Echinocandins demonstrated low MIC values overall with micafungin and anidulafungin both having an MIC50/90 of 0.015/0.03 mg/L. A total of 15 cryptic species were identified; high triazole MIC values were observed with a voriconazole MIC50/90 of 2/8 mg/L. From 2017 to 2021 we observed an increase in incidence of isolates with high voriconazole MIC values. There was no difference in voriconazole MIC values between Aspergillus spp. acquired in North Queensland when compared to Southeast Queensland, Australia. CONCLUSION Increasing reports of antifungal resistance among Aspergillus spp. is concerning and warrants further investigation both locally and worldwide. Active surveillance of both the emergence of different Aspergillus spp. and changes in antifungal susceptibility patterns over time is crucial to informing clinicians and treatment guidelines.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia.
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.
- Central Microbiology, Pathology Queensland, Brisbane, Australia.
| | - Burcu Isler
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Peter Simos
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Drew Farquhar
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Narelle George
- Central Microbiology, Pathology Queensland, Brisbane, Australia
| | - Mila Golmayo
- Central Microbiology, Pathology Queensland, Brisbane, Australia
| | - Claire Heney
- Central Microbiology, Pathology Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Parinyasiri U, Uppamai S, Chamroensakchai T, Sirinual S, sukmee K, Banjongjit A, Kanjanabuch T. Peritonitis due to Aspergillus tamarii in peritoneal dialysis patients. Med Mycol Case Rep 2023; 40:44-46. [PMID: 37090162 PMCID: PMC10114152 DOI: 10.1016/j.mmcr.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Aspergillus peritonitis is uncommon, but it is associated with high mortality and morbidity in patients undergoing peritoneal dialysis (PD). We report two cases of Aspergillus tamarii peritonitis that were initially misidentified as A. flavus by the conventional culture method. Nucleotide sequences of internal transcribed spacer regions of the ribosomal DNA gene as A. tamarii correctly identified the isolate. Despite early catheter removal and an appropriate antifunal agent, both patients had dismal outcomes. Nucleic acid sequencing offers an additional tool for better diagnosing the species within the genus of pathogenic microbes.
Collapse
|
10
|
Salem-Bango Z, Price TK, Chan JL, Chandrasekaran S, Garner OB, Yang S. Fungal Whole-Genome Sequencing for Species Identification: From Test Development to Clinical Utilization. J Fungi (Basel) 2023; 9:jof9020183. [PMID: 36836298 PMCID: PMC9965959 DOI: 10.3390/jof9020183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Using next-generation sequencing (NGS), we developed and validated a whole-genome sequencing (WGS)-based clinical test for fungal species identification on clinical isolates. The identification is mainly based on the fungal ribosomal internal transcribed spacer (ITS) region as the primary marker, and additional marker and genomic analysis applied for species within the Mucorales family (using the 28S rRNA gene) and Aspergillus genus (using the beta-tubulin gene and k-mer tree-based phylogenetic clustering). The validation study involving 74 unique fungal isolates (22 yeasts, 51 molds, and 1 mushroom-forming fungus) showed high accuracy, with 100% (74/74) concordance on the genus-level identifications and 89.2% (66/74) concordance on the species level. The 8 discrepant results were due to either the limitation of conventional morphology-based methodology or taxonomic changes. After one year of implementation in our clinical laboratory, this fungal NGS test was utilized in 29 cases; the majority of them were transplant and cancer patients. We demonstrated the utility of this test by detailing five case studies, in which accurate fungal species identification led to correct diagnosis, treatment adjustment or was ruled out for hospital acquired infection. This study provides a model for validation and implementation of WGS for fungal identification in a complex health system that serves a large immunocompromised patient population.
Collapse
|
11
|
Mahata PK, Dass RS, Gunti L, Thorat PA. First report on the metabolic characterization of Sterigmatocystin production by select Aspergillus species from the Nidulantes section in Foeniculum vulgare. Front Microbiol 2022; 13:958424. [PMID: 36090109 PMCID: PMC9459157 DOI: 10.3389/fmicb.2022.958424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Spices are typically grown in climates that support the growth of toxigenic fungi and the production of mycotoxins. The Aspergilli described in this study, as well as the sterigmatocystin (STC) detected, are causes for concern due to their potential to induce food poisoning. One of the most well-known producers of the carcinogenic STC is Aspergillus nidulans. This research explores the occurrence of STC-producing fungi in Foeniculum vulgare, a spice that is marketed in India and other parts of the world. This innovative study details the mycotoxigenic potential of five Aspergilli belonging to Section Nidulantes, namely Aspergillus latus (02 isolates), Emericella quadrilineata (02 isolates), and Aspergillus nidulans (01 isolate), with respect to STC contamination. These five isolates of Aspergilli were screened to produce STC on yeast extract sucrose (YES) medium in a controlled environment with regard to light, temperature, pH, and humidity, among other variables. The expression patterns of regulatory genes, namely, aflR, laeA, pacC, fluG, flbA, pksA, and mtfA were studied on the Czapek–Dox agar (CDA) medium. STC biosynthesis by the test isolates was done in potato dextrose broth (PDB) under optimum conditions, followed by the extraction and purification of the broth using ethyl acetate. High-performance liquid chromatography (HPLC) with an ultraviolet (UV) detector was utilized to detect compounds in eluted samples. F. vulgare contains Aspergilli that have been shown to have mycotoxigenic potential, which can accumulate in the spice during its active growth and thereby cause the elaboration of mycotoxins.
Collapse
|
12
|
Hsu TH, Huang PY, Fan YC, Sun PL. Azole Resistance and cyp51A Mutation of Aspergillus fumigatus in a Tertiary Referral Hospital in Taiwan. J Fungi (Basel) 2022; 8:jof8090908. [PMID: 36135633 PMCID: PMC9504549 DOI: 10.3390/jof8090908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/30/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus has increasingly been reported worldwide. Its major mechanism of resistance is mediated by mutations in cyp51A. The objective of this study was to test the antifungal susceptibilities of A. fumigatus isolates from Chang Gung Memorial Hospital (CGMH), the largest tertiary referral hospital in Taiwan, and to investigate cyp51A mutations in azole-resistant strains. A. fumigatus isolates preserved in the Research Laboratory of Medical Mycology of CGMH from 2015 to 2021 were used. Antifungal susceptibility testing was performed using the YeastOneTM method. Isolates with high minimal inhibitory concentrations (MICs) against antifungals were further tested using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Mutations in the cyp51A in azole-resistant strains were detected by Sanger sequencing. The overall prevalence of azole-resistant isolates was 1.77% (two out of 113 isolates). The two azole-resistant strains had tandem repeats (TR) in the promoter region and mutations in the cyp51A gene (TR34/L98H and TR34/L98H/S297T/F495I). One strain showed intermediate susceptibility to voriconazole, and its Cyp51A protein had five amino acid substitutions (F46Y/M172V/N248T/D255E/E427K). TR34/L98H and TR34/L98H/S297T/F495I are the most prevalent cyp51A mutations in Taiwan, mediating azole resistance based on current publications and our results. YeastOneTM was validated as a rapid tool for the antifungal susceptibility test; however, further confirmation by CLSI should be considered when MIC values of voriconazole, posaconazole, and amphotericin B are close to the clinical breakpoints or ecological cutoff values.
