1
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the competent reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Narasimhan S, Cibichakravarthy B, Wu MJ, Holter MM, Walsh CA, Goodrich JA. Laboratory Management of Mammalian Hosts for Ixodes scapularis -Host-Pathogen Interaction Studies. Comp Med 2024; 74:235-245. [PMID: 39289828 PMCID: PMC11373684 DOI: 10.30802/aalas-cm-24-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Due to their hematophagous life cycle, hard-bodied ticks including the genus Ixodes are a potential vector for numerous pathogenic organisms including bacteria, protozoa, viruses, and infectious prions. The natural geographic range of several hard tick species, includig Ixodes scapularis, has expanded over recent decades. Consequently, there is an ongoing need to maintain, feed, and propagate ticks for host-pathogen interaction studies to better understand and mitigate their impact on human and animal health. Artificial membrane feeding of hard ticks has advanced in recent years, has study design advantages, and should be used, when possible, to reduce animal use, but it also has several limitations that require the continued use of mammalian hosts including mice, guinea pigs, and rabbits. In this overview, we discuss the best management practices for these relevant species with respect to biosafety, health, and optimal host comfort when used in studies that depend on tick feeding. The capsule-jacket method is preferred over the ear sock-E-collar method of tick feeding on rabbit hosts because of better host health, comfort, and increased study versatility.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marlena M Holter
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Courtney A Walsh
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
3
|
Namjoshi P, Lubembe DM, Sultana H, Neelakanta G. Antibody-blocking of a tick transporter impairs Anaplasma phagocytophilum colonization in Haemaphysalis longicornis ticks. Sci Rep 2024; 14:9003. [PMID: 38637614 PMCID: PMC11026487 DOI: 10.1038/s41598-024-59315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The invasive Asian longhorned tick Haemaphysalis longicornis that vectors and transmits several animal pathogens is significantly expanding in the United States. Recent studies report that these ticks also harbor human pathogens including Borrelia burgdorferi sensu lato, Babesia microti, and Anaplasma phagocytophilum. Therefore, studies that address the interactions of these ticks with human pathogens are important. In this study, we report the characterization of H. longicornis organic anion-transporting polypeptides (OATPs) in interactions of these ticks with A. phagocytophilum. Using OATP-signature sequence, we identified six OATPs in the H. longicornis genome. Bioinformatic analysis revealed that H. longicornis OATPs are closer to other tick orthologs rather than to mammalian counterparts. Quantitative real-time PCR analysis revealed that OATPs are highly expressed in immature stages when compared to mature stages of these ticks. In addition, we noted that the presence of A. phagocytophilum upregulates a specific OATP in these ticks. We also noted that exogenous treatment of H. longicornis with xanthurenic acid, a tryptophan metabolite, influenced OATP expression in these ticks. Immunoblotting analysis revealed that antibody generated against Ixodes scapularis OATP cross-reacted with H. longicornis OATP. Furthermore, treatment of H. longicornis with OATP antibody impaired colonization of A. phagocytophilum in these ticks. These results not only provide evidence that the OATP-tryptophan pathway is important for A. phagocytophilum survival in H. longicornis ticks but also indicate OATP as a promising candidate for the development of a universal anti-tick vaccine to target this bacterium and perhaps other rickettsial pathogens of medical importance.
Collapse
Affiliation(s)
- Prachi Namjoshi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Donald M Lubembe
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine and Surgery, Egerton University, Egerton, Kenya
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Reif KE, Bickmeier NP, Herrin BH, Dryden MW, Normile DM, Jesudoss Chelladurai JRJ, Miller KR, Flowers MR, Kang Q. Comparison of the initial and residual speed of Ixodes scapularis kill on dogs treated with a single dose of Bravecto ® Chew (25 mg/kg fluralaner) or Simparica TRIO ® (1.2 mg/kg sarolaner, 24 µg/kg moxidectin, 5 mg/kg pyrantel). Parasit Vectors 2023; 16:440. [PMID: 38012748 PMCID: PMC10683217 DOI: 10.1186/s13071-023-05946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Compliant ectoparasiticide product use is a comprehensive way to control ticks and reduce the risk of tick-borne pathogen transmission to dogs. Because the systemically acting isoxazoline ectoparasiticides require tick attachment for drug delivery, fast speed of kill is essential to minimize tick-borne pathogen transmission risk. METHODS Dogs of satisfactory tick-carrying capacity were randomly allocated to treatment groups and administered, per label instructions, Bravecto® Chews (minimum 25 mg/kg fluralaner), Simparica TRIO® (minimum 1.2 mg/kg sarolaner, 24 µg/kg moxidectin, 5 mg/kg pyrantel), or no treatment. Dogs were infested with approximately 50 unfed adult (35 female, 15 male) Ixodes scapularis on Day -2, 21 and 28. Live tick counts were performed at 4, 8, 12 and 24 h post-treatment (Day 0) and post-infestation on Day 21 and 28. Tick control efficacy was determined by comparing live tick means for each product-treated group to the untreated control group and each other at all time points using a linear mixed model. The percent of dogs free of live ticks was analyzed using the Fisher's exact test for treatment group comparison. RESULTS The untreated control group maintained adequate tick infestations throughout the study. Using geometric means, an existing I. scapularis infestation was controlled by 99.7% and 93.0% 12 h post-treatment and by 100% and 99.5% 24 h post-treatment, for Bravecto® and Simparica TRIO®-treated dogs, respectively. Ixodes scapularis infestations were controlled more quickly for Bravecto®- compared to Simparica TRIO®-treated dogs on Day 21 at 8 h (efficacy 74.0% vs. 0.0%, p = 0.003) and 12 h (efficacy 99.2% vs. 39.4%, p < 0.001) post-infestation and Day 28 at 8 h (efficacy 92.2% vs. 0.0%, p < 0.001) and 12 h (efficacy 99.6% vs. 27.7%, p < 0.001) post-infestation. On Day 28 post-treatment, the efficacy of Bravecto® and Simparica TRIO® to control a new I. scapularis infestation was 100% and 96.6%, respectively, by 24 h post-infestation. Of product-treated dogs, 100% of Bravecto®-treated dogs were free of live ticks by 24 h post-treatment or post-infestation. No treatment-related adverse reactions occurred during the study. CONCLUSIONS Ixodes scapularis infestations are controlled more quickly 21 and 28 days post-treatment for dogs administered a single dose of Bravecto® compared to dogs administered a single dose of Simparica TRIO®.
Collapse
Affiliation(s)
- Kathryn E Reif
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Naemi P Bickmeier
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brian H Herrin
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Michael W Dryden
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | - Kamilyah R Miller
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Macy R Flowers
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Qing Kang
- Department of Statistics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
5
|
Rosche KL, Hurtado J, Fisk EA, Vosbigian KA, Warren AL, Sidak-Loftis LC, Wright SJ, Ramirez-Zepp E, Park JM, Shaw DK. PERK-mediated antioxidant response is key for pathogen persistence in ticks. mSphere 2023; 8:e0032123. [PMID: 37733353 PMCID: PMC10597351 DOI: 10.1128/msphere.00321-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
A crucial phase in the life cycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis, we found that Borrelia burgdorferi (causative agent of Lyme disease) and Anaplasma phagocytophilum (causative agent of granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PKR-like ER kinase (PERK) and the central regulatory molecule eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNA interference (RNAi) significantly decreased microbial numbers. In vivo RNAi of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, nuclear factor erythroid 2-related factor 2 (Nrf2). Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment. IMPORTANCE Recent advances demonstrate that the tick immune system recognizes and limits the pathogens they transmit. Innate immune mediators such as antimicrobial peptides and reactive oxygen/nitrogen species are produced and restrict microbial survival. It is currently unclear how pathogens remain in the tick, despite this immune assault. We found that an antioxidant response controlled by the PERK branch of the unfolded protein response is activated in ticks that are persistently infected with Borrelia burgdorferi (Lyme disease) or Anaplasma phagocytophilum (granulocytic anaplasmosis). The PERK pathway induces the antioxidant response transcription factor, Nrf2, which coordinates a gene network that ultimately neutralizes reactive oxygen and nitrogen species. Interfering with this signaling cascade in ticks causes a significant decline in pathogen numbers. Given that innate immune products can cause collateral damage to host tissues, we speculate that this is an arthropod-driven response aimed at minimizing damage to "self" that also inadvertently benefits the pathogen. Collectively, our findings shed light on the mechanistic push and pull between tick immunity and pathogen persistence within the arthropod vector.
