1
|
Zhou J, Sun P, Wang Y, Shi Y, Chen C, Xiao W, Qiu R, Cheng T, Fang L, Xiao S. Design and biological evaluation of candidate drugs against zoonotic porcine deltacoronavirus (PDCoV). Antiviral Res 2024; 231:106019. [PMID: 39395622 DOI: 10.1016/j.antiviral.2024.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. PDCoV spillovers were recently detected in Haitian children with acute undifferentiated febrile illness, underscoring the urgent need to develop anti-PDCoV therapeutics. Coronavirus 3C-like protease (CoV 3CLpro) is essential for viral replication, and therefore provides an attractive target for drugs directed against CoV. Here, we initially evaluated the anti-PDCoV effect of Nirmatrelvir (PF-07321332), an FDA-approved anti-SARS-CoV-2 drug targeting viral 3CLpro. Regrettably, a very limited anti-PDCoV effect was achieved. By analyzing the binding modes of Nirmatrelvir with PDCoV 3CLpro and SARS-CoV-2 3CLpro, we demonstrated that the S2 pocket of 3CLpro is the primary factor underlying the differential inhibitory potency of Nirmatrelvir against different CoV 3CLpros. Based on the specific characteristics of the S2 pocket of PDCoV 3CLpro, four derivatives of Nirmatrelvir (compounds T1-T4) with substituted P2 moieties were synthesized. Compound T1, with an isobutyl at the P2 site, displayed improved anti-PDCoV activity invitro (cell infection model) and invivo (embryonated chicken egg infection model), and therefore is a potential candidate drug to combat PDCoV. Together, our results identify the substrate-binding mode and substrate specificity of PDCoV 3CLpro, providing insight into the optimization of Nirmatrelvir as an antiviral therapeutic agent against PDCoV.
Collapse
Affiliation(s)
- Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanqing Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuting Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Runhui Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
2
|
Hu Y, Hao C, Wang D, Guo M, Chu H, Jin X, Zu S, Ding X, Zhang H, Hu H. Porcine deltacoronavirus nucleocapsid protein antagonizes JAK-STAT signaling pathway by targeting STAT1 through KPNA2 degradation. J Virol 2024; 98:e0033424. [PMID: 38829137 PMCID: PMC11264599 DOI: 10.1128/jvi.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.
Collapse
Affiliation(s)
- Yating Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Donghan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongyan Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Animal Food Pathogens Surveillance, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
3
|
Zhang X, Li P, Chen W, Zhang S, Li K, Ru Y, Zhao Z, Cao W, Yang F, Tian H, Guo J, He J, Zhu Z, Zheng H. Impaired interferon response in senecavirus A infection and identification of 3C pro as an antagonist. J Virol 2024; 98:e0058524. [PMID: 38869319 PMCID: PMC11265225 DOI: 10.1128/jvi.00585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Senecavirus A (SVA), a picornavirus, causes vesicular diseases and epidemic transient neonatal losses in swine, resulting in a multifaceted economic impact on the swine industry. SVA counteracts host antiviral response through multiple strategies facilitatng viral infection and transmission. However, the mechanism of how SVA modulates interferon (IFN) response remains elusive. Here, we demonstrate that SVA 3C protease (3Cpro) blocks the transduction of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway to antagonize type I IFN response. Mechanistically, 3Cpro selectively cleaves and degrades STAT1 and STAT2 while does not target JAK1, JAK2, and IRF9, through its protease activity. Notably, SVA 3Cpro cleaves human and porcine STAT1 on a Leucine (L)-Aspartic acid (D) motif, specifically L693/D694. In the case of STAT2, two cleavage sites were identified: glutamine (Q) 707 was identified in both human and porcine, while the second cleavage pattern differed, with residues 754-757 (Valine-Leucine-Glutamine-Serine motifs) in human STAT2 and Q758 in porcine STAT2. These cleavage patterns by SVA 3Cpro partially differ from previously reported classical motifs recognized by other picornaviral 3Cpro, highlighting the distinct characteristics of SVA 3Cpro. Together, these results reveal a mechanism by which SVA 3Cpro antagonizes IFN-induced antiviral response but also expands our knowledge about the substrate recognition patterns for picornaviral 3Cpro.IMPORTANCESenecavirus A (SVA), the only member in the Senecavirus genus within the Picornaviridae family, causes vesicular diseases in pigs that are clinically indistinguishable from foot-and-mouth disease (FMD), a highly contagious viral disease listed by the World Organization for Animal Health (WOAH). Interferon (IFN)-mediated antiviral response plays a pivotal role in restricting and controlling viral infection. Picornaviruses evolved numerous strategies to antagonize host antiviral response. However, how SVA modulates the JAK-STAT signaling pathway, influencing the type I IFN response, remains elusive. Here, we identify that 3Cpro, a protease of SVA, functions as an antagonist for the IFN response. 3Cpro utilizes its protease activity to cleave STAT1 and STAT2, thereby diminishing the host IFN response to promote SVA infection. Our findings underscore the significance of 3Cpro as a key virulence factor in the antagonism of the type I signaling pathway during SVA infection.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenzhe Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shilei Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhenxiang Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Liu X, Ji L, Cheng Y, Kong L, Xie S, Yang J, Chen J, Wang Z, Ma J, Wang H, Yan Y, Sun J. Porcine deltacoronavirus nonstructural protein 2 inhibits type I and III IFN production by targeting STING for degradation. Vet Res 2024; 55:79. [PMID: 38886840 PMCID: PMC11184774 DOI: 10.1186/s13567-024-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogenic coronavirus that has been reported to use various strategies to counter the host antiviral innate immune response. The cGAS-STING signalling pathway plays an important role in antiviral innate immunity. However, it remains unclear whether PDCoV achieves immune evasion by regulating the cGAS-STING pathway. Here, we demonstrated that the nonstructural protein 2 (nsp2) encoded by PDCoV inhibits cGAS-STING-mediated type I and III interferon (IFN) responses via the regulation of porcine STING (pSTING) stability. Mechanistically, ectopically expressed PDCoV nsp2 was found to interact with the N-terminal region of pSTING. Consequently, pSTING was degraded through K48-linked ubiquitination and the proteasomal pathway, leading to the disruption of cGAS-STING signalling. Furthermore, K150 and K236 of pSTING were identified as crucial residues for nsp2-mediated ubiquitination and degradation. In summary, our findings provide a basis for elucidating the immune evasion mechanism of PDCoV and will contribute to the development of targets for anti-coronavirus drugs.
