1
|
Xi Y, Zhou J, Lin Z, Liang W, Yang C, Liu D, Xu Y, Nong L, Chen S, Yu Y, He W, Zhang J, Zhang R, Liu X, Liu X, Sang L, Xu Y, Li Y. Patients with infectious diseases undergoing mechanical ventilation in the intensive care unit have better prognosis after receiving metagenomic next-generation sequencing assay. Int J Infect Dis 2022; 122:959-969. [PMID: 35908725 DOI: 10.1016/j.ijid.2022.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES To evaluate the relation between mNGS and the prognosis of patients with infectious diseases undergoing mechanical ventilation in the intensive care unit (ICU). DESIGN This is a single-center observational study, comparing non-randomly assigned diagnostic approaches. We analyzed the medical records of 228 patients with suspected infectious diseases undergoing mechanical ventilation in the ICU from March 2018 to May 2020. The concordance of pathogen results was also assessed for the results of mNGS, culture and PCR assays. RESULTS The 28-day mortality of the patients in the mNGS group was lower after the baseline difference correction (19.23% (20/104) vs. 29.03% (36/124) , p=0.039). Subgroup analysis showed that mNGS assay associates with improved 28-day mortality of non-immunosuppressive patients (14.06% vs. 29.82%, p=0.018) . Not performing mNGS assay, higher APACHE II score and hypertension are independent risk factors for 28-day mortality. The mNGS assay presented advantage in pathogen positivity (69.8% double positive and 25.0% mNGS positive only), and the concordance between thest two assays were 79.0%. CONCLUSIONS mNGS survey may be associated with a better prognosis as the reduction of 28-day mortality of patients with infectious diseases on mechanical ventilation in ICU. This technique presented advantage in pathogen positivity than traditional methods.
Collapse
Affiliation(s)
- Yin Xi
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Jing Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Zhimin Lin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Weibo Liang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Chun Yang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Dongdong Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Lingbo Nong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Sibei Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Yuheng Yu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Rong Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Xuesong Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China
| | - Ling Sang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China..
| | - Yuanda Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China..
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Department of Pulmonary and Critical Care Medicine, 151 Yanjiang Road, Guangzhou, 510120, China..
| |
Collapse
|
2
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
3
|
Reta DH, Tessema TS, Ashenef AS, Desta AF, Labisso WL, Gizaw ST, Abay SM, Melka DS, Reta FA. Molecular and Immunological Diagnostic Techniques of Medical Viruses. Int J Microbiol 2020; 2020:8832728. [PMID: 32908530 PMCID: PMC7474384 DOI: 10.1155/2020/8832728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023] Open
Abstract
Viral infections are causing serious problems in human population worldwide. The recent outbreak of coronavirus disease 2019 caused by SARS-CoV-2 is a perfect example how viral infection could pose a great threat to global public health and economic sectors. Therefore, the first step in combating viral pathogens is to get a timely and accurate diagnosis. Early and accurate detection of the viral presence in patient sample is crucial for appropriate treatment, control, and prevention of epidemics. Here, we summarize some of the molecular and immunological diagnostic approaches available for the detection of viral infections of humans. Molecular diagnostic techniques provide rapid viral detection in patient sample. They are also relatively inexpensive and highly sensitive and specific diagnostic methods. Immunological-based techniques have been extensively utilized for the detection and epidemiological studies of human viral infections. They can detect antiviral antibodies or viral antigens in clinical samples. There are several commercially available molecular and immunological diagnostic kits that facilitate the use of these methods in the majority of clinical laboratories worldwide. In developing countries including Ethiopia where most of viral infections are endemic, exposure to improved or new methods is highly limited as these methods are very costly to use and also require technical skills. Since researchers and clinicians in all corners of the globe are working hard, it is hoped that in the near future, they will develop good quality tests that can be accessible in low-income countries.
Collapse
Affiliation(s)
- Daniel Hussien Reta
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako Labisso
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu Melka
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fisseha Alemu Reta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
4
|
Rastogi M, Singh SK. Advances in Molecular Diagnostic Approaches for Biothreat Agents. DEFENSE AGAINST BIOLOGICAL ATTACKS 2019. [PMCID: PMC7123646 DOI: 10.1007/978-3-030-03071-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The advancement in Molecular techniques has been implicated in the development of sophisticated, high-end diagnostic platform and point-of-care (POC) devices for the detection of biothreat agents. Different molecular and immunological approaches such as Immunochromatographic and lateral flow assays, Enzyme-linked Immunosorbent assays (ELISA), Biosensors, Isothermal amplification assays, Nucleic acid amplification tests (NAATs), Next Generation Sequencers (NGS), Microarrays and Microfluidics have been used for a long time as detection strategies of the biothreat agents. In addition, several point of care (POC) devices have been approved by FDA and commercialized in markets. The high-end molecular platforms like NGS and Microarray are time-consuming, costly, and produce huge amount of data. Therefore, the future prospects of molecular based technique should focus on developing quick, user-friendly, cost-effective and portable devices against biological attacks and surveillance programs.
