1
|
Goto H, Kariya R, Kudo E, Katano H, Okada S. PAX5 functions as a tumor suppressor by RB-E2F-mediated cell cycle arrest in Kaposi sarcoma-associated herpesvirus-infected primary effusion lymphoma. Neoplasia 2024; 56:101035. [PMID: 39096792 PMCID: PMC11342765 DOI: 10.1016/j.neo.2024.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Primary effusion lymphoma (PEL) is a malignant B-cell lymphoma attributable to Kaposi sarcoma-associated herpesvirus (KSHV) infection. PEL is characterized by invasive behavior, showing recurrent effusions in body cavities. The clinical outcome and typical prognosis in patients with PEL are poor and potentially lethal. Clarification of the pathogenesis in PEL is urgently needed in order to develop novel therapies. PEL cells generally lack B-cell surface markers, and we therefore hypothesized that the B-cell transcription factor, PAX5, would be down-regulated in PEL. The expression of PAX5 is detected from the pro-B to the mature B-cell stage and is indispensable for the differentiation of B-cells. PAX5 was silenced in PEL cells via its promoter methylation. Up-regulation of PAX5 induced several genes coding for B-cell surface marker mRNA, but not protein level. PAX5 inhibited cell growth via G1 cell cycle arrest. PAX5 bound to RB and increased its protein expression. RB/E2F-regulated genes were significantly down-regulated in microarray analysis and PCR experiments. To elucidate the in vivo role of PAX5, we examined the restoration of PAX5 in a PEL mouse model. The ascites volume and organ invasions were significantly suppressed by PAX5 restoration. Reduction of PAX5 has played a crucial role in the oncogenesis of PEL, and PAX5 is a tumor suppressor in PEL. Targeting PAX5 could represent a novel therapeutic strategy for patients with PEL.
Collapse
MESH Headings
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Lymphoma, Primary Effusion/virology
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/etiology
- Animals
- Humans
- Herpesvirus 8, Human/genetics
- Mice
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Cell Proliferation
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/complications
- Herpesviridae Infections/genetics
- Herpesviridae Infections/virology
- Promoter Regions, Genetic
- Disease Models, Animal
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Radioisotope and Tumor Pathobiology, Institute of Resource Development and Analysis, Kumamoto University, Honjo, Kumamoto, Japan; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Honjo, Kumamoto, Japan.
| |
Collapse
|
2
|
Inagaki T, Kumar A, Komaki S, Nakajima KI, Izumiya Y. An atlas of chromatin landscape in KSHV-infected cells during de novo infection and reactivation. Virology 2024; 597:110146. [PMID: 38909515 DOI: 10.1016/j.virol.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA.
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
DeCotiis-Mauro J, Han SM, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L, Bellofatto V, Lukac DM. The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner. J Virol 2024; 98:e0078824. [PMID: 38975769 PMCID: PMC11334469 DOI: 10.1128/jvi.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Collapse
Affiliation(s)
- Jennifer DeCotiis-Mauro
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Sun M. Han
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Giuseppina Marchesini-Tovar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Lianhua Jin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Vivian Bellofatto
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - David M. Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
4
|
Roy Chowdhury N, Gurevich V, Shamay M. KSHV genome harbors both constitutive and lytically induced enhancers. J Virol 2024; 98:e0017924. [PMID: 38695538 PMCID: PMC11237633 DOI: 10.1128/jvi.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma-herpesvirus family and is a well-known human oncogenic virus. In infected cells, the viral genome of 165 kbp is circular DNA wrapped in chromatin. The tight control of gene expression is critical for latency, the transition into the lytic phase, and the development of viral-associated malignancies. Distal cis-regulatory elements, such as enhancers and silencers, can regulate gene expression in a position- and orientation-independent manner. Open chromatin is another characteristic feature of enhancers. To systematically search for enhancers, we cloned all the open chromatin regions in the KSHV genome downstream of the luciferase gene and tested their enhancer activity in infected and uninfected cells. A silencer was detected upstream of the latency-associated nuclear antigen promoter. Two constitutive enhancers were identified in the K12p-OriLyt-R and ORF29 Intron regions, where ORF29 Intron is a tissue-specific enhancer. The following promoters: OriLyt-L, PANp, ALTp, and the terminal repeats (TRs) acted as lytically induced enhancers. The expression of the replication and transcription activator (RTA), the master regulator of the lytic cycle, was sufficient to induce the activity of lytic enhancers in uninfected cells. We propose that the TRs that span about 24 kbp region serve as a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The