Collapse
Affiliation(s)
- Xiqian Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Likai Ji
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linghe Kong
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songhua Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Martiáñez-Vendrell X, Bloeme-ter Horst J, Hutchinson R, Guy C, Bowie AG, Kikkert M. Human Coronavirus 229E Infection Inactivates Pyroptosis Executioner Gasdermin D but Ultimately Leads to Lytic Cell Death Partly Mediated by Gasdermin E. Viruses 2024; 16:898. [PMID: 38932190 PMCID: PMC11209299 DOI: 10.3390/v16060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Jonna Bloeme-ter Horst
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Roy Hutchinson
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (X.M.-V.)
| | - Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| | - Marjolein Kikkert
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin 2, Ireland (A.G.B.)
| |
Collapse
|
6
|
Taefehshokr N, Lac A, Vrieze AM, Dickson BH, Guo PN, Jung C, Blythe EN, Fink C, Aktar A, Dikeakos JD, Dekaban GA, Heit B. SARS-CoV-2 NSP5 antagonizes MHC II expression by subverting histone deacetylase 2. J Cell Sci 2024; 137:jcs262172. [PMID: 38682259 PMCID: PMC11166459 DOI: 10.1242/jcs.262172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Alex Lac
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Angela M. Vrieze
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Brandon H. Dickson
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Peter N. Guo
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Catherine Jung
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Eoin N. Blythe
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Corby Fink
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Amena Aktar
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| | - Bryan Heit
- Department of Microbiology and Immunology, and the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, Ontario, CanadaN6A 5C1
- Robarts Research Institute, London, Ontario, CanadaN6A 3K7
| |
Collapse
|
7
|
Zhou J, Sun P, Wang Y, Qiu R, Yang Z, Guo J, Li Z, Xiao S, Fang L. Deep profiling of potential substrate atlas of porcine epidemic diarrhea virus 3C-like protease. J Virol 2024; 98:e0025324. [PMID: 38591878 PMCID: PMC11092332 DOI: 10.1128/jvi.00253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Coronavirus (CoV) 3C-like protease (3CLpro) is essential for viral replication and is involved in immune escape by proteolyzing host proteins. Deep profiling the 3CLpro substrates in the host proteome extends our understanding of viral pathogenesis and facilitates antiviral drug discovery. Here, 3CLpro from porcine epidemic diarrhea virus (PEDV), an enteropathogenic CoV, was used as a model which to identify the potential 3CLpro cleavage motifs in all porcine proteins. We characterized the selectivity of PEDV 3CLpro at sites P5-P4'. We then compiled the 3CLpro substrate preferences into a position-specific scoring matrix and developed a 3CLpro profiling strategy to delineate the protein substrate landscape of CoV 3CLpro. We identified 1,398 potential targets in the porcine proteome containing at least one putative cleavage site and experimentally validated the reliability of the substrate degradome. The PEDV 3CLpro-targeted pathways are involved in mRNA processing, translation, and key effectors of autophagy and the immune system. We also demonstrated that PEDV 3CLpro suppresses the type 1 interferon (IFN-I) cascade via the proteolysis of multiple signaling adaptors in the retinoic acid-inducible gene I (RIG-I) signaling pathway. Our composite method is reproducible and accurate, with an unprecedented depth of coverage for substrate motifs. The 3CLpro substrate degradome establishes a comprehensive substrate atlas that will accelerate the investigation of CoV pathogenicity and the development of anti-CoV drugs.IMPORTANCECoronaviruses (CoVs) are major pathogens that infect humans and animals. The 3C-like protease (3CLpro) encoded by CoV not only cleaves the CoV polyproteins but also degrades host proteins and is considered an attractive target for the development of anti-CoV drugs. However, the comprehensive characterization of an atlas of CoV 3CLpro substrates is a long-standing challenge. Using porcine epidemic diarrhea virus (PEDV) 3CLpro as a model, we developed a method that accurately predicts the substrates of 3CLpro and comprehensively maps the substrate degradome of PEDV 3CLpro. Interestingly, we found that 3CLpro may simultaneously degrade multiple molecules responsible for a specific function. For instance, it cleaves at least four adaptors in the RIG-I signaling pathway to suppress type 1 interferon production. These findings highlight the complexity of the 3CLpro substrate degradome and provide new insights to facilitate the development of anti-CoV drugs.
Collapse
Affiliation(s)
- Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanqing Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Runhui Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
8
|
Shan X, Li R, Ma X, Qiu G, Xiang Y, Zhang X, Wu D, Wang L, Zhang J, Wang T, Li W, Xiang Y, Song H, Niu D. Epidemiology, pathogenesis, immune evasion mechanism and vaccine development of porcine Deltacoronavirus. Funct Integr Genomics 2024; 24:79. [PMID: 38653845 DOI: 10.1007/s10142-024-01346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.
Collapse
Affiliation(s)
- Xueting Shan
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Rui Li
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China
- Jinhua Jinfan Feed Co., Ltd, Jinhua, 321000, Zhejiang, China
| | - Guoqiang Qiu
- Deqing County Ecological Forestry Comprehensive Service Center, Deqing, 313200, Zhejiang, China
| | - Yi Xiang
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China
- The Central Hospital of Jinhua City, Jinhua, 321000, Zhejiang, China
| | - Xiaojun Zhang
- Jinhua Academy of Agricultural Sciences, Jinhua, 321000, Zhejiang, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, 321000, Zhejiang, China
| | - Lu Wang
- The Agriculture and Rural Affairs Bureau of Jinhua City, Jinhua, 321000, Zhejiang, China
| | - Jianhong Zhang
- The Agriculture and Rural Affairs Bureau of Jinhua City, Jinhua, 321000, Zhejiang, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, 321000, Zhejiang, China.
| | - Houhui Song
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco- Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Mou C, Xie S, Zhu L, Cheng Y, Pan S, Zhang C, Chen Z. Porcine deltacoronavirus NS7a antagonizes JAK/STAT pathway by inhibiting the interferon-stimulated gene factor 3 (ISGF3) formation. Int J Biol Macromol 2024; 264:130693. [PMID: 38458291 DOI: 10.1016/j.ijbiomac.2024.130693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The accessory proteins of coronaviruses play a crucial role in facilitating virus-host interactions and modulating host immune responses. Previous study demonstrated that the NS7a protein of porcine deltacoronavirus (PDCoV) partially hindered the host immune response by impeding the induction of IFN-α/β. However, the potential additional functions of NS7a protein in evading innate immunity have yet to be elucidated. This study aimed to investigate the mechanism of PDCoV NS7a protein regulating the JAK/STAT signaling pathway. We presented evidence that NS7a effectively inhibited ISRE promoter activity and ISGs transcription. NS7a hindered STAT1 phosphorylation, interacted with STAT2 and IRF9, and further impeded the formation and nuclear accumulation of ISGF3. Furthermore, comparative analysis of NS7a across different PDCoV strains revealed that the mutation of Leu4 to Pro4 led to an increase in the molecular weights of NS7a and disrupted its inhibition on the JAK/STAT signaling pathway. This finding implied that NS7a with key amino acids may be an indicator of virulence for PDCoV strains. Taken together, this study revealed a novel role of NS7a in antagonizing the IFN-I signaling pathway.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Sihan Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Yue Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Chenhao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Xiang Y, Mou C, Zhu L, Wang Z, Shi K, Bao W, Li J, Chen X, Chen Z. SADS-CoV nsp1 inhibits the STAT1 phosphorylation by promoting K11/K48-linked polyubiquitination of JAK1 and blocks the STAT1 acetylation by degrading CBP. J Biol Chem 2024; 300:105779. [PMID: 38395305 PMCID: PMC10944115 DOI: 10.1016/j.jbc.2024.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.
