1
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
2
|
Yu D, Banting G, Neumann NF. A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Can J Microbiol 2021; 67:553-571. [PMID: 33789061 DOI: 10.1139/cjm-2020-0508] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Historically, bacteriologists have relied heavily on biochemical and structural phenotypes for bacterial taxonomic classification. However, advances in comparative genomics have led to greater insights into the remarkable genetic diversity within the microbial world, and even within well-accepted species such as Escherichia coli. The extraordinary genetic diversity in E. coli recapitulates the evolutionary radiation of this species in exploiting a wide range of niches (i.e., ecotypes), including the gastrointestinal system of diverse vertebrate hosts as well as non-host natural environments (soil, natural waters, wastewater), which drives the adaptation, natural selection, and evolution of intragenotypic conspecific specialism as a strategy for survival. Over the last few years, there has been increasing evidence that many E. coli strains are very host (or niche)-specific. While biochemical and phylogenetic evidence support the classification of E. coli as a distinct species, the vast genomic (diverse pan-genome and intragenotypic variability), phenotypic (e.g., metabolic pathways), and ecotypic (host-/niche-specificity) diversity, comparable to the diversity observed in known species complexes, suggest that E. coli is better represented as a complex. Herein we review the taxonomic classification of the genus Escherichia and discuss how phenotype, genotype, and ecotype recapitulate our understanding of the biology of this remarkable bacterium.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Graham Banting
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada.,School of Public Health, University of Alberta, Edmonton, AB T6G IC9, Canada
| |
Collapse
|
3
|
Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2020; 339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.
Collapse
|
4
|
Vachon MS, Khalid M, Tarr GAM, Hedberg C, Brown JA. Farm animal contact is associated with progression to Hemolytic uremic syndrome in patients with Shiga toxin-producing Escherichia coli - Indiana, 2012-2018. One Health 2020; 11:100175. [PMID: 33392374 PMCID: PMC7772627 DOI: 10.1016/j.onehlt.2020.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022] Open
Abstract
Background Hemolytic uremic syndrome (HUS) is a life-threatening complication of Shiga toxin-producing Escherichia coli (STEC) infection. The relationship between STEC exposure and severity of clinical outcomes is not well documented. We examined whether direct contact with farm animals increased the likelihood of HUS among Indiana residents diagnosed with STEC. Methods Exposure data for laboratory-confirmed STEC cases among Indiana residents during 2012–2018 were retrieved. Logistic regression and mediation analysis were performed to determine the extent to which a history of direct contact with farm animals was associated with post-diarrheal HUS independent of age and mediated by stx2 gene presence. Results A total of 784 STEC cases were retrieved. Of these, 46 (6%) developed HUS. Complete exposure data were available for 600 (77%) cases. A total of 24 (52%) HUS patients reported direct contact with farm animals, while 114 (21%) STEC patients who did not develop HUS reported this exposure. Among all STEC cases, HUS was associated with direct farm animal contact after adjusting for age (OR = 3.40, 95% CI: 1.81, 6.40). Detection of stx2 genes mediated 12% of the association between farm animal contact and HUS. Conclusions Direct farm animal contact was a risk factor for development of HUS among laboratory-confirmed STEC cases, independent of stx2 presence. Direct farm animal contact should be considered a potential predictor of progression to HUS when patients present for care and the mechanism for its effect on virulence investigated. Independent of stx2 presence, contact with farm animals is a risk factor for the development of HUS. Stx2 gene detection mediated 12.2% of the association between farm animal contact and HUS. Exposure source may impact virulence of STEC and thus the severity of clinical outcomes.
Collapse
Affiliation(s)
- Madhura S Vachon
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St. SE, Minneapolis, MN, USA, 55455
| | - Myda Khalid
- Department of Pediatric Nephrology and Kidney Diseases, Riley Hospital for Children 575 Riley Hospital Dr., Indianapolis, IN, USA, 46202
| | - Gillian A M Tarr
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St. SE, Minneapolis, MN, USA, 55455
| | - Craig Hedberg
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, 420 Delaware St. SE, Minneapolis, MN, USA, 55455
| | - Jennifer A Brown
- Epidemiology Resource Center, Indiana State Department of Health, 2 N. Meridian St. Indianapolis, IN, USA, 46204
| |
Collapse
|
5
|
Juliana G, Jimena C, Mariel S, Ana B. Molecular subtyping and clonal relatedness of human and cattle verotoxin-producing Escherichia coli O157:H7 isolates. Microb Pathog 2020; 145:104183. [PMID: 32247643 DOI: 10.1016/j.micpath.2020.104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Verotoxin-producing Escherichia coli O157:H7 is the dominant serotype isolated from patients with hemolytic-uremic syndrome (HUS) and, Argentina has the highest rate of HUS in the world. However, not all O157:H7 isolates have the same ability to infect and cause disease in humans. It has been postulated that O157:H7 strains integrate subpopulations related to the origin and virulence. In order to study the population structure and genetic diversity of VTEC O157:H7 from Argentina, a combination of molecular subtyping methods such as multiple loci VNTR analysis (MLVA), single nucleotide polymorphisms (SNP) and phylogroups assignment were used. According to MLVA, high genetic diversity was found among strains isolated from cattle, humans and food. On the other hand, 92% of the isolates presented the allele tir 255 T > A T and 95% were assigned to phylogroup E. We did not find a significant association between the isolates origin and the allele T presence (P > 0,05) postulated as significantly overrepresented in human isolates. Our results show that human and cattle VTEC O157:H7 isolates from Argentina are a homogeneous group and, although it presents high genetic diversity in relation to their MLVA and virulence profiles, it is not possible to distinguish divergent populations. The presence in all the strains of a high number of T3SS effectors genes and the no association of genetic subtypes with strain source, is an alert about the potential risk in public health that VTEC O157:H7 cattle strains possess and, at less, a partial explication about the high incidence of HUS in Argentina.
Collapse
Affiliation(s)
- González Juliana
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina; Laboratorio de Microbiología de Los Alimentos, Departamento de Tecnología y Calidad de Los Alimentos, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Cadona Jimena
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Sanso Mariel
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Bustamante Ana
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Burgán J, Krüger A, Lucchesi PMA. Comparable stx 2a expression and phage production levels between Shiga toxin-producing Escherichia coli strains from human and bovine origin. Zoonoses Public Health 2019; 67:44-53. [PMID: 31868306 DOI: 10.1111/zph.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.