Collapse
|
5
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
6
|
Ongrádi J, Ablashi DV, Yoshikawa T, Stercz B, Ogata M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J Neurovirol 2017; 23:1-19. [PMID: 27538995 PMCID: PMC5329081 DOI: 10.1007/s13365-016-0473-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/15/2016] [Accepted: 07/17/2016] [Indexed: 01/26/2023]
Abstract
The roseoloviruses, human herpesvirus (HHV)-6A, HHV-6B, and HHV-7, can cause severe encephalitis or encephalopathy. In immunocompetent children, primary HHV-6B infection is occasionally accompanied by diverse clinical forms of encephalitis. Roseolovirus coinfections with heterologous viruses and delayed primary HHV-7 infection in immunocompetent adults result in very severe neurological and generalized symptoms. Recovery from neurological sequelae is slow and sometimes incomplete. In immunocompromised patients with underlying hematological malignancies and transplantation, frequent single or simultaneous reactivation of roseoloviruses elicit severe, lethal organ dysfunctions, including damages in the limbic system, brain stem, and hippocampus. Most cases have been due to HHV-6B with HHV-6A accounting for 2-3%. The most severe manifestation of HHV-6B reactivation is post-transplantation limbic encephalitis. Seizures, cognitive problems, and abnormal EEG are common. Major risk factors for HHV-6B-associated encephalitis include unrelated cord blood cell transplantation and repeated hematopoietic stem cell transplantation. Rare genetic disorders, male gender, certain HLA constellation, and immune tolerance to replicating HHV-6 in persons carrying chromosomally integrated HHV-6 might also predispose an individual to roseolovirus-associated brain damage. At this time, little is known about the risk factors for HHV-7-associated encephalitis. Intrathecal glial cell destruction due to virus replication, overexpression of proinflammatory cytokines, and viral mimicry of chemokines all contribute to brain dysfunction. High virus load in the cerebrospinal fluid, hippocampal astrogliosis, and viral protein expression in HHV-6B-associated cases and multiple microscopic neuronal degeneration in HHV-7-associated cases are typical laboratory findings. Early empirical therapy with ganciclovir or foscarnet might save the life of a patient with roseolovirus-associated encephalitis.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Dharam V Ablashi
- HHV-6 Foundation, 1482 East Valley Road, Santa Barbara, CA, 93101, USA
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kotsukake-cho, Dengakugakolo, Toyoake, Aichi, 470-1192, Japan
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Masao Ogata
- Department of Medical Oncology and Hematology, Oita University Hospital, Hasama-machi, Yufu City, 879-5593, Japan
| |
Collapse
|
7
|
Gordon SM, Srinivasan L, Harris MC. Neonatal Meningitis: Overcoming Challenges in Diagnosis, Prognosis, and Treatment with Omics. Front Pediatr 2017; 5:139. [PMID: 28670576 PMCID: PMC5472684 DOI: 10.3389/fped.2017.00139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 01/24/2023] Open
Abstract
Neonatal meningitis is a devastating condition. Prognosis has not improved in decades, despite the advent of improved antimicrobial therapy and heightened index of suspicion among clinicians caring for affected infants. One in ten infants die from meningitis, and up to half of survivors develop significant lifelong complications, including seizures, impaired hearing and vision, and delayed or arrested development of such basic skills as talking and walking. At present, it is not possible to predict which infants will suffer poor outcomes. Early treatment is critical to promote more favorable outcomes, though diagnosis of meningitis in infants is technically challenging, time-intensive, and invasive. Profound neuronal injury has long been described in the setting of neonatal meningitis, as has elevated levels of many pro- and anti-inflammatory cytokines. Mechanisms of the host immune response that drive clearance of the offending organism and underlie brain injury due to meningitis are not well understood, however. In this review, we will discuss challenges in diagnosis, prognosis, and treatment of neonatal meningitis. We will highlight transcriptomic, proteomic, and metabolomic data that contribute to suggested mechanisms of inflammation and brain injury in this setting with a view toward fruitful areas for future investigation.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lakshmi Srinivasan
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mary Catherine Harris
- Division of Neonatology, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Yang Z, Leonard SR, Mammel MK, Elkins CA, Kulka M. Towards next-generation sequencing analytics for foodborne RNA viruses: Examining the effect of RNA input quantity and viral RNA purity. J Virol Methods 2016; 236:221-230. [DOI: 10.1016/j.jviromet.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
|
9
|
Papa A, Kotrotsiou T, Papadopoulou E, Reusken C, GeurtsvanKessel C, Koopmans M. Challenges in laboratory diagnosis of acute viral central nervous system infections in the era of emerging infectious diseases: the syndromic approach. Expert Rev Anti Infect Ther 2016; 14:829-36. [PMID: 27458693 DOI: 10.1080/14787210.2016.1215914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Many acute viral infections of the central nervous system (CNS) remain without etiological diagnosis. Specific treatment is available for only few of them; however, accurate diagnosis is essential for patient's life and public health. AREAS COVERED In the current article, the main parameters playing a role for a successful etiological diagnosis of acute CNS infections are analysed and the syndromic approach based on clinical and demographic data combined with surrogated indicators is discussed. For the development of a relevant test panel, knowledge on the microbes causing CNS infections in a particular geographic region is essential. The modern screening strategies covering a large panel of potential causative agents are described. Examples of the successful application of next generation sequencing in the identification of etiological agents, including novel and emerging viruses, are given. Expert commentary: Knowledge on epidemiology of the viruses, expertise on syndromic grouping of the etiological agents and advances in technology enable the laboratory diagnosis of acute CNS infections, and the rapid identification, containment and mitigation of probable outbreaks.
Collapse
Affiliation(s)
- Anna Papa
- a Department of Microbiology, Medical School , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Tzimoula Kotrotsiou
- a Department of Microbiology, Medical School , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Elpida Papadopoulou
- a Department of Microbiology, Medical School , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Chantal Reusken
- b Viroscience Department , Erasmus Medical Centre , Rotterdam , The Netherlands
| | | | - Marion Koopmans
- b Viroscience Department , Erasmus Medical Centre , Rotterdam , The Netherlands
| |
Collapse
|
10
|
Hu Y, Yan H, Mammel M, Chen H. Sequence-independent amplification coupled with DNA microarray analysis for detection and genotyping of noroviruses. AMB Express 2015; 5:69. [PMID: 26556029 PMCID: PMC4641146 DOI: 10.1186/s13568-015-0156-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/27/2015] [Indexed: 01/31/2023] Open
Abstract
Noroviruses (NoVs) have high levels of genetic sequence diversities, which lead to difficulties in designing robust universal primers to efficiently amplify specific viral genomes for molecular analysis. We here described the practicality of sequence-independent amplification combined with DNA microarray analysis for simultaneous detection and genotyping of human NoVs in fecal specimens. We showed that single primer isothermal linear amplification (Ribo-SPIA) of genogroup I (GI) and genogroup II (GII) NoVs could be run through the same amplification protocol without the need to design and use any virus-specific primers. Related virus could be subtyped by the unique pattern of hybridization with the amplified product to the microarray. By testing 22 clinical fecal specimens obtained from acute gastroenteritis cases as blinded samples, 2 were GI positive and 18 were GII positive as well as 2 negative for NoVs. A NoV GII positive specimen was also identified as having co-occurrence of hepatitis A virus. The study showed that there was 100 % concordance for positive NoV detection at genogroup level between the results of Ribo-SPIA/microarray and the phylogenetic analysis of viral sequences of the capsid gene. In addition, 85 % genotype agreement was observed for the new assay compared to the results of phylogenetic analysis.
Collapse
|
11
|
Miller S, Karaoz U, Brodie E, Dunbar S. Solid and Suspension Microarrays for Microbial Diagnostics. METHODS IN MICROBIOLOGY 2015; 42:395-431. [PMID: 38620236 PMCID: PMC7172482 DOI: 10.1016/bs.mim.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.
Collapse
Affiliation(s)
- Steve Miller
- Clinical Microbiology Laboratory, University of California, San Francisco, California, USA
| | - Ulas Karaoz
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Eoin Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
12
|
Liu Y, Duan C, Zhang C, Yang X, Zhao Y, Dong R, Zhou J, Gai Z. Evaluation of a viral microarray based on simultaneous extraction and amplification of viral nucleotide acid for detecting human herpesviruses and enteroviruses. PLoS One 2015; 10:e0117626. [PMID: 25774509 PMCID: PMC4361642 DOI: 10.1371/journal.pone.0117626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022] Open
Abstract
In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5’-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses’ detection.