Collapse
Affiliation(s)
- Kristin L. Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Joanna Hurtado
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kaylee A. Vosbigian
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Ashley L. Warren
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Lindsay C. Sidak-Loftis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Elisabeth Ramirez-Zepp
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Jason M. Park
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Hajdusek O, Kopacek P, Perner J. Experimental platforms for functional genomics in ticks. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101102. [PMID: 37586557 DOI: 10.1016/j.cois.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Ticks are blood-feeding ectoparasites that devastate cattle farming and are an omnipresent nuisance to pets and humans, posing a threat of pathogen transmission. Laboratory experimental models can be instrumental in the search for molecular targets of novel acaricides or vaccines. Mainly, though, the experimental models represent invaluable tools for broadening our basic understanding of key processes of tick blood-feeding physiology and vector competence. In order to understand the function of a single component within the full complexity of a feeding tick, genetic or biochemical interventions are used for systemic phenotypisation. In this work, we summarise current experimental modalities that represent powerful approaches for determining biological functions of tick molecular components.
Collapse
Affiliation(s)
- Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
7
|
Rosche KL, Hurtado J, Fisk EA, Vosbigian KA, Warren AL, Sidak-Loftis LC, Wright SJ, Ramirez-Zepp E, Park JM, Shaw DK. PERK-mediated antioxidant response is key for pathogen persistence in ticks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542958. [PMID: 37398437 PMCID: PMC10312570 DOI: 10.1101/2023.05.30.542958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A crucial phase in the lifecycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis , we found that Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PERK and the central regulatory molecule, eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNAi significantly decreased microbial numbers. In vivo RNA interference of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal, but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, Nrf2. Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment.
Collapse
Affiliation(s)
- Kristin L. Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joanna Hurtado
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kaylee A. Vosbigian
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Ashley L. Warren
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Lindsay C. Sidak-Loftis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Sarah J. Wright
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Elisabeth Ramirez-Zepp
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jason M. Park
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Rickettsial pathogen inhibits tick cell death through tryptophan metabolite mediated activation of p38 MAP kinase. iScience 2022; 26:105730. [PMID: 36582833 PMCID: PMC9792911 DOI: 10.1016/j.isci.2022.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Anaplasma phagocytophilum modulates various cell signaling pathways in mammalian cells for its survival. In this study, we report that A. phagocytophilum modulates tick tryptophan pathway to activate arthropod p38 MAP kinase for the survival of both this bacterium and its vector host. Increased level of tryptophan metabolite, xanthurenic acid (XA), was evident in A. phagocytophilum-infected ticks and tick cells. Lower levels of cell death markers and increased levels of total and phosphorylated p38 MAPK was noted in A. phagocytophilum-infected ticks and tick cells. Treatment with XA increased phosphorylated p38 MAPK levels and reduced cell death in A. phagocytophilum-infected tick cells. Furthermore, treatment with p38 MAPK inhibitor affected bacterial replication, decreased phosphorylated p38 MAPK levels and increased tick cell death. However, XA reversed these effects. Taken together, we provide evidence that rickettsial pathogen modulates arthropod tryptophan and p38 MAPK pathways to inhibit cell death for its survival in ticks.
Collapse
|
9
|
Underwood J, Harvey C, Lohstroh E, Pierce B, Chambers C, Guzman Valencia S, Oliva Chávez AS. Anaplasma phagocytophilum Transmission Activates Immune Pathways While Repressing Wound Healing in the Skin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121965. [PMID: 36556330 PMCID: PMC9781593 DOI: 10.3390/life12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular bacterium transmitted by the bite of black-legged ticks, Ixodes scapularis. The main host cells in vertebrates are neutrophils. However, the first site of entry is in the skin during tick feeding. Given that the initial responses within skin are a crucial determinant of disease outcome in vector-borne diseases, we used a non-biased approach to characterize the transcriptional changes that take place at the bite during I. scapularis feeding and A. phagocytophilum transmission. Experimentally infected ticks were allowed to feed for 3 days on C57BL/6J mice to allow bacterial transmission and establishment. Skin biopsies were taken from the attachment site of uninfected ticks and A. phagocytophilum-infected ticks. Skin without ticks (intact skin) was used as baseline. RNA was isolated and sequenced using next-generation sequencing (NGS). The differentially expressed genes were used to identify over-represented pathways by gene ontology (GO) and pathway enrichment (PE). Anaplasma phagocytophilum transmission resulted in the activation of interferon signaling and neutrophil chemotaxis pathways in the skin. Interestingly, it also led to the downregulation of genes encoding extracellular matrix (ECM) components, and upregulation of metalloproteinases, suggesting that A. phagocytophilum delays wound healing responses and may increase vascular permeability at the bite site.
Collapse
Affiliation(s)
- Jacob Underwood
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Navy Entomology Center of Excellence, United States Navy, Jacksonville, FL 32212, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Elizabeth Lohstroh
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Branden Pierce
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Cross Chambers
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | | | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
10
|
Abstract
Human granulocytic anaplasmosis (HGA) is a bacterial infection caused by Anaplasma phagocytophilum and transmitted by the bite of the black-legged (deer tick) in North America. Its incidence is increasing. HGA can be transmitted after 24 to 48 hours of tick attachment. The incubation period is 5 to 14 days after a tick bite. Symptoms include fever, chills, headache, and myalgia. Complications include shock, organ dysfunction, and death. Mortality is less than 1% with appropriate treatment. Doxycycline is first line treatment for all ages. Start it empirically if symptoms and risk factors suggest HGA. PCR is the confirmatory test of choice.
Collapse
Affiliation(s)
- Douglas MacQueen
- Cayuga Medical Center, 101 Dates Drive, Ithaca, NY 14850, USA; Weill Cornell Medicine.
| | | |
Collapse
|
11
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Ahmed W, Rajendran KV, Neelakanta G, Sultana H. An Experimental Murine Model to Study Acquisition Dynamics of Tick-Borne Langat Virus in Ixodes scapularis. Front Microbiol 2022; 13:849313. [PMID: 35495703 PMCID: PMC9048798 DOI: 10.3389/fmicb.2022.849313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ixodes scapularis ticks acquire several pathogens from reservoir animals and transmit them to humans. Development of an animal model to study acquisition/transmission dynamics of these pathogens into and from ticks, respectively, is challenging due to the fact that in nature ticks feed for a longer duration and on multiple vertebrate hosts. To understand the complex nature of pathogen acquisition/transmission, it is essential to set up a successful tick blood feeding method on a suitable vertebrate host. In this study, we provide evidence that murine model can be successfully used to study acquisition dynamics of Langat virus (LGTV), a member of tick-borne flaviviruses. Mice were inoculated intraperitoneally with LGTV that showed detectable viral loads in blood, skin, and other tissues including the brain. Both larval and nymphal ticks that were allowed to feed on the murine host successfully acquired LGTV loads. Also, we found that after molting, LGTV was transstadially transmitted from larval to nymphal stage. In addition, we noted that LGTV down-regulated IsSMase expression in all groups of ticks possibly for its survival in its vector host. Taken together, we provide evidence for the use of murine model to not only study acquisition dynamics of LGTV but also to study changes in tick gene expression during acquisition of arboviruses into ticks.