Collapse
Affiliation(s)
- Tsun-Hao Hsu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Po-Yen Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yun-Chen Fan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8778)
| |
Collapse
|
13
|
Enzyme activity of Aspergillus section Nigri strains isolated from the Korean fermentation starter, nuruk. J Microbiol 2022; 60:998-1006. [DOI: 10.1007/s12275-022-2071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
|
14
|
Wang X, Ding X, Fu K, Guo W, Zhan F, Yuan Z, Jia Z, Zhou L, Jiang X, Ghenijan O, Li Z, Dai J, Xie Y, Wang Z, Xinping Y. Molecular Identification and Efficacy of Entomopathogenic Fungi Isolates Against Larvae of the Asian Corn Borer
Ostrinia furnacalis
(Lepidoptera: Crambidae) in Xinjiang, China. J Appl Microbiol 2022; 133:2979-2992. [DOI: 10.1111/jam.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
| | - Xinhua Ding
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Kaiyun Fu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Wenchao Guo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Faqiang Zhan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zihan Yuan
- College of Agriculture Xinjiang Agricultural University Ürümqi PR China
| | - Zunzun Jia
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Xudong Jiang
- College of Agriculture Xinjiang Agricultural University Ürümqi PR China
| | - Osman Ghenijan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zhi Li
- Institute of Agricultural Economics and Technology Information, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Jinping Dai
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Yang Xinping
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| |
Collapse
|
15
|
Sarvestani HK, Ramandi A, Getso MI, Razavyoon T, Javidnia J, Golrizi MB, Saboor-Yaraghi AA, Ansari S. Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology. Braz J Microbiol 2022; 53:689-707. [PMID: 35344203 PMCID: PMC9151960 DOI: 10.1007/s42770-022-00715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Diagnosis by clinical mycology laboratory plays a critical role in patient care by providing definitive knowledge of the cause of infection and antimicrobial susceptibility data to physicians. Rapid diagnostic methods are likely to improve patient. Aggressive resuscitation bundles, adequate source control, and appropriate antibiotic therapy are cornerstones for success in the treatment of patients. Routine methods for identifying clinical specimen fungal pathogen are based on the cultivation on different media with the subsequent examination of its phenotypic characteristics comprising a combination of microscopic and colony morphologies. As some fungi cannot be readily identified using these methods, molecular diagnostic methods may be required. These methods are fast, but it can cost a lot. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs. It can be considered an alternative for conventional biochemical and molecular identification systems in a microbiological laboratory. The reliability and accuracy of this method have been scrutinized in many surveys and have been compared with several methods including sequencing and molecular methods. According to these findings, the reliability and accuracy of this method are very high and can be trusted. With all the benefits of this technique, the libraries of MALDI-TOF MS need to be strengthened to enhance its performance. This review provides an overview of the most recent research literature that has investigated the applications and usage of MT-MS to the identification of microorganisms, mycotoxins, antifungal susceptibility examination, and mycobiome research.
Collapse
Affiliation(s)
- Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ramandi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Ibrahim Getso
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, PMB, Kano, 3011, Nigeria
| | - Taraneh Razavyoon
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Javidnia
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Miaad Banay Golrizi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali-Akbar Saboor-Yaraghi
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wokorach G, Landschoot S, Lakot A, Karyeija SA, Audenaert K, Echodu R, Haesaert G. Characterization of Ugandan Endemic Aspergillus Species and Identification of Non-Aflatoxigenic Isolates for Potential Biocontrol of Aflatoxins. Toxins (Basel) 2022; 14:304. [PMID: 35622551 PMCID: PMC9143334 DOI: 10.3390/toxins14050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Acute stunting in children, liver cancer, and death often occur due to human exposure to aflatoxins in food. The severity of aflatoxin contamination depends on the type of Aspergillus fungus infecting the crops. In this study, Aspergillus species were isolated from households’ staple foods and were characterized for different aflatoxin chemotypes. The non-aflatoxigenic chemotypes were evaluated for their ability to reduce aflatoxin levels produced by aflatoxigenic A. flavus strains on maize grains. Aspergillus flavus (63%), A. tamarii (14%), and A. niger (23%) were the main species present. The A. flavus species included isolates that predominantly produced aflatoxins B1 and B2, with most isolates producing a high amount (>20 ug/µL) of aflatoxin B1 (AFB1), and a marginal proportion of them also producing G aflatoxins with a higher level of aflatoxin G1 (AFG1) than AFB1. Some non-aflatoxigenic A. tamarii demonstrated a strong ability to reduce the level of AFB1 by more than 95% when co-inoculated with aflatoxigenic A. flavus. Therefore, field evaluation of both non-aflatoxigenic A. flavus and A. tamarii would be an important step toward developing biocontrol agents for mitigating field contamination of crops with aflatoxins in Uganda.
Collapse
Affiliation(s)
- Godfrey Wokorach
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (G.W.); (S.L.); (K.A.)
- Multifunctional Research Laboratories, Gulu University, Gulu P.O. Box 166, Uganda; (A.L.); (S.A.K.); (R.E.)
| | - Sofie Landschoot
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (G.W.); (S.L.); (K.A.)
| | - Amerida Lakot
- Multifunctional Research Laboratories, Gulu University, Gulu P.O. Box 166, Uganda; (A.L.); (S.A.K.); (R.E.)
| | - Sidney Arihona Karyeija
- Multifunctional Research Laboratories, Gulu University, Gulu P.O. Box 166, Uganda; (A.L.); (S.A.K.); (R.E.)
| | - Kris Audenaert
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (G.W.); (S.L.); (K.A.)
| | - Richard Echodu
- Multifunctional Research Laboratories, Gulu University, Gulu P.O. Box 166, Uganda; (A.L.); (S.A.K.); (R.E.)
- Department of Biology, Faculty of Science, Gulu University, Gulu P.O. Box 166, Uganda
| | - Geert Haesaert
- Department of Plants and Crops, Campus Schoonmeersen Building C, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; (G.W.); (S.L.); (K.A.)
| |
Collapse
|
17
|
Rozaliyani A, Abdullah A, Setianingrum F, Sjamsuridzal W, Wahyuningsih R, Bowolaksono A, Fatril AE, Adawiyah R, Tugiran M, Syam R, Wibowo H, Kosmidis C, Denning DW. Unravelling the Molecular Identification and Antifungal Susceptibility Profiles of Aspergillus spp. Isolated from Chronic Pulmonary Aspergillosis Patients in Jakarta, Indonesia: The Emergence of Cryptic Species. J Fungi (Basel) 2022; 8:411. [PMID: 35448642 PMCID: PMC9024953 DOI: 10.3390/jof8040411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Cryptic species of Aspergillus have rapidly increased in the last few decades. Chronic pulmonary aspergillosis (CPA) is a debilitating fungal infection frequently affecting patients with previous TB. The identification and antifungal susceptibility profiles of different species of Aspergillus are important to support the management of CPA. The aim of this study was to describe the molecular and susceptibility profiles of Aspergillus isolated from CPA patients. The species identity of isolates was determined by combined DNA analyses of internal transcribed space (ITS), partial β-tubulin genes, and part of the calmodulin gene. We revealed a high (27%) prevalence of cryptic species among previous tuberculosis patients with persistent symptoms. Twenty-nine (49%) patients met the criteria for diagnosis of CPA with 24% containing Aspergillus cryptic species. This is the first report of five cryptic Aspergillus species from clinical isolates in Indonesia: A. aculea tus, A. neoniger, A. brunneoviolacues, A. welwitschiae, and A. tubingensis. Significantly, there was decreased sensitivity against itraconazole in the CPA group (66% susceptible to itraconazole) compared to the non-CPA group (90% susceptible to itraconazole) (p = 0.003). The species-level characterisation of Aspergillus and its antifungal susceptibility tests demands greater attention to better the management of CPA patients.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Asriyani Abdullah
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Wellyzar Sjamsuridzal
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta 13530, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia; (W.S.); (A.B.)
| | - Ayu Eka Fatril
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
| | - Robiatul Adawiyah
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Mulyati Tugiran
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Ridhawati Syam
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (F.S.); (R.W.); (A.E.F.); (R.A.); (M.T.); (R.S.); (H.W.)
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| | - David W. Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK; (C.K.); (D.W.D.)