silencer and enhancers described here provide an additional layer to the complex gene regulation of herpesviruses.IMPORTANCEIn this study, we performed a systematic functional assay to identify cis-regulatory elements within the genome of the oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV). Similar to other herpesviruses, KSHV presents both latent and lytic phases. Therefore, our assays were performed in uninfected cells, during latent infection, and under lytic conditions. We identified two constitutive enhancers, one of which seems to be a tissue-specific enhancer. In addition, four lytically induced enhancers, which are all responsive to the replication and transcription activator (RTA), were identified. Furthermore, a silencer was identified between the major latency promoter and the lytic gene locus. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The terminal repeats, spanning a region of about 24 kbp, seem like a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA to regulate latency to lytic transition.
Collapse
Affiliation(s)
- Nilabja Roy Chowdhury
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Vyacheslav Gurevich
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
5
|
Srivastava A, Srivastava A, Singh RK. Insight into the Epigenetics of Kaposi's Sarcoma-Associated Herpesvirus. Int J Mol Sci 2023; 24:14955. [PMID: 37834404 PMCID: PMC10573522 DOI: 10.3390/ijms241914955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetic reprogramming represents a series of essential events during many cellular processes including oncogenesis. The genome of Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic herpesvirus, is predetermined for a well-orchestrated epigenetic reprogramming once it enters into the host cell. The initial epigenetic reprogramming of the KSHV genome allows restricted expression of encoded genes and helps to hide from host immune recognition. Infection with KSHV is associated with Kaposi's sarcoma, multicentric Castleman's disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. The major epigenetic modifications associated with KSHV can be labeled under three broad categories: DNA methylation, histone modifications, and the role of noncoding RNAs. These epigenetic modifications significantly contribute toward the latent-lytic switch of the KSHV lifecycle. This review gives a brief account of the major epigenetic modifications affiliated with the KSHV genome in infected cells and their impact on pathogenesis.
Collapse
Affiliation(s)
- Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankit Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Faculty of Medical Sciences, Charotar University of Science and Technology, Changa 388421, Gujarat, India
| |
Collapse
|
6
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
7
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
8
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
9
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
11
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
12
|
Journo G, Ahuja A, Dias-Polak D, Eran Y, Bergman R, Shamay M. Global CpG DNA Methylation Footprint in Kaposi's Sarcoma. Front Cell Infect Microbiol 2021; 11:666143. [PMID: 34307191 PMCID: PMC8300563 DOI: 10.3389/fcimb.2021.666143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 01/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also familiar as human herpesvirus 8 (HHV-8), is one of the well-known human cancer-causing viruses. KSHV was originally discovered by its association with Kaposi's sarcoma (KS), a common AIDS-related neoplasia. Additionally, KSHV is associated with two B-lymphocyte disorders; primary effusion lymphoma (PEL) and Multicentric Castlemans Disease (MCD). DNA methylation is an epigenetic modification that is essential for a properly functioning human genome through its roles in chromatin structure maintenance, chromosome stability and transcription regulation. Genomic studies show that expressed promoters tend to be un-methylated whereas methylated promoters tend to be inactive. We have previously revealed the global methylation footprint in PEL cells and found that many cellular gene promoters become differentially methylated and hence differentially expressed in KSHV chronically infected PEL cell lines. Here we present the cellular CpG DNA methylation footprint in KS, the most common malignancy associated with KSHV. We performed MethylationEPIC BeadChip to compare the global methylation status in normal skin compared to KS biopsies, and revealed dramatic global methylation alterations occurring in KS. Many of these changes were attributed to hyper-methylation of promoters and enhancers that regulate genes associated with abnormal skin morphology, a well-known hallmark of KS development. We observed six-fold increase in hypo-methylated CpGs between early stage of KS (plaque) and the more progressed stage (nodule). These observations suggest that hyper-methylation takes place early in KS while hypo-methylation is a later process that is more significant in nodule. Our findings add another layer to the understanding of the relationship between epigenetic changes caused by KSHV infection and tumorigenesis.