Collapse
Affiliation(s)
- Julia Burgán
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Alejandra Krüger
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Paula M A Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), (CONICET-CIC-UNCPBA) Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
7
|
Elson R, Davies TM, Jenkins C, Vivancos R, O'Brien SJ, Lake IR. Application of kernel smoothing to estimate the spatio-temporal variation in risk of STEC O157 in England. Spat Spatiotemporal Epidemiol 2019; 32:100305. [PMID: 32007279 DOI: 10.1016/j.sste.2019.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/27/2023]
Abstract
Identifying geographical areas with significantly higher or lower rates of infectious diseases can provide important aetiological clues to inform the development of public health policy and interventions designed to reduce morbidity. We applied kernel smoothing to estimate the spatial and spatio-temporal variation in risk of STEC O157 infection in England between 2009 and 2015, and to explore differences between the residential locations of cases reporting travel and those not reporting travel. We provide evidence that the distribution of STEC O157 infection in England is non-uniform with respect to the distribution of the at-risk population; that the spatial distribution of the three main genetic lineages infecting humans (I, II and I/II) differs significantly and that the spatio-temporal risk is highly dynamic. Our results also indicate that cases of STEC O157 reporting travel within or outside the UK are more likely to live in the south/south-east of the country, meaning that their residential location may not reflect the location of exposure that led to their infection. We suggest that the observed variation in risk reflects exposure to sources of STEC O157 that are geographically prescribed. These differences may be related to a combination of changes in the strains circulating in the ruminant reservoir, animal movements (livestock, birds or wildlife) or the behavior of individuals prior to infection. Further work to identify the importance of behaviours and exposures reported by cases relative to residential location is needed.
Collapse
Affiliation(s)
- Richard Elson
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; School of Environmental Sciences, University of East Anglia, United Kingdom.
| | - Tilman M Davies
- Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom
| | - Roberto Vivancos
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections, United Kingdom
| | - Sarah J O'Brien
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iain R Lake
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections, United Kingdom; School of Environmental Sciences, University of East Anglia, United Kingdom
| |
Collapse
|
8
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
9
|
Pianciola L, Rivas M. Genotypic Features of Clinical and Bovine Escherichia coli O157 Strains Isolated in Countries with Different Associated-Disease Incidences. Microorganisms 2018; 6:microorganisms6020036. [PMID: 29702577 PMCID: PMC6027531 DOI: 10.3390/microorganisms6020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
There is great geographical variation in the frequency of Escherichia coli O157 infections that correlates with important differences in the bovine reservoir of each country. Our group carried out a broad molecular characterization of human and bovine E. coli O157 strains circulating in Argentina using different methodologies. Our data allows us to conclude that in Argentina, a high homogeneity is observed in both cattle and human strains, with almost exclusive circulation of strains belonging to the hypervirulent clade 8 described by Manning. The aim of this review was to compare the genetic background of E. coli O157 strains isolated in countries that have conducted similar studies, to try to correlate specific O157 genotypes with the incidence and severity of E. coli O157 associated diseases. The characteristics of the strains that cause disease in humans reflect the predominant genotypes in cattle in each of the countries analyzed. The main features clearly linked to high incidence or severity of E. coli O157 infections are lineage-specific polymorphism assay-6 lineage I/II, clade 8 strains and probably, clade 6 strains, the stx2a/stx2c genotype, the presence of q933 and q21 simultaneously, and putative virulence factor EC_3286. In countries with an absence of these features in O157 strains, the overall incidence of O157 disease is low. Argentina, where these characteristics are detected in most strains, shows the highest incidence of hemolytic uremic syndrome (HUS) worldwide.
Collapse
Affiliation(s)
- Luis Pianciola
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Gregorio Martínez 65, Neuquén 8300, Argentina.
| | - Marta Rivas
- Servicio Fisiopatogenia, INEI-ANLIS "Carlos G. Malbrán", Av. Vélez Sarsfield 563, Buenos Aires 1281, Argentina.
| |
Collapse
|
10
|
Tanaro JD, Pianciola LA, D'Astek BA, Piaggio MC, Mazzeo ML, Zolezzi G, Rivas M. Virulence profile of Escherichia coli O157 strains isolated from surface water in cattle breeding areas. Lett Appl Microbiol 2018; 66:484-490. [PMID: 29500840 DOI: 10.1111/lam.12873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 01/31/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a worldwide concern. Cattle are their main reservoir and may contaminate watercourses through manure. We characterized a collection of 38 STEC O157:H7 strains isolated from surface water in feedlots areas (puddles inside pens formed after the rainfall or by spill around drinking troughs, and small water courses and lagoons, formed by runoff). Nineteen (50·0%) strains harboured stx2a /stx2c genes, 18 (47·4%) stx2c and one stx1a /stx2c . All strains harboured eae, ehxA, rfbO157 and fliCH7 genes, and the putative virulence determinants ECSP_0242, ECSP_2687 and ECSP_3620. All isolates tested as Lineage I/II by lineage-specific polymorphism assay-6. Nineteen (50%) belonged to the high virulent clade 8. The q21 allele was found in all strains and q933 /q21 alleles in 17 (44·7%). By XbaI-pulsed-field gel electrophoresis, 29 strains were grouped into seven clusters. Four clusters grouped isolates from distant places separated by 150-250 km. This may be related to vectors, like birds, involved in their spread. Otherwise, three clusters contained isolates recovered at same places with intervals of 1-9 months. This could be explained by the high environmental persistence of STEC O157:H7. These strains recovered from surface water showed similar genotypes to those found in the bovine reservoir and in human diseases, and could be linked to the high incidence of haemolytic uremic syndrome in Argentina. SIGNIFICANCE AND IMPACT OF THE STUDY The challenge for the growing global demand for food is to find sustained production strategies without collateral effects. Intensive livestock operations generate large volumes of manure that can contaminate a finite resource, the water. This study shows how water contaminated by confined feeding operations can transport dangerous pathogens and warns to pay more attention to control and sanitation systems to prevent this type of pollution.