Collapse
Affiliation(s)
- Yingjie Xiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ziyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Huang H, Lei X, Zhao C, Qin Y, Li Y, Zhang X, Li C, Lan T, Zhao B, Sun W, Lu H, Jin N. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving IFIT3. J Virol 2024; 98:e0168223. [PMID: 38289117 PMCID: PMC10878044 DOI: 10.1128/jvi.01682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.
Collapse
Affiliation(s)
- Haixin Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenchen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yan Qin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xinyu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chengkai Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Baopeng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Huijun Lu
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
12
|
Li Z, Xiao W, Yang Z, Guo J, Zhou J, Xiao S, Fang P, Fang L. Cleavage of HDAC6 to dampen its antiviral activity by nsp5 is a common strategy of swine enteric coronaviruses. J Virol 2024; 98:e0181423. [PMID: 38289103 PMCID: PMC10878235 DOI: 10.1128/jvi.01814-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
13
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
14
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
15
|
Yang X, Kong N, Qin W, Zhai X, Song Y, Tong W, Li L, Liu C, Zheng H, Yu H, Zhang W, Tong G, Shan T. PGAM5 degrades PDCoV N protein and activates type I interferon to antagonize viral replication. J Virol 2023; 97:e0147023. [PMID: 37882521 PMCID: PMC10688367 DOI: 10.1128/jvi.01470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.
Collapse
Affiliation(s)
- Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xueying Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yiyi Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C pro antagonizes type I interferon response by targeting STAT1-STAT2-IRF9 and KPNA1 signals. J Virol 2023; 97:e0072723. [PMID: 37819133 PMCID: PMC10617416 DOI: 10.1128/jvi.00727-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Li Z, Duan P, Qiu R, Fang L, Fang P, Xiao S. HDAC6 Degrades nsp8 of Porcine Deltacoronavirus through Deacetylation and Ubiquitination to Inhibit Viral Replication. J Virol 2023; 97:e0037523. [PMID: 37133375 PMCID: PMC10231189 DOI: 10.1128/jvi.00375-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Runhui Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
18
|
Huang Z, Cao H, Zeng F, Lin S, Chen J, Luo Y, You J, Kong C, Mai Z, Deng J, Guo W, Chen X, Wang H, Zhou P, Zhang G, Gong L. African Swine Fever Virus MGF505-7R Interacts with Interferon Regulatory Factor 9 to Evade the Type I Interferon Signaling Pathway and Promote Viral Replication. J Virol 2023; 97:e0197722. [PMID: 36815839 PMCID: PMC10062159 DOI: 10.1128/jvi.01977-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-β)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-β, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-β signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-β. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Haoxuan Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jianglin Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Luo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jie Deng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiting Guo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| |
Collapse
|
19
|
Avian Metapneumovirus Subgroup C Phosphoprotein Suppresses Type I Interferon Production by Blocking Interferon Regulatory Factor 3 Nuclear Translocation. Microbiol Spectr 2023; 11:e0341322. [PMID: 36537793 PMCID: PMC9927154 DOI: 10.1128/spectrum.03413-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) is an important pathogen that causes upper respiratory symptoms and egg production decline in turkeys and chickens. aMPV/C infection leads to inhibition of the host antiviral immune response. However, our understanding of the molecular mechanisms underlying host immune response antagonized by aMPV/C infection is limited. In this study, we demonstrated that the aMPV/C phosphoprotein (P) inhibits the IFN antiviral signaling pathway triggered by melanoma differentiation gene 5 (MDA5) and reduces interferon β (IFN-β) production and IFN-stimulated genes (ISGs) by targeting IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) in DF-1 cells. Moreover, we found that aMPV/C P protein only blocks the nuclear translocation of IRF3 by interacting with IRF3 in HEK-293T cells, instead of affecting IRF3 phosphorylation and inducing IRF3 degradation, which suppresses IRF3 signaling activation and results in a decrease in IFN-β production. Collectively, these results reveal a novel mechanism by which aMPV/C infection disrupts IFN-β production in the host. IMPORTANCE The innate immune response is the first defense line of host cells and organisms against viral infections. When RNA viruses infect cells, viral RNA induces activation of retinoic acid-induced gene I and melanoma differentiation gene 5, which initiates downstream molecules and finally produces type I interferon (IFN-I) to regulate antiviral immune responses. The mechanism for avian metapneumovirus (aMPV) modulating IFN-I production to benefit its replication remains unknown. Here, we demonstrate that phosphoprotein of aMPV subgroup C (aMPV/C) selectively inhibits the nuclear translocation of interferon regulatory 3 (IRF3), instead of affecting the expression and phosphorylation of IRF3, which finally downregulates IFN-I production. This study showed a novel mechanism for aMPV/C infection antagonizing the host IFN response.
Collapse
|
20
|
The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. J Biol Chem 2023; 299:102990. [PMID: 36758802 PMCID: PMC9907797 DOI: 10.1016/j.jbc.2023.102990] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.
Collapse
|
21
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
22
|
Li M, Guo L, Feng L. Interplay between swine enteric coronaviruses and host innate immune. Front Vet Sci 2022; 9:1083605. [PMID: 36619958 PMCID: PMC9814124 DOI: 10.3389/fvets.2022.1083605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.
Collapse
|
23
|
Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L. Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 2022; 18:444. [PMID: 36550483 PMCID: PMC9772601 DOI: 10.1186/s12917-022-03554-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Pei-Hua Wang
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Pir Tariq Shah
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China
| | - Hongli Bu
- grid.477987.2Department of Laboratory Medicine, The Fourth People’s Hospital of Taiyuan, 231 Xikuang St, Taiyuan, 030053 Shanxi province China
| | - Changxin Wu
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China ,grid.163032.50000 0004 1760 2008Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 China ,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006 China ,grid.163032.50000 0004 1760 2008The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006 China
| | - Li Xing
- grid.163032.50000 0004 1760 2008Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 Shanxi province China ,grid.163032.50000 0004 1760 2008Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006 China ,Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006 China ,grid.163032.50000 0004 1760 2008The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
24
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
25
|
Tsu BV, Agarwal R, Gokhale NS, Kulsuptrakul J, Ryan AP, Castro LK, Beierschmitt CM, Turcotte EA, Fay EJ, Vance RE, Hyde JL, Savan R, Mitchell PS, Daugherty MD. Host specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.21.508960. [PMID: 36172130 PMCID: PMC9516851 DOI: 10.1101/2022.09.21.508960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CL pro ) encoded by diverse coronaviruses, including SARS-CoV-2, cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CL pro , including 3CL pro -mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8’s ability to sense coronavirus 3CL pros , and instead enables sensing of 3C proteases (3C pro ) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intra-species variation in inflammasome-mediated viral sensing and immunopathology.