Collapse
Affiliation(s)
- Guy Journo
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Anuj Ahuja
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Dias-Polak
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Yonatan Eran
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Reuven Bergman
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
13
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
14
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
15
|
High levels of LINE-1 transposable elements expressed in Kaposi's sarcoma-associated herpesvirus-related primary effusion lymphoma. Oncogene 2020; 40:536-550. [PMID: 33188297 DOI: 10.1038/s41388-020-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is a gamma herpesvirus associated with several human malignancies. Transposable elements (TEs) are ubiquitous in eukaryotic genomes, occupying about 45% of the human genome. TEs have been linked with a variety of disorders and malignancies, though the precise nature of their contribution to many of them has yet to be elucidated. Global transcriptome analysis for differentially expressed TEs in KSHV-associated primary effusion lymphoma (PEL) cells (BCBL1 and BC3) revealed large number of differentially expressed TEs. These differentially expressed TEs include LTR transposons, long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). Further analysis of LINE-1 (L1) elements revealed expression upregulation, hypo-methylation, and transition into open chromatin in PEL. In agreement with high L1 expression, PEL cells express ORF1 protein and possess high reverse transcriptase (RT)-activity. Interestingly, inhibition of this RT-activity suppressed PEL cell growth. Collectively, we identified high expression of TEs, and specifically of L1 as a critical component in the proliferation of PEL cells. This observation is relevant for the treatment of KSHV-associated malignancies since they often develop in AIDS patients that are treated with RT inhibitors with potent inhibition for both HIV and L1 RT activity.
Collapse
|
16
|
Naipauer J, Salyakina D, Journo G, Rosario S, Williams S, Abba M, Shamay M, Mesri EA. High-throughput sequencing analysis of a "hit and run" cell and animal model of KSHV tumorigenesis. PLoS Pathog 2020; 16:e1008589. [PMID: 32603362 PMCID: PMC7357787 DOI: 10.1371/journal.ppat.1008589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/13/2020] [Accepted: 04/30/2020] [Indexed: 11/24/2022] Open
Abstract
Kaposi's sarcoma (KS), is an AIDS-associated neoplasm caused by the KS herpesvirus (KSHV/ HHV-8). KSHV-induced sarcomagenesis is the consequence of oncogenic viral gene expression as well as host genetic and epigenetic alterations. Although KSHV is found in all KS-lesions, the percentage of KSHV-infected (LANA+) spindle-cells of the lesion is variable, suggesting the existence of KS-spindle cells that have lost KSHV and proliferate autonomously or via paracrine mechanisms. A mouse model of KSHVBac36-driven tumorigenesis allowed us to induce KSHV-episome loss before and after tumor development. Although infected cells that lose the KSHV-episome prior to tumor formation lose their tumorigenicity, explanted tumor cells that lost the KSHV-episome remained tumorigenic. This pointed to the existence of virally-induced irreversible oncogenic alterations occurring during KSHV tumorigenesis supporting the possibility of hit and run viral-sarcomagenesis. RNA-sequencing and CpG-methylation analysis were performed on KSHV-positive and KSHV-negative tumors that developed following KSHV-episome loss from explanted tumor cells. When KSHV-positive cells form KSHV-driven tumors, along with viral-gene upregulation there is a tendency for hypo-methylation in genes from oncogenic and differentiation pathways. In contrast, KSHV-negative tumors formed after KSHV-episome loss, show a tendency towards gene hyper-methylation when compared to KSHV-positive tumors. Regarding occurrence of host-mutations, we found the same set of innate-immunity related mutations undetected in KSHV-infected cells but present in all KSHV-positive tumors occurring en exactly the same position, indicating that pre-existing host mutations that provide an in vivo growth advantage are clonally-selected and contribute to KSHV-tumorigenesis. In addition, KSHV-negative tumors display de novo mutations related to cell proliferation that, together with the PDGFRAD842V and other proposed mechanism, could be responsible for driving tumorigenesis in the absence of KSHV-episomes. KSHV-induced irreversible genetic and epigenetic oncogenic alterations support the possibility of “hit and run” KSHV-sarcomagenesis and point to the existence of selectable KSHV-induced host mutations that may impact AIDS-KS treatment. KSHV-infected KS lesions are composed of latently-infected cells, as well as cells expressing lytic genes that have been implicated in the development of the KS angioproliferative phenotype. The existence of