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
18
|
Morais EM, Silva AAR, de Sousa FWA, de Azevedo IMB, Silva HF, Santos AMG, Beserra Júnior JEA, de Carvalho CP, Eberlin MN, Porcari AM, Araújo FDDS. Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS One 2022; 17:e0265824. [PMID: 35427356 PMCID: PMC9012399 DOI: 10.1371/journal.pone.0265824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
The indiscriminate use of chemical pesticides increasingly harms the health of living beings and the environment. Thus, biological control carried out by microorganisms has gained prominence, since it consists of an environmentally friendly alternative to the use of pesticides for controlling plant diseases. Herein, we evaluated the potential role of endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone as biological control agents of crop pathogenic fungi. Nineteen Trichoderma strains were used to assess the antagonistic activity by in vitro bioassays against the plant pathogens Colletotrichum truncatum, Lasiodiplodia theobromae, Macrophomina phaseolina, and Sclerotium delphinii isolated from soybean, cacao, fava bean, and black pepper crops, respectively. All Trichoderma strains demonstrated inhibitory activity on pathogen mycelial growth, with maximum percent inhibition of 70% against C. truncatum, 78% against L. theobromae, 78% against M. phaseolina, and 69% against S. delphinii. Crude methanol extracts (0.5 to 2.0 mg mL-1) of Trichoderma strains were able to inhibit the growth of C. truncatum, except Trichoderma sp. T3 (UFPIT06) and T. orientale (UFPIT09 and UFPIT17) at 0.5 mg mL-1, indicating that the endophytes employ a biocontrol mechanism related to antibiosis, together with multiple mechanisms. Discriminant metabolites of Trichoderma extracts were unveiled by liquid chromatography-tandem mass spectrometry-based metabolomics combined with principal component analysis (PCA), which included antifungal metabolites and molecules with other bioactivities. These results highlight the biocontrol potential of Trichoderma strains isolated from the Cerrado-Caatinga ecotone against crop pathogenic fungi, providing support for ongoing research on disease control in agriculture.
Collapse
Affiliation(s)
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Braganca Paulista, São Paulo, SP, Brazil
| | | | | | - Helane França Silva
- Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus, PI, Brazil
| | | | | | - Caroline Pais de Carvalho
- School of Material Engineering an Nanotechnology, MackMass Laboratory, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Marcos Nogueira Eberlin
- School of Material Engineering an Nanotechnology, MackMass Laboratory, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Braganca Paulista, São Paulo, SP, Brazil
| | | |
Collapse
|
19
|
Ferraz TLL, Araújo EM, Calixto RF, Sampaio MLM, de Mello LRB, Torres KB, de Aguiar Cordeiro R, Le Pape P, Gonçalves de Lima-Neto R. Lethal destructive sinusopathy due to amphotericin B-resistant Aspergillus flavus: A case report. Rev Iberoam Micol 2022; 39:21-24. [DOI: 10.1016/j.riam.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
|
20
|
Mahata PK, Dass RS, Pan A, Muthusamy B. Substantive Morphological Descriptions, Phylogenetic Analysis and Single Nucleotide Polymorphisms of Aspergillus Species From Foeniculum vulgare. Front Microbiol 2022; 13:832320. [PMID: 35250948 PMCID: PMC8894770 DOI: 10.3389/fmicb.2022.832320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Ascomycetous fungi are found associated with a wide variety of substrates which range from fresh water to marine ecosystems, tropical to temperate forest soils and deserts, throughout the world over. These demystifying fungi exist as endophytes, pathogens and saprobes. They have been studied due to their ability to contaminate foods and feedstuffs, causing an elaboration of mycotoxins. The objectives of the study included extensive analyses of the morphological features of fungi, especially Aspergilli, which have been presented while studying them on specific mycological media. It is also an elaborate compilation of substantive macro- and micro-morphological characterization of different Aspergilli isolated from the spice Foeniculum vulgare used in India and other countries in the world. Further, a first of its kind attempt has been made to study their relative abundance and frequency of occurrence, molecular phylogeny and genetic relatedness to characterize the Aspergilli into specific sections, groups and clades. Single nucleotide polymorphism (SNP) analysis was carried out to evaluate the functional consequences of nucleotide variations, synonymous and non-synonymous mutations in the protein structure. The study resulted in a total of 3,506 Aspergillus isolates, which were obtained from seventy (70) fennel samples, representing 14 Aspergillus species. The two most frequently found species were A. niger and A. flavus with a relative abundance of 32.24 and 11.63%, respectively. The taxonomy and current placements have been reappraised with suggestions and prospects for future research from six sections namely Terrei, Flavi, Fumigati, Nidulantes, Nigri, and Versicolores. In addition, a total number of 27 isolates were studied and deposited at the National Centre for Biotechnology Information (NCBI) and five Aspergillus species have been identified and are being reported for the first time from the fennel seeds, based on partial sequence analysis of the official fungal barcode namely, Internal Transcribed Spacer (ITS) and a functional gene, beta tubulin gene locus, coupled with phenotypic characterization. SNPs for specific DNA regions have been used to identify variants in Aspergilli obtained from Indian fennel seeds for the first time. The need for a polyphasic approach of morphological identification and genetic characterization of Aspergilli from Foeniculum vulgare is addressed and presented here in adequate detail. Our current work makes extensive use of partial beta-tubulin gene sequences analyses to evaluate the association between SNPs in five Aspergillus species sections.
Collapse
Affiliation(s)
- Pranab Kumar Mahata
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Pondicherry, India
- *Correspondence: Regina Sharmila Dass,
| | - Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Tech Park, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
21
|
Salah H, Kolecka A, Rozaliyani A, Wahyuningsih R, Taj-Aldeen SJ, Boekhout T, Houbraken J. A New Filter Based Cultivation Approach for Improving Aspergillus Identification using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Mycopathologia 2022; 187:39-52. [PMID: 35006478 PMCID: PMC8807449 DOI: 10.1007/s11046-021-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is widely used in clinical laboratories for routine identification of bacteria and yeasts. However, methodological difficulties are still apparent when applied to filamentous fungi. The liquid cultivation method recommended by Bruker Daltonics GmbH for identification of filamentous fungi by MALDI-TOF MS is labour intensive and time-consuming. In this study, growth of Aspergillus species on different (porous) surfaces was investigated with the aim to develop a more reliable, quicker and less laborious identification method using MALDI-TOF MS. Mycelial growth without sporulation mimicking liquid cultivation and reliable MALDI-TOF MS spectra were obtained when A. fumigatus strains were grown on and in between a polycarbonate membrane filter on Sabouraud dextrose agar. A database of in-house reference spectra was created by growing Aspergillus reference strains (mainly focusing on sections Fumigati and Flavi) under these selected conditions. A test set of 50 molecularly identified strains grown under different conditions was used to select the best growth condition for identification and to perform an initial validation of the in-house database. Based on these results, the cultivation method on top of a polycarbonate filter proved to be most successful for species identification. This method was therefore selected for the identification of two sets of clinical isolates that mainly consisted of Aspergilli (100 strains originating from Indonesia, 70 isolates from Qatar). The results showed that this cultivation method is reliable for identification of clinically relevant Aspergillus species, with 67% and 76% correct identification of strains from Indonesia and Qatar, respectively. In conclusion, cultivation of Aspergilli on top of a polycarbonate filter showed improved results compared to the liquid cultivation protocol recommended by Bruker in terms of percentage of correct identification, ease of MSP creation, time consumption, cost and labour intensity. This method can be reliably applied for identification of clinically important Aspergilli and has potential for identification of other filamentous fungi.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Rozaliyani
- Department of Parasitology Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Retno Wahyuningsih
- Department of Parasitology Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Parasitology Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,University of Babylon, Hilla, Iraq
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Zhou YB, Li DM, Houbraken J, Sun TT, de Hoog GS. Fatal Rhinofacial Mycosis Due to Aspergillus nomiae: Case Report and Review of Published Literature. Front Microbiol 2021; 11:595375. [PMID: 33414771 PMCID: PMC7782315 DOI: 10.3389/fmicb.2020.595375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background A 73-year-old female suffering from acute myeloid leukemia presented with progressive rhinofacial mycosis. Suspecting it to be mucormycosis, the antifungal amphotericin B (AMB) was administered empirically, but the patient did not respond as planned. The fungus was then isolated from the biopsied tissue and morphologically identified as a species of Aspergillus. Necrosis progressed and she died of cerebral hemorrhage. Since Aspergillus flavus is susceptible to AMB, and several other Aspergillus species can be misidentified as A. flavus, the observed resistance necessitated a re-examination of the fungal isolate. Methods The fungal strain was re-isolated and re-examined morphologically. Additionally, genomic DNA was extracted from the fungus and sequences were obtained from three genomic regions [the rDNA internal transcribed spacer (ITS) region, and portions of the β-tubulin and calmodulin genes] to more accurately identify this Aspergillus strain. Its antifungal susceptibility was assessed using multiple compounds and our findings were compared with literature data. Results The fungal culture again yielded an Aspergillus isolate morphologically identical to A. flavus. Molecular analyses, however, revealed the strain to be A. nomiae, a close relative of A. flavus in section Flavi, and it exhibited resistance to AMB. Reviewing the literature, only five other cases of A. nomiae infection in humans have been reported worldwide. Conclusion and Clinical Importance The rhinofacial mycosis of the patient was actually due to A. nomiae. The initial misidentification of the fungus, coupled with its resistance to AMB, could be the reason treatment did not help the patient. We postulate that clinical A. nomiae infections may be underreported and that accurate and speedy pathogen identification is important so that an effective antifungal regimen can be administered.