Collapse
|
13
|
Park JM, Oliva Chávez AS, Shaw DK. Ticks: More Than Just a Pathogen Delivery Service. Front Cell Infect Microbiol 2021; 11:739419. [PMID: 34540723 PMCID: PMC8440996 DOI: 10.3389/fcimb.2021.739419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jason M Park
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dana K Shaw
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Levin ML, Troughton DR, Loftis AD. Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs. Ticks Tick Borne Dis 2021; 12:101819. [PMID: 34520993 DOI: 10.1016/j.ttbdis.2021.101819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
This study assessed the duration of tick attachment necessary for a successful transmission of Anaplasma phagocytophilum by an infected I. scapularis nymph. Individual nymphs were placed upon BALB/c mice and allowed to feed for predetermined time intervals of 4 to 72 h. Ticks removed from mice at predetermined intervals were tested by PCR for verification of infection and evaluation of the bacterial load. The success of pathogen transmission to mice was assessed by blood-PCR at 7, 14 and 21 days postinfestation, and IFA at 21 days postinfestation. Anaplasma phagocytophilum infection was documented in 10-30 % of mice, from which ticks were removed within the first 20 h of feeding. However, transmission success was ≥70% if ticks remained attached for 36 h or longer. Notably, none of the PCR-positive mice that were exposed to infected ticks for 4 to 8 h and only half of PCR-positive mice exposed for 24 h developed antibodies within 3 weeks postinfestation. On the other hand, all mice with detectable bacteremia after being infested for 36 h seroconverted. This suggests that although some of the ticks removed prior to 24 h of attachment succeed in injecting a small amount of A. phagocytophilum, this amount is insufficient for stimulating humoral immunity and perhaps for establishing disseminated infection in BALB/c mice. Although A. phagocytophilum may be present in salivary glands of unfed I. scapularis nymphs, the amount of A. phagocytophilum initially contained in saliva appears insufficient to cause sustainable infection in a host. Replication and, maybe, reactivation of the agent for 12-24 h in a feeding tick is required before a mouse can be consistently infected.
Collapse
Affiliation(s)
- Michael L Levin
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Danielle R Troughton
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amanda D Loftis
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
15
|
Molecular Detection of Coxiella burnetii, Rickettsia africae and Anaplasma Species in Ticks from Domestic Animals in Lesotho. Pathogens 2021; 10:pathogens10091186. [PMID: 34578218 PMCID: PMC8468460 DOI: 10.3390/pathogens10091186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tick-borne diseases (TBDs) hamper the growth of the livestock sector and impose major constraints for the health and management of domestic animals in the tropic and subtropical regions globally. Currently, there is no scientific report on the presence of zoonotic pathogens transmitted by tick species in Lesotho. This study aimed to identify zoonotic tick-borne pathogens of economic importance from ticks infesting domestic animals in Lesotho using molecular techniques. A total of 322 tick DNA pools were subjected to PCR screening for the presence of zoonotic pathogens and sequenced. The overall prevalence of Anaplasma spp. was 35% (113/322), with a 100% infection rate in Rhipicephalus microplus, followed by R. evertsi evertsi (92%), Hyalomma rufipes and Otobius megnini sharing 50% and the lowest infection rate was observed in R. decoloratus with 40%. The prevalence of Coxiella burnetii, a gram-negative pleomorphic etiological agent of Query fever (Q fever), was 1% (2/322) for all screened samples, with 20% of R. decoloratus and 1% of R. e. evertsi infected. Rickettsia africae was detected from Hyalomma rufipes with a 70% prevalence. This study provides a baseline knowledge of tick-borne pathogens of medical and veterinary importance in Lesotho and raises awareness of the prevalence of such diseases within the tourism sector as they are mostly affected.
Collapse
|
16
|
El Hamiani Khatat S, Daminet S, Duchateau L, Elhachimi L, Kachani M, Sahibi H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front Vet Sci 2021; 8:686644. [PMID: 34250067 PMCID: PMC8260688 DOI: 10.3389/fvets.2021.686644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.
Collapse
Affiliation(s)
- Sarah El Hamiani Khatat
- Department of Medicine, Surgery and Reproduction, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Sylvie Daminet
- Department of Companion Animals, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Latifa Elhachimi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Hamid Sahibi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
17
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
18
|
Narasimhan S, Kurokawa C, DeBlasio M, Matias J, Sajid A, Pal U, Lynn G, Fikrig E. Acquired tick resistance: The trail is hot. Parasite Immunol 2020; 43:e12808. [PMID: 33187012 DOI: 10.1111/pim.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Melody DeBlasio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Taank V, Ramasamy E, Sultana H, Neelakanta G. An efficient microinjection method to generate human anaplasmosis agent Anaplasma phagocytophilum-infected ticks. Sci Rep 2020; 10:15994. [PMID: 32994497 PMCID: PMC7524789 DOI: 10.1038/s41598-020-73061-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Ticks are important vectors that transmit several pathogens including human anaplasmosis agent, Anaplasma phagocytophilum. This bacterium is an obligate intracellular rickettsial pathogen. An infected reservoir animal host is often required for maintenance of this bacterial colony and as a source for blood to perform needle inoculations in naïve animals for tick feeding studies. In this study, we report an efficient microinjection method to generate A. phagocytophilum-infected ticks in laboratory conditions. The dense-core (DC) form of A. phagocytophilum was isolated from in vitro cultures and injected into the anal pore of unfed uninfected Ixodes scapularis nymphal ticks. These ticks successfully transmitted A. phagocytophilum to the murine host. The bacterial loads were detected in murine blood, spleen, and liver tissues. In addition, larval ticks successfully acquired A. phagocytophilum from mice that were previously infected by feeding with DC-microinjected nymphal ticks. Transstadial transmission of A. phagocytophilum from larvae to nymphal stage was also evident in these ticks. Taken together, our study provides a timely, rapid, and an efficient method not only to generate A. phagocytophilum-infected ticks but also provides a tool to understand acquisition and transmission dynamics of this bacterium and perhaps other rickettsial pathogens from medically important vectors.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Ellango Ramasamy
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA. .,Department of Biological Sciences, Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
20
|
Han S, Hickling GJ, Ogden NH, Ginsberg HS, Kobbekaduwa V, Rulison EL, Beati L, Tsao JI. Seasonality of acarological risk of exposure to Borrelia miyamotoi from questing life stages of Ixodes scapularis collected from Wisconsin and Massachusetts, USA. Ticks Tick Borne Dis 2020; 12:101556. [PMID: 33035757 DOI: 10.1016/j.ttbdis.2020.101556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
Measures of acarological risk of exposure to Ixodes scapularis-borne disease agents typically focus on nymphs; however, the relapsing fever group spirochete Borrelia miyamotoi can be passed transovarially, and I. scapularis larvae are capable of transmitting B. miyamotoi to their hosts. To quantify the larval contribution to acarological risk, relative to nymphs and adults, we collected questing I. scapularis for 3 yr at Fort McCoy, Wisconsin (WI, n = 23,367 ticks), and Cape Cod, Massachusetts (MA, n = 4190) in the United States. Borrelia miyamotoi infection prevalence was estimated for I. scapularis larvae, nymphs, females, and males, respectively, as 0.88, 2.05, 0.63, and 1.22 % from the WI site and 0.33, 2.32, 2.83, and 2.11 % from the MA site. Densities of B. miyamotoi-infected ticks (DIT, per 1000 m2) were estimated for larvae, nymphs, females, and males, respectively, as 0.36, 0.14, 0.01, and 0.03 from the WI site and 0.05, 0.06, 0.03, and 0.02 from the MA site. Thus, although larval infection prevalence with B. miyamotoi was significantly lower than that of nymphs and similar to that of adults, because of their higher abundance, the larval contribution to the overall DIT was similar to that of nymphs and trended towards a greater contribution than adults. Assuming homogenous contact rates with humans, these results suggest that eco-epidemiological investigations of B. miyamotoi disease in North America should include larvae. A fuller appreciation of the epidemiological implications of these results, therefore, requires an examination of the heterogeneity in contact rates with humans among life stages.
Collapse
Affiliation(s)
- Seungeun Han
- Comparative Medicine and Integrative Biology program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, United States.
| | - Graham J Hickling
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC J2S 2M2, Canada.
| | - Howard S Ginsberg
- U.S. Geological Survey, Patuxent Wildlife Research Center, Kingston, RI 02881, United States.
| | - Vishvapali Kobbekaduwa
- Comparative Medicine and Integrative Biology program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, United States.
| | - Eric L Rulison
- California Department of Transportation, Redding, CA 96001, United States.
| | - Lorenza Beati
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States.