Collapse
Affiliation(s)
- Brian V. Tsu
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Rimjhim Agarwal
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Nandan S. Gokhale
- Department of Immunology, University of Washington; Seattle, WA, USA
| | - Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington; Seattle, WA, USA
| | - Andrew P. Ryan
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Lennice K. Castro
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | | | - Elizabeth A. Turcotte
- Division of Immunology and Pathogenesis, University of California, Berkeley; Berkeley, CA, USA
| | - Elizabeth J. Fay
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| | - Russell E. Vance
- Division of Immunology and Pathogenesis, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA, USA
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington; Seattle, WA, USA
| | - Ram Savan
- Department of Immunology, University of Washington; Seattle, WA, USA
| | | | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
26
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
27
|
Li Z, Fang P, Duan P, Chen J, Fang L, Xiao S. Porcine Deltacoronavirus Infection Cleaves HDAC2 to Attenuate Its Antiviral Activity. J Virol 2022; 96:e0102722. [PMID: 35916536 PMCID: PMC9400482 DOI: 10.1128/jvi.01027-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
28
|
Wu Y, Zhang H, Chen J, Shi Z, Li M, Zhao Y, Shi H, Shi D, Guo L, Feng L. Stromal Antigen 2 Deficiency Induces Interferon Responses and Restricts Porcine Deltacoronavirus Infection. Viruses 2022; 14:1783. [PMID: 36016405 PMCID: PMC9414771 DOI: 10.3390/v14081783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a recently discovered enteropathogenic coronavirus and has caused significant economic impacts on the pork industry. Although studies have partly uncovered the molecular mechanism of PDCoV-host interaction, it requires further research. In this study, we explored the roles of Stromal Antigen 2 (STAG2) in PDCoV infection. We found that STAG2-deficient cells inhibited infection with vesicular stomatitis virus (VSV) and PDCoV, whereas restoration of STAG2 expression in STAG2-depleted (STAG2-/-) IPEC-J2 cells line restored PDCoV infection, suggesting that STAG2 is involved in the PDCoV replication. Furthermore, we found that STAG2 deficiency results in robust interferon (IFN) expression. Subsequently, we found that STAG2 deficiency results in the activation of JAK-STAT signaling and the expression of IFN stimulated gene (ISG), which establish an antiviral state. Taken together, the depletion of STAG2 activates the JAK-STAT signaling and induces the expression of ISG, thereby inhibiting PDCoV replication. Our study provides new insights and potential therapeutic targets for unraveling the mechanism of PDCoV replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
29
|
Differential expression profile and in-silico functional analysis of long noncoding RNA and mRNA in duck embryo fibroblasts infected with duck plague virus. BMC Genomics 2022; 23:509. [PMID: 35836133 PMCID: PMC9281093 DOI: 10.1186/s12864-022-08739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Duck plague virus (DPV), belonging to herpesviruses, is a linear double-stranded DNA virus. There are many reports about the outbreak of the duck plague in a variety of countries, which caused huge economic losses. Recently, increasing reports revealed that multiple long non-coding RNAs (lncRNAs) can possess great potential in the regulation of host antiviral immune response. Furthermore, it remains to be determined which specific molecular mechanisms are responsible for the DPV-host interaction in host immunity. Here, lncRNAs and mRNAs in DPV infected duck embryonic fibroblast (DEF) cells were identified by high-throughput RNA-sequencing (RNA-seq). And we predicted target genes of differentially expressed genes (DEGs) and formed a complex regulatory network depending on in-silico analysis and prediction. Result RNA-seq analysis results showed that 2921 lncRNAs were found at 30 h post-infection (hpi). In our study, 218 DE lncRNAs and 2840 DE mRNAs were obtained in DEF after DPV infection. Among these DEGs and target genes, some have been authenticated as immune-related molecules, such as a Macrophage mannose receptor (MR), Anas platyrhynchos toll-like receptor 2 (TLR2), leukocyte differentiation antigen, interleukin family, and their related regulatory factors. Furthermore, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis, we found that the target genes may have important effects on biological development, biosynthesis, signal transduction, cell biological regulation, and cell process. Also, we obtained, the potential targeting relationship existing in DEF cells between host lncRNAs and DPV-encoded miRNAs by software. Conclusions This study revealed not only expression changes, but also the possible biological regulatory relationship of lncRNAs and mRNAs in DPV infected DEF cells. Together, these data and analyses provide additional insight into the role of lncRNAs and mRNAs in the host's immune response to DPV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08739-7.
Collapse
|
30
|
Jiang S, Chen J, Li X, Ren W, Li F, Wang T, Li C, Dong Z, Tian X, Zhang L, Wang L, Lu C, Chi J, Feng L, Yan M. Identification and integrated analysis of lncRNAs and miRNAs in IPEC-J2 cells provide novel insight into the regulation of the innate immune response by PDCoV infection. BMC Genomics 2022; 23:486. [PMID: 35787252 PMCID: PMC9251034 DOI: 10.1186/s12864-022-08722-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are pivotal regulators involved in the pathogenic mechanism of multiple coronaviruses. Porcine deltacoronavirus (PDCoV) has evolved multiple strategies to escape the innate immune response of host cells, but whether ncRNAs are involved in this process during PDCoV infection is still unknown. Results In this study, the expression profiles of miRNAs, lncRNAs and mRNAs in IPEC-J2 cells infected with PDCoV at 0, 12 and 24 hours postinfection (hpi) were identified through small RNA and RNA sequencing. The differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were screened from the comparison group of IPEC-J2 cells at 0 and 12 hpi as well as the comparison group of IPEC-J2 cells at 12 and 24 hpi. The target genes of these DEncRNAs were predicted. The bioinformatics analysis of the target genes revealed multiple significantly enriched functions and pathways. Among them, the genes that were associated with innate immunity were specifically screened. The expression of innate immunity-related ncRNAs and mRNAs was validated by RT–qPCR. Competing endogenous RNA (ceRNA) regulatory networks among innate immunity-related ncRNAs and their target mRNAs were established. Moreover, we found that the replication of PDCoV was significantly inhibited by two innate immunity-related miRNAs, ssc-miR-30c-3p and ssc-miR-374b-3p, in IPEC-J2 cells. Conclusions This study provides a data platform to conduct studies of the pathogenic mechanism of PDCoV from a new perspective and will be helpful for further elucidation of the functional role of ncRNAs involved in PDCoV escaping the innate immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08722-2.