Collapse
Affiliation(s)
- Ya Bin Zhou
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Dong Ming Li
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Ting Ting Sun
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| |
Collapse
|
23
|
Tsang CC, Tang JYM, Ye H, Xing F, Lo SKF, Xiao C, Han L, Wu AKL, Ngan AHY, Law KC, To YN, Sze DTT, Chim OHY, Hui TWS, Leung CWH, Zhu T, Yao C, Tse BPH, Lau SKP, Woo PCY. Rare/cryptic Aspergillus species infections and importance of antifungal susceptibility testing. Mycoses 2020; 63:1283-1298. [PMID: 32918365 DOI: 10.1111/myc.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The number of patients infected with Aspergillus rose dramatically in recent years. However, studies on the clinical spectrum and antifungal susceptibilities of non-classical (non-fumigatus, non-flavus, non-niger and non-terreus) pathogenic Aspergillus species are very limited. OBJECTIVES We examined the clinical spectrum and antifungal susceptibilities of 34 non-duplicated, non-classical Aspergillus isolates collected from Hong Kong, Shenzhen and Shanghai. METHODS The Aspergillus isolates were identified by internal transcribed spacer, partial BenA and partial CaM sequencing and phylogenetic analyses. Susceptibility testing against eight antifungals was performed following the European Committee for Antimicrobial Susceptibility Testing's methodology. RESULTS The 34 Aspergillus isolates were identified as 14 different rare/cryptic species of four sections (Flavi [n = 8], Nidulantes [n = 8], Nigri [n = 17] and Restricti [n = 1]). Except for one patient whose clinical history could not be retrieved, 72.7% of the remaining patients had underlying conditions predisposing them to Aspergillus infections. The most common diseases were pulmonary infections (n = 15), followed by skin/nail infections (n = 6), chronic otitis externa and/or media (n = 5), wound infections (n = 2) and mastoiditis/radionecrosis (n = 1), while three were colonisations. Five patients succumbed due to the infections during the admission, and another two died 5 years later because of chronic pulmonary aspergillosis. Antifungal susceptibility testing showed that they possessed different susceptibility profiles compared to the classical Aspergillus species. The majority of isolates characterised were sensitive or wild-type to amphotericin B. The minimum effective concentrations for all the three echinocandins were also low. CONCLUSION Susceptibility testing should be performed for infections due to these rare/cryptic Aspergillus species to guide proper patient management.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - James Y M Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haiyan Ye
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Simon K F Lo
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chenlu Xiao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Alan K L Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Antonio H Y Ngan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Cheung Law
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Ying-Nam To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Dorothy T T Sze
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Oscar H Y Chim
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Teresa W S Hui
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Carl W H Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tianrenzheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunyan Yao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Brian P H Tse
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
24
|
DNA barcoding for the identification of mold species in bakery plants and products. Food Chem 2020; 318:126501. [PMID: 32131042 DOI: 10.1016/j.foodchem.2020.126501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
Abstract
Mold identification at the species level in environmental samples is a major challenge. Molecular techniques have been widely used for fungal classification, but as most primers are genus-specific, it is laborious to identify unknown samples. In this study, a PCR-based method for the identification of mold at the species level was developed. Therefore, common sequencing primers and combinations of them, targeting specific DNA regions, were tested. Here we present a combination of eight primer pairs to identify mold within a single PCR run. The approach correctly identified mold of unknown species from samples taken at a local bakery, including Penicillium chrysogenum, Penicillium citrinum, Cladosporium sphaerospermum, Paecilomyces formosus, Rhizopus oryzae and Aspergillus niger. Results obtained from the PCR method were successfully validated by chromatographic mycotoxin and microscopy analysis. Findings highlight DNA barcoding as an appropriate tool for mold identification; however, its efficacy is essentially dependent on DNA quality and primer selection.
Collapse
|
25
|
Larkin PMK, Multani A, Beaird OE, Dayo AJ, Fishbein GA, Yang S. A Collaborative Tale of Diagnosing and Treating Chronic Pulmonary Aspergillosis, from the Perspectives of Clinical Microbiologists, Surgical Pathologists, and Infectious Disease Clinicians. J Fungi (Basel) 2020; 6:E106. [PMID: 32664547 PMCID: PMC7558816 DOI: 10.3390/jof6030106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic pulmonary aspergillosis (CPA) refers to a spectrum of Aspergillus-mediated disease that is associated with high morbidity and mortality, with its true prevalence vastly underestimated. The diagnosis of CPA includes characteristic radiographical findings in conjunction with persistent and systemic symptoms present for at least three months, and evidence of Aspergillus infection. Traditionally, Aspergillus infection has been confirmed through histopathology and microbiological studies, including fungal culture and serology, but these methodologies have limitations that are discussed in this review. The treatment of CPA requires an individualized approach and consideration of both medical and surgical options. Most Aspergillus species are considered susceptible to mold-active triazoles, echinocandins, and amphotericin B; however, antifungal resistance is emerging and well documented, demonstrating the need for novel therapies and antifungal susceptibility testing that correlates with clinical response. Here, we describe the clinical presentation, diagnosis, and treatment of CPA, with an emphasis on the strengths and pitfalls of diagnostic and treatment approaches, as well as future directions, including whole genome sequencing and metagenomic sequencing. The advancement of molecular technology enables rapid and precise species level identification, and the determination of molecular mechanisms of resistance, bridging the clinical infectious disease, anatomical pathology, microbiology, and molecular biology disciplines.
Collapse
Affiliation(s)
- Paige M. K. Larkin
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
- Department of Pathology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Ashrit Multani
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.M.); (O.E.B.)
| | - Omer E. Beaird
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.M.); (O.E.B.)
| | - Ayrton J. Dayo
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.M.K.L.); (A.J.D.); (G.A.F.)