Collapse
Affiliation(s)
- Yi Liu
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Ji’nan, China
| | - Chunhong Duan
- Department of Pediatrics, Qilu Children’s Hospital of Shandong University, Ji’nan, China
| | - Chunxiu Zhang
- Shanghai Biochip National Engineering Research Center, Shanghai, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Ji’nan, China
| | - Yan Zhao
- Clinical Central Laboratory, Maternal and Children's Health Care Institute of Jinan, Jinan, China
| | - Rui Dong
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Ji’nan, China
| | - Jiajing Zhou
- Shanghai Biochip National Engineering Research Center, Shanghai, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Ji’nan, China
- Department of Pediatrics, Qilu Children’s Hospital of Shandong University, Ji’nan, China
- * E-mail:
| |
Collapse
|
13
|
Abstract
Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 10(3) virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant virus. The microarray described in this work should help in understanding the etiology of gastroenteritis in humans and animals.
Collapse
|
14
|
Venter M, Zaayman D, van Niekerk S, Stivaktas V, Goolab S, Weyer J, Paweska JT, Swanepoel R. Macroarray assay for differential diagnosis of meningoencephalitis in southern Africa. J Clin Virol 2014; 60:50-6. [DOI: 10.1016/j.jcv.2014.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 11/26/2022]
|
15
|
Virological diagnosis of central nervous system infections by use of PCR coupled with mass spectrometry analysis of cerebrospinal fluid samples. J Clin Microbiol 2013; 52:212-7. [PMID: 24197874 DOI: 10.1128/jcm.02270-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Viruses are the leading cause of central nervous system (CNS) infections, ahead of bacteria, parasites, and fungal agents. A rapid and comprehensive virologic diagnostic testing method is needed to improve the therapeutic management of hospitalized pediatric or adult patients. In this study, we assessed the clinical performance of PCR amplification coupled with electrospray ionization-time of flight mass spectrometry analysis (PCR-MS) for the diagnosis of viral CNS infections. Three hundred twenty-seven cerebrospinal fluid (CSF) samples prospectively tested by routine PCR assays between 2004 and 2012 in two university hospital centers (Toulouse and Reims, France) were retrospectively analyzed by PCR-MS analysis using primers targeted to adenovirus, human herpesviruses 1 to 8 (HHV-1 to -8), polyomaviruses BK and JC, parvovirus B19, and enteroviruses (EV). PCR-MS detected single or multiple virus infections in 190 (83%) of the 229 samples that tested positive by routine PCR analysis and in 10 (10.2%) of the 98 samples that tested negative. The PCR-MS results correlated well with herpes simplex virus 1 (HSV-1), varicella-zoster virus (VZV), and EV detection by routine PCR assays (kappa values [95% confidence intervals], 0.80 [0.69 to 0.92], 0.85 [0.71 to 0.98], and 0.84 [0.78 to 0.90], respectively), whereas a weak correlation was observed with Epstein-Barr virus (EBV) (0.34 [0.10 to 0.58]). Twenty-six coinfections and 16 instances of uncommon neurotropic viruses (HHV-7 [n = 13], parvovirus B19 [n = 2], and adenovirus [n = 1]) were identified by the PCR-MS analysis, whereas only 4 coinfections had been prospectively evidenced using routine PCR assays (P < 0.01). In conclusion, our results demonstrated that PCR-MS analysis is a valuable tool to identify common neurotropic viruses in CSF (with, however, limitations that were identified regarding EBV and EV detection) and may be of major interest in better understanding the clinical impact of multiple or neglected viral neurological infections.
Collapse
|
16
|
Tang YW. Laboratory diagnosis of CNS infections by molecular amplification techniques. ACTA ACUST UNITED AC 2013; 1:489-509. [PMID: 23496356 DOI: 10.1517/17530059.1.4.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The initial presentation of symptoms and clinical manifestations of CNS infectious diseases often makes a specific diagnosis difficult and uncertain, and the emergence of polymerase chain reaction-led molecular techniques have been used in improving organism-specific diagnosis. These techniques have not only provided rapid, non-invasive detection of microorganisms causing CNS infections, but also demonstrated several neurologic disorders linked to infectious pathogens. Molecular methods performed on cerebrospinal fluid are recognized as the new 'gold standard' for some of these infections caused by microorganisms that are difficult to detect and identify. Although molecular techniques are predicted to be widely used in diagnosing and monitoring CNS infections, the limitations as well as strengths of these techniques must be clearly understood by both clinicians and laboratory personnel.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Vanderbilt University Medical Center, 4605 TVC, Nashville, TN 37232-5310, USA +1 615 322 2035 ; +1 615 343 8420 ;
| |
Collapse
|
17
|
Cobo F. Application of molecular diagnostic techniques for viral testing. Open Virol J 2012; 6:104-14. [PMID: 23248732 PMCID: PMC3522074 DOI: 10.2174/1874357901206010104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory.
Collapse
Affiliation(s)
- Fernando Cobo
- Microbiology Unit (Biotechnology Area), Hospital de Poniente. Ctra de Almerimar S/N, El Ejido 04700, Almería, Spain
| |
Collapse
|
18
|
Abstract
Molecular diagnostic techniques for viral testing have undergone rapid development in recent years. They are becoming more widely used than the classical virological assays in the majority of clinical virology laboratories, and now represent a new method for the diagnosis of human viral infections. Recently, new techniques based on multiplex RT‐PCR amplification followed by microarray analysis have been developed and evaluated. On the basis of amplification of viral genome‐specific fragments by multiplex RT‐PCR and their subsequent detection via hybridization with microorganism‐specific binding probes on solid surfaces, they allow simultaneous detection and identification of multiple viruses in a single clinical sample. The management of viral central nervous system and respiratory tract infections currently represents the two main applications of the microarrays in routine virological practice. Microarrays have shown reliable results in comparison with those of referenced (RT)‐PCR assays, and appear to be of major interest for the detection of a broad range of respiratory and neurotropic viruses, assessment of the pathogenicity of newly discovered or neglected viruses, and identification of multiple viral infections in clinical samples. Despite several limitations observed during the different studies performed, this new technology might improve the clinical management of patients by enlarging the range of the viruses detected, in particular in cases of severe infections leading to patient hospitalization in the intensive‐care unit. They might also help in the prevention of nosocomial transmission in hospital departments by contributing to the development of new epidemiological surveillance systems for viral infections.