Collapse
Affiliation(s)
- J D Tanaro
- Cátedra de Microbiología, Facultad De Bromatología, Universidad Nacional de Entre Ríos, Gualeguaychú, Argentina
| | - L A Pianciola
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Neuquén, Argentina
| | - B A D'Astek
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - M C Piaggio
- Cátedra de Microbiología, Facultad De Bromatología, Universidad Nacional de Entre Ríos, Gualeguaychú, Argentina
| | - M L Mazzeo
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Neuquén, Argentina
| | - G Zolezzi
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - M Rivas
- Servicio Fisiopatogenia, Departamento Bacteriología, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
11
|
Virulence traits and different nle profiles in cattle and human verotoxin-producing Escherichia coli O157:H7 strains from Argentina. Microb Pathog 2017; 102:102-108. [DOI: 10.1016/j.micpath.2016.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|
12
|
Carter MQ. Decoding the Ecological Function of Accessory Genome. Trends Microbiol 2016; 25:6-8. [PMID: 27919552 DOI: 10.1016/j.tim.2016.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022]
Abstract
Shiga toxin-producing Escherichia coli O157:H7 primarily resides in cattle asymptomatically, and can be transmitted to humans through food. A study by Lupolova et al. applied a machine-learning approach to complex pan-genome information and predicted that only a small subset of bovine isolates have the potential to cause diseases in humans.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA, USA.
| |
Collapse
|
13
|
Galli L, Brusa V, Singh P, Cataldi AA, Manning S, Peral-García P, Leotta GA. High prevalence of clade 8 Escherichia coli O157:H7 isolated from retail meat and butcher shop environment. INFECTION GENETICS AND EVOLUTION 2016; 45:1-5. [DOI: 10.1016/j.meegid.2016.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
14
|
Munns KD, Zaheer R, Xu Y, Stanford K, Laing CR, Gannon VPJ, Selinger LB, McAllister TA. Comparative Genomic Analysis of Escherichia coli O157:H7 Isolated from Super-Shedder and Low-Shedder Cattle. PLoS One 2016; 11:e0151673. [PMID: 27018858 PMCID: PMC4809568 DOI: 10.1371/journal.pone.0151673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ''super-shedder" has been applied to cattle that shed ≥10(4) cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01-8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89-2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.
Collapse
Affiliation(s)
- Krysty D. Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Kim Stanford
- Agriculture and Forestry, Lethbridge, AB, Canada
| | - Chad R. Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - Victor P. J. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, AB, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Elhadidy M, Álvarez-Ordóñez A. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions. Front Microbiol 2016; 7:322. [PMID: 27014242 PMCID: PMC4791531 DOI: 10.3389/fmicb.2016.00322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this study provide a better insight into how selective pressures encountered through the food chain may play a role in the epidemiology of STEC O157:H7 through controlling the transmission of highly adapted strains to humans.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University Mansoura, Egypt
| | | |
Collapse
|
16
|
Pianciola L, D'Astek BA, Mazzeo M, Chinen I, Masana M, Rivas M. Genetic features of human and bovine Escherichia coli O157:H7 strains isolated in Argentina. Int J Med Microbiol 2016; 306:123-30. [PMID: 26935026 DOI: 10.1016/j.ijmm.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/30/2015] [Accepted: 02/15/2016] [Indexed: 11/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuquén Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuquén is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfbO157, fliCH7, eae, and ehxA genes. The predominant genotype was stx2a/stx2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described for Neuquén Province, may actually be a characteristic of the whole country. These genetic features are quite similar to those observed in the bovine reservoir and may be derived from it. This data confirms that, unlike the rest of the world, in Argentina most of the STEC O157 strains present in cattle may cause human infections of varying severity and the marked virulence described for these strains may be related to the high incidence of HUS in our country.
Collapse
Affiliation(s)
- L Pianciola
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Gregorio Martínez 65, 8300 Neuquén, Argentina.
| | - B A D'Astek
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - M Mazzeo
- Laboratorio Central, Subsecretaría de Salud de Neuquén, Gregorio Martínez 65, 8300 Neuquén, Argentina
| | - I Chinen
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - M Masana
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria, Instituto Tecnología de Alimentos, Morón, Pcia, de Buenos Aires, Argentina
| | - M Rivas
- Servicio Fisiopatogenia, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| |
Collapse
|
17
|
"Preharvest" Food Safety for Escherichia coli O157 and Other Pathogenic Shiga Toxin-Producing Strains. Microbiol Spectr 2016; 2. [PMID: 26104364 DOI: 10.1128/microbiolspec.ehec-0021-2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Preharvest food safety refers to the concept of reducing the rates of contamination of unprocessed foods with food-borne disease pathogens in order to reduce human exposure and disease. This article addresses the search for effective preharvest food safety practices for application to live cattle to reduce both contamination of foods of bovine origin and environmental contamination resulting from cattle. Although this research has resulted in several practices that significantly decrease contamination by Escherichia coli O157, the effects are limited in magnitude and unlikely to affect the incidence of human disease without much wider application and considerably higher efficacy than is presently apparent. Infection of cattle with E. coli O157 is transient and seasonally variable, likely resulting from a complex web of exposures. It is likely that better identification of the true maintenance reservoir of this agent and related Shiga toxin-producing E. coli is required to develop more effective control measures for these important food- and waterborne disease agents.
Collapse
|
18
|
Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association. Sci Rep 2015; 5:14145. [PMID: 26442781 PMCID: PMC4595763 DOI: 10.1038/srep14145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/19/2015] [Indexed: 02/04/2023] Open
Abstract
Genetic variation in an infectious disease pathogen can be driven by ecological niche dissimilarities arising from different host species and different geographical locations. Whole genome sequencing was used to compare E. coli O157 isolates from host reservoirs (cattle and sheep) from Scotland and to compare genetic variation of isolates (human, animal, environmental/food) obtained from Scotland, New Zealand, Netherlands, Canada and the USA. Nei’s genetic distance calculated from core genome single nucleotide polymorphisms (SNPs) demonstrated that the animal isolates were from the same population. Investigation of the Shiga toxin bacteriophage and their insertion sites (SBI typing) revealed that cattle and sheep isolates had statistically indistinguishable rarefaction profiles, diversity and genotypes. In contrast, isolates from different countries exhibited significant differences in Nei’s genetic distance and SBI typing. Hence, after successful international transmission, which has occurred on multiple occasions, local genetic variation occurs, resulting in a global patchwork of continental and trans-continental phylogeographic clades. These findings are important for three reasons: first, understanding transmission and evolution of infectious diseases associated with multiple host reservoirs and multi-geographic locations; second, highlighting the relevance of the sheep reservoir when considering farm based interventions; and third, improving our understanding of why human disease incidence varies across the world.