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, United States; Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
21
|
Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit Vectors 2020; 13:311. [PMID: 32546252 PMCID: PMC7296661 DOI: 10.1186/s13071-020-04173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. Methods In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. Results We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. Conclusions Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.![]()
Collapse
|
22
|
Holzmer S, Kryda K, Mahabir SP, Everett W. Evaluation of the speed of kill of a novel orally administered combination product containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against induced infestations of Ixodes scapularis on dogs. Parasit Vectors 2020; 13:76. [PMID: 32113473 PMCID: PMC7049387 DOI: 10.1186/s13071-020-3953-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 12/03/2022] Open
Abstract
Background The black-legged (or deer) tick, Ixodes scapularis, commonly infests dogs in the USA and is the vector of important zoonotic pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Rapid onset of activity is important in reducing the feeding activity of ticks, thereby reducing the possibility of transmission of infections. The speed of kill of a novel oral combination product, Simparica Trio™ containing sarolaner, moxidectin and pyrantel was evaluated in a well-controlled laboratory study against an existing infestation and subsequent weekly induced infestations of I. scapularis ticks on dogs. Methods Dogs were allocated randomly based on host suitability tick counts to treatment with a single dose of either placebo or Simparica Trio™ at the minimum label dose of 1.2 mg/kg sarolaner, 24 µg/kg moxidectin and 5 mg/kg pyrantel (as pamoate salt). All dogs were infested with approximately 50 unfed adult I. scapularis ticks at a 1:1 sex ratio on Days −2, 7, 14, 21, 28 and 35. Tick counts were conducted at 8, 12 and 24 h after treatment on Day 0 and after each subsequent infestation. Results No treatment-related adverse events occurred during the study. Dogs in the placebo-treated group maintained adequate tick infestations for the duration of the study. Day 0 tick counts at 8 h after treatment with Simparica Trio™ were reduced relative to placebo against an existing infestation with efficacy of 67.5%, demonstrating that Simparica Trio™ started killing ticks soon after treatment. Efficacy was 98.4 % at 12 h and 99.4% at 24 h. Rapid speed of kill was maintained throughout the month, with efficacy of ≥ 94.2% at 24 h after re-infestation through Day 28. Conclusions A single dose of Simparica Trio™ administered orally to dogs at the minimum label dose of 1.2 mg/kg sarolaner, 24 µg/kg moxidectin and 5 mg/kg pyrantel (as pamoate salt) was safe and began to kill existing I. scapularis ticks within 8 h after treatment and resulted in ≥ 94.2% efficacy within 24 h against re-infestations for a month.
Collapse
Affiliation(s)
- Susan Holzmer
- Zoetis, Veterinary Medicine Research and Development, 333 Portage Street, Kalamazoo, MI, 49007, USA.
| | - Kristina Kryda
- Zoetis, Veterinary Medicine Research and Development, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Sean P Mahabir
- Zoetis, Veterinary Medicine Research and Development, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | | |
Collapse
|
23
|
Couper LI, Yang Y, Yang XF, Swei A. Comparative vector competence of North American Lyme disease vectors. Parasit Vectors 2020; 13:29. [PMID: 31937369 PMCID: PMC6961398 DOI: 10.1186/s13071-020-3893-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the drivers of Lyme disease incidence at broad spatial scales is critical for predicting and mitigating human disease risk. Previous studies have identified vector phenology and behavior, host community composition, and landscape features as drivers of variable Lyme disease risk. However, while the Lyme disease transmission cycles in the eastern and western USA involve different vector species (Ixodes scapularis and Ixodes pacificus, respectively), the role of vector-specific differences in transmission efficiency has not been directly examined. By comparing the performance of traits involved in vector competence between these two species, this study aims to identify how vector competence contributes to variable Lyme disease risk. METHODS We used a suite of laboratory experiments to compare the performance of traits related to vector competence for the two USA Lyme disease vectors. For each species, we measured the rate of attachment to a common rodent host, the engorgement weight, and the efficiency of pathogen acquisition (host to tick) and pathogen transmission (tick to host) from laboratory mice. In measuring pathogen acquisition and transmission, we used two different pathogen strains, one sympatric with I. scapularis and one sympatric with I. pacificus, to assess the importance of vector-pathogen coevolutionary history in transmission dynamics. RESULTS We found I. pacificus had significantly higher host attachment success and engorgement weights, but significantly lower pathogen transmission efficiency relative to I. scapularis. Molting success and pathogen acquisition did not differ between these two species. However, pathogen acquisition efficiency was significantly higher for both sympatric vector and pathogen strains than the allopatric pairings. CONCLUSIONS This study identified species-specific vector traits as a potential driver of broad scale variation in Lyme disease risk in the USA. In particular, the exceedingly low rates of pathogen transmission from tick to host observed for I. pacificus may limit Lyme disease transmission efficiency in the western USA. Further, observed variation in pathogen acquisition between sympatric and allopatric vector-pathogen strains indicate that vector-pathogen coevolutionary history may play a key role in transmission dynamics. These findings underscore the need to consider vector traits and vector-pathogen coevolution as important factors governing regional Lyme disease risk.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaofeng Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
24
|
Prevention of transmission of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10% + flumethrin 4.5%). Parasitol Res 2019; 119:299-315. [PMID: 31734862 PMCID: PMC6942034 DOI: 10.1007/s00436-019-06394-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/02/2022]
Abstract
The capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.
Collapse
|
25
|
Tonelli BA, Dearborn DC. An individual-based model for the dispersal of Ixodes scapularis by ovenbirds and wood thrushes during fall migration. Ticks Tick Borne Dis 2019; 10:1096-1104. [PMID: 31186200 DOI: 10.1016/j.ttbdis.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 11/25/2022]
Abstract
Ixodes scapularis is responsible for the transmission of a variety of pathogens in North America, including Borrelia burgdorferi sensu stricto, Anaplasma phagocytophilum and Babesia microti. Songbirds have previously been described as agents of tick dispersal, and a combination of empirical data and modeling efforts have implicated songbirds in the range expansion of I. scapularis northward into Canada during spring bird migration. The role of fall bird migration has received comparatively less attention, particularly at a continental scale. The aim of the current research was to use a novel individual-based modeling approach (IBM) to investigate the role of southward migrating songbirds in the dispersal of I. scapularis within the continental United States. The IBM used in this research explicitly models dispersal by two extensively studied migrating songbird species, wood thrush Hylocichla mustelina and ovenbird Seiurus aurocapillus. Our IBM predicts the annual dispersal of more than four million ticks by H. mustelina and S. aurocapillus, notably into areas as far west as the Dakotas, and as far south as Central Alabama. Predicted dispersal locations include areas where the southern phenotype of I. scapularis dominates, suggestive of a possible mechanism for previously described unidirectional gene flow from north to south. In addition, the model demonstrates that three species-specific songbird traits - breeding range, migration timing, and propensity for tick attachment - each play a major role in the relative magnitude of tick dispersal by different songbird species. The pattern of I. scapularis dispersal predicted by this model suggests that migrating songbirds may have contributed to the range expansion of the tick historically, and may continue to do so presently and into the future, particularly as climate changes the geographic areas that are suitable for I. scapularis. Ultimately, widespread tick dispersal by migrating songbirds likely increases the human risk of Lyme disease and other tick-borne diseases in the United States.
Collapse
|
26
|
Fourie JJ, Evans A, Labuschagne M, Crafford D, Madder M, Pollmeier M, Schunack B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasit Vectors 2019; 12:136. [PMID: 30909972 PMCID: PMC6434881 DOI: 10.1186/s13071-019-3396-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
Background The interplay of speed of activity of acaricidal products and tick-borne pathogen transmission time is the major driver for disease prevention. This study aimed to investigate the time required for transmission of Anaplasma phagocytophilum by adult Ixodes ricinus ticks in vivo on dogs, and to confirm the time required for transmission observed in vivo, in vitro. Methods Nymphs of I. ricinus were experimentally infected with an A. phagocytophilum strain of canine origin. Dogs were allocated to 6 groups of 3 dogs each. Groups 1–5 were infested with 50 A. phagocytophilum-infected female adult ticks on Day 0. Ticks were removed post-infestation at 3, 6, 12, 24 and 48 h. Dogs in Group 6 were infested with 60 A. phagocytophilum-infected female adult ticks (left on dogs until engorged). Dogs were observed daily for general health and clinically examined on Day 0, and weekly from Day 14. Blood was collected for qPCR and serological analysis on Day 0 (pre-challenge) and weekly thereafter. In the in vitro study each artificial feeding chamber was seeded with 10 adult ticks (5 male/5 female), attachment assessed, and blood pools sampled for qPCR at 6 h intervals up to 72 h after first tick attachment. Results Anaplasma phagocytophilum specific antibodies and DNA were detected in all 3 dogs in Group 6. No A. phagocytophilum-specific antibodies or DNA were detected in any dogs in Groups 1–5. All dogs remained healthy. Female tick attachment in 60 artificial feeding chambers over 72 h ranged between 20–60%. Anaplasma phagocytophilum DNA was detected in the blood collected from 5% of chambers sampled at 6 h, with the highest number of positive samples (16.3%) observed at 36 h. Conclusions Transmission of A. phagocytophilum by I. ricinus ticks starts within a few hours after attachment but establishment of infections in dogs is apparently dependent on a minimum inoculation dose that was only observed when ticks attached for greater than 48 h. These findings highlight the need for acaricidal products to exert a repellent and/or rapid killing effect on ticks to forestall transmission and subsequent disease.