| |
Collapse
|
26
|
Affiliation(s)
- Patrick Cy Woo
- Department of Clinical Microbiology & Infection Control, The University of Hong Kong-Shenzhen Hospital, 518053 Shenzhen, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Collaborative Innovation Centre for Diagnosis & Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Susanna Kp Lau
- Department of Clinical Microbiology & Infection Control, The University of Hong Kong-Shenzhen Hospital, 518053 Shenzhen, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.,Collaborative Innovation Centre for Diagnosis & Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Liu Q, Chen L, Laserna AKC, He Y, Feng X, Yang H. Synergistic action of electrolyzed water and mild heat for enhanced microbial inactivation of Escherichia coli O157:H7 revealed by metabolomics analysis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Alshehri B, Palanisamy M. Evaluation of molecular identification of Aspergillus species causing fungal keratitis. Saudi J Biol Sci 2020; 27:751-756. [PMID: 32210696 PMCID: PMC6997875 DOI: 10.1016/j.sjbs.2019.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Fungal keratitis caused by the species of Aspergillus is a common and leading problem in developing countries like India. In this study, a total of 135 isolates from Aspergillus keratitis were studied by sequence analyses of the internal transcribed spacer (ITS) region performed by nucleotide-nucleotide BLAST analysis followed by the initial identification of the isolates based on conidial and colony morphology. The sequence analysis revealed several unusual species which were never reported in eye infections such as A. tamrii, A. tubingensis, A. braslliensis, A. nomius, A. pseudonomius, A. sydowii, Eurotium amstelodami. The sequence analysis of the ITS region; the β-tubulin and calmodulin genes brought out the genetic diversity among the isolates as the study intended to locate a more sensitive target sequence to study genetic diversity among a set of test fungal isolates. The PCR amplified sequences of the test isolates of the study as well as sequences belonging to section Flavi obtained from Genbank database were compared and analyzed along with three standard isolates by phylogenetic tree (Neighbor-joining) as to find out a target region/gene that could produce a better resolution to differentiate the isolates. Accordingly, the calmodulin gene had provided better resolution compared to ITS and β-tubulin to study the diversity among the test Aspergillus species isolated from fungal corneal ulcer.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Greenlink Analytical and Research Laboratory India Private Limited, Coimbatore 641014, India
| |
Collapse
|
29
|
Li Y, Wang H, Zhao YP, Xu YC, Hsueh PR. Antifungal susceptibility of clinical isolates of 25 genetically confirmed Aspergillus species collected from Taiwan and Mainland China. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:125-132. [DOI: 10.1016/j.jmii.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
|
30
|
Yun J, Kim JH, Lee JE. Influence of aflatoxin in Nuruk on the safety of starch-based alcoholic beverage. J Food Sci 2020; 85:762-770. [PMID: 31999368 DOI: 10.1111/1750-3841.15050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022]
Abstract
Nuruk is a fermentation agent used to manufacture alcoholic beverages, which contains a variety of microorganisms. Most microorganisms in Nuruk are useful for the production of alcoholic beverages; however, Nuruk can be infected with Aspergillus flavus, which produces aflatoxin (AF). Therefore, this study analyzed total AF concentrations in Nuruk, the transfer of AF from Nuruk to alcoholic beverages, and AF-producing microorganisms to determine the safety of alcoholic beverages with respect to this toxin. ELISA showed that total AF levels in 14 of 61 Nuruk samples exceeded 15 ppb, the Korean permissible level in cereal products. In alcoholic beverages produced with Nuruk containing AF levels >15 ppb, only AF G1 was detected, at a level of 0.3 ppb, and the transfer ratio of AF G1 was approximately 1.2% to 1.3%. The dominant genera in Nuruk were Aspergillus and Rhizopus. Among 30 strains belonging to Aspergillus, 10 produced only AF B1 at levels of 0.1 to 2.4 ppb after incubation at 25 °C for 8 days on potato dextrose agar plates. Although AF in Nuruk was rarely transferred to alcoholic beverages and the aflatoxigenic strains were found to possess poor AF-producing capacity, further efforts to reduce AF in Nuruk are needed to ensure the safety of alcoholic beverages.
Collapse
Affiliation(s)
- Jeonghyun Yun
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jae Ho Kim
- Research Group of Traditional Food, Research Div. of Strategic Food Technology, Korea Food Research Inst., Wanju-gun, Jellabuk-do, 55365, Republic of Korea
| | - Jang-Eun Lee
- Dept. of Food Biotechnology, Korea Univ. of Science and Technology, Daejeon, 34113, Republic of Korea.,Research Group of Traditional Food, Research Div. of Strategic Food Technology, Korea Food Research Inst., Wanju-gun, Jellabuk-do, 55365, Republic of Korea
| |
Collapse
|
31
|
Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA. Aspergillus section Flavi and Aflatoxins: Occurrence, Detection, and Identification in Raw Peanuts and Peanut-Based Products Along the Supply Chain. Front Microbiol 2019; 10:2602. [PMID: 31824445 PMCID: PMC6886384 DOI: 10.3389/fmicb.2019.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
Collapse
Affiliation(s)
- Mahror Norlia
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Selamat Jinap
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Son Radu
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nik Iskandar Putra Samsudin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farah Asilah Azri
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
32
|
Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S, Abastabar M, Er H, Özhak B, Öğünç D, Ilkit M, Seyedmousavi S. Discrimination of Aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 2019; 62:1182-1188. [PMID: 31556203 DOI: 10.1111/myc.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aspergillus flavus is a major cause of severe non-invasive fungal infections in the Middle Eastern countries. However, it is difficult to distinguish A flavus from A oryzae. OBJECTIVES To assess the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in discriminating between A flavus and A oryzae and compare it with β-tubulin gene sequencing. METHODS We used the Bruker Daltonik MALDI-TOF MS system to analyse 200 clinical and environmental A flavus isolates and one A pseudonomius and one A alliaceus (Aspergillus section Flavi) isolate a priori identified as such by sequencing of the β-tubulin gene. RESULTS All 200 A flavus isolates were identified at the genus level and 176 (88%) at the species levels by MALDI-TOF MS based on the spectral log-scores (≥2.0 and 1.7-1.99, respectively); among them, only 18 (10.2%) were confirmed as A flavus, whereas 35 (19.9%) were identified as A oryzae and 123 (69.9%) as A flavus/A oryzae. Aspergillus pseudonomius and A alliaceus were misidentified as A flavus and A parasiticus with log-score values of 1.39 and 1.09, respectively. CONCLUSIONS The results indicate that the commercially available Bruker Daltonik MALDI-TOF MS score database cannot separate A flavus and A oryzae species. We also showed that establishment of an in-house library is a useful tool to discriminate closely related Aspergillus species, including A flavus and A oryzae.
Collapse
Affiliation(s)
- Mohammad T Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Taghizadeh-Armaki
- Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Halil Er
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Betil Özhak
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Dilara Öğünç
- Department of Microbiology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran.,Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Homa M, Manikandan P, Szekeres A, Kiss N, Kocsubé S, Kredics L, Alshehri B, Dukhyil AAB, Revathi R, Narendran V, Vágvölgyi C, Shobana CS, Papp T. Characterization of Aspergillus tamarii Strains From Human Keratomycoses: Molecular Identification, Antifungal Susceptibility Patterns and Cyclopiazonic Acid Producing Abilities. Front Microbiol 2019; 10:2249. [PMID: 31649626 PMCID: PMC6794953 DOI: 10.3389/fmicb.2019.02249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Aspergillus tamarii appears to be an emerging aetiological agent of human keratomycoses in South India. The investigated strains were isolated from six suspected fungal keratitis patients attending a tertiary care eye hospital in Coimbatore (Tamil Nadu, India), and were initially identified by the microscopic examinations of the scrapings and the cultures. Our data suggest that A. tamarii could be easily overlooked when identification is carried out based on morphological characteristics alone, while the sequence analysis of the calmodulin gene can be used successfully to recognize this species accurately. According to the collected clinical data, ocular trauma is a common risk factor for the infection that gradually developed from mild to severe ulcers and could be healed with an appropriate combined antifungal therapy. Antifungal susceptibility testing revealed that A. tamarii strains are susceptible to the most commonly used topical or systemic antifungal agents (i.e., econazole, itraconazole and ketoconazole) except for natamycin. Moreover, natamycin proved to be similarly less effective than the azoles against A. tamarii in our drug interaction tests, as the predominance of indifferent interactions was revealed between natamycin and econazole and between natamycin and itraconazole as well. Four and five isolates of A. tamarii were confirmed to produce cyclopiazonic acid (CPA) in RPMI-1640 – which is designed to mimic the composition of human extracellular fluids – and in yeast extract sucrose (YES) medium, respectively, which is a widely used culture medium for testing mycotoxin production. Although a ten times lower mycelial biomass was recorded in RPMI-1640 than in YES medium, the toxin contents of the samples were of the same order of magnitude in both types of media. There might be a relationship between the outcome of infections and the toxigenic properties of the infecting fungal strains. However, this remains to be investigated in the future.
Collapse
Affiliation(s)
- Mónika Homa
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Palanisamy Manikandan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia.,Greenlink Analytical and Research Laboratory (India) Private Limited, Coimbatore, India
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Noémi Kiss
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Rajaraman Revathi
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, India
| | | | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Tamás Papp
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
A Polyphasic Approach Aids Early Detection of Potentially Toxigenic Aspergilli in Soil. Microorganisms 2019; 7:microorganisms7090300. [PMID: 31470555 PMCID: PMC6781248 DOI: 10.3390/microorganisms7090300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
Abstract
Key chili and maize growing areas of Pakistan were selected for a focused baseline study of the levels of Aspergillus spp. Investigations were undertaken using a combination of molecular and culture-based techniques. Samples investigated included soil samples, one-year-old corn cobs, and fresh chili from selected locations. Aspergillus strains obtained from corn cobs were screened using coconut milk agar, resulting in one strain that was positive for aflatoxin production. Whole genome sequencing (WGS) with low coverage techniques were employed to screen the isolates for differences in the ribosomal RNA gene cluster and mitochondrial genome, with the aflatoxigenic strain proving to have a distinctive profile. Finally, strains were subjected to matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in order to obtain a proteomic ‘fingerprint’ which was used to distinguish the aflatoxigenic strain from the other isolates. The next generation sequencing (NGS) study was broadened to incorporate metabarcoding with ITS rRNA for determining the microbial biodiversity of the soil samples and presumptive screening for the presence of aflatoxigenic strains. Using information gleaned from the WGS results, a putative aflatoxigenic operational taxonomic unit (OTU) was observed in four of the 15 soil samples screened by metabarcoding. This method may have beneficial applications in early detection and surveillance programs in agricultural soils and commodities.