Collapse
|
19
|
Hirai S, Yokoyama E, Etoh Y, Seto J, Ichihara S, Suzuki Y, Maeda E, Sera N, Horikawa K, Sato S, Yamamoto T. Putative classification of clades of enterohemorrhagic Escherichia coli O157 using an IS-printing system. Lett Appl Microbiol 2015; 61:267-73. [PMID: 26031479 DOI: 10.1111/lam.12448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/11/2015] [Accepted: 05/25/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Enterohemorrhagic Escherichia coli O157 (O157) strains can be classified in clades by single nucleotide polymorphisms (SNPs), but this analysis requires significant laboratory effort. As the distribution of insertion sequence (IS) 629 insertions has been reported to be biased among different clades, O157 isolates can be putatively classified in clades by comparison with an IS629 distribution database. A database of the IS629 distribution in O157 strains isolated in Chiba Prefecture and their classification in clades was determined by SNP analysis and IS-printing, an easy and quick analytical tool for IS629 in the O157 genome. The IS629 distribution in O157 strains isolated in Fukuoka and Yamagata Prefectures was determined by IS-printing. These strains were putatively classified in clades by Relative Likelihood calculations that compared the IS-printing data and the IS629 distribution database. Concordance Ratios were calculated, which compared the number of strains putatively classified in a clade by Relative Likelihood to the number of strains classified in that clade by SNP analysis. For the Fukuoka and Yamagata strains, the Concordance Ratios for clades 3, 6 and 8 were 97-100%, for clade 7 about 88%, and for clades 2 and 12 over 90%. In conclusion, O157 clade 2, 3, 6, 7, 8 and 12 strains could be putatively classified by IS-printing. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that enterohemorrhagic E. coli O157 (O157) strains could be putatively classified in clades using an IS-printing system. IS-printing was previously developed as a relatively quick and easy tool for analysis of insertion sequence 629 in the O157 genome. Since most local government public health institutes in Japan carry out IS-printing for early detection of O157 outbreaks, these data should be useful for putative classification of O157 strains in each area.
Collapse
Affiliation(s)
- S Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan.,Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - E Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Y Etoh
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - J Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - S Ichihara
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Y Suzuki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - E Maeda
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - N Sera
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - K Horikawa
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - S Sato
- Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - T Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
20
|
Pielaat A, Boer MP, Wijnands LM, van Hoek AHAM, Bouw E, Barker GC, Teunis PFM, Aarts HJM, Franz E. First step in using molecular data for microbial food safety risk assessment; hazard identification of Escherichia coli O157:H7 by coupling genomic data with in vitro adherence to human epithelial cells. Int J Food Microbiol 2015; 213:130-8. [PMID: 25910947 PMCID: PMC4613885 DOI: 10.1016/j.ijfoodmicro.2015.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022]
Abstract
The potential for using whole genome sequencing (WGS) data in microbiological risk assessment (MRA) has been discussed on several occasions since the beginning of this century. Still, the proposed heuristic approaches have never been applied in a practical framework. This is due to the non-trivial problem of mapping microbial information consisting of thousands of loci onto a probabilistic scale for risks. The paradigm change for MRA involves translation of multidimensional microbial genotypic information to much reduced (integrated) phenotypic information and onwards to a single measure of human risk (i.e. probability of illness). In this paper a first approach in methodology development is described for the application of WGS data in MRA; this is supported by a practical example. That is, combining genetic data (single nucleotide polymorphisms; SNPs) for Shiga toxin-producing Escherichia coli (STEC) O157 with phenotypic data (in vitro adherence to epithelial cells as a proxy for virulence) leads to hazard identification in a Genome Wide Association Study (GWAS). This application revealed practical implications when using SNP data for MRA. These can be summarized by considering the following main issues: optimum sample size for valid inference on population level, correction for population structure, quantification and calibration of results, reproducibility of the analysis, links with epidemiological data, anchoring and integration of results into a systems biology approach for the translation of molecular studies to human health risk. Future developments in genetic data analysis for MRA should aim at resolving the mapping problem of processing genetic sequences to come to a quantitative description of risk. The development of a clustering scheme focusing on biologically relevant information of the microbe involved would be a useful approach in molecular data reduction for risk assessment.
Collapse
Affiliation(s)
- Annemarie Pielaat
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands.
| | - Martin P Boer
- Wageningen UR Biometris, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lucas M Wijnands
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Angela H A M van Hoek
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Gary C Barker
- IFR, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Peter F M Teunis
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henk J M Aarts
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
21
|
Bai L, Guo Y, Lan R, Dong Y, Wang W, Hu Y, Gan X, Yan S, Fu P, Pei X, Xu J, Liu X, Li F. Genotypic characterization of Shiga toxin-producing Escherichia coli O157:H7 isolates in food products from china between 2005 and 2010. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Cote R, Katani R, Moreau MR, Kudva IT, Arthur TM, DebRoy C, Mwangi MM, Albert I, Raygoza Garay JA, Li L, Brandl MT, Carter MQ, Kapur V. Comparative analysis of super-shedder strains of Escherichia coli O157:H7 reveals distinctive genomic features and a strongly aggregative adherent phenotype on bovine rectoanal junction squamous epithelial cells. PLoS One 2015; 10:e0116743. [PMID: 25664460 PMCID: PMC4321836 DOI: 10.1371/journal.pone.0116743] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as “super-shedders” (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells.
Collapse
Affiliation(s)
- Rebecca Cote
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robab Katani
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew R. Moreau
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| | - Terrance M. Arthur
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael M. Mwangi
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Juan Antonio Raygoza Garay
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lingling Li
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria T. Brandl
- Produce Safety and Microbiology, Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Michelle Q. Carter
- Produce Safety and Microbiology, Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Vivek Kapur
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bibbal D, Loukiadis E, Kérourédan M, Ferré F, Dilasser F, Peytavin de Garam C, Cartier P, Oswald E, Gay E, Auvray F, Brugère H. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl Environ Microbiol 2015; 81:1397-1405. [PMID: 25527532 PMCID: PMC4309698 DOI: 10.1128/aem.03315-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples.O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P<0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover,simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.