Collapse
Affiliation(s)
- Shan Jiang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiuli Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Weike Ren
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Fengxiang Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Cheng Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Zhimin Dong
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Xiangxue Tian
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Zhang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Lili Wang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Chao Lu
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Jingjing Chi
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Minghua Yan
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China. .,Tianjin Observation and Experimental Site of National Animal Health, Tianjin, 300381, China.
| |
Collapse
|
31
|
Wang H, Bi Z, Dai K, Li P, Huang R, Wu S, Bao W. A Functional Variant in the Aquaporin-3 Promoter Modulates Its Expression and Correlates With Resistance to Porcine Epidemic Virus Infection in Porcine Intestinal Epithelial Cells. Front Microbiol 2022; 13:877644. [PMID: 35770166 PMCID: PMC9234456 DOI: 10.3389/fmicb.2022.877644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious intestinal disease in neonatal pigs. Aquaporin-3 (AQP3) plays important roles in maintenance of intestinal barrier function and regulation of immune responses. However, the roles of AQP3 in mediating PEDV infection to host cells and the regulatory mechanisms of AQP3 expression remain poorly understood. Here, we identified one 16 bp (GGGCGGGGTTGCGGGC) insertion mutation in the AQP3 gene promoter in Large White pigs, with the frequencies of 49.3% of heterozygotes and 31.3% of mutant homozygotes. Functional analysis by luciferase activity assay indicated that the insertion mutation results in significant enhancement in AQP3 transcriptional activity (P < 0.01). Mechanistic analysis showed that the inserted sequence adds binding sites for transcription factor CEBPA, which promotes the expression of AQP3. Downregulation of AQP3 by shRNA silencing in porcine intestinal epithelial cells revealed obvious increases in genome copies and viral titers of PEDV. Expression of proinflammatory cytokines (IL-6, IL-8, and IL-18) and interferons (IFN-α and IFN-β) were significantly reduced (P < 0.01) in AQP3 knockdown cells upon PEDV infection. Furthermore, decreased level of ZO-1 protein was also detected in AQP3 knockdown cells in response to PEDV infection. Our findings suggested a previously unknown mechanism linking the effects of promoter genetic variants on the expression of AQP3, revealed the roles of AQP3 in response to PEDV pathogenesis, and indicated the potential associations of the 16 bp insertion mutation with resistance to PEDV infection in porcine intestinal epithelial cells.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenbin Bi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiyu Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Shenglong Wu,
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Wenbin Bao,
| |
Collapse
|
32
|
Chen H, Zhu Z, Qiu Y, Ge X, Zheng H, Peng Y. Prediction of coronavirus 3C-like protease cleavage sites using machine-learning algorithms. Virol Sin 2022; 37:437-444. [PMID: 35513273 PMCID: PMC9060714 DOI: 10.1016/j.virs.2022.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus 3C-like (3CL) protease, a cysteine protease, plays an important role in viral infection and immune escape. However, there is still a lack of effective tools for determining the cleavage sites of the 3CL protease. This study systematically investigated the diversity of the cleavage sites of the coronavirus 3CL protease on the viral polyprotein, and found that the cleavage motif were highly conserved for viruses in the genera of Alphacoronavirus, Betacoronavirus and Gammacoronavirus. Strong residue preferences were observed at the neighboring positions of the cleavage sites. A random forest (RF) model was built to predict the cleavage sites of the coronavirus 3CL protease based on the representation of residues in cleavage motifs by amino acid indexes, and the model achieved an AUC of 0.96 in cross-validations. The RF model was further tested on an independent test dataset which were composed of cleavage sites on 99 proteins from multiple coronavirus hosts. It achieved an AUC of 0.95 and predicted correctly 80% of the cleavage sites. Then, 1,352 human proteins were predicted to be cleaved by the 3CL protease by the RF model. These proteins were enriched in several GO terms related to the cytoskeleton, such as the microtubule, actin and tubulin. Finally, a webserver named 3CLP was built to predict the cleavage sites of the coronavirus 3CL protease based on the RF model. Overall, the study provides an effective tool for identifying cleavage sites of the 3CL protease and provides insights into the molecular mechanism underlying the pathogenicity of coronaviruses.
Collapse
Affiliation(s)
- Huiting Chen
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Zhaozhong Zhu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Ye Qiu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Xingyi Ge
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
33
|
Dang S, Ren L, Wang J. Functional mutations of SARS-CoV-2: implications to viral transmission, pathogenicity and immune escape. Chin Med J (Engl) 2022; 135:1213-1222. [PMID: 35788093 PMCID: PMC9337262 DOI: 10.1097/cm9.0000000000002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT The pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to major public health challenges globally. The increasing viral lineages identified indicate that the SARS-CoV-2 genome is evolving at a rapid rate. Viral genomic mutations may cause antigenic drift or shift, which are important ways by which SARS-CoV-2 escapes the human immune system and changes its transmissibility and virulence. Herein, we summarize the functional mutations in SARS-CoV-2 genomes to characterize its adaptive evolution to inform the development of vaccination, treatment as well as control and intervention measures.