Collapse
|
35
|
Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Chin CK, Samsudin NIP, Farawahida AH. Molecular Characterisation of Aflatoxigenic and Non-Aflatoxigenic Strains of Aspergillus Section Flavi Isolated from Imported Peanuts along the Supply Chain in Malaysia. Toxins (Basel) 2019; 11:E501. [PMID: 31470527 PMCID: PMC6784170 DOI: 10.3390/toxins11090501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Peanuts are widely consumed in many local dishes in southeast Asian countries, especially in Malaysia which is one of the major peanut-importing countries in this region. Therefore, Aspergillus spp. and aflatoxin contamination in peanuts during storage are becoming major concerns due to the tropical weather in this region that favours the growth of aflatoxigenic fungi. The present study thus aimed to molecularly identify and characterise the Aspergillus section Flavi isolated from imported peanuts in Malaysia. The internal transcribed spacer (ITS) and β-tubulin sequences were used to confirm the species and determine the phylogenetic relationship among the isolates, while aflatoxin biosynthesis genes (aflR, aflP (omtA), aflD (nor-1), aflM (ver-1), and pksA) were targeted in a multiplex PCR to determine the toxigenic potential. A total of 76 and one isolates were confirmed as A. flavus and A. tamarii, respectively. The Maximum Likelihood (ML) phylogenetic tree resolved the species into two different clades in which all A. flavus (both aflatoxigenic and non-aflatoxigenic) were grouped in the same clade and A. tamarii was grouped in a different clade. The aflatoxin biosynthesis genes were detected in all aflatoxigenic A. flavus while the non-aflatoxigenic A. flavus failed to amplify at least one of the genes. The results indicated that both aflatoxigenic and non-aflatoxigenic A. flavus could survive in imported peanuts and, thus, appropriate storage conditions preferably with low temperature should be considered to avoid the re-emergence of aflatoxigenic A. flavus and the subsequent aflatoxin production in peanuts during storage.
Collapse
Affiliation(s)
- Mahror Norlia
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Selamat Jinap
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Son Radu
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Cheow Keat Chin
- Food Safety and Quality Division, Ministry of Health Malaysia, Putrajaya 62675, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Abdul Halim Farawahida
- Department of Food Science and Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
36
|
Quéro L, Courault P, Cellière B, Lorber S, Jany JL, Puel O, Girard V, Vasseur V, Nodet P, Mounier J. Application of MALDI-TOF MS to species complex differentiation and strain typing of food related fungi: Case studies with Aspergillus section Flavi species and Penicillium roqueforti isolates. Food Microbiol 2019; 86:103311. [PMID: 31703856 DOI: 10.1016/j.fm.2019.103311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
Filamentous fungi are one of the main causes of food losses worldwide and their ability to produce mycotoxins represents a hazard for human health. Their correct and rapid identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as a rapid and reliable tool for fungi identification and was applied to typing of bacteria and yeasts, but few studies focused on filamentous fungal species complex differentiation and typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species and integrated into a database for which cross-validation led to more than 99% of correctly attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step calibration procedure was applied before database construction. Cross-validation and external validation respectively led to 94% and 95% of spectra attributed to the right population. Results obtained here suggested very good agreement between spectral and genetic data analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF applicability as a fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.
Collapse
Affiliation(s)
- Laura Quéro
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France; BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Priscillia Courault
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Beatrice Cellière
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Jean-Luc Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Victoria Girard
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Valérie Vasseur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Patrice Nodet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| |
Collapse
|
37
|
Dooso Oloo R, Okoth S, Wachira P, Mutiga S, Ochieng P, Kago L, Nganga F, Domelevo Entfellner JB, Ghimire S. Genetic Profiling of Aspergillus Isolates with Varying Aflatoxin Production Potential from Different Maize-Growing Regions of Kenya. Toxins (Basel) 2019; 11:toxins11080467. [PMID: 31404960 PMCID: PMC6723045 DOI: 10.3390/toxins11080467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023] Open
Abstract
Highly toxigenic strains of Aspergillus flavus have been reported to frequently contaminate maize, causing fatal aflatoxin poisoning in Kenya. To gain insights into the environmental and genetic factors that influence toxigenicity, fungi (n = 218) that were culturally identified as A. flavus were isolated from maize grains samples (n = 120) from three regions of Kenya. The fungi were further characterized to confirm their identities using a PCR-sequence analysis of the internal transcribed spacer (ITS) region of rDNA which also revealed all of them to be A. flavus. A subset of 72 isolates representing ITS sequence-based phylogeny cluster and the agroecological origin of maize samples was constituted for subsequent analysis. The analysis of partial calmodulin gene sequences showed that the subset consisted of A. flavus (87%) and Aspergillus minisclerotigenes (13%). No obvious association was detected between the presence of seven aflatoxin biosynthesis genes and fungal species or region. However, the presence of the aflD and aflS genes showed some association with aflatoxin production. The assessment of toxigenicity showed higher aflatoxin production potential in A. minisclerotigenes isolates. Given that A. minisclerotigenes were mainly observed in maize samples from Eastern Kenya, a known aflatoxin hotspot, we speculate that production of copious aflatoxin is an adaptative trait of this recently discovered species in the region.
Collapse
Affiliation(s)
- Richard Dooso Oloo
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Peter Wachira
- School of Biological Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya
| | - Samuel Mutiga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Phillis Ochieng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Leah Kago
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Fredrick Nganga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya
| | - Sita Ghimire
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100 Nairobi, Kenya.
| |
Collapse
|
38
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Au-Yeung RKH, Cai JP, Chong KTK, Sze KH, Kao RY, Hao Q, Yuen KY. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol 2019; 56:350-360. [PMID: 28992243 DOI: 10.1093/mmy/myx052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, we showed that Mp1p is an important virulence factor of Talaromyces marneffei, a dimorphic fungus phylogenetically closely related to Aspergillus fumigatus. In this study, we investigated the virulence properties of the four Mp1p homologues (Afmp1p, Afmp2p, Afmp3p, and Afmp4p) in A. fumigatus using a mouse model. All mice died 7 days after challenge with wild-type A. fumigatus QC5096, AFMP1 knockdown mutant, AFMP2 knockdown mutant and AFMP3 knockdown mutant and 28 days after challenge with AFMP4 knockdown mutant (P<.0001). Only 11% of mice died 30 days after challenge with AFMP1-4 knockdown mutant (P<.0001). For mice challenge with AFMP1-4 knockdown mutant, lower abundance of fungal elements was observed in brains, kidneys, and spleens compared to mice challenge with QC5096 at day 4 post-infection. Fungal counts in brains of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.01 and P<.05). Fungal counts in kidneys of mice challenge with QC5096 or AFMP4 knockdown mutant were significantly higher than those challenge with AFMP1-4 knockdown mutant (P<.001 and P<.001) and those of mice challenge with QC5096 were significantly higher than those challenge with AFMP4 knockdown mutant (P<.05). There is no difference among the survival rates of wild-type A. fumigatus, AFMP4 knockdown mutant and AFMP1-4 knockdown mutant, suggesting that Mp1p homologues in A. fumigatus do not mediate its virulence via improving its survival in macrophage as in the case in T. marneffei. Afmp1p, Afmp2p, Afmp3p, and Afmp4p in combination are important virulence factors of A. fumigatus.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Edward T K Tung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, The University of Hong -Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ken T K Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
39
|
Drott MT, Fessler LM, Milgroom MG. Population Subdivision and the Frequency of Aflatoxigenic Isolates in Aspergillus flavus in the United States. PHYTOPATHOLOGY 2019; 109:878-886. [PMID: 30480472 DOI: 10.1094/phyto-07-18-0263-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Consumption of food contaminated with aflatoxin, from crops infected by Aspergillus flavus, is associated with acute toxicosis, cancer, and stunted growth. Although such contamination is more common in the lower latitudes of the United States, it is unclear whether this pattern is associated with differences in the relative frequencies of aflatoxigenic individuals of A. flavus. To determine whether the frequency of the aflatoxin-producing ability of A. flavus increases as latitude decreases, we sampled 281 isolates from field soils in two north-south transects in the United States and tested them for aflatoxin production. We also genotyped 161 isolates using 10 microsatellite markers to assess population structure. Although the population density of A. flavus was highest at lower latitudes, there was no difference in the frequency of aflatoxigenic A. flavus isolates in relation to latitude. We found that the U.S. population of A. flavus is subdivided into two genetically differentiated subpopulations that are not associated with the chemotype or geographic origin of the isolates. The two populations differ markedly in allelic and genotypic diversity. The less diverse population is more abundant and may represent a clonal lineage derived from the more diverse population. Overall, increased aflatoxin contamination in lower latitudes may be explained partially by differences in the population density of A. flavus, not genetic population structure.