KS lesions with varying levels of KSHV-infected cells suggests also the existence of virus-independent “hit and run” mechanisms of sarcomagenesis, whereby viral infection irreversibly induce genetic or epigenetic oncogenic alterations in host cells. We used the unique mECK36 animal model of multistep KSHV sarcomagenesis to dissect transcriptional, genetic and epigenetic mechanisms of KSHV dependent tumorigenesis and during tumorigenesis following KSHV-episome loss (“hit and run”) sarcomagenesis in an unbiased high-throughput fashion. These analyses revealed that KSHV in vivo tumorigenesis: A) Occurs predominantly with CpG hypo-methylation of oncogenic and differentiation pathways. B) Selects for pre-existing host mutations that allow the KSHV oncovirus to express oncogenic lytic genes by creating permissive environment for viral-induced innate immunity and inflammation, which provides a selective advantage in vivo conducive to tumorigenesis. Our results highlight the mutagenic potential of KSHV pointing to the existence in KS lesions, of KSHV-induced oncogenic host mutations that could be selected upon treatment and impact AIDS-KS therapies.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Transformation, Viral
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- High-Throughput Nucleotide Sequencing
- Mice
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Plasmids/genetics
- Plasmids/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
Collapse
Affiliation(s)
- Julian Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- UM-CFAR/ Sylvester CCC Argentina Consortium for Research and Training in Virally induced AIDS-Malignancies University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Daria Salyakina
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Guy Journo
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Santas Rosario
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sion Williams
- UM-CFAR/ Sylvester CCC Argentina Consortium for Research and Training in Virally induced AIDS-Malignancies University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Neurology Basic Science Division, Sylvester Comprehensive Cancer Center; University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Martin Abba
- UM-CFAR/ Sylvester CCC Argentina Consortium for Research and Training in Virally induced AIDS-Malignancies University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- * E-mail: (MS); (EAM)
| | - Enrique A. Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- UM-CFAR/ Sylvester CCC Argentina Consortium for Research and Training in Virally induced AIDS-Malignancies University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail: (MS); (EAM)
| |
Collapse
|
17
|
Kaposi's Sarcoma-Associated Herpesvirus LANA Modulates the Stability of the E3 Ubiquitin Ligase RLIM. J Virol 2020; 94:JVI.01578-19. [PMID: 31801865 DOI: 10.1128/jvi.01578-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. In a previous study, we have identified LANA-interacting proteins using a protein array screen. Here, we explore the effect of LANA on the stability and activity of RLIM (RING finger LIM-domain-interacting protein, encoded by the RNF12 gene), a novel LANA-interacting protein identified in that protein screen. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Expression of LANA leads to downregulation of RLIM protein levels. This LANA-mediated RLIM degradation is blocked in the presence of the proteasome inhibitor, MG132. Therefore, the interaction between LANA and RLIM could be detected in coimmunoprecipitation assay only in the presence of MG132 to prevent RLIM degradation. A RING finger mutant RLIM is resistant to LANA-mediated degradation, suggesting that LANA promotes RLIM autoubiquitination. Interestingly, we found that LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. We also show that transcription regulation by RLIM substrates is modulated by LANA. RLIM substrates are assembled into multiprotein transcription regulator complexes that regulate the expression of many cellular genes. Therefore, our study identified another way KSHV can modulate cellular gene expression.IMPORTANCE E3 ubiquitin ligases mark their substrates for degradation and therefore control the cellular abundance of their substrates. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Here, we show that the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA protein enhances the ubiquitin ligase activity of RLIM, leading to enhanced RLIM autoubiquitination and degradation. Interestingly, LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. In agreement with protein stability of RLIM substrates, we found that LANA modulates transcription by LHX3-LDB1 complex and suggest additional ways LANA can modulate cellular gene expression. Our study adds another way a viral protein can regulate cellular protein stability, by enhancing the autoubiquitination and degradation of an E3 ubiquitin ligase.