Collapse
Affiliation(s)
- Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Zhang J, Yuan S, Peng Q, Ding Z, Hao W, Peng G, Xiao S, Fang L. Porcine Epidemic Diarrhea Virus nsp7 Inhibits Interferon-Induced JAK-STAT Signaling through Sequestering the Interaction between KPNA1 and STAT1. J Virol 2022; 96:e0040022. [PMID: 35442061 PMCID: PMC9093119 DOI: 10.1128/jvi.00400-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes high mortality in piglets. Interferon (IFN) responses are the primary defense mechanism against viral infection; however, viruses always evolve elaborate strategies to antagonize the antiviral action of IFN. Previous study showed that PEDV nonstructural protein 7 (nsp7), a component of the viral replicase polyprotein, can antagonize ploy(I:C)-induced type I IFN production. Here, we found that PEDV nsp7 also antagonized IFN-α-induced JAK-STAT signaling and the production of IFN-stimulated genes. PEDV nsp7 did not affect the protein and phosphorylation levels of JAK1, Tyk2, STAT1, and STAT2 or the formation of the interferon-stimulated gene factor 3 (ISGF3) complex. However, PEDV nsp7 prevented the nuclear translocation of STAT1 and STAT2. Mechanistically, PEDV nsp7 interacted with the DNA binding domain of STAT1/STAT2, which sequestered the interaction between karyopherin α1 (KPNA1) and STAT1, thereby blocking the nuclear transport of ISGF3. Collectively, these data reveal a new mechanism developed by PEDV to inhibit type I IFN signaling pathway. IMPORTANCE In recent years, an emerging porcine epidemic diarrhea virus (PEDV) variant has gained attention because of serious outbreaks of piglet diarrhea in China and the United States. Coronavirus nonstructural protein 7 (nsp7) has been proposed to act with nsp8 as part of an RNA primase to generate RNA primers for viral RNA synthesis. However, accumulating evidence indicates that coronavirus nsp7 can also antagonize type I IFN production. Our present study extends previous findings and demonstrates that PEDV nsp7 also antagonizes IFN-α-induced IFN signaling by competing with KPNA1 for binding to STAT1, thereby enriching the immune regulation function of coronavirus nsp7.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenqi Hao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
35
|
Zhang S, Wang L, Cheng G. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol Ther 2022; 30:1869-1884. [PMID: 35176485 PMCID: PMC8842579 DOI: 10.1016/j.ymthe.2022.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus, the pathogen causing COVID-19, has caused more than 200 million confirmed cases, resulting in more than 4.5 million deaths worldwide by the end of August, 2021. Upon detection of SARS-CoV-2 infection by pattern recognition receptors (PRRs), multiple signaling cascades are activated, which ultimately leads to innate immune response such as induction of type I and III interferons, as well as other antiviral genes that together restrict viral spread by suppressing different steps of the viral life cycle. Our understanding of the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of SARS-CoV-2 has been rapidly expanding from 2020. Simultaneously, SARS-CoV-2 has evolved multiple immune evasion strategies to escape from host immune surveillance for successful replication. In this review, we will address the current knowledge of innate immunity in the context of SARS-CoV-2 infection and highlight recent advances in the understanding of the mechanisms by which SARS-CoV-2 evades a host's innate defense system.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lulan Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Wang Y, Wu M, Li Y, Yuen HH, He ML. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. J Biomed Sci 2022; 29:27. [PMID: 35505345 PMCID: PMC9063252 DOI: 10.1186/s12929-022-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
The global pandemic of COVID-19 has caused huge causality and unquantifiable loss of social wealth. The innate immune response is the first line of defense against SARS-CoV-2 infection. However, strong inflammatory response associated with dysregulation of innate immunity causes severe acute respiratory syndrome (SARS) and death. In this review, we update the current knowledge on how SARS-CoV-2 modulates the host innate immune response for its evasion from host defense and its corresponding pathogenesis caused by cytokine storm. We emphasize Type I interferon response and the strategies of evading innate immune defense used by SARS-CoV-2. We also extensively discuss the cells and their function involved in the innate immune response and inflammatory response, as well as the promises and challenges of drugs targeting excessive inflammation for antiviral treatment. This review would help us to figure out the current challenge questions of SARS-CoV-2 infection on innate immunity and directions for future studies.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Him Yuen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China. .,CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
37
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
38
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
39
|
Shi L, Li C, Gao Y, Ye J, Lu Y, Liu X. STUB1 activates antiviral response in zebrafish by promoting the expression of RIG-I. FISH & SHELLFISH IMMUNOLOGY 2022; 123:182-193. [PMID: 35227882 DOI: 10.1016/j.fsi.2022.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Spring viraemia of carp virus (SVCV) is a fierce pathogen causing high mortality in the common carp. At present, the treatment of spring viraemia of carp (SVC) is limited. Innate immunity is the host's first line of defense against microbial pathogens. Retinoic acid-inducible gene I (RIG-I) activation plays an essential role in the antiviral immune response. Virus infection can activate the RIG-I signaling and induce the production of interferon (IFN) and the expression of IFN-stimulated genes (ISGs). STUB1 (STIP1 homology and U-box containing protein 1) is a highly conserved cytoplasmic protein. This protein is known to exist widely in many biological systems and plays an important role in the process of immune regulation, but little is known in fish. To explore the immune function of STUB1 in fish, STUB1 gene was cloned from zebrafish and analyzed in this study. Zebrafish STUB1 showed 77% and 79% amino acid sequence homology with those from human and mouse, respectively. The amino acid sequence of zebrafish STUB1 contains three TPR domains and one U-box domain. Subcellular localization study revealed that STUB1 is located in the cytoplasm. And overexpression of zebrafish STUB1 resulted in the activation of the transcription of IFN1 and ISGs. Functional analysis showed that STUB1 was able to activate RIG-I signaling, and promote the expression of RIG-I, but STUB1 can degrade RIG-I in mammals. The proliferation of SVCV was significantly inhibited after the overexpression of STUB1 and N-terminal TPR domain of STUB1 in EPC cells. And through secondary structure analysis, overexpression of the mutant of STUB1 110 amino acid resulted in weakened antiviral ability. The expression of STUB1 was attenuated by poly(I:C) treatment and SVCV infection. In summary, this study demonstrated for the first time that STUB1 can induce the production of IFN, enhance the expression of ISGs by promoting the expression of RIG-I and inhibiting viral replication in fish. These findings may form the essential basis for the development of antiviral targets and drugs.
Collapse
Affiliation(s)
- Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
40
|
Zhao Y, Chen R, Xiao D, Zhang L, Song D, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. A Comparative Transcriptomic Analysis Reveals That HSP90AB1 Is Involved in the Immune and Inflammatory Responses to Porcine Deltacoronavirus Infection. Int J Mol Sci 2022; 23:ijms23063280. [PMID: 35328701 PMCID: PMC8953809 DOI: 10.3390/ijms23063280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-180-4845-1618
| |
Collapse
|
41
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
42
|
Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem 2022; 98:107671. [PMID: 35429835 PMCID: PMC8958254 DOI: 10.1016/j.compbiolchem.2022.107671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed millions of people. Widespread vaccination is still uncertain, so many scientific efforts have been directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have addressed this protease’s interactions with the host proteome or their probable contribution to virulence. Too few host protein cleavages have been experimentally verified to fully understand 3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this protease’s targets and corresponding potential drug targets. Using a neural network trained on cleavages from 392 coronavirus proteomes with a Matthews correlation coefficient of 0.985, I predict that a large proportion of the human proteome is vulnerable to 3CLpro, with 4898 out of approximately 20,000 human proteins containing at least one putative cleavage site. These cleavages are nonrandomly distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion proteins, nuclear condensation and other epigenetics, host transcription and RNAi, ribosomal stoichiometry and nascent-chain detection and degradation, ubiquitination, pattern recognition receptors, coagulation, lipoproteins, redox, and apoptosis. This whole proteome cleavage prediction demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead me to propose more than a dozen potential therapeutic targets against coronaviruses, and should therefore be applied to all viral proteases and subsequently experimentally verified.