Collapse
|
27
|
Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Sci Rep 2018; 8:11409. [PMID: 30061607 PMCID: PMC6065373 DOI: 10.1038/s41598-018-29654-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 11/09/2022] Open
Abstract
Ixodes scapularis ticks transmit several pathogens to humans including rickettsial bacterium, Anaplasma phagocytophilum. Here, we report that A. phagocytophilum uses tick transcriptional activator protein-1 (AP-1) as a molecular switch in the regulation of arthropod antifreeze gene, iafgp. RNAi-mediated silencing of ap-1 expression significantly affected iafgp gene expression and A. phagocytophilum burden in ticks upon acquisition from the murine host. Gel shift assays provide evidence that both the bacterium and AP-1 influences iafgp promoter and expression. The luciferase assays revealed that a region of approximately 700 bp upstream of the antifreeze gene is sufficient for AP-1 binding to promote iafgp gene expression. Furthermore, survival assays revealed that AP-1-deficient ticks were more susceptible to cold in comparison to the mock controls. In addition, this study also indicates arthropod AP-1 as a global regulator for some of the tick genes critical for A. phagocytophilum survival in the vector. In summary, our study defines a novel mode of arthropod signaling for the survival of both rickettsial pathogen and its medically important vector in the cold.
Collapse
Affiliation(s)
- Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
28
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
29
|
Bakshi M, Kim TK, Mulenga A. Disruption of blood meal-responsive serpins prevents Ixodes scapularis from feeding to repletion. Ticks Tick Borne Dis 2018; 9:506-518. [PMID: 29396196 PMCID: PMC5857477 DOI: 10.1016/j.ttbdis.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/29/2022]
Abstract
Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of ≤40 and 71% of nymphal and adult ticks that occurred within 24-48 h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA.
| |
Collapse
|
30
|
Eisen L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick Borne Dis 2018; 9:535-542. [PMID: 29398603 PMCID: PMC5857464 DOI: 10.1016/j.ttbdis.2018.01.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
Abstract
The blacklegged tick, Ixodes scapularis, is the primary vector to humans in the eastern United States of the deer tick virus lineage of Powassan virus (Powassan virus disease); the protozoan parasite Babesia microti (babesiosis); and multiple bacterial disease agents including Anaplasma phagocytophilum (anaplasmosis), Borrelia burgdorferi and Borrelia mayonii (Lyme disease), Borrelia miyamotoi (relapsing fever-like illness, named Borrelia miyamotoi disease), and Ehrlichia muris eauclairensis (a minor causative agent of ehrlichiosis). With the notable exception of Powassan virus, which can be transmitted within minutes after attachment by an infected tick, there is no doubt that the risk of transmission of other I. scapularis-borne pathogens, including Lyme disease spirochetes, increases with the length of time (number of days) infected ticks are allowed to remain attached. This review summarizes data from experimental transmission studies to reinforce the important disease-prevention message that regular (at least daily) tick checks and prompt tick removal has strong potential to reduce the risk of transmission of I. scapularis-borne bacterial and parasitic pathogens from infected attached ticks. The most likely scenario for human exposure to an I. scapularis-borne pathogen is the bite by a single infected tick. However, recent reviews have failed to make a clear distinction between data based on transmission studies where experimental hosts were fed upon by a single versus multiple infected ticks. A summary of data from experimental studies on transmission of Lyme disease spirochetes (Bo. burgdorferi and Bo. mayonii) by I. scapularis nymphs indicates that the probability of transmission resulting in host infection, at time points from 24 to 72 h after nymphal attachment, is higher when multiple infected ticks feed together as compared to feeding by a single infected tick. In the specific context of risk for human infection, the most relevant experimental studies therefore are those where the probability of pathogen transmission at a given point in time after attachment was determined using a single infected tick. The minimum duration of attachment by single infected I. scapularis nymphs required for transmission to result in host infection is poorly defined for most pathogens, but experimental studies have shown that Powassan virus can be transmitted within 15 min of tick attachment and both A. phagocytophilum and Bo. miyamotoi within the first 24 h of attachment. There is no experimental evidence for transmission of Lyme disease spirochetes by single infected I. scapularis nymphs to result in host infection when ticks are attached for only 24 h (despite exposure of nearly 90 experimental rodent hosts across multiple studies) but the probability of transmission resulting in host infection appears to increase to approximately 10% by 48 h and reach 70% by 72 h for Bo. burgdorferi. Caveats to the results from experimental transmission studies, including specific circumstances (such as re-attachment of previously partially fed infected ticks) that may lead to more rapid transmission are discussed.
Collapse
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156, Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
31
|
Vlahakis PA, Chitanga S, Simuunza MC, Simulundu E, Qiu Y, Changula K, Chambaro HM, Kajihara M, Nakao R, Takada A, Mweene AS. Molecular detection and characterization of zoonotic Anaplasma species in domestic dogs in Lusaka, Zambia. Ticks Tick Borne Dis 2018; 9:39-43. [DOI: 10.1016/j.ttbdis.2017.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 01/17/2023]
|
32
|
Arthropod-borne pathogens of dogs and cats: From pathways and times of transmission to disease control. Vet Parasitol 2017; 251:68-77. [PMID: 29426479 DOI: 10.1016/j.vetpar.2017.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022]
Abstract
Vector-borne pathogens have developed a close relationship with blood feeding arthropod ectoparasites (e.g., mosquitoes, ticks, phlebotomine sand flies, black flies, fleas, kissing bugs, lice) and exploited a huge variety of vector transmission routes. Therefore, the life cycles of these pathogens result in a long evolved balance with the respective arthropod biology, ecology and blood feeding habits, instrumentally to the infection of several animal species, including humans. Amongst the many parasite transmission modes, such as ingestion of the arthropod, with its faeces or secretions, blood feeding represents the main focus for this article, as it is a central event to the life of almost all arthropod vectors. The time frame in which pathogens are transmitted to any animal host is governed by a large number of biological variables related to the vector, the pathogen, the host and environmental factors. Scientific data available on transmission times for each pathogen are discussed relative to their impact for the success of vector-borne disease control strategies. Blocking pathogen transmission, and thus preventing the infection of dogs and cats, may be achievable by the use of chemical compounds if they are characterised by a fast onset of killing activity or repellence against arthropods. The fast speed of kill exerted by systemic isoxazoline, as well as the repellent effect of pyrethroids have renewed the interest of the scientific community and pharmaceutical companies towards reducing the burden of vector-borne diseases under field conditions. However, endosymbionts and vaccines targeting arthropods or pathogen antigens should be further investigated as alternative strategies towards the goal of achieving an effective integrated control of vector-borne diseases.
Collapse
|
33
|
Hollmann T, Kim TK, Tirloni L, Radulović ŽM, Pinto AFM, Diedrich JK, Yates JR, da Silva Vaz I, Mulenga A. Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 2017; 48:211-224. [PMID: 29258831 DOI: 10.1016/j.ijpara.2017.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/08/2023]
Abstract
The adaptation of hard ticks to feed for long periods is facilitated by the cement cone, which securely anchors the tick mouthparts onto host skin and protects the tick from being groomed off by the host. Thus, preventing tick cement deposition is an attractive target for the development of innovative tick control. We used LC-MS/MS sequencing to identify 160 Amblyomma americanum tick cement proteins that include glycine-rich proteins (GRP, 19%), protease inhibitors (12%), proteins of unknown function (11%), mucin (4%), detoxification, storage, and lipocalin at 1% each, and housekeeping proteins (50%). Spatiotemporal transcription analysis showing mRNA expression in multiple tick organs and transcript abundance increasing with feeding suggest that selected GRPs (n = 13) regulate multiple tick feeding functions, being classified as constitutively expressed (CE), feeding induced (FI), and up-regulated with feeding (UR). We show that transcription of CE GRPs is likely under the control of tick appetence associated factors in that mRNA abundance increased several thousand fold in 1 week old adult ticks, the time period that coincides with tick attainment of appetence. Given the high number of targets, we synthesized and injected unfed ticks with combinatorial (co) double stranded (ds)RNA and disrupted GRP mRNA in clusters according to similar transcription patterns: CE (n = 3), FI, (n = 4), and UR (n = 6) to streamline the work. Our data suggest that CE and FI GRPs are important for maintenance of the tick feeding site in that reddening and subsequent bleeding were observed around the mouthparts of CE and FI GRP co-dsRNA injected ticks during feeding. Furthermore, although not significantly different, indices for blood meal size and fecundity were apparently reduced in FI and UR ticks. We discuss our data with reference to A. americanum tick feeding physiology.