Collapse
Affiliation(s)
- N Lěvěque
- Clinical and Molecular Virology Unit, University Hospital; Clinical and Molecular Virology Unit, University Hospital.
| | - F Renois
- Clinical and Molecular Virology Unit, University Hospital; Faculty of Medicine, EA-4684 CardioVir, SFR-CAP santé, Reims, France
| | - L Andréoletti
- Clinical and Molecular Virology Unit, University Hospital; Faculty of Medicine, EA-4684 CardioVir, SFR-CAP santé, Reims, France
| |
Collapse
|
19
|
Evaluation of multiplex polymerase chain reaction and microarray-based assay for rapid herpesvirus diagnostics. Diagn Microbiol Infect Dis 2012; 73:74-9. [PMID: 22459558 DOI: 10.1016/j.diagmicrobio.2012.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/14/2012] [Accepted: 02/18/2012] [Indexed: 11/22/2022]
Abstract
Rapid diagnosis is critical to minimize morbidity and mortality associated with infections of the central nervous system (CNS). In this study, we evaluated the performance of a multiplex polymerase chain reaction (PCR) and microarray-based method, Prove-it™ Herpes, in a routine clinical laboratory setting for the diagnostics of 7 herpesviruses in viral CNS infections. Cerebrospinal fluid samples (n = 495), which had arrived for diagnostics in the 5 participating laboratories, were analyzed for herpesvirus DNA both by the current PCR-based method of the laboratory and by the microarray assay. The sensitivity and specificity for the microarray assay were 93% and 99%, respectively. The microarray assay was considered as a rapid and robust diagnostic platform that was easily implemented into the laboratory workflow. The broad herpesvirus coverage and the small sample volume required by the assay could benefit the diagnostics and thus the treatment of life-threatening infections of the CNS, especially among immunocompromised patients.
Collapse
|
20
|
Kang X, Qin C, Li Y, Liu H, Lin F, Li Y, Li J, Zhu Q, Yang Y. Improvement of the specificity of a pan-viral microarray by using genus-specific oligonucleotides and reduction of interference by host genomes. J Med Virol 2012; 83:1624-30. [PMID: 21739454 PMCID: PMC7167123 DOI: 10.1002/jmv.22157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rapid detection of viral pathogens is crucial for antiviral therapy. High-density 60-70-mer oligonucleotide microarrays have been explored for broad detection of many viruses. However, relatively low specificity and the complex analytical processes are the major limitations when pan-viral oligonucleotide microarrays are used to detect viral pathogens. In this study, genus-specific oligonucleotides were used as probes and modified sample preparations were carried out to improve the specificity and accuracy of the pan-viral oligonucleotide microarray. Genus-specific 63-mer oligonucleotide probes were used for screening human pathogenic RNA viruses. A total of 628 oligonucleotide probes covering 32 RNA viral genera from 14 viral families were used. The number of oligonucleotide probes was decreased to simplify the analytical process of hybridization and to minimize cross-hybridization. Host genomes were removed by DNase I/RNase T1 digestion before viral nucleic acid extraction, and non-ribosomal hexanucleotides were used for reverse transcription to minimize interference of host genomes. Cultured viruses were used for microarray validation. The microarray was validated by cultured isolates that belonged to five viral genera. By using DNase I/RNase T1 digestion before viral nucleic acid extraction and non-ribosomal hexanucleotides for reverse transcription, the specificity of the microarray was improved. Furthermore, the analytical process of hybridization results was simplified. The specificity of pan-viral microarray could be improved by using genus-specific oligonucleotides as probes and by using non-ribosomal hexanucleotides for reverse transcription. Combined with subsequent degenerate reverse transcriptase-polymerase chain reaction and sequencing processes, this improved genus-specific oligonucleotides microarray provides a relatively flexible strategy for diagnosis of RNA virus diseases.
Collapse
Affiliation(s)
- Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Differentiation of the seven major lyssavirus species by oligonucleotide microarray. J Clin Microbiol 2011; 50:619-25. [PMID: 22189108 DOI: 10.1128/jcm.00848-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An oligonucleotide microarray, LyssaChip, has been developed and verified as a highly specific diagnostic tool for differentiation of the 7 major lyssavirus species. As with conventional typing microarray methods, the LyssaChip relies on sequence differences in the 371-nucleotide region coding for the nucleoprotein. This region was amplified using nested reverse transcription-PCR primers that bind to the 7 major lyssaviruses. The LyssaChip includes 57 pairs of species typing and corresponding control oligonucleotide probes (oligoprobes) immobilized on glass slides, and it can analyze 12 samples on a single slide within 8 h. Analysis of 111 clinical brain specimens (65 from animals with suspected rabies submitted to the laboratory and 46 of butchered dog brain tissues collected from restaurants) showed that the chip method was 100% sensitive and highly consistent with the "gold standard," a fluorescent antibody test (FAT). The chip method could detect rabies virus in highly decayed brain tissues, whereas the FAT did not, and therefore the chip test may be more applicable to highly decayed brain tissues than the FAT. LyssaChip may provide a convenient and inexpensive alternative for diagnosis and differentiation of rabies and rabies-related diseases.
Collapse
|
22
|
Rapid virological diagnosis of central nervous system infections by use of a multiplex reverse transcription-PCR DNA microarray. J Clin Microbiol 2011; 49:3874-9. [PMID: 21918017 DOI: 10.1128/jcm.01214-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the main etiological cause of central nervous system (CNS) infections. A rapid molecular diagnosis is recommended to improve the therapeutic management of patients. The aim of this study was to evaluate the performances of a DNA microarray, the Clart Entherpex kit (Genomica, Coslada, Spain), allowing the rapid and simultaneous detection of 9 DNA and RNA neurotropic viruses: herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, and the human enteroviruses (HEVs). This evaluation was performed with 28 samples from the European proficiency panels (Quality Control for Molecular Diagnostics [QCMD]; Glasgow, Scotland) and then with 78 cerebrospinal fluid (CSF) specimens. The majority of the QCMD results obtained by the DNA microarray were similar to those recorded by the overall QCMD participants. The main discrepant results were observed for low concentrations of HSV-2 and HEVs. From the clinical samples, the kit detected 27 of the 28 herpesvirus CNS infections and all of the 30 HEV-positive CSF samples. No false-positive result was observed among the 20 virus-negative CSF samples. The clinical sensitivity, specificity, and negative and positive predictive values of the assay were 98.3, 100, 95.2, and 100%, respectively, when the results were compared to those of commercially available PCR assays. Interestingly, HHV-7 was detected in 11 (37%) of the 30 HEV-positive CSF samples from children suffering from aseptic meningitis causing significantly longer lengths of stay at the hospital than infection with HEVs alone (2.4 versus 1.4 days; P = 0.038). In conclusion, this preliminary study showed that this DNA microarray could be a valuable molecular diagnostic tool for single and mixed DNA and RNA virus infections of the CNS.
Collapse
|
23
|
|
24
|
Sankar S, Ramamurthy M, Nandagopal B, Srikanth P, Venkatraman G, Sridharan G. Molecular and nanotechnologic approaches to etiologic diagnosis of infectious syndromes. Mol Diagn Ther 2011; 15:145-58. [PMID: 21766906 PMCID: PMC7100041 DOI: 10.1007/bf03256405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infectious diseases are a major global public health problem. Multiple agents are now recognized to cause indistinguishable illnesses. The term 'syndrome' applies to such situations, for which early and rapid diagnosis of the infecting agent would enable prompt and appropriate therapy. Public health physicians would also get timely information on the specific etiology of the infectious syndrome, facilitating intervention at the community level in the face of outbreaks or epidemics. A variety of molecular techniques have been evaluated for rapid diagnosis of infectious syndromes. These techniques include real-time multiplex PCR, DNA microarray, loop-mediated isothermal amplification, and other similar assays. This review surveys such state-of-the-art technologies.