Collapse
|
43
|
MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. mBio 2022; 13:e0233021. [PMID: 35076286 PMCID: PMC8788333 DOI: 10.1128/mbio.02330-21] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African swine fever (ASF)-an aggressive infectious disease caused by the African swine fever virus (ASFV)-is significantly unfavorable for swine production. ASFV has a complex structure and encodes 150-167 proteins; however, the function of most of these proteins is unknown. This study identified ASFV MGF360-9L as a negative regulator of the interferon (IFN)-β signal. Further evidence showed that MGF360-9L interacts with signal transducer and activator of transcription (STAT) 1 and STAT2 and degrades STAT1 and STAT2 through apoptosis and ubiquitin-proteasome pathways, respectively. Subsequently, the activation of IFN-β signaling was inhibited. Naturally isolated or genetically manipulated live attenuated viruses are known to protect against the virulent parental ASFV strains. Therefore, through homologous recombination, we deleted MGF360-9L from the virulent ASFV CN/GS/2018 strain to construct a recombinant strain, ASFV-Δ360-9L. Compared with the parent ASFV CN/GS/2018 strain, the replication level of ASFV-Δ360-9L decreased in primary porcine alveolar macrophage cultures at 24 h postinfection, but the difference is unlikely to be biologically relevant. Notably, ASFV-Δ360-9L was partially attenuated in pigs. To our knowledge, this study is the first to uncover the function of MGF360-9L during ASFV infection. MGF360-9L inhibits IFN-β signaling through the targeted degradation of STAT1 and STAT2. Furthermore, MGF360-9L is a key virulence gene of ASFV. Our findings reveal a new mechanism by which ASFV inhibits host antiviral response; this might facilitate the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever-an acute, febrile, hemorrhagic, highly contacting, and highly lethal disease caused by African swine fever virus (ASFV)-jeopardizes the global pig industry. Understanding the mechanism ASFV employs to evade host defense during infection is essential for developing targeted drugs and vaccines against ASFV. To our knowledge, this study identifies the mechanism of innate immunity against by MGF360-9L and the effect of MGF360-9L on ASFV pathogenicity. The results showed that MGF360-9L may help ASFV escape the host immunity by degrading STAT1 and STAT2 and thus inhibiting IFN-β signaling. MGF360-9L is also an important virulence factor of ASFV. The deletion of MGF360-9L reduces ASFV virulence in pigs. This study explored a new mechanism of ASFV against innate immunity and identified a new ASFV virulence factor; these findings may guide the development of live attenuated ASFV vaccines.
Collapse
|
44
|
Coronaviruses Nsp5 Antagonizes Porcine Gasdermin D-Mediated Pyroptosis by Cleaving Pore-Forming p30 Fragment. mBio 2022; 13:e0273921. [PMID: 35012343 PMCID: PMC8749417 DOI: 10.1128/mbio.02739-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses (CoVs) are a family of RNA viruses that typically cause respiratory, enteric, and hepatic diseases in animals and humans. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of CoVs to illustrate the reciprocal regulation between CoV infection and pyroptosis. For the first time, we elucidate the molecular mechanism of porcine gasdermin D (pGSDMD)-mediated pyroptosis and demonstrate that amino acids R238, T239, and F240 within pGSDMD-p30 are critical for pyroptosis. Furthermore, 3C-like protease Nsp5 from SARS-CoV-2, MERS-CoV, PDCoV, and PEDV can cleave pGSDMD at the Q193-G194 junction to produce two fragments unable to trigger pyroptosis. The two cleaved fragments could not inhibit PEDV replication. In addition, Nsp5 from SARS-CoV-2 and MERS-CoV also cleave human GSDMD (hGSDMD). Therefore, we provide clear evidence that PEDV may utilize the Nsp5-GSDMD pathway to inhibit pyroptosis and, thus, facilitate viral replication during the initial period, suggesting an important strategy for the coronaviruses to sustain their infection. IMPORTANCE Recently, GSDMD has been reported as a key executioner for pyroptosis. This study first demonstrates the molecular mechanism of pGSDMD-mediated pyroptosis and that the pGSDMD-mediated pyroptosis protects host cells against PEDV infection. Notably, PEDV employs its Nsp5 to directly cleave pGSDMD in favor of its replication. We found that Nsp5 proteins from other coronaviruses, such as porcine deltacoronavirus, severe acute respiratory syndrome coronavirus 2, and Middle East respiratory syndrome coronavirus, also had the protease activity to cleave human and porcine GSDMD. Thus, we provide clear evidence that the coronaviruses might utilize Nsp5 to inhibit the host pyroptotic cell death and facilitate their replication during the initial period, an important strategy for their sustaining infection. We suppose that GSDMD is an appealing target for the design of anticoronavirus therapies.
Collapse
|
45
|
Zhang K, Lin S, Li J, Deng S, Zhang J, Wang S. Modulation of Innate Antiviral Immune Response by Porcine Enteric Coronavirus. Front Microbiol 2022; 13:845137. [PMID: 35237253 PMCID: PMC8882816 DOI: 10.3389/fmicb.2022.845137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Host’s innate immunity is the front-line defense against viral infections, but some viruses have evolved multiple strategies for evasion of antiviral innate immunity. The porcine enteric coronaviruses (PECs) consist of porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis coronavirus (TGEV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV), which cause lethal diarrhea in neonatal pigs and threaten the swine industry worldwide. PECs interact with host cells to inhibit and evade innate antiviral immune responses like other coronaviruses. Moreover, the immune escape of porcine enteric coronaviruses is the key pathogenic mechanism causing infection. Here, we review the most recent advances in the interactions between viral and host’s factors, focusing on the mechanisms by which viral components antagonize interferon (IFN)-mediated innate antiviral immune responses, trying to shed light on new targets and strategies effective for controlling and eliminating porcine enteric coronaviruses.
Collapse
|
46
|
Duan C. An Updated Review of Porcine Deltacoronavirus in Terms of Prevalence, Pathogenicity, Pathogenesis and Antiviral Strategy. Front Vet Sci 2022; 8:811187. [PMID: 35097055 PMCID: PMC8792470 DOI: 10.3389/fvets.2021.811187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
The recent experience with SARS-COV-2 has raised our alarm about the cross-species transmissibility of coronaviruses and the emergence of new coronaviruses. Knowledge of this family of viruses needs to be constantly updated. Porcine deltacoronavirus (PDCoV), a newly emerging member of the genus Deltacoronavirus in the family Coronaviridae, is a swine enteropathogen that causes diarrhea in pigs and may lead to death in severe cases. Since PDCoV diarrhea first broke out in the United States in early 2014, PDCoV has been detected in many countries, such as South Korea, Japan and China. More importantly, PDCoV can also infect species other than pigs, and infections have even been reported in children, highlighting its potential for cross-species transmission. A thorough and systematic knowledge of the epidemiology and pathogenesis of PDCoV will not only help us control PDCoV infection, but also enable us to discover the common cellular pathways and key factors of coronaviruses. In this review, we summarize the current knowledge on the prevalence, pathogenicity and infection dynamics, pathogenesis and immune evasion strategies of PDCoV. The existing anti-PDCoV strategies and corresponding mechanisms of PDCoV infection are also introduced, aiming to provide suggestions for the prevention and treatment of PDCoV and zoonotic diseases.