Collapse
Affiliation(s)
- Taylor Hollmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA; Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA; Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
34
|
Eisen RJ, Kugeler KJ, Eisen L, Beard CB, Paddock CD. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR J 2017; 58:319-335. [PMID: 28369515 PMCID: PMC5610605 DOI: 10.1093/ilar/ilx005] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/02/2023] Open
Abstract
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Kiersten J Kugeler
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Lars Eisen
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Charles B Beard
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| | - Christopher D Paddock
- Rebecca J. Eisen, PhD, is a Research Biologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Kiersten J. Kugeler, PhD, is an Epidemiologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Lars Eisen, PhD, is a Research Entomologist in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Charles B. Beard, PhD, is a Branch Chief in the Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Fort Collins, Colorado. Christopher D. Paddock, MD, is a Medical Officer/Pathologist in the Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention in Atlanta, Georgia
| |
Collapse
|
35
|
Taank V, Dutta S, Dasgupta A, Steeves TK, Fish D, Anderson JF, Sultana H, Neelakanta G. Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks. Sci Rep 2017; 7:13256. [PMID: 29038575 PMCID: PMC5643405 DOI: 10.1038/s41598-017-13559-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
The black-legged tick Ixodes scapularis transmits the human anaplasmosis agent, Anaplasma phagocytophilum. In this study, we show that A. phagocytophilum specifically up-regulates I. scapularis organic anion transporting polypeptide, isoatp4056 and kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), for its survival in ticks. RNAi analysis revealed that knockdown of isoatp4056 expression had no effect on A. phagocytophilum acquisition from the murine host but affected the bacterial survival in tick cells. Knockdown of the expression of kat mRNA alone or in combination with isoatp4056 mRNA significantly affected A. phagocytophilum survival and isoatp4056 expression in tick cells. Exogenous addition of XA induces isoatp4056 expression and A. phagocytophilum burden in both tick salivary glands and tick cells. Electrophoretic mobility shift assays provide further evidence that A. phagocytophilum and XA influences isoatp4056 expression. Collectively, this study provides important novel information in understanding the interplay between molecular pathways manipulated by a rickettsial pathogen to survive in its arthropod vector.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shovan Dutta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Amrita Dasgupta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Skin of Color Research Institute, Hampton University, Hampton, VA, USA
| | - Tanner K Steeves
- School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Durland Fish
- School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
36
|
Murfin KE, Fikrig E. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets. Front Cell Infect Microbiol 2017. [PMID: 28634573 PMCID: PMC5459892 DOI: 10.3389/fcimb.2017.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kristen E Murfin
- Section of Infectious Disease, Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, United States
| | - Erol Fikrig
- Section of Infectious Disease, Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, United States.,Howard Hughes Medical InstituteChevy Chase, MD, United States.,Department of Microbial Pathogenesis, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
37
|
|
38
|
Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R. Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist 2017; 7:90-109. [PMID: 28189117 PMCID: PMC5302141 DOI: 10.1016/j.ijpddr.2017.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Vector-borne diseases are responsible for significant health problems in humans, as well as in companion and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of immediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review. This complexity leads to important parameters to consider for ectoparasiticide research and when considering the ideal drug profile for preventing disease transmission.
Collapse
Affiliation(s)
| | - Sandra Noack
- Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany.
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany.
| | - Ronald Kaminsky
- ParaC Consulting for Parasitology and Drug Discovery, Altenstein 13, 79685 Haeg-Ehrsberg, Germany.
| |
Collapse
|
39
|
Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis SO. Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol 2016; 25:4963-77. [DOI: 10.1111/mec.13832] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Christine P. Zolnik
- Department of Biological Sciences; Fordham University; 441 East Fordham Road Bronx NY 10458 USA
- Vector Ecology Laboratory; Louis Calder Center-Biological Field Station; Fordham University; 53 Whippoorwill Road Armonk NY 10504 USA
| | - Robert J. Prill
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Richard C. Falco
- New York State Department of Health; Louis Calder Center-Biological Field Station; Fordham University; 53 Whippoorwill Road Armonk NY 10504 USA
| | - Thomas J. Daniels
- Vector Ecology Laboratory; Louis Calder Center-Biological Field Station; Fordham University; 53 Whippoorwill Road Armonk NY 10504 USA
| | | |
Collapse
|
40
|
Savidge C, Ewing P, Andrews J, Aucoin D, Lappin MR, Moroff S. Anaplasma phagocytophilum infection of domestic cats: 16 cases from the northeastern USA. J Feline Med Surg 2016; 18:85-91. [PMID: 25680735 PMCID: PMC11149011 DOI: 10.1177/1098612x15571148] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Anaplasma phagocytophilum is an Ixodes species-transmitted rickettsial organism that is occasionally associated with clinical abnormalities in humans, ruminants, horses, dogs and cats. While serological evidence of A phagocytophilum exposure is common in cats in Ixodes species endemic areas, reports of clinical feline anaplasmosis are few. The objective of this study was to describe the clinical and laboratory abnormalities and treatment responses in 16 cats with A phagocytophilum DNA amplified from blood. METHODS Commercial laboratory electronic records were searched to find cats that had A phagocytophilum DNA amplified from their blood. Once cases were identified, the primary care veterinarian was interviewed and the medical records were reviewed. RESULTS The cats ranged in age from 4 months to 13 years (mean 4.1 years, median 2 years). All cats lived in Ixodes scapularis endemic areas and had potential for exposure. All cats were lethargic, 15 (94%) had elevated body temperature (>39.4°C) and 14 were anorexic on initial physical examination. Other less common clinical findings included hepatosplenomegaly, ataxia, conjunctivitis and elevation of the nictitating membranes. Blood from 11 cats was evaluated by complete blood cell count; abnormalities included lymphopenia in seven (64%) cats, thrombocytopenia in seven (64%), morulae in neutrophils of three (27%), neutropenia in three (27%) and leukopenia in two (18%). Treatment responses were reported for 14 cats, and the clinical abnormalities in these cats resolved when doxycycline was administered. CONCLUSIONS AND RELEVANCE This is the first published report describing A phagocytophilum morulae in neutrophils of naturally infected North American cats with infection confirmed by PCR. A phagocytophilum infection should be considered in cats evaluated for lethargy, anorexia and fever living in Ixodes species endemic areas.