Collapse
Affiliation(s)
- Sathish Sankar
- Division of Biomedical Research, Sri Narayani Hospital and Research Centre, Thirumalaikodi, Sripuram, Vellore, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
25
|
Newton R, Hinds J, Wernisch L. Empirical Bayesian models for analysing molecular serotyping microarrays. BMC Bioinformatics 2011; 12:88. [PMID: 21453458 PMCID: PMC3076268 DOI: 10.1186/1471-2105-12-88] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 03/31/2011] [Indexed: 12/02/2022] Open
Abstract
Background Microarrays offer great potential as a platform for molecular diagnostics, testing clinical samples for the presence of numerous biomarkers in highly multiplexed assays. In this study applied to infectious diseases, data from a microarray designed for molecular serotyping of Streptococcus pneumoniae was used, identifying the presence of any one of 91 known pneumococcal serotypes from DNA extracts. This microarray incorporated oligonucleotide probes for all known capsular polysaccharide synthesis genes and required a statistical analysis of the microarray intensity data to determine which serotype, or combination of serotypes, were present within a sample based on the combination of genes detected. Results We propose an empirical Bayesian model for calculating the probabilities of combinations of serotypes from the microarray data. The model takes into consideration the dependencies between serotypes, induced by genes they have in common, and by homologous genes which, although not identical, are similar to each other in sequence. For serotypes which are very similar in capsular gene composition, extra probes are included on the microarray, providing additional information which is integrated into the Bayesian model. For each serotype combination with high probability, a second model, a Bayesian random effects model is applied to determine the relative abundance of each serotype. Conclusions To assess the accuracy of the proposed analysis we applied our methods to experimental data from samples containing individual serotypes and samples containing combinations of serotypes with known levels of abundance. All but two of the known serotypes of S. pneumoniae that were tested as individual samples could be uniquely determined by the Bayesian model. The model also enabled the presence of combinations of serotypes within samples to be determined. Serotypes with very low abundance within a combination of serotypes can be detected (down to 2% abundance in this study). As well as detecting the presence of serotype combinations, an approximate measure of the percentage abundance of the serotypes within the combination can be obtained.
Collapse
Affiliation(s)
- Richard Newton
- MRC Biostatistics Unit, Robinson Way, Cambridge, CB2 0SR, UK.
| | | | | |
Collapse
|
26
|
Zhongliang W, Rui C, Xiangling W, Ding L, Jinrong Z, Yanhai G, Ju Z. Detection of the four major human herpesviruses simultaneously in whole blood and cerebrospinal fluid samples by the fluorescence polarization assay. Int J Infect Dis 2010; 14:e893-7. [PMID: 20678952 DOI: 10.1016/j.ijid.2010.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Herpes simplex virus type 1/2 (HSV-1/-2), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) correlate strongly with infections of the central nervous system. The objective of this study was to develop a method for the simultaneous detection of HSV-1/-2, CMV, and EBV DNA by the fluorescence polarization assay based on asymmetric polymerase chain reaction (PCR) and hybridization. METHODS DNA of HSV-1/-2, CMV, and EBV was amplified in an asymmetric PCR by a universal primer system. The amplicons were then detected by the fluorescence polarization assay. In this method, the probes for HSV-1/-2, CMV, and EBV hybridized with their respective target amplicons, and the hybridization resulted in an increase in the fluorescence polarization values. Infections of HSV-1/-2, CMV, and EBV were determined by the increased fluorescence polarization values. The DNA extracted from whole blood and cerebrospinal fluid samples was subjected to fluorescence polarization and a previously published multiplex PCR assay in parallel. RESULTS Compared to the multiplex PCR assay, no significant difference in the numbers of samples positive for the human herpesviruses was identified by the fluorescence polarization assay. CONCLUSIONS The fluorescence polarization assay presented in this study is a reliable, convenient, and cost-effective diagnostic tool that allows the detection of the four major human herpesviruses.
Collapse
Affiliation(s)
- Wu Zhongliang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Allred AF, Wu G, Wulan T, Fischer KF, Holbrook MR, Tesh RB, Wang D. VIPR: A probabilistic algorithm for analysis of microbial detection microarrays. BMC Bioinformatics 2010; 11:384. [PMID: 20646301 PMCID: PMC2921407 DOI: 10.1186/1471-2105-11-384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All infectious disease oriented clinical diagnostic assays in use today focus on detecting the presence of a single, well defined target agent or a set of agents. In recent years, microarray-based diagnostics have been developed that greatly facilitate the highly parallel detection of multiple microbes that may be present in a given clinical specimen. While several algorithms have been described for interpretation of diagnostic microarrays, none of the existing approaches is capable of incorporating training data generated from positive control samples to improve performance. RESULTS To specifically address this issue we have developed a novel interpretive algorithm, VIPR (Viral Identification using a PRobabilistic algorithm), which uses Bayesian inference to capitalize on empirical training data to optimize detection sensitivity. To illustrate this approach, we have focused on the detection of viruses that cause hemorrhagic fever (HF) using a custom HF-virus microarray. VIPR was used to analyze 110 empirical microarray hybridizations generated from 33 distinct virus species. An accuracy of 94% was achieved as measured by leave-one-out cross validation. CONCLUSIONS VIPR outperformed previously described algorithms for this dataset. The VIPR algorithm has potential to be broadly applicable to clinical diagnostic settings, wherein positive controls are typically readily available for generation of training data.
Collapse
Affiliation(s)
- Adam F Allred
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Shi J, Wu Y, Cai M, Shang S. Rapid diagnosis of herpetic encephalitis in children by PCR-microarray technology for simultaneous detection of seven human herpes viruses. Eur J Pediatr 2010; 169:421-5. [PMID: 19685343 DOI: 10.1007/s00431-009-1038-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
Abstract
The aim of the study was to evaluate retrospectively the usefulness of polymerase chain reaction (PCR)-microarray technology, which can simultaneously detect seven human herpes viruses for rapid and accurate diagnosis of herpetic encephalitis in children. We simultaneously amplified herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2); varicella-zoster virus; Epstein-Barr virus (EBV); cytomegalovirus (CMV); and human herpes virus 6 (HHV-6A and HHV-6B) by multiplex PCR, and genotyped by DNA microarray technology. The multiplex primers and oligonucleotide probes were designed and synthesized based on the highly conserved regions of the DNA polymerase gene in human herpes viruses. Two hundred ninety cerebrospinal fluid (CSF) specimens from children with clinical suspicion of viral encephalitis were screened by PCR-microarray technology. The results were compared with those of TaqMan PCR kits of common herpes virus. The PCR-microarray technology could detect as few as 10 copies of viral loads. There was no nonspecific hybridizing signal between probes and no cross-reaction to DNA extracted from the pathogens we used. Of 290 cases, 11 were tested positive by PCR-microarray technology. Among them, three were positive for HSV-1, two were positive for HSV-2, one was positive for EBV, two were positive for CMV, two were positive for HHV-6A, one was positive for HHV-6B, and one showed mixed infection of HSV-2 and CMV, and the positive rate was 3.8%. Compared with the results of TaqMan PCR, the sensitivity of PCR-microarray technology was 91.7%, the specificity was 100%, and the index of accurate diagnosis was 0.917. None of the 30 control CSF specimens was tested positive in both methods. Our study suggests that the simultaneous detection of seven human herpes viruses by PCR-microarray technology is the method of choice for rapid, accurate, and specific etiological diagnosis of herpetic encephalitis in children.