Collapse
Affiliation(s)
- Delphine Bibbal
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
- Université de Lyon, UMR 5557 Microbial Ecology, Université de Lyon 1, CNRS, VetAgro Sup, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Franck Ferré
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
| | - Françoise Dilasser
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | | | | | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Emilie Gay
- Anses, Lyon Laboratory, Epidemiology Unit, Lyon, France
| | - Frédéric Auvray
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Munns KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA. Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 2014; 12:89-103. [PMID: 25514549 DOI: 10.1089/fpd.2014.1829] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that causes illness in humans worldwide. Cattle are the primary reservoir of this bacterium, with the concentration and frequency of E. coli O157:H7 shedding varying greatly among individuals. The term "super-shedder" has been applied to cattle that shed concentrations of E. coli O157:H7 ≥ 10⁴ colony-forming units/g feces. Super-shedders have been reported to have a substantial impact on the prevalence and transmission of E. coli O157:H7 in the environment. The specific factors responsible for super-shedding are unknown, but are presumably mediated by characteristics of the bacterium, animal host, and environment. Super-shedding is sporadic and inconsistent, suggesting that biofilms of E. coli O157:H7 colonizing the intestinal epithelium in cattle are intermittently released into feces. Phenotypic and genotypic differences have been noted in E. coli O157:H7 recovered from super-shedders as compared to low-shedding cattle, including differences in phage type (PT21/28), carbon utilization, degree of clonal relatedness, tir polymorphisms, and differences in the presence of stx2a and stx2c, as well as antiterminator Q gene alleles. There is also some evidence to support that the native fecal microbiome is distinct between super-shedders and low-shedders and that low-shedders have higher levels of lytic phage within feces. Consequently, conditions within the host may determine whether E. coli O157:H7 can proliferate sufficiently for the host to obtain super-shedding status. Targeting super-shedders for mitigation of E. coli O157:H7 has been proposed as a means of reducing the incidence and spread of this pathogen to the environment. If super-shedders could be easily identified, strategies such as bacteriophage therapy, probiotics, vaccination, or dietary inclusion of plant secondary compounds could be specifically targeted at this subpopulation. Evidence that super-shedder isolates share a commonality with isolates linked to human illness makes it imperative that the etiology of this phenomenon be characterized.
Collapse
Affiliation(s)
- Krysty D Munns
- 1 Agriculture and Agri-Food Canada, Lethbridge Research Centre , Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Geographically distinct Escherichia coli O157 isolates differ by lineage, Shiga toxin genotype, and total shiga toxin production. J Clin Microbiol 2014; 53:579-86. [PMID: 25502531 DOI: 10.1128/jcm.01532-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the differential association of Escherichia coli O157 genotypes with animal and human hosts has recently been well documented, little is known about their distribution between countries and how this might affect regional disease rates. Here, we used a 48-plex single nucleotide polymorphism (SNP) assay to segregate 148 E. coli O157 isolates from Australia, Argentina, and the United States into 11 SNP lineages. We also investigated the relationship between SNP lineages, Shiga toxin (Stx) gene profiles, and total Stx production. E. coli O157 isolates clearly segregated into SNP lineages that were differentially associated with each country. Of the 11 SNP lineages, seven were detected among isolates from a single country, two were detected among isolates from all three countries, and another two were detected only among U.S. and Argentinean isolates. A number of Australian (30%) and Argentinean (14%) isolates were associated with novel, previously undescribed SNP lineages that were unique to each country. Isolates within SNP lineages that were strongly associated with the carriage of stx2a produced comparatively more Stx on average than did those lacking the stx2a subtype. Furthermore, the proportion of isolates in stx2a-associated SNP lineages was significantly higher in Argentina and the United States than Australia (P < 0.05). This study provides evidence for the geographic divergence of E. coli O157 and for a prominent role of stx2a in total Stx production. These results also highlight the need for more comprehensive studies of the global distribution of E. coli O157 lineages and the impacts of regionally predominant E. coli O157 lineages on the prevalence and severity of disease.
Collapse
|
26
|
Multilocus genotypic characterization of Escherichia coli O157:H7 recovered from food sources. Epidemiol Infect 2014; 143:2367-72. [PMID: 25428257 DOI: 10.1017/s0950268814003197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Escherichia coli O157:H7 strains (n = 33) recovered from different food sources in Egypt were characterized using molecular assays to identify strain genotypes associated with various levels of pathogenic potential. Genotypic characterization included: lineage-specific polymorphism assay (LSPA-6), Shiga-toxin-encoding bacteriophage insertion site assay (SBI), clade 8 typing, Tir (A255 T) polymorphism, and variant analysis of Shiga toxin 2 gene (Stx 2a and Stx 2c), and anti-terminator Q genes (Q 933 and Q 21). Genotypes LI/II (76%), SBI 1 (60·6%), clade 8 (69·7%), Tir (255 T) (72·7%) and Stx 2c (45·5%) were found to be significantly more frequent compared to other genetic markers in the strains analysed. Multivariable analysis revealed a significant association between LPSA-6 and clade types as well as Tir (A255 T). To the best of our knowledge, this is the first study to report the characterization of these genetic markers in E. coli O157:H7 strains in the Middle East and Africa.