Collapse
Affiliation(s)
- Christine Savidge
- Department of Companion Animals, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - Patty Ewing
- Angell Animal Medical Center, Boston, MA, USA
| | | | | | - Michael R Lappin
- Department of Clinical Sciences, Colorado State University, Ft Collins, CO, USA
| | | |
Collapse
|
41
|
Atif FA. Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol Res 2015; 114:3941-57. [PMID: 26346451 DOI: 10.1007/s00436-015-4698-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
Anaplasma marginale and Anaplasma phagocytophilum are the most important tick-borne bacteria of veterinary and public health significance in the family Anaplasmataceae. The objective of current review is to provide knowledge on ecology and epidemiology of A. phagocytophilum and compare major similarities and differences of A. marginale and A. phagocytophilum. Bovine anaplasmosis is globally distributed tick-borne disease of livestock with great economic importance in cattle industry. A. phagocytophilum, a cosmopolitan zoonotic tick transmitted pathogen of wide mammalian hosts. The infection in domestic animals is generally referred as tick-borne fever. Concurrent infections exist in ticks, domestic and wild animals in same geographic area. All age groups are susceptible, but the prevalence increases with age. Movement of susceptible domestic animals from tick free non-endemic regions to disease endemic regions is the major risk factor of bovine anaplasmosis and tick-borne fever. Recreational activities or any other high-risk tick exposure habits as well as blood transfusion are important risk factors of human granulocytic anaplasmosis. After infection, individuals remain life-long carriers. Clinical anaplasmosis is usually diagnosed upon examination of stained blood smears. Generally, detection of serum antibodies followed by molecular diagnosis is usually recommended. There are problems of sensitivity and cross-reactivity with both the Anaplasma species during serological tests. Tetracyclines are the drugs of choice for treatment and elimination of anaplasmosis in animals and humans. Universal vaccine is not available for either A. marginale or A. phagocytophilum, effective against geographically diverse strains. Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations (anaplasmosis and/or tick vaccination). Minimizing the tick exposure activities, identification and control of reservoirs are important control measures for human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan.
| |
Collapse
|
42
|
Dugat T, Lagrée AC, Maillard R, Boulouis HJ, Haddad N. Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol 2015; 5:61. [PMID: 26322277 PMCID: PMC4536383 DOI: 10.3389/fcimb.2015.00061] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 01/28/2023] Open
Abstract
Anaplasma phagocytophilum is a zoonotic obligate intracellular bacterium known to be transmitted by ticks belonging to the Ixodes persulcatus complex. This bacterium can infect several mammalian species, and is known to cause diseases with variable symptoms in many domestic animals. Specifically, it is the causative agent of tick-borne fever (TBF), a disease of important economic impact in European domestic ruminants, and human granulocytic anaplasmosis (HGA), an emerging zoonotic disease in Asia, USA and Europe. A. phagocytophilum epidemiological cycles are complex and involve different ecotypes, vectors, and mammalian host species. Moreover, the epidemiology of A. phagocytophilum infection differs greatly between Europe and the USA. These different epidemiological contexts are associated with considerable variations in bacterial strains. Until recently, few A. phagocytophilum molecular typing tools were available, generating difficulties in completely elucidating the epidemiological cycles of this bacterium. Over the last few years, many A. phagocytophilum typing techniques have been developed, permitting in-depth epidemiological exploration. Here, we review the current knowledge and future perspectives regarding A. phagocytophilum epidemiology and phylogeny, and then focus on the molecular typing tools available for studying A. phagocytophilum genetic diversity.
Collapse
Affiliation(s)
- Thibaud Dugat
- Laboratoire de Santé Animale, UMR Biologie Moléculaire et Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail, Université Paris-Est Paris, France
| | - Anne-Claire Lagrée
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Renaud Maillard
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France ; Unité Pathologie des Ruminants, Ecole Nationale Vétérinaire de Toulouse Toulouse, France
| | - Henri-Jean Boulouis
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Nadia Haddad
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| |
Collapse
|
43
|
Mtshali K, Khumalo Z, Nakao R, Grab DJ, Sugimoto C, Thekisoe O. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces. J Vet Med Sci 2015; 77:1573-9. [PMID: 26227797 PMCID: PMC4710712 DOI: 10.1292/jvms.15-0170] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ticks carry and transmit a remarkable array of pathogens including bacteria, protozoa and
viruses, which may be of veterinary and/or of medical significance. With little to no
information regarding the presence of tick-borne zoonotic pathogens or their known vectors
in southern Africa, the aim of our study was to screen for Anaplasma
phagocytophilum, Borrelia burgdorferi, Coxiella
burnetii, Rickettsia species and Ehrlichia
ruminantium in ticks collected and identified from ruminants in the Eastern
Cape, Free State, KwaZulu-Natal and Mpumalanga Provinces of South Africa. The most
abundant tick species identified in this study were Rhipicephalus evertsi
evertsi (40%), Rhipicephalus species (35%), Amblyomma
hebraeum (10%) and Rhipicephalus decoloratus (14%). A total of
1634 ticks were collected. DNA was extracted, and samples were subjected to PCR
amplification and sequencing. The overall infection rates of ticks with the target
pathogens in the four Provinces were as follows: A. phagocytophilum, 7%;
C. burnetii, 7%; E. ruminantium, 28%; and
Rickettsia spp., 27%. The presence of B. burgdorferi
could not be confirmed. The findings of this study show that zoonotic pathogens are
present in ticks in the studied South African provinces. This information will aid in the
epidemiology of tick-borne zoonotic diseases in the country as well as in raising
awareness about such diseases in the veterinary, medical and tourism sectors, as they may
be the most affected.
Collapse
Affiliation(s)
- Khethiwe Mtshali
- Veterinary Technology Program, Biomedical Sciences, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa
| | | | | | | | | | | |
Collapse
|
44
|
Hutchinson ML, Strohecker MD, Simmons TW, Kyle AD, Helwig MW. Prevalence Rates of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae) in Host-Seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:693-698. [PMID: 26335476 DOI: 10.1093/jme/tjv037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/13/2015] [Indexed: 06/05/2023]
Abstract
The etiological agents responsible for Lyme disease (Borrelia burgdorferi), human granulocytic anaplasmosis (Anaplasma phagocytophilum), and babesiosis (Babesia microti) are primarily transmitted by the blacklegged tick, Ixodes scapularis Say. Despite Pennsylvania having in recent years reported the highest number of Lyme disease cases in the United States, relatively little is known regarding the geographic distribution of the vector and its pathogens in the state. Previous attempts at climate-based predictive modeling of I. scapularis occurrence have not coincided with the high human incidence rates in parts of the state. To elucidate the distribution and pathogen infection rates of I. scapularis, we collected and tested 1,855 adult ticks statewide from 2012 to 2014. The presence of I. scapularis and B. burgdorferi was confirmed from all 67 Pennsylvania counties. Analyses were performed on 1,363 ticks collected in the fall of 2013 to avoid temporal bias across years. Infection rates were highest for B. burgdorferi (47.4%), followed by Ba. microti (3.5%) and A. phagocytophilum (3.3%). Coinfections included B. burgdorferi+Ba. microti (2.0%), B. burgdorferi+A. phagocytophilum (1.5%) and one tick positive for A. phagocytophilum+Ba. microti. Infection rates for B. burgdorferi were lower in the western region of the state. Our findings substantiate that Lyme disease risk is high throughout Pennsylvania.
Collapse
Affiliation(s)
- M L Hutchinson
- Pennsylvania Department of Environmental Protection, P.O. Box 1467, Harrisburg, PA 17105
| | - M D Strohecker
- Pennsylvania Department of Environmental Protection, P.O. Box 1467, Harrisburg, PA 17105
| | - T W Simmons
- Department of Biology, 114 Weyandt Hall, 975 Oakland Avenue, Indiana University of Pennsylvania, Indiana, PA 15705
| | - A D Kyle
- Pennsylvania Department of Environmental Protection, P.O. Box 1467, Harrisburg, PA 17105
| | - M W Helwig
- Pennsylvania Department of Environmental Protection, P.O. Box 1467, Harrisburg, PA 17105.
| |
Collapse
|
45
|
Krakowetz CN, Sproat A, Lindsay LR, Chilton NB. Sequence variability in the mitochondrial 12S rRNA and tRNA Val genes of Ixodes scapularis (Acari: Ixodidae) individuals shown previously to be genetically invariant. Mol Cell Probes 2015; 29:177-81. [PMID: 25863143 DOI: 10.1016/j.mcp.2015.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
The DNA sequences of the mitochondrial (mt) 12S rRNA and tRNA(Val) genes were characterized for 82 blacklegged ticks (Ixodes scapularis) that were genetically identical for Domains IV and V of the mt 16S rRNA gene. Thirty-one haplotypes, differed in sequence by 1-9 bp, were detected among the 82 ticks. Most nucleotide alterations in DNA sequence did not affect the stability of the secondary structures of the RNAs. The magnitude of the DNA sequence variation in the mt 12S rRNA and tRNA(Val) genes among blacklegged ticks suggests that this region of the mitochondrial genome has potential as a genetic marker for examining the population genetics and phylogeography of I. scapularis.
Collapse
Affiliation(s)
- Chantel N Krakowetz
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Allison Sproat
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - L Robbin Lindsay
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada
| | - Neil B Chilton
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| |
Collapse
|
46
|
Lewis LA, Radulović ŽM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis 2015; 6:424-34. [PMID: 25825233 PMCID: PMC4415496 DOI: 10.1016/j.ttbdis.2015.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.