Collapse
Affiliation(s)
- Jianrong Shi
- Department of Laboratory, Children's Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Zhugan Xiang 57, 310003, Hangzhou, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Whiley DM, Sloots TP. Molecular Amplification Methods in Diagnostic Virology. INFECTIOUS DISEASE AND THERAPY 2010. [DOI: 10.3109/9781420084962.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Leski TA, Malanoski AP, Stenger DA, Lin B. Target amplification for broad spectrum microbial diagnostics and detection. Future Microbiol 2010; 5:191-203. [DOI: 10.2217/fmb.09.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microarrays are massively parallel detection platforms that were first used extensively for gene expression studies, but have also been successfully applied to microbial detection in a number of diverse fields requiring broad-range microbial identification. This technology has enabled researchers to gain an insight into the microbial diversity of environmental samples, facilitated discovery of a number of new pathogens and enabled studies of multipathogen infections. In contrast to gene expression studies, the concentrations of targets in analyzed samples for microbial detection are usually much lower, and require the use of nucleic acid amplification techniques. The rapid advancement of manufacturing technologies has increased the content of the microarrays; thus, the required amplification is a challenging problem. The constant parallel improvements in both microarray and sample amplification techniques in the near future may lead to a radical progression in medical diagnostics and systems for efficient detection of microorganisms in the environment.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA and Nova Research Inc., 1900 Elkin Street, Suite 230, Alexandria, VA, USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - David A Stenger
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
31
|
Nghiem PP, Schatzberg SJ. Conventional and molecular diagnostic testing for the acute neurologic patient. J Vet Emerg Crit Care (San Antonio) 2010; 20:46-61. [PMID: 20230434 PMCID: PMC7169320 DOI: 10.1111/j.1476-4431.2009.00495.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVE The aim of this review is to describe and evaluate both conventional and molecular diagnostic testing utilized in dogs and cats with acute neurologic diseases. Various types of polymerase chain reaction (PCR) are explored along with novel molecular diagnostic testing that ultimately may prove useful in the critical care setting. DATA SOURCES PUBMED was searched to obtain relevant references material using keywords: 'canine OR feline meningitis AND meningoencephalitis,''feline infectious peritonitis,''canine distemper,''canine OR feline AND toxoplasma,''canine neospora,''canine OR feline AND rickettsia,''granulomatous meningoencephalitis,''steroid responsive meningitis arteritis,''necrotizing encephalitis,''novel neurodiagnostics,''canine OR feline AND CNS borrelia,''canine OR feline AND CNS bartonella,''canine OR feline AND CNS fungal,''nested OR multiplex OR degenerate OR consensus OR CODEHOP AND PCR.' Research findings from the authors' laboratory and current veterinary textbooks also were utilized. HUMAN DATA SYNTHESIS Molecular diagnostic testing including conventional, real-time, and consensus and degenerate PCR and microarray analysis are utilized routinely for the antemortem diagnosis of infectious meningoencephalitis (ME) in humans. Recently, PCR using consensus degenerate hybrid primers (CODEHOP) has been used to identify and characterize a number of novel human viruses. VETERINARY DATA SYNTHESIS Molecular diagnostic testing such as conventional and real-time PCR aid in the diagnosis of several important central nervous system infectious agents including canine distemper virus, Toxoplasma gondii, Neospora caninum, rickettsial species, and others. Recently, broadly reactive consensus and degenerate PCR reactions have been applied to canine ME including assays for rickettsial organisms, Borrelia spp. and Bartonella spp., and various viral families. CONCLUSIONS In the acute neurologic patient, there are several key infectious diseases that can be pursued by a combination of conventional and molecular diagnostic testing. It is important that the clinician understands the utility, as well as the limitations, of the various neurodiagnostic tests that are available.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30606, USA
| | | |
Collapse
|
32
|
Finn A, Curtis N, Pollard AJ. Host biomarkers and paediatric infectious diseases: from molecular profiles to clinical application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 659:19-31. [PMID: 20204752 PMCID: PMC7122846 DOI: 10.1007/978-1-4419-0981-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infectious diseases are an important cause of death among children under the age of 5 (Stein et al., 2004). Most of these deaths are caused by preventable or curable infections. Limited access to medical care, antibiotics, and vaccinations remains a major problem in developing countries. But infectious diseases also continue to be an important public health issue in developed countries. With the help of modern technologies, some infections have been effectively controlled; however, new diseases such as SARS and West Nile virus infections are constantly emerging. In addition, other diseases such as malaria, tuberculosis, and bacterial pneumonia are increasingly resistant to antimicrobial treatment.
Collapse
Affiliation(s)
- Adam Finn
- grid.5337.20000000419367603Institute of Child Life and Health, University of Bristol, Upper Maudlin Street, Bristol, BS2 8AE United Kingdom
| | - Nigel Curtis
- grid.1008.9000000012179088XRoyal Children's Hosp., University of Melbourne, Parkville , 3052 Australia
| | - Andrew J. Pollard
- grid.4991.50000000419368948University of Oxford, Level 4,John Radcliffe Hospital, Oxford, OX3 9DU United Kingdom
| |
Collapse
|
33
|
Evaluation of MeningoFinder, a novel multiplex ligation-dependent probe amplification assay for simultaneous detection of six virus species causing central nervous system infections. J Clin Microbiol 2009; 47:2620-2. [PMID: 19553572 DOI: 10.1128/jcm.02436-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiplex ligation-dependent probe amplification assay for simultaneous detection of six virus species was developed and tested on clinical cerebrospinal fluid (CSF) samples. The assay, termed MeningoFinder, showed an accordance of 97%, concordance of 96%, interlaboratory sensitivity of 90%, and interlaboratory specificity of 94% compared to PCRs.