Collapse
Affiliation(s)
- Milton T Drott
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Lauren M Fessler
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Michael G Milgroom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
40
|
Wong SSY, Poon RWS, To KKW, Chan JFW, Lu G, Xing F, Cheng VCC, Yuen KY. Improving the specific diagnosis of trematode, cestode and nematode infections by a multiplex single-tube real-time PCR assay. J Clin Pathol 2019; 72:487-492. [PMID: 30952829 DOI: 10.1136/jclinpath-2018-205590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 11/04/2022]
Abstract
AIMS Helminth infections are becoming uncommon in high-income countries and laboratory staff may lose expertise in their morphological identification, especially in histological sections where speciation of helminths is challenging. Commercially available molecular diagnostic panels for faecal specimens only offer tests for protozoa but not helminths. We aim to improve the identification accuracy of helminths using a multiplex PCR assay. METHODS We designed three pairs of PCR primers and probes targeting multicopy genes for a multiplex single-tube real-time PCR assay which covers 16 trematode (28S rRNA gene), 24 cestode (cox1 gene) and 33 nematode (cox1 gene) species. Helminths (n=27) from faecal samples (n=10), fresh parasites (n=11), formalin-fixed specimens (n=4), cerebrospinal fluid (n=1) and bile (n=1) were examined morphologically and tested by PCR. Fifty stool samples negative for parasites by microscopy were also tested. RESULTS The PCR assay correctly identified the genera of all tested helminths. Agarose gel electrophoresis and sequencing of the purified PCR amplicons confirmed that the PCR products were of correct sizes with 100% correlation with the respective species. Sequencing of the cox1 gene failed to identify Capillaria spp. in one sample owing to the lack of corresponding sequences in GenBank. PCR and sequencing of the nematode 18S rRNA gene using consensus primers showed 100% homology with Capillaria spp. sequence. No positive PCR products were found in the negative stool samples. CONCLUSIONS The highly specific test correctly identified all helminths in our cohort. It is a useful adjunct to helminth identification in difficult situations such as histological sections.
Collapse
Affiliation(s)
- Samson S Y Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China .,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Rosana W S Poon
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
| | - Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jasper F W Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Hong Kong, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Translational Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Chong YK, Ho CC, Leung SY, Lau SK, Woo PC. Clinical Mass Spectrometry in the Bioinformatics Era: A Hitchhiker's Guide. Comput Struct Biotechnol J 2018; 16:316-334. [PMID: 30237866 PMCID: PMC6138949 DOI: 10.1016/j.csbj.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mass spectrometry (MS) is a sensitive, specific and versatile analytical technique in the clinical laboratory that has recently undergone rapid development. From initial use in metabolic profiling, it has matured into applications including clinical toxicology assays, target hormone and metabolite quantitation, and more recently, rapid microbial identification and antimicrobial resistance detection by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this mini-review, we first succinctly outline the basics of clinical mass spectrometry. Examples of hard ionization (electron ionization) and soft ionization (electrospray ionization, MALDI) are presented to demonstrate their clinical applications. Next, a conceptual discourse on mass selection and determination is presented: quadrupole mass filter, time-of-flight mass spectrometer and the Orbitrap; and MS/MS (tandem-in-space, tandem-in-time and data acquisition), illustrated with clinical examples. Current applications in (1) bacterial and fungal identification, antimicrobial susceptibility testing and phylogenetic classification, (2) general unknown urine toxicology screening and expanded new-born metabolic screening and (3) clinical metabolic profiling by gas chromatography are outlined. Finally, major limitations of MS-based techniques, including the technical challenges of matrix effect and isobaric interference; and novel challenges in the post-genomic era, such as protein molecular variants, are critically discussed from the perspective of service laboratories. Computer technology and structural biology have played important roles in the maturation of this field. MS-based techniques have the potential to replace current analytical techniques, and existing expertise and instrument will undergo rapid evolution. Significant automation and adaptation to regulatory requirements are underway. Mass spectrometry is unleashing its potentials in clinical laboratories.
Collapse
Affiliation(s)
- Yeow-Kuan Chong
- Hospital Authority Toxicology Reference Laboratory, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
- Chemical Pathology and Medical Genetics, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
| | - Chi-Chun Ho
- Division of Chemical Pathology, Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital (PYNEH), Hong Kong
- Division of Clinical Biochemistry, Department of Pathology, Queen Mary Hospital (QMH), Hong Kong
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shui-Yee Leung
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
42
|
Siqueira JPZ, Wiederhold N, Gené J, García D, Almeida MTG, Guarro J. CrypticAspergillusfrom clinical samples in the USA and description of a new species in sectionFlavipedes. Mycoses 2018; 61:814-825. [DOI: 10.1111/myc.12818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Affiliation(s)
- João P. Z. Siqueira
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
- Faculdade de Medicina de São José do Rio Preto; Laboratório de Microbiologia; São José do Rio Preto Brazil
| | - Nathan Wiederhold
- Fungus Testing Laboratory; University of Texas Health Science Center; San Antonio Texas
| | - Josepa Gené
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| | - Dania García
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| | - Margarete T. G. Almeida
- Faculdade de Medicina de São José do Rio Preto; Laboratório de Microbiologia; São José do Rio Preto Brazil
| | - Josep Guarro
- Unitat de Micologia; Facultat de Medicina i Ciències de la Salut; IISPV; Universitat Rovira i Virgili; Reus Spain
| |
Collapse
|
43
|
Tsang CC, Tang JY, Lau SK, Woo PC. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - Past, present and future. Comput Struct Biotechnol J 2018; 16:197-210. [PMID: 30002790 PMCID: PMC6039702 DOI: 10.1016/j.csbj.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species important to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxonomic studies on these fungi are essential since they could provide invaluable information on their evolutionary relationships and define criteria for species recognition. With the advancement of various biological, biochemical and computational technologies, different approaches have been adopted for the taxonomy of Aspergillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different taxonomic approaches focus on different sets of characters of the organisms, various classification and identification schemes would result. In view of this, the consolidated species concept, which takes into account different types of characters, is recently accepted for taxonomic purposes and, together with the lately implemented 'One Fungus - One Name' policy, is expected to bring a more stable taxonomy for Aspergillus, Penicillium and Talaromyces, which could facilitate their evolutionary studies. The most significant taxonomic change for the three genera was the transfer of Penicillium subgenus Biverticillium to Talaromyces (e.g. the medically important thermally dimorphic 'P. marneffei' endemic in Southeast Asia is now named T. marneffei), leaving both Penicillium and Talaromyces as monophyletic genera. Several distantly related Aspergillus-like fungi were also segregated from Aspergillus, making this genus, containing members of both sexual and asexual morphs, monophyletic as well. In the current omics era, application of various state-of-the-art omics technologies is likely to provide comprehensive information on the evolution of Aspergillus, Penicillium and Talaromyces and a stable taxonomy will hopefully be achieved.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Y.M. Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
44
|
Kimura H, Mitsuto I, Taguchi R, Anzawa K, Mochizuki T. Primary cutaneous aspergillosis caused by Aspergillus tamarii in a premature infant with extremely low birthweight: A case report with short review. J Dermatol 2018; 45:622-625. [PMID: 29473215 DOI: 10.1111/1346-8138.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/27/2022]
Abstract
Primary cutaneous aspergillosis is a rare, life-threatening fungal infection in premature infants. We report a case of primary cutaneous aspergillosis caused by Aspergillus tamarii in an extremely low birthweight infant. The infant was delivered by cesarean section with complications from an intrauterine infection, brain intraventricular hemorrhage, tension pneumothorax and cardiac tamponade. On the 12th day of life, he developed erythematous maceration with erosion on his back. Septate hyphae were detected on two occasions from specimens of the skin lesion. The manifestations of the colony and slide culture showed the characteristics of A. tamarii. The nucleotide sequences of internal transcribed spacer regions of the ribosomal RNA gene, partial sequences of β-tubulin and calmodulin gene were compatible with those of A. tamarii. Of the known Aspergillus species, Aspergillus fumigatus and Aspergillus flavus have been reported in previous studies as the major causative agents in primary cutaneous aspergillosis, whereas human infection by A. tamarii is rare. We consider that A. tamarii is important as an unusual opportunistic human pathogen among premature infants.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Dermatology, Fukui Prefectural Hospital, Fukui, Japan.,Department of Dermatology, Kaga Medical Center, Ishikawa, Japan
| | - Isamu Mitsuto
- Department of Dermatology, Fukui Prefectural Hospital, Fukui, Japan
| | - Ritsuyo Taguchi
- Department of Pediatrics, Fukui Prefectural Hospital, Fukui, Japan
| | - Kazushi Anzawa
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan
| | - Takashi Mochizuki
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
45
|
Okoth S, De Boevre M, Vidal A, Diana Di Mavungu J, Landschoot S, Kyallo M, Njuguna J, Harvey J, De Saeger S. Genetic and Toxigenic Variability within Aspergillus flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Front Microbiol 2018; 9:57. [PMID: 29434580 PMCID: PMC5790802 DOI: 10.3389/fmicb.2018.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial β-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.
