1
|
Xi J, Snieckute G, Martínez JF, Arendrup FSW, Asthana A, Gaughan C, Lund AH, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent ribotoxic stress response by the innate immunity endoribonuclease RNase L. Cell Rep 2024; 43:113998. [PMID: 38551960 PMCID: PMC11090160 DOI: 10.1016/j.celrep.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
2
|
Xi J, Snieckute G, Asthana A, Gaughan C, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent Ribotoxic Stress Response by the Innate Immunity Endoribonuclease RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562082. [PMID: 37873202 PMCID: PMC10592832 DOI: 10.1101/2023.10.12.562082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
3
|
Huang M, Liu Y, Xia Y, Wang J, Zheng X, Cao Y. Infectious bronchitis virus nucleocapsid protein suppressed type I interferon production by interfering with the binding of MDA5-dsRNA and interacting with LGP2. Vet Microbiol 2023; 284:109798. [PMID: 37307767 DOI: 10.1016/j.vetmic.2023.109798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
The type I interferon (IFN-I) is a critical component of the innate immune responses, and Coronaviruses (CoVs) from both the Alphacoronavirus and Betacoronavirus genera interfere with the IFN-I signaling pathway in various ways. Of the gammacoronaviruses that mainly infect birds, little is known about how infectious bronchitis virus (IBV), evades or interferes with the innate immune responses in avian hosts since few IBV strains have been adapted to grow in avian passage cells. Previously, we reported that a highly pathogenic IBV strain GD17/04 has adaptability in an avian cell line, providing a material basis for further study on the interaction mechanism. In the present work, we describe the suppression of IBV to IFN-I and the potential role of IBV-encoded nucleocapsid (N) protein. We show that IBV significantly inhibits the poly I: C-induced IFN-I production, accordingly the nuclear translocation of STAT1, and the expression of IFN-stimulated genes (ISGs). A detailed analysis revealed that N protein, acting as an IFN-I antagonist, significantly impedes the activation of the IFN-β promoter stimulated by MDA5 and LGP2 but does not counteract its activation by MAVS, TBK1, and IRF7. Further results showed that IBV N protein, verified to be an RNA-binding protein, interferes with MDA5 recognizing double-stranded RNA (dsRNA). Moreover, we found that the N protein targets LGP2, which is required in the chicken IFN-I signaling pathway. Taken together, this study provides a comprehensive analysis of the mechanism by which IBV evades avian innate immune responses.
Collapse
Affiliation(s)
- Mengjiao Huang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbo Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuewei Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wang L, Rajavel M, Wu CW, Zhang C, Poindexter M, Fulgar C, Mar T, Singh J, Dhillon JK, Zhang J, Yuan Y, Abarca R, Li W, Pinkerton KE. Effects of life-stage and passive tobacco smoke exposure on pulmonary innate immunity and influenza infection in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:439-456. [PMID: 35139765 PMCID: PMC8976777 DOI: 10.1080/15287394.2022.2032518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Limited data are available on the effects of perinatal environmental tobacco smoke (ETS) exposure for early childhood influenza infection. The aim of the present study was to examine whether perinatal versus adult ETS exposure might provoke more severe systemic and pulmonary innate immune responses in mice inoculated with influenza A/Puerto Rico/8/34 virus (IAV) compared to phosphate-buffered saline (PBS). BALB/c mice were exposed to filtered air (FA) or ETS for 6 weeks during the perinatal or adult period of life. Immediately following the final exposure, mice were intranasally inoculated with IAV or PBS. Significant inflammatory effects were observed in bronchoalveolar lavage fluid of neonates inoculated with IAV (FA+IAV or ETS+IAV) compared to PBS (ETS+PBS or FA+PBS), and in the lung parenchyma of neonates administered ETS+IAV versus FA+IAV. Type I and III interferons were also elevated in the spleens of neonates, but not adults with ETS+IAV versus FA+IAV exposure. Both IAV-inoculated neonate groups exhibited significantly more CD4 T cells and increasing numbers of CD8 and CD25 T cells in lungs relative to their adult counterparts. Taken together, these results suggest perinatal ETS exposure induces an exaggerated innate immune response, which may overwhelm protective anti-inflammatory defenses against IAV, and enhances severity of infection at early life stages (e.g., in infants and young children).