Collapse
|
18
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
19
|
Wong JP, Stuhlmiller TJ, Giffin LC, Lin C, Bigi R, Zhao J, Zhang W, Bravo Cruz AG, Park SI, Earp HS, Dittmer DP, Frye SV, Wang X, Johnson GL, Damania B. Kinome profiling of non-Hodgkin lymphoma identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proc Natl Acad Sci U S A 2019; 116:16541-16550. [PMID: 31346082 PMCID: PMC6697815 DOI: 10.1073/pnas.1903991116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.
Collapse
Affiliation(s)
- Jason P Wong
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy J Stuhlmiller
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Louise C Giffin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Carolina Lin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachele Bigi
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jichen Zhao
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Weihe Zhang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ariana G Bravo Cruz
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Steven I Park
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - H Shelton Earp
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Dirk P Dittmer
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gary L Johnson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599;
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
20
|
Genome-Wide Identification of Direct RTA Targets Reveals Key Host Factors for Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation. J Virol 2019; 93:JVI.01978-18. [PMID: 30541837 DOI: 10.1128/jvi.01978-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus, which maintains the persistent infection of the host by intermittently reactivating from latently infected cells to produce viral progenies. While it is established that the replication and transcription activator (RTA) viral transcription factor is required for the induction of lytic viral genes for KSHV lytic reactivation, it is still unknown to what extent RTA alters the host transcriptome to promote KSHV lytic cycle and viral pathogenesis. To address this question, we performed a comprehensive time course transcriptome analysis during KSHV reactivation in B-cell lymphoma cells and determined RTA-binding sites on both the viral and host genomes, which resulted in the identification of the core RTA-induced host genes (core RIGs). We found that the majority of RTA-binding sites at core RIGs contained the canonical RBP-Jκ-binding DNA motif. Subsequently, we demonstrated the vital role of the Notch signaling transcription factor RBP-Jκ for RTA-driven rapid host gene induction, which is consistent with RBP-Jκ being essential for KSHV lytic reactivation. Importantly, many of the core RIGs encode plasma membrane proteins and key regulators of signaling pathways and cell death; however, their contribution to the lytic cycle is largely unknown. We show that the cell cycle and chromatin regulator geminin and the plasma membrane protein gamma-glutamyltransferase 6, two of the core RIGs, are required for efficient KSHV reactivation and virus production. Our results indicate that host genes that RTA rapidly and directly induces can be pivotal for driving the KSHV lytic cycle.IMPORTANCE The lytic cycle of KSHV is involved not only in the dissemination of the virus but also viral oncogenesis, in which the effect of RTA on the host transcriptome is still unclear. Using genomics approaches, we identified a core set of host genes which are rapidly and directly induced by RTA in the early phase of KSHV lytic reactivation. We found that RTA does not need viral cofactors but requires its host cofactor RBP-Jκ for inducing many of its core RIGs. Importantly, we show a critical role for two of the core RIGs in efficient lytic reactivation and replication, highlighting their significance in the KSHV lytic cycle. We propose that the unbiased identification of RTA-induced host genes can uncover potential therapeutic targets for inhibiting KSHV replication and viral pathogenesis.
Collapse
|