Collapse
Affiliation(s)
- Sheila Okoth
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martina Kyallo
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Jagger Harvey
- Feed the Future Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Aries P, Hoffmann C, Schaal JV, Leclerc T, Donat N, Cirodde A, Masson Y, Renner J, Soler C. Aspergillus tamarii: an uncommon burn wound infection. J Clin Pathol 2018; 71:379-380. [DOI: 10.1136/jclinpath-2017-204858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/04/2022]
|
47
|
Cuadros J, Gros-Otero J, Gallego-Angui P, Scheu AK, Montes-Mollón Á, Pérez-Rico C, Moreno JP, Gómez-Herruz P, Soliveri J, Teus M. Aspergillus tamarii keratitis in a contact lens wearer. Med Mycol Case Rep 2017; 19:21-24. [PMID: 29234586 PMCID: PMC5723276 DOI: 10.1016/j.mmcr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022] Open
Abstract
Keratitis produced by Aspergillus tamarii has been previously described associated to an ocular injury. We report a case in a contact lens wearer with a history of previous bilateral myopic LASIK ablation, bilateral intracorneal rings and vitrectomy and scleral buckling in his left eye. The fungus could be quickly identified combining phenotype, microscopy and mass spectrometry. Treatment with intravenous amphotericin, oral voriconazole, and topical amphotericin and natamycin and voriconazole was needed for corneal preservation.
Collapse
Affiliation(s)
- Juan Cuadros
- Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Juan Gros-Otero
- Ophtamology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Patricia Gallego-Angui
- Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Ann Karolin Scheu
- Biomedicine and Biotechnology Department, Universidad de Alcalá de Henares, Campus Universitario C/ 19, Av. de Madrid, Km 33,600 , Alcalá de Henares, Madrid 28871, Spain
| | - Ángeles Montes-Mollón
- Ophtamology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Cinta Pérez-Rico
- Ophtamology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Javier Paz Moreno
- Ophtamology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Peña Gómez-Herruz
- Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| | - Juan Soliveri
- Biomedicine and Biotechnology Department, Universidad de Alcalá de Henares, Campus Universitario C/ 19, Av. de Madrid, Km 33,600 , Alcalá de Henares, Madrid 28871, Spain
| | - Miguel Teus
- Ophtamology Department, Hospital Universitario Príncipe de Asturias, Alcalá Meco S/N, Madrid 28805, Spain
| |
Collapse
|
48
|
Trablesi H, Hadrich I, Neji S, Fendri N, Ghorbel D, Makni F, Ayadi H, Kammoun S, Ayadi A. Environmental and molecular study of fungal flora in asthmatic patients. J Mycol Med 2017; 28:180-185. [PMID: 29102311 DOI: 10.1016/j.mycmed.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the epidemiological and fungal environmental profile in asthmatic patients. We conducted a prospective study involving 49 patients with allergic asthma. One hundred and forty-five clinical samples and 289 environmental samples were performed. Only 30 patients accepted to participate to the environmental study at their home. For specific IgE antibodies, ELISA assay was conducted for 21 patients. Molecular ITS sequencing was performed for 37 isolates. The frequency of attacks was significantly associated with the seasonality, which was closely related to climate (P=0.024), exposure to animals (cats, P=0.025), plants (olive, P=0.018), physical effort (P=0.04) and the number of permanent occupants in house (>6) (P=0.026). Fungal contaminants were detected from 78.6% of biological samples and 97.8% of environmental samples. Antibodies corresponding to the studied allergens were detected in 10 patients (10/21). PCR sequencing allowed as rectified morphological identification for 27.02% (10/37) strains of Aspergillus. The allergy in molds is an indisputable reality that is necessary to look for in front of any severe asthma. So, it is important to establish clearly a relationship between exposure to fungi and health disorders in order to set up specific and effective preventive measures.
Collapse
Affiliation(s)
- H Trablesi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - I Hadrich
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - S Neji
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - N Fendri
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - D Ghorbel
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - F Makni
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| | - H Ayadi
- Department of Pneumology, UH Hedi Chaker, University of Sfax, Sfax, Tunisia.
| | - S Kammoun
- Department of Pneumology, UH Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - A Ayadi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
49
|
Molecular identification of cestodes and nematodes by cox1 gene real-time PCR and sequencing. Diagn Microbiol Infect Dis 2017; 89:185-190. [PMID: 28865743 DOI: 10.1016/j.diagmicrobio.2017.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022]
Abstract
Unlike bacteria and fungi, identification of helminths by gene sequencing is not well-standardized. No "pan-cestode" or "pan-nematode" PCR primers are available. In this study, we designed 2 pairs of PCR primers for amplifying the cox1 genes of cestodes and nematodes respectively and validated their usefulness for real-time PCR and sequencing identification using clinical samples with cestodes and nematodes collected from a variety of animals and human in 7 countries in Asia, Europe and Africa. The detection limits of the cox1 real-time PCR assays for cestodes and nematodes were 10 copies/reaction of extracted DNA, corresponding to CT values of 33 and 31 respectively. Real-time PCR using the 2 pairs of primers and probes showed positive results for all 20 clinical samples of cestodes and nematodes. Using phenotypic identification results as the reference standard, DNA sequencing successfully identified all the 5 cestodes and 7 nematodes with cox1 gene sequences available in GenBank, with all these names appearing as the best match of the cox1 gene sequences of the corresponding clinical samples. The percentage nucleotide identities between the cox1 gene sequences of the samples and those of the corresponding best match sequences in GenBank were 98-100%. For the remaining 5 cestodes and 3 nematodes, the corresponding cox1 gene sequences were not available in GenBank. cox1 gene sequencing is discriminative enough for accurately identifying most of the cestodes and nematodes in the present study. Further expansion of the cox1 gene sequence database will enable accurate identification of more cestodes and nematodes.
Collapse
|
50
|
Li Y, Wang H, Zhao YP, Xu YC, Hsueh PR. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media. Front Microbiol 2017; 8:1209. [PMID: 28706514 PMCID: PMC5489701 DOI: 10.3389/fmicb.2017.01209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 11/26/2022] Open
Abstract
We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381) of the isolates to the species level (score values of ≥2.000) and 49.3% to the genus level (score values of 1.700–1.999). When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| | - He Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of MedicineTaipei, Taiwan
| |
Collapse
|