Collapse
|
27
|
Elhadidy M, Elkhatib WF, Elfadl EAA, Verstraete K, Denayer S, Barbau-Piednoir E, De Zutter L, Verhaegen B, De Rauw K, Piérard D, De Reu K, Heyndrickx M. Genetic diversity of Shiga toxin-producing Escherichia coli O157 : H7 recovered from human and food sources. MICROBIOLOGY-SGM 2014; 161:112-119. [PMID: 25411313 DOI: 10.1099/mic.0.083063-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to identify an epidemiological association between Shiga toxin-producing Escherichia coli O157 : H7 strains associated with human infection and with food sources. Frequency distributions of different genetic markers of E. coli O157 : H7 strains recovered from human and food sources were compared using molecular assays to identify E. coli O157 : H7 genotypes associated with variation in pathogenic potential and host specificity. Genotypic characterization included: lineage-specific polymorphism assay (LSPA-6), clade typing, tir (A255T) polymorphism, Shiga toxin-encoding bacteriophage insertion site analysis and variant analysis of Shiga toxin 2 gene (stx2a and stx2c) and antiterminator Q genes (Q933 and Q21). The intermediate lineage (LI/II) dominated among both food and human strains. Compared to other clades, clades 7 and 8 were more frequent among food and human strains, respectively. The tir (255T) polymorphism occurred more frequently among human strains than food strains. Q21 and Q933 + Q21 were found at significantly higher frequencies among food and human strains, respectively. Moreover, stx2a and stx2a+c were detected at significantly higher frequencies among human strains compared to food strains. Bivariate analysis revealed significant concordance (P<0.05) between the LSPA-6 assay and the other typing methods. Multivariable regression analysis suggested that tir (255T) was the most distinctive genotype that can be used to detect bacterial clones with potential risk for human illness from food sources. This study supported previous reports of the existence of diversity in genetic markers among different isolation sources by including E. coli O157 : H7 strains from both food and human sources. This might enable tracking genotypes with potential risk for human illness from food sources.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walid F Elkhatib
- Department of Pharmacy Practice, School of Pharmacy, Hampton University, Kittrell Hall Hampton, VA 23668, USA.,Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St Abbassia, Cairo 11566, Egypt
| | - Eman A Abo Elfadl
- Department of Animal Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Karen Verstraete
- Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, Melle 9090, Belgium
| | - Sarah Denayer
- Foodborne Pathogens, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Elodie Barbau-Piednoir
- Foodborne Pathogens, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Bavo Verhaegen
- Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.,Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, Melle 9090, Belgium
| | - Klara De Rauw
- UZ Brussels, Department of Microbiology, Belgian VTEC Reference Lab, Laarbeeklaan 101 - 1090 Brussels, Belgium
| | - Denis Piérard
- UZ Brussels, Department of Microbiology, Belgian VTEC Reference Lab, Laarbeeklaan 101 - 1090 Brussels, Belgium
| | - Koen De Reu
- Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, Melle 9090, Belgium
| | - Marc Heyndrickx
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.,Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, Melle 9090, Belgium
| |
Collapse
|
28
|
Duffy G, McCabe E. Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic Escherichia coli in the Agri-Food Chain. Microbiol Spectr 2014; 2. [PMID: 26104349 DOI: 10.1128/microbiolspec.ehec-0023-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Verocytoxigenic Escherichia coli (VTEC) comprises many diverse serogroups, but seven serogroups, O157, O26, O103, O145, O111, O21, and O45, have been most commonly linked to severe human infections, though illness has also been reported from a range of other VTEC serogroups. This poses challenges in assessing the risk to humans from the diverse range of VTEC strains that may be recovered from animals, the environment, or food. For routine assessment of risk posed by VTEC recovered from the agri-food chain, the concept of seropathotype can be used to rank the human risk potential from a particular VTEC serogroup on the basis of both serotype (top seven serogroups) and the presence of particular virulence genes (vt in combination with eae, or aaiC plus aggR). But for other VTEC serogroups or virulence gene combinations, it is not currently possible to fully assess the risk posed. VTEC is shed in animal feces and can persist in the farm environment for extended periods ranging from several weeks to many months, posing an ongoing reservoir of contamination for grazing animals, water courses, and fresh produce and for people using farmland for recreational purposes. Appropriate handling and treatment of stored animal waste (slurries and manures) will reduce risk from VTEC in the farm environment. Foods of animal origin such as milk and dairy products and meat may be contaminated with VTEC during production and processing, and the pathogen may survive or grow during processing operations, highlighting the need for well-designed and validated Hazard Analysis Critical Control Point management systems. This article focuses on a veterinary public health approach to managing VTEC, highlighting the various routes in the agri-food chain for transmission of human pathogenic VTEC and general approaches to managing the risk.
Collapse
Affiliation(s)
| | - Evonne McCabe
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
29
|
Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 2014; 187:57-72. [DOI: 10.1016/j.ijfoodmicro.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
30
|
Molecular typing of Escherichia coli O157:H7 isolates from Swedish cattle and human cases: population dynamics and virulence. J Clin Microbiol 2014; 52:3906-12. [PMID: 25143581 DOI: 10.1128/jcm.01877-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While all verotoxin-producing Escherichia coli O157:H7 bacteria are considered potential pathogens, their genetic subtypes appear to differ in their levels of virulence. The aim of this study was to compare the distribution of subtypes of E. coli O157:H7 in the cattle reservoir and in human cases with and without severe complications in order to gain clues about the relationship between subtype and relative virulence. A lineage-specific polymorphism assay (LSPA-6), multilocus variable-number tandem-repeat analysis (MLVA), and a novel real-time PCR assay to identify clade 8 were applied to a large and representative set of isolates from cattle from 1996 to 2009 (n = 381) and human cases from 2008 to 2011 (n = 197) in Sweden. Draft genome sequences were produced for four selected isolates. The E. coli O157:H7 isolates in Swedish cattle generally belonged to four groups with the LSPA-6 profiles 211111 (clade 8/non-clade 8), 213111, and 223323. The subtype composition of the cattle isolates changed dramatically during the study period with the introduction and rapid spread of the low-virulence 223323 subtype. The human cases presumed to have been infected within the country predominantly carried isolates with the profiles 211111 (clade 8) and 213111. Cases progressing to hemolytic-uremic syndrome (HUS) were mostly caused by clade 8, with MLVA profiles consistent with Swedish cattle as the source. In contrast, infections contracted abroad were caused by diverse subtypes, some of which were associated with a particular region. The work presented here confirms the high risk posed by the clade 8 variant of E. coli O157:H7. It also highlights the dynamic nature of the E. coli O157:H7 subtype composition in animal reservoirs and the importance of this composition for the human burden of disease.
Collapse
|
31
|
Hirai S, Yokoyama E, Etoh Y, Seto J, Ichihara S, Suzuki Y, Maeda E, Sera N, Horikawa K, Yamamoto T. Analysis of the population genetics of clades of enterohaemorrhagic Escherichia coli O157:H7/H- isolated in three areas in Japan. J Appl Microbiol 2014; 117:1191-7. [PMID: 25047966 DOI: 10.1111/jam.12604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
AIMS The genetic differences of enterohaemorrhagic Escherichia coli O157 (O157) strains isolated from humans in three widely-separated areas in Japan were analysed to provide information on possible geographic aspects of O157 pathogenicity. METHODS AND RESULTS Epidemiologically unlinked O157 strains were isolated in Chiba (300 strains), Fukuoka (260 strains) and Yamagata (81 strains) prefectures. These strains were classified in clades by single nucleotide polymorphism in seven loci and lineage-specific polymorphism assay-6, and differences between the strains in each clade were compared by population genetic analyses using the IS-printing system. Analysis of the clades from the three areas showed linkage disequilibrium of the strains in each clade. Comparison of the genetic differences of strains from the three areas in each clade, from calculated ΦPT values, indicated that the strains in each clade were the same population in all three areas, except possibly the clade 12 strains. CONCLUSIONS Population genetics analyses confirmed that the distribution of O157 strains in the clades isolated in three areas in Japan were similar and stable. SIGNIFICANCE AND IMPACT OF THE STUDY The pathogenicity of O157 strains infecting humans was comparable due to the similar, stable geographic distribution of O157 clades.