Collapse
Affiliation(s)
- Lei Wang
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Maya Rajavel
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Chuanzhen Zhang
- Center for Health and the Environment, University of California, Davis, CA, USA
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Morgan Poindexter
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Ciara Fulgar
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Tiffany Mar
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jasmine Singh
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jaspreet K. Dhillon
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Jingjing Zhang
- Center for Health and the Environment, University of California, Davis, CA, USA
- Western China School of Public Health Department of Occupational and Environmental Health Sichuan University, Chengdu, China
| | - Yinyu Yuan
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Radek Abarca
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Wei Li
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 250014, China
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Infectious Bronchitis Virus Nsp14 Degrades JAK1 to Inhibit the JAK-STAT Signaling Pathway in HD11 Cells. Viruses 2022; 14:v14051045. [PMID: 35632786 PMCID: PMC9146749 DOI: 10.3390/v14051045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein 14 (Nsp14) is a nonstructural protein encoded by the CoV genome. This protein has a regulatory role in viral virulence and replication. However, the function and mechanism of IBV Nsp14 in regulating the host’s innate immune response remain unclear. Here we report that IBV Nsp14 was a JAK-STAT signaling pathway antagonist in chicken macrophage (HD11) cells. In these cells, Nsp14 protein overexpression blocked IBV suppression induced by exogenous chIFN-γ treatment. Meanwhile, Nsp14 remarkably reduced interferon-gamma-activated sequence (GAS) promoter activation and chIFN-γ-induced interferon-stimulated gene expression. Nsp14 impaired the nuclear translocation of chSTAT1. Furthermore, Nsp14 interacted with Janus kinase 1 (JAK1) to degrade JAK1 via the autophagy pathway, thereby preventing the activation of the JAK-STAT signaling pathway and facilitating viral replication. These results indicated a novel mechanism by which IBV inhibits the host antiviral response and provide new insights into the selection of antiviral targets against CoV.
Collapse
|
6
|
Abstract
Interferons (IFNs) are a key component of the innate antiviral immunity and are generally implicated in protective host immune responses. Here, I discuss the central role of IFNs during different coronavirus (CoV) infections, the importance of timing of the IFN response, and how emerging human coronaviruses subvert antiviral IFN response to cause severe disease.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
8
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Chakravarty D, Das Sarma J. Murine-β-coronavirus-induced neuropathogenesis sheds light on CNS pathobiology of SARS-CoV2. J Neurovirol 2021; 27:197-216. [PMID: 33547593 PMCID: PMC7864135 DOI: 10.1007/s13365-021-00945-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-β-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-β-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.
Collapse
Affiliation(s)
- Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Haji Abdolvahab M, Moradi-Kalbolandi S, Zarei M, Bose D, Majidzadeh-A K, Farahmand L. Potential role of interferons in treating COVID-19 patients. Int Immunopharmacol 2021; 90:107171. [PMID: 33221168 PMCID: PMC7608019 DOI: 10.1016/j.intimp.2020.107171] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
The recently public health crises in the world is emerged by spreading the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also named COVID-19. The virus is originated in bats and transported to humans via undefined intermediate animals. This virus can produce from weak to severe respiratory diseases including acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), pneumonia and even death in patients. The COVID-19 disease is distributed by inhalation via contaminated droplets or contact with infected environment. The incubation time is from 2 to 14 day and the symptoms are typically fever, sore throat, cough, malaise, fatigue, breathlessness among others. It needs to be considered that many infected people are asymptomatic. Developing various immunological and virological methods to diagnose this disease is supported by several laboratories. Treatment is principally supportive; however, there are several agents that are using in treating of COVID-19 patients. Interferons (IFNs) have shown to be crucial in fighting with COVID-19 disease and can be a suitable candidate in treatment of these patients. Combination therapy can be more effective than monotherapy to cure this disease. Prevention necessitates to be performed by isolation of suspected people and home quarantine as well as taking care to infected people with mild or strict disease at hospitals. As the outbreak of SARS-CoV-2 has accelerated, developing effective therapy is an urgent requirement to battle the virus and prevent further pandemic. In this manuscript we reviewed available information about SARS-CoV-2 and probable therapies for COVID-19 patients.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohammad Zarei
- Department of Pathology & Laboratory Medicine, Center for Mitochondrial & Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepanwita Bose
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
11
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
12
|
Das Sarma J, Burrows A, Rayman P, Hwang MH, Kundu S, Sharma N, Bergmann C, Sen GC. Ifit2 deficiency restricts microglial activation and leukocyte migration following murine coronavirus (m-CoV) CNS infection. PLoS Pathog 2020; 16:e1009034. [PMID: 33253295 PMCID: PMC7738193 DOI: 10.1371/journal.ppat.1009034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection. Interferons (IFNs) are known to protect from virus dissemination and pathogenesis. Several IFN stimulated genes (ISG) regulate neuropathogenesis but the mechanisms underlying the antiviral effects are not clearly understood. IFN induced tetratricopeptide repeats (Ifit) are a class of ISGs. Among the Ifits, Ifit2 is known to play a beneficial role in restricting neurotropic viral replication. To provide better cellular insights into the protective mechanisms of Ifit2 functions, using a neurotropic coronavirus infection in Ifit2 depleted mice we report that in the absence of Ifit2, viral replication is dramatically increased and mice develop severe clinical signs and symptoms of neurological deficit. Despite the enormous viral load, Ifit2 deficient mice are impaired in microglial activation and recruitment of peripheral leukocytes into the CNS. This impaired leuocyte infiltration in Ifit2 deficient mice was also associated with reduced expression of a novel chemokine receptor CX3CR1,which is important for viral induced microglial activation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
- * E-mail:
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Patricia Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Mi-Hyun Hwang
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Cornelia Bergmann
- Department of Neurosciences, Cleveland Clinic, Ohio, United States of America
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| |
Collapse
|
13
|
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.