Collapse
|
47
|
Qu H, Wen Y, Hu J, Xiao D, Li S, Zhang L, Liao Y, Chen R, Zhao Y, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Wen X, Cao S, Huang X. Study of the inhibitory effect of STAT1 on PDCoV infection. Vet Microbiol 2022; 266:109333. [PMID: 35033844 DOI: 10.1016/j.vetmic.2022.109333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogen found in many pig producing countries. It can cause acute diarrhea, vomiting, dehydration, and death in newborn piglets, seriously affecting the development of pig breeding industries. To date, our knowledge of the pathogenesis of PDCoV and its interactions with host cell factors remains incomplete. Using Co-IP coupled with LC/MS-MS, we identified 67 proteins that potentially interact with PDCoV in LLC-PK1 cells; five of the identified proteins were chosen for further evaluation (IMMT, STAT1, XPO5, PIK3AP1, and TMPRSS11E). Five LLC-PK1 cell lines, each with one of the genes of interest knocked down, were constructed using CRISPR/cas9. In these knockdown cells lines, only STAT1KD resulted in a significantly greater virus yield. Knockdown of the remaining four genes resulted, to varying degrees, in a lower virus yield that wild-type LLC-PK1 cells. The absence of STAT1 did not significantly affect the attachment of PDCoV to cells, but did result in increased viral internalization. Additionally, PDCoV infection stimulated expression of interferon stimulated genes (ISGs) downstream of STAT1 (IFIT1, IFIT2, RADS2, ISG15, MX1, and OAS1) while knockdown of STAT1 resulted in a greater than 80 % decrease in the expression of all six ISGs. Our findings show that STAT1 interacts with PDCoV, and plays a negative regulatory role in PDCoV infection.
Collapse
Affiliation(s)
- Huan Qu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
48
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
49
|
Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells 2021; 10:cells10112949. [PMID: 34831172 PMCID: PMC8616290 DOI: 10.3390/cells10112949] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
The first quarter of the 21st century has remarkably been characterized by a multitude of challenges confronting human society as a whole in terms of several outbreaks of infectious viral diseases, such as the 2003 severe acute respiratory syndrome (SARS), China; the 2009 influenza H1N1, Mexico; the 2012 Middle East respiratory syndrome (MERS), Saudi Arabia; and the ongoing coronavirus disease 19 (COVID-19), China. COVID-19, caused by SARS-CoV-2, reportedly broke out in December 2019, Wuhan, the capital of China’s Hubei province, and continues unabated, leading to considerable devastation and death worldwide. The most common target organ of SARS-CoV-2 is the lungs, especially the bronchial and alveolar epithelial cells, culminating in acute respiratory distress syndrome (ARDS) in severe patients. Nevertheless, other tissues and organs are also known to be critically affected following infection, thereby complicating the overall aetiology and prognosis. Excluding H1N1, the SARS-CoV (also referred as SARS-CoV-1), MERS, and SARS-CoV-2 are collectively referred to as coronaviruses, and taxonomically placed under the realm Riboviria, order Nidovirales, suborder Cornidovirineae, family Coronaviridae, subfamily Orthocoronavirinae, genus Betacoronavirus, and subgenus Sarbecovirus. As of 23 September 2021, the ongoing SARS-CoV-2 pandemic has globally resulted in around 229 million and 4.7 million reported infections and deaths, respectively, apart from causing huge psychosomatic debilitation, academic loss, and deep economic recession. Such an unprecedented pandemic has compelled researchers, especially epidemiologists and immunologists, to search for SARS-CoV-2-associated potential immunogenic molecules to develop a vaccine as an immediate prophylactic measure. Amongst multiple structural and non-structural proteins, the homotrimeric spike (S) glycoprotein has been empirically found as the most suitable candidate for vaccine development owing to its immense immunogenic potential, which makes it capable of eliciting both humoral and cell-mediated immune responses. As a consequence, it has become possible to design appropriate, safe, and effective vaccines, apart from related therapeutic agents, to reduce both morbidity and mortality. As of 23 September 2021, four vaccines, namely, Comirnaty, COVID-19 vaccine Janssen, Spikevax, and Vaxzevria, have received the European Medicines Agency’s (EMA) approval, and around thirty are under the phase three clinical trial with emergency authorization by the vaccine-developing country-specific National Regulatory Authority (NRA). In addition, 100–150 vaccines are under various phases of pre-clinical and clinical trials. The mainstay of global vaccination is to introduce herd immunity, which would protect the majority of the population, including immunocompromised individuals, from infection and disease. Here, we primarily discuss category-wise vaccine development, their respective advantages and disadvantages, associated efficiency and potential safety aspects, antigenicity of SARS-CoV-2 structural proteins and immune responses to them along with the emergence of SARS-CoV-2 VOC, and the urgent need of achieving herd immunity to contain the pandemic.
Collapse
|
50
|
Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang TY, Carriere J, Savas AC, Zarinfar M, Rice S, Yang H, Yuan W, Camarero JA, Yu J, Chen XS, Zhang C, Feng P. SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response. mBio 2021; 12:e0233521. [PMID: 34544279 PMCID: PMC8546575 DOI: 10.1128/mbio.02335-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with astonishing mortality and morbidity. The high replication and transmission of SARS-CoV-2 are remarkably distinct from those of previous closely related coronaviruses, and the underlying molecular mechanisms remain unclear. The innate immune defense is a physical barrier that restricts viral replication. We report here that the SARS-CoV-2 Nsp5 main protease targets RIG-I and mitochondrial antiviral signaling (MAVS) protein via two distinct mechanisms for inhibition. Specifically, Nsp5 cleaves off the 10 most-N-terminal amino acids from RIG-I and deprives it of the ability to activate MAVS, whereas Nsp5 promotes the ubiquitination and proteosome-mediated degradation of MAVS. As such, Nsp5 potently inhibits interferon (IFN) induction by double-stranded RNA (dsRNA) in an enzyme-dependent manner. A synthetic small-molecule inhibitor blunts the Nsp5-mediated destruction of cellular RIG-I and MAVS and processing of SARS-CoV-2 nonstructural proteins, thus restoring the innate immune response and impeding SARS-CoV-2 replication. This work offers new insight into the immune evasion strategy of SARS-CoV-2 and provides a potential antiviral agent to treat CoV disease 2019 (COVID-19) patients. IMPORTANCE The ongoing COVID-19 pandemic is caused by SARS-CoV-2, which is rapidly evolving with better transmissibility. Understanding the molecular basis of the SARS-CoV-2 interaction with host cells is of paramount significance, and development of antiviral agents provides new avenues to prevent and treat COVID-19 diseases. This study describes a molecular characterization of innate immune evasion mediated by the SARS-CoV-2 Nsp5 main protease and subsequent development of a small-molecule inhibitor.
Collapse
Affiliation(s)
- Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Chau Ngo
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Joshua J. Feng
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jessica Carriere
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Mehrnaz Zarinfar
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Stephanie Rice
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Hanging Yang
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, Los Angeles, California, USA
| | - Julio A. Camarero
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, USA
| | - Chao Zhang
- Department of Chemistry, Dornsife College of Arts, Letters, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|