Collapse
Affiliation(s)
- S Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan; Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vidovic S, Korber DR. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 2014; 42:83-93. [PMID: 24601836 DOI: 10.3109/1040841x.2014.889654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.
Collapse
Affiliation(s)
- Sinisa Vidovic
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| | - Darren R Korber
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| |
Collapse
|
33
|
Characteristics of clinical Shiga toxin-producing Escherichia coli isolated from British Columbia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:878956. [PMID: 24199201 PMCID: PMC3807556 DOI: 10.1155/2013/878956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/01/2013] [Indexed: 11/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are significant public health threats. Although STEC O157 are recognized foodborne pathogens, non-O157 STEC are also important causes of human disease. We characterized 10 O157:H7 and 15 non-O157 clinical STEC derived from British Columbia (BC). Eae, hlyA, and stx were more frequently observed in STEC O157, and 80 and 100% of isolates possessed stx1 and stx2, respectively. In contrast, stx1 and stx2 occurred in 80 and 40% of non-O157 STEC, respectively. Comparative genomic fingerprinting (CGF) revealed three distinct clusters (C). STEC O157 was identified as lineage I (LI; LSPA-6 111111) and clustered as a single group (C1). The cdi gene previously observed only in LII was seen in two LI O157 isolates. CGF C2 strains consisted of diverse non-O157 STEC while C3 included only O103:H25, O118, and O165 serogroup isolates. With the exception of O121 and O165 isolates which were similar in virulence gene complement to STEC O157, C1 O157 STEC produced more Stx2 than non-O157 STEC. Antimicrobial resistance (AMR) screening revealed resistance or reduced sensitivity in all strains, with higher levels occurring in non-O157 STEC. One STEC O157 isolate possessed a mobile blaCMY-2 gene transferrable across genre via conjugation.
Collapse
|
34
|
Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proc Natl Acad Sci U S A 2013; 110:16265-70. [PMID: 24043803 DOI: 10.1073/pnas.1304978110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.
Collapse
|
35
|
Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Jennison AV, Doyle CJ, Chandry PS, Gobius KS, Fegan N. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol 2013; 79:5050-8. [PMID: 23770913 PMCID: PMC3754714 DOI: 10.1128/aem.01525-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/12/2013] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli O157 is a food-borne pathogen whose major reservoir has been identified as cattle. Recent genetic information has indicated that populations of E. coli O157 from cattle and humans can differ genetically and that this variation may have an impact on their ability to cause severe human disease. In addition, there is emerging evidence that E. coli O157 strains from different geographical regions may also be genetically divergent. To investigate the extent of this variation, we used Shiga toxin bacteriophage insertion sites (SBI), lineage-specific polymorphisms (LSPA-6), multilocus variable-number tandem-repeat analysis (MLVA), and a tir 255T>A polymorphism to examine 606 isolates representing both Australian and U.S. cattle and human populations. Both uni- and multivariate analyses of these data show a strong association between the country of origin and multilocus genotypes (P < 0.0001). In addition, our results identify factors that may play a role in virulence that also differed in isolates from each country, including the carriage of stx1 in the argW locus uniquely observed in Australian isolates and the much higher frequency of stx2-positive (also referred to as stx2a) strains in the U.S. isolates (4% of Australian isolates versus 72% of U.S. isolates). LSPA-6 lineages differed between the two continents, with the majority of Australian isolates belonging to lineage I/II (LI/II) (LI, 2%; LI/II, 85%; LII, 13%) and the majority of U.S. isolates belonging to LI (LI, 60%; LI/II, 16%; LII, 25%). The results of this study provide strong evidence of phylogeographic structuring of E. coli O157 populations, suggesting divergent evolution of enterohemorrhagic E. coli O157 in Australia and the United States.
Collapse
Affiliation(s)
- Glen E. Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield BC, QLD, Australia
| | - Thomas E. Besser
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Margaret A. Davis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Brittany Beavis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - WooKyung Jung
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Helen V. Smith
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Christine J. Doyle
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - P. Scott Chandry
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Kari S. Gobius
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Narelle Fegan
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| |
Collapse
|
36
|
Characterization of Escherichia coli O157:H7 strains isolated from supershedding cattle. Appl Environ Microbiol 2013; 79:4294-303. [PMID: 23645203 DOI: 10.1128/aem.00846-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 10(4) CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates.
Collapse
|
37
|
Molecular and antimicrobial susceptibility analyses distinguish clinical from bovine Escherichia coli O157 strains. J Clin Microbiol 2013; 51:2082-8. [PMID: 23616449 DOI: 10.1128/jcm.00307-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A population-based study combining (i) antimicrobial, (ii) genetic, and (iii) virulence analyses with molecular evolutionary analyses revealed segregative characteristics distinguishing human clinical and bovine Escherichia coli O157 strains from western Canada. Human (n = 50) and bovine (n = 50) strains of E. coli O157 were collected from Saskatchewan and Manitoba in 2006 and were analyzed by using the six-marker lineage-specific polymorphism assay (LSPA6), antimicrobial susceptibility analysis, the colicin assay, plasmid and virulence profiling including the eae, ehxA, espA, iha, stx1, stx2, stx2c, stx2d, stx2d-activatable, stx2e, and stx2f virulence-associated genes, and structure analyses. Multivariate logistic regression and Fisher's exact test strongly suggested that antimicrobial susceptibility was the most distinctive characteristic (P = 0.00487) associated with human strains. Among all genetic, virulence, and antimicrobial determinants, resistance to tetracycline (P < 0.000) and to sulfisoxazole (P < 0.009) were the most strongly associated segregative characteristics of bovine E. coli O157 strains. Among 11 virulence-associated genes, stx2c showed the strongest association with E. coli O157 strains of bovine origin. LSPA6 genotyping showed the dominance of the lineage I genotype among clinical (90%) and bovine (70%) strains, indicating the importance of lineage I in O157 epidemiology and ecology. Population structure analysis revealed that the more-diverse bovine strains came from a unique group of strains characterized by a high degree of antimicrobial resistance and high frequencies of lineage II genotypes and stx2c variants. These findings imply that antimicrobial resistance generated among bovine strains of E. coli O157 has a large impact on the population of this human pathogen.