Collapse
Affiliation(s)
- Lauren A Lewis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Lindsay M Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
47
|
Halos L, Lebon W, Chalvet-Monfray K, Larsen D, Beugnet F. Immediate efficacy and persistent speed of kill of a novel oral formulation of afoxolaner (NexGardTM) against induced infestations with Ixodes ricinus ticks. Parasit Vectors 2014; 7:452. [PMID: 25261196 PMCID: PMC4262065 DOI: 10.1186/1756-3305-7-452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022] Open
Abstract
Background Ticks are hematophageous arthropods that transmit a wide spectrum of pathogens to human and animals. The ability of an acaricidal product to kill ticks quickly provides an important added benefit, especially as protecting dogs from tick bites remains the best preventive measure against tick-borne diseases. The speed of kill of afoxolaner in a novel soft chewable formulation (NexGardTM) against induced infestations with Ixodes ricinus adult ticks was evaluated during a full-month negative controlled and blinded study following a single oral administration. Methods 12 healthy beagle dogs were included and randomly allocated to 2 groups of six dogs each. One Group was a negative control while the other group was treated with an oral formulation of afoxolaner on Day 0. Tick infestations with 40 (±5) female and 10 male adult unfed I. ricinus were performed on Days -1, 7, 14, 21 and 28. To evaluate immediate efficacy, the number of live ticks were thumb counted at 12 and 24 hours post treatment. To evaluate the persistent speed of kill following further infestations, ticks were thumb counted 12 and 24 hours post infestations. Ticks were removed 24 hours post treatment or infestation. Results Afoxolaner starts to kill the pre-existing tick infestations rapidly with an immediate efficacy of 93.4% and 100% respectively at 12 h and 24 h post treatment. The persistent speed of kill of afoxolaner was significant (p < 0,05), as compared with untreated controls, at 12 hours after infestations at D7 and D21. Efficacy at 12 h was 76.6%, 41.9%, 36.9% and 38.5% at D7, D14, D21 and D28 respectively. Efficacy at 24 h ranged from 91% to 100% for the entire month. Conclusions This study demonstrated that besides the excellent acaricidal efficacy of afoxolaner after single oral administration, the product has a rapid speed of kill against one of the most important European tick species and controlled the weekly re-infestations for 28 days post treatment.
Collapse
Affiliation(s)
- Lénaïg Halos
- Merial S,A,S,, Sanofi Pasteur confluence, 69007 Lyon, France.
| | | | | | | | | |
Collapse
|
48
|
Hidano A, Konnai S, Yamada S, Githaka N, Isezaki M, Higuchi H, Nagahata H, Ito T, Takano A, Ando S, Kawabata H, Murata S, Ohahsi K. Suppressive effects of neutrophil by Salp16-like salivary gland proteins from Ixodes persulcatus Schulze tick. INSECT MOLECULAR BIOLOGY 2014; 23:466-474. [PMID: 24698498 DOI: 10.1111/imb.12101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Salp16, a 16-kDa tick salivary gland protein, is known to be the molecule involved in the transmission of Anaplasma phagocytophilum, an obligate intracellular pathogen causing zoonotic anaplasmosis, from its mammalian hosts to Ixodes scapularis. Recently, the presence of A. phagocytophilum was documented in Japan and Ixodes persulcatus was identified as one of its vectors. The purpose of this study was to identify Salp16 genes in I. persulcatus and characterize their function. Two cDNA clones encoding the Salp16-like sequences were obtained from the salivary glands of fed female I. persulcatus ticks and designated Salp16 Iper1 and Iper2. Gene expression analyses showed that the Salp16 Iper genes were expressed specifically in the salivary glands and were up-regulated by blood feeding. These proteins attenuated the oxidative burst of activated bovine neutrophils and inhibited their migration induced by the chemoattractant interleukin-8 (IL-8). These results demonstrate that Salp16 Iper proteins contribute to the establishment of blood feeding as an immunosuppressant of neutrophil, an essential factor in innate host immunity. Further examination of the role of Salp16 Iper in the transmission of pathogens, including A. phagocytophilum, will increase our understanding of the tick-host-pathogen interface.
Collapse
Affiliation(s)
- A Hidano
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Keesing F, McHenry DJ, Hersh M, Tibbetts M, Brunner JL, Killilea M, LoGiudice K, Schmidt KA, Ostfeld RS. Prevalence of human-active and variant 1 strains of the tick-borne pathogen Anaplasma phagocytophilum in hosts and forests of eastern North America. Am J Trop Med Hyg 2014; 91:302-9. [PMID: 24865688 DOI: 10.4269/ajtmh.13-0525] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anaplasmosis is an emerging infectious disease caused by infection with the bacterium Anaplasma phagocytophilum. In the eastern United States, A. phagocytophilum is transmitted to hosts through the bite of the blacklegged tick, Ixodes scapularis. We determined the realized reservoir competence of 14 species of common vertebrate hosts for ticks by establishing the probability that each species transmits two important strains of A. phagocytophilum (A. phagocytophilum human-active, which causes human cases, and A. phagocytophilum variant 1, which does not) to feeding larval ticks. We also sampled questing nymphal ticks from ∼ 150 sites in a single county over 2 years and sampled over 6 years at one location. White-footed mice (Peromyscus leucopus) and Eastern chipmunks (Tamias striatus) were the most competent reservoirs for infection with the A. phagocytophilum human-active strain. Across the county, prevalence in ticks for both strains together was 8.3%; ticks were more than two times as likely to be infected with A. phagocytophilum human-active as A. phagocytophilum variant 1.
Collapse
Affiliation(s)
- Felicia Keesing
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Diana J McHenry
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Michelle Hersh
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Michael Tibbetts
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Jesse L Brunner
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Mary Killilea
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Kathleen LoGiudice
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Kenneth A Schmidt
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| | - Richard S Ostfeld
- Bard College, Annandale-on-Hudson, New York; Sarah Lawrence College, Bronxville, New York; Washington State University, Pullman, Washington; New York University, New York, New York; Union College, Schenectady, New York; Texas Tech University, Lubbock, Texas; Cary Institute of Ecosystem Studies, Millbrook, New York
| |
Collapse
|
50
|
Boyle WK, Wilder HK, Lawrence AM, Lopez JE. Transmission dynamics of Borrelia turicatae from the arthropod vector. PLoS Negl Trop Dis 2014; 8:e2767. [PMID: 24699275 PMCID: PMC3974661 DOI: 10.1371/journal.pntd.0002767] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet little is known about the transmission capability of these pathogens during the relatively short bloodmeal. This study was therefore initiated to understand the transmission dynamics of the relapsing fever spirochete Borrelia turicatae from the vector Ornithodoros turicata, and the subsequent dissemination of the bacteria upon entry into murine blood. METHODOLOGY/PRINCIPAL FINDINGS To determine the minimum number of ticks required to transmit spirochetes, one to three infected O. turicata were allowed to feed to repletion on individual mice. Murine infection and dissemination of the spirochetes was evaluated by dark field microscopy of blood, quantitative PCR, and immunoblotting against B. turicatae protein lysates and a recombinant antigen, the Borrelia immunogenic protein A. Transmission frequencies were also determined by interrupting the bloodmeal 15 seconds after tick attachment. Scanning electron microscopy (SEM) was performed on infected salivary glands to detect spirochetes within acini lumen and excretory ducts. Furthermore, spirochete colonization and dissemination from the bite site was investigated by feeding infected O. turicata on the ears of mice, removing the attachment site after engorment, and evaluating murine infection. CONCLUSION/SIGNIFICANCE Our findings demonstrated that three ticks provided a sufficient infectious dose to infect nearly all animals, and B. turicatae was transmitted within seconds of tick attachment. Spirochetes were also detected in acini lumen of salivary glands by SEM. Upon host entry, B. turicatae did not require colonization of the bite site to establish murine infection. These results suggest that once B. turicatae colonizes the salivary glands the spirochetes are preadapted for rapid entry into the mammal.
Collapse
Affiliation(s)
- William K. Boyle
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Hannah K. Wilder
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Amanda M. Lawrence
- Institute for Imaging and Analytical Technologies, Mississippi State University, Starkville, Mississippi, United States of America
| | - Job E. Lopez
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| |
Collapse
|