Collapse
|
34
|
Serological microarray for detection of HSV-1, HSV-2, VZV, and CMV antibodies. J Virol Methods 2009; 160:167-71. [PMID: 19477202 DOI: 10.1016/j.jviromet.2009.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/08/2009] [Accepted: 05/18/2009] [Indexed: 01/30/2023]
Abstract
The seroprevalence of human herpesviruses is high and reactivations occur frequently. A microarray was designed and tested for the detection of IgG and IgM antibodies for Puumala hantavirus (PUUV) and IgG antibodies against four herpesviruses. Initially, a microarray platform was set up using an unrelated in-house antigen, PUUV recombinant nucleocapsid protein, to optimize the protocol for the detection of antibodies. Detection of the four herpesviruses was set up in a microarray using the recombinant proteins of herpes simplex virus (HSV) glycoprotein G1 and G2, varicella-zoster virus (VZV) glycoprotein E, and cytomegalovirus (CMV) pp150 phosphoprotein. The results of the PUUV panel were in good agreement with the PUUV IgG immunofluorescent assay and IgM enzyme immunoassay (EIA). Seropositive and negative clinical reference panels were tested for herpesviruses by the serological microarray, and the results were compared to those of individual EIAs used for standard diagnostic purposes. The serologic microarray for HSV, VZV and CMV antibody detection gave good specificities for IgG. However, sensitivities of the assay varied depending on the herpesvirus detected. The serological microarray showed potential for screening purposes. The microarray based analyses were easy to perform, and HSV-1, HSV-2, VZV, and CMV antibodies could be detected on the same microarray.
Collapse
|
35
|
Wada K, Mizoguchi S, Ito Y, Kawada JI, Yamauchi Y, Morishima T, Nishiyama Y, Kimura H. Multiplex real-time PCR for the simultaneous detection of herpes simplex virus, human herpesvirus 6, and human herpesvirus 7. Microbiol Immunol 2009; 53:22-9. [PMID: 19161554 DOI: 10.1111/j.1348-0421.2008.00090.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simultaneous detection system to quantify HSV, HHV-6, and HHV-7 DNA via multiplex real-time PCR using different fluorochromes was developed. The minimum quantitative level established via this multiplex assay was four copies per reaction for HSV type 1, four copies for HHV-6, and three copies for HHV-7, respectively. The dynamic range encompassed at least six orders of magnitude. The system was specific and reproducible even in the presence of large amounts of other viral DNA. We then applied this multiplex real-time PCR assay to 105 CSF specimens obtained from subjects less than 15 years old in whom a diagnosis of viral encephalitis/encephalopathy was suspected on clinical grounds. The detection rate for each viral DNA was 6.7% for HSV, 9.5% for HHV-6, and 1.9% for HHV-7. These results indicate that our system is reliable and may be useful for the rapid diagnosis of viral encephalitis/encephalopathy.
Collapse
Affiliation(s)
- Kaoru Wada
- Deparmtent of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Müller R, Ditzen A, Hille K, Stichling M, Ehricht R, Illmer T, Ehninger G, Rohayem J. Detection of herpesvirus and adenovirus co-infections with diagnostic DNA-microarrays. J Virol Methods 2009; 155:161-6. [DOI: 10.1016/j.jviromet.2008.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/08/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
|
37
|
Palka-Santini M, Cleven BE, Eichinger L, Krönke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol 2009; 9:1. [PMID: 19121223 PMCID: PMC2631447 DOI: 10.1186/1471-2180-9-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 01/03/2009] [Indexed: 01/26/2023] Open
Abstract
Background Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA. Results To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR) for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000. Conclusion Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR.
Collapse
Affiliation(s)
- Maria Palka-Santini
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Germany.
| | | | | | | | | |
Collapse
|
38
|
Földes-Papp Z. Viral Chip Technology in Genomic Medicine. GENOMIC AND PERSONALIZED MEDICINE 2009. [PMCID: PMC7149707 DOI: 10.1016/b978-0-12-369420-1.00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, Hartman BJ, Kaplan SL, Scheld WM, Whitley RJ. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2008; 47:303-27. [PMID: 18582201 DOI: 10.1086/589747] [Citation(s) in RCA: 676] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Guidelines for the diagnosis and treatment of patients with encephalitis were prepared by an Expert Panel of the Infectious Diseases Society of America. The guidelines are intended for use by health care providers who care for patients with encephalitis. The guideline includes data on the epidemiology, clinical features, diagnosis, and treatment of many viral, bacterial, fungal, protozoal, and helminthic etiologies of encephalitis and provides information on when specific etiologic agents should be considered in individual patients with encephalitis.
Collapse
Affiliation(s)
- Allan R Tunkel
- Dept of Medicine, Monmouth Medical Center, Long Branch, New Jersey 07740, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ben RJ, Kung S, Chang FY, Lu JJ, Feng NH, Hsieh YD. Rapid Diagnosis of Bacterial Meningitis Using a Microarray. J Formos Med Assoc 2008; 107:448-53. [DOI: 10.1016/s0929-6646(08)60152-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Zheng ZB, Wu YD, Yu XL, Shang SQ. DNA microarray technology for simultaneous detection and species identification of seven human herpes viruses. J Med Virol 2008; 80:1042-50. [DOI: 10.1002/jmv.21131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Jabado OJ, Liu Y, Conlan S, Quan PL, Hegyi H, Lussier Y, Briese T, Palacios G, Lipkin WI. Comprehensive viral oligonucleotide probe design using conserved protein regions. Nucleic Acids Res 2008; 36:e3. [PMID: 18079152 PMCID: PMC2248741 DOI: 10.1093/nar/gkm1106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 11/12/2022] Open
Abstract
Oligonucleotide microarrays have been applied to microbial surveillance and discovery where highly multiplexed assays are required to address a wide range of genetic targets. Although printing density continues to increase, the design of comprehensive microbial probe sets remains a daunting challenge, particularly in virology where rapid sequence evolution and database expansion confound static solutions. Here, we present a strategy for probe design based on protein sequences that is responsive to the unique problems posed in virus detection and discovery. The method uses the Protein Families database (Pfam) and motif finding algorithms to identify oligonucleotide probes in conserved amino acid regions and untranslated sequences. In silico testing using an experimentally derived thermodynamic model indicated near complete coverage of the viral sequence database.
Collapse
Affiliation(s)
- Omar J. Jabado
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Yang Liu
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Sean Conlan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - P. Lan Quan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Hédi Hegyi
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Yves Lussier
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - Gustavo Palacios
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| | - W. I. Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1801, New York, NY 10032, Sigma-Aldrich, Research Biotech, 2909 Laclede Ave, St. Louis, MO 63103, USA, Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest, PO Box 7, Hungary and Center for Biomedical Informatics, Department of Medicine, Section of Genetic Medicine, University of Chicago, 5841 South Maryland Ave, AMB N660B, Chicago, IL 60637, USA
| |
Collapse
|
43
|
|
44
|
Spencer KA, Osorio FA, Hiscox JA. Recombinant viral proteins for use in diagnostic ELISAs to detect virus infection. Vaccine 2007; 25:5653-9. [PMID: 17478017 PMCID: PMC7130988 DOI: 10.1016/j.vaccine.2007.02.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 12/22/2022]
Abstract
ELISAs provide a valuable tool in the detection and diagnosis of virus infection. The ability to produce recombinant viral proteins will ensure that future ELISAs are safe, specific and rapid. This latter point being the most crucial advantage in that even if a virus cannot be cultured, provided gene sequence is available, it is possible to rapidly respond to emerging viruses and new viral strains of existing pathogens. Indeed, ELISAs based on peptides (corresponding to epitopes) also hold great promise, as in this case no cloning or expression of a recombinant protein is required. Both recombinant protein and peptide based systems lend themselves to large scale production and purification. These approaches can also be used to distinguish recombinant vaccines from parental or wild type viruses.