Collapse
|
38
|
Brandt SM, Paulin SM. Quantifying colonization potential of enterohemorrhagic Escherichia coli O157 using bovine in vitro organ culture and immunofluorescent staining. Foodborne Pathog Dis 2012; 9:1064-70. [PMID: 23237407 DOI: 10.1089/fpd.2012.1226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A robust semiquantitative method for measuring the colonization potential of O157 enterohemorrhagic Escherichia coli (EHEC) strains was developed combining an established ex vivo model infection system, bovine in vitro organ culture, with detection of bacteria attached to tissue sections by immunofluorescent assay (bIVOC-IFA) using Quantum dot(®) nanocrystal technology. The method was tested on ten O157 strains chosen to reflect a diversity of genotypes found in New Zealand based on the novel polymerase chain reaction-binary typing (P-BIT) system. High- and low-colonizing EHEC O157 strains were identified using bIVOC-IFA, with the highest colonizing strain belonging to the pulsed-field gel electrophoresis type most commonly identified from New Zealand beef meat. Furthermore, all of the toxigenic O157 strains exhibiting a low-colonizing phenotype were closely related, belonging to the same P-BIT genotype cluster. Future use of this method to characterize EHEC strains could provide valuable information for risk assessment and risk management interventions aimed at improving food safety along the beef farm to fork continuum.
Collapse
Affiliation(s)
- Stephanie M Brandt
- Institute of Environmental Science and Research, Ltd., Christchurch Science Centre, Christchurch, New Zealand
| | | |
Collapse
|
39
|
Gu G, Luo Z, Cevallos-Cevallos JM, Adams P, Vellidis G, Wright A, van Bruggen AHC. Factors affecting the occurrence of Escherichia coli O157 contamination in irrigation ponds on produce farms in the Suwannee River Watershed. Can J Microbiol 2012; 59:175-82. [PMID: 23540335 DOI: 10.1139/cjm-2012-0599] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outbreaks of enteritis caused by Escherichia coli O157 associated with fresh produce have resulted in questions about the safety of irrigation water; however, associated risks have not been systematically evaluated. In this study, the occurrence and distribution of the human pathogen E. coli O157 from vegetable irrigation ponds within the Suwannee River Watershed in Georgia were investigated, and the relationship to environmental factors was analyzed. Surface and subsurface water samples were collected monthly from 10 vegetable irrigation ponds from March 2011 to February 2012. Escherichia coli O157 was isolated from enriched filtrates on CHROMagar and sorbitol MacConkey agar media and confirmed by an agglutination test. Presence of virulence genes stx1, stx2 , and eae was tested by polymerase chain reaction. In addition, 27 environmental variables of the sampled ponds were measured. Denaturing gradient gel electrophoresis was conducted for the analysis of bacterial communities in the water samples. Biserial correlation coefficients were calculated to evaluate the log10 colony-forming unit per millilitre correlations between the environmental factors and the occurrence of E. coli O157. Stepwise and canonical discriminant analyses were used to determine the factors that were associated with the presence and absence of E. coli O157 in water samples. All 10 ponds were positive for E. coli O157 some of the time, mainly in summer and fall of 2011. The temporal distribution of this bacterium differed among the 10 ponds. Temperature, rainfall, populations of fecal coliform, and culturable bacteria were positively correlated with the occurrence of E. coli O157 (P < 0.05), while the total nitrogen concentration, oxidation-reduction potential, and dissolved oxygen concentration were negatively correlated with the occurrence of this pathogen (P < 0.05). Temperature and rainfall were the most important factors contributing to the discrimination between samples with and without E. coli O157, followed by bacterial diversity and culturable bacteria population density. Bacterial numbers and diversity, including fecal coliforms and E. coli O157, increased after rainfall (and possibly runoff from pond margins) in periods with relatively high temperatures, suggesting that prevention of runoff may be important to minimize the risk of enteric pathogens in irrigation ponds.
Collapse
Affiliation(s)
- Ganyu Gu
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yokoyama E, Hirai S, Hashimoto R, Uchimura M. Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H- strains and hierarchy of their phylogenetic relationships. INFECTION GENETICS AND EVOLUTION 2012; 12:1724-8. [DOI: 10.1016/j.meegid.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/12/2012] [Accepted: 07/07/2012] [Indexed: 01/04/2023]
|
41
|
van Hoek AH, Aarts HJ, Bouw E, van Overbeek WM, Franz E. The role ofrpoSinEscherichia coliO157 manure-amended soil survival and distribution of allelic variations among bovine, food and clinical isolates. FEMS Microbiol Lett 2012; 338:18-23. [DOI: 10.1111/1574-6968.12024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022] Open
Affiliation(s)
- Angela H.A.M. van Hoek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Henk J.M. Aarts
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Wendy M. van Overbeek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| |
Collapse
|
42
|
Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 2012; 78:4724-31. [PMID: 22544241 DOI: 10.1128/aem.00365-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shiga toxigenic Escherichia coli O157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies of stx genotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-specific polymorphism analysis revealed that lineage I/II (LI/II) E. coli O157 isolates were most prevalent in Argentina (90%) and Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage insertion (SBI) type stx(2) (locus of insertion, argW) in Argentinean isolates (P < 0.0001). In Argentinean LI/II strains, stx(2) is carried by a prophage inserted at argW, whereas in Australian LI/II strains the argW locus is occupied by the novel stx(1) prophage. In both Argentinean and Australian LI/II strains, stx(2c) is almost exclusively carried by a prophage inserted at sbcB. However, alternative q(933)- or q(21)-related alleles were identified in the Australian stx(2c) prophage. Argentinean LI/II isolates were also distinguished from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of putative virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of the tir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential virulence of O157 lineages.
Collapse
|