Collapse
Affiliation(s)
- Kelly-Anne Spencer
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | | | | |
Collapse
|
45
|
Putonti C. The diverse and informative future of microarray applications. Pharmacogenomics 2007; 8:137-40. [PMID: 17286536 DOI: 10.2217/14622416.8.2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Catherine Putonti
- University of Houston, Department of Computer Science, 218 Philip G. Hoffman Hall, Houston, Texas 77204-3058, USA.
| |
Collapse
|
46
|
Abstract
Atypical pneumonia is a term applied to lower respiratory tract infections that are not characterized by signs and symptoms of lobar consolidation. This article will discuss the epidemiology, clinical manifestations, and laboratory diagnoses of Mycoplasma pneumoniae, Chlamydia sp., Legionella sp., Francisella tularensis, and Coxiella burnetii, which are the agents most commonly associated with atypical pneumonia. Because many of these pathogens are intracellular, diagnosis depends upon serological confirmation. The current serological tests used to identify these agents in the etiologic diagnosis of atypical pneumonia are described. Recently, however, it has become possible to make a diagnosis directly in these cases using DNA or protein microarrays. Here, we describe the development of a new, automated technique for simultaneous testing and detection of several pathogens using a multiplexed serology test. This should prove to be a valuable tool for the rapid determination of patient status, allowing effective and efficient postexposure prophylaxis and treatment.
Collapse
|
47
|
Liu Z, Yuan J, Yanagawa B, Qiu D, McManus BM, Yang D. Coxsackievirus-induced myocarditis: new trends in treatment. Expert Rev Anti Infect Ther 2007; 3:641-50. [PMID: 16107202 DOI: 10.1586/14787210.3.4.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myocarditis is a common inflammatory heart disease in children and young adults that may result in chronically dilated cardiomyopathy. Coxsackievirus B3 is the major etiologic agent of this disease. Current treatments for patients with viral myocarditis are almost entirely supportive. In recent years, some promising therapeutic candidates have emerged, including novel treatments and improvements of existing drugs. Among these are molecules that specially target virus entry, such as pleconaril, WIN 54954 and CAR-Fc; nucleic acid-based antiviral agents that inhibit viral translation and/or transcription, such as antisense oligodeoxynucleotide and short interfering RNA; and immunomodulatory agents that augment the host-protective immune responses to effectively clear viruses from target tissues, including interferons and immunoglobulins. In addition, certain new antiviral strategies, still in the early stages, include modulation of signal transduction pathways responsible for viral replication using enzyme inhibitors, which have revealed potential therapeutic targets for viral myocarditis. Finally, the progress in cellular cardiomyoplasty for end-stage therapy, in particular the preliminary clinical trials, is also discussed with respect to its potential future application.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pathology & Laboratory Medicine, James Hogg iCAPTURE Centre for Cardiovascular & Pulmonary Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Genome sequences from several blood borne and respiratory viruses have recently been recovered directly from clinical specimens by variants of a technique known as sequence‐independent single primer amplification. This and related methods are increasingly being used to search for the causes of diseases of presumed infectious aetiology, but for which no agent has yet been found. Other methods that do not require prior knowledge of the genome sequence of any virus that may be present in the patient specimen include whole genome amplification, random PCR and subtractive hybridisation and differential display. This review considers the development and application of these techniques. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Helen E. Ambrose
- Virus Reference Department, Centre for Infections, Health Protection Agency, London NW9 5EQ, UK
| | - Jonathan P. Clewley
- Virus Reference Department, Centre for Infections, Health Protection Agency, London NW9 5EQ, UK
| |
Collapse
|
49
|
Neverov AA, Riddell MA, Moss WJ, Volokhov DV, Rota PA, Lowe LE, Chibo D, Smit SB, Griffin DE, Chumakov KM, Chizhikov VE. Genotyping of measles virus in clinical specimens on the basis of oligonucleotide microarray hybridization patterns. J Clin Microbiol 2006; 44:3752-9. [PMID: 17021105 PMCID: PMC1594792 DOI: 10.1128/jcm.00998-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An oligonucleotide microarray hybridization method for identification of most known measles virus (MV) genotypes was developed. Like the conventional genotyping method, the microarray relied on detecting sequence differences in the 450-nucleotide region coding for the COOH-terminal 150 amino acids of the nucleoprotein (N). This region was amplified using PCR primers binding to all known MV genotypes. The microarray included 71 pairs of oligonucleotide probes (oligoprobes) immobilized on glass slides. Each pair consisted of a genotype-specific oligoprobe, which matched the sequence of only one target genotype, and a control oligoprobe, which contained mismatches at the nucleotide positions unique to this genotype. A pattern recognition algorithm based on cluster analysis of the ratios of hybridization signals from specific and control oligoprobes was used to identify the specific MV genotype. Following the initial validation, the method was used for rapid genotyping of two panels of coded samples. The results of this study showed good sensitivity (90.7%), specificity (100%), and genotype agreement (91.8%) for the new method compared to the results of genotyping conducted using phylogenetic analysis of viral sequences of the C terminus of the N gene. In addition, the microarray demonstrated the ability to identify potential new genotypes of MV based on the similarity of their hybridization patterns with those of known MV genotypes.
Collapse
Affiliation(s)
- Alexander A Neverov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Microarrays were designed to monitor the expression of many genes in parallel, providing substantially more information than Northern blots or reverse transcription polymerase chain reaction analysing one or few genes at a time. The large sequencing projects provided the content for detailed expression studies under a variety of stimuli and conditions. The human genome project identified around 30 000 human genes. Estimated number of protein products is, however, 10-30 times higher, mainly due to the alternative splicing and post-translational modifications. The identification of gene functions requires both genomic and proteomic approaches, including protein microarrays, and numerous current microarray projects focus on deciphering gene expression patterns under a variety of conditions. Establishing the key genes and gene products for particular conditions opens the way for diagnostic applications using multiparameter, high-throughput assays. This format can also accommodate existing blood screening assays, potentially providing a single testing platform. This review considers the progress in diagnostic microarrays in a wider context of in vitro diagnostics field.
Collapse
Affiliation(s)
- J Petrik
- Scottish National Blood Transfusion Service and Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|