Collapse
Affiliation(s)
- Margarida Sa Ribero
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I. Virus Res 2019; 278:197843. [PMID: 31884203 PMCID: PMC7114844 DOI: 10.1016/j.virusres.2019.197843] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
SADS-CoV failed to induce IFN-β expression and inhibited poly (I:C)-or SEV-mediated IFN-β production in IPEC-J2 cells. SADS-CoV interrupted poly (I:C)-induced phosphorylation and nuclear translocation of IRF3 and NF-κB. SADS-CoV failed to block IRF3, TBK1 and IKKε activity. SADS-CoV impeded IFN-β induction mediated by IPS-1 and RIG-I.
Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly emerging enteric coronavirus, is considered to be associated with swine acute diarrhea syndrome (SADS) which has caused significantly economic losses to the porcine industry. Interactions between SADS-CoV and the host innate immune response is unclear yet. In this study, we used IPEC-J2 cells as a model to explore potential evasion strategies employed by SADS-CoV. Our results showed that SADS-CoV infection failed to induce IFN-β production, and inhibited poly (I:C) and Sendai virus (SeV)-triggered IFN-β expression. SADS-CoV also blocked poly (I:C)-induced phosphorylation and nuclear translocation of IRF-3 and NF-κB. Furthermore, SADS-CoV did not interfere with the activity of IFN-β promoter stimulated by IRF3, TBK1 and IKKε, but counteracted its activation induced by IPS-1 and RIG-I. Collectively, this study is the first investigation that shows interactions between SADS-CoV and the host innate immunity, which provides information of the molecular mechanisms underlying SASD-CoV infection.
Collapse
|
15
|
Porcine Deltacoronavirus Accessory Protein NS6 Antagonizes Interferon Beta Production by Interfering with the Binding of RIG-I/MDA5 to Double-Stranded RNA. J Virol 2018; 92:JVI.00712-18. [PMID: 29769346 DOI: 10.1128/jvi.00712-18] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao People's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing a considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon beta (IFN-β) production as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-β promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKε, and IRF3. Further analyses revealed that NS6 is not an RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-β production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response.IMPORTANCE Coronavirus accessory proteins are species specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as IFN antagonists and cell death inducers. Our previous studies have shown that PDCoV encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS6 antagonizes IFN-β production by interacting with RIG-I and MDA5 to impede their association with double-stranded RNA. This is an efficient strategy of antagonizing type I IFN production by disrupting the binding of host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). These findings deepen our understanding of the function of accessory protein NS6, and they may direct us toward novel therapeutic targets and lead to the development of more effective vaccines against PDCoV infection.
Collapse
|
16
|
Ding Z, Fang L, Yuan S, Zhao L, Wang X, Long S, Wang M, Wang D, Foda MF, Xiao S. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation. Oncotarget 2018; 8:49655-49670. [PMID: 28591694 PMCID: PMC5564796 DOI: 10.18632/oncotarget.17912] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N–PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
17
|
Drappier M, Jha BK, Stone S, Elliott R, Zhang R, Vertommen D, Weiss SR, Silverman RH, Michiels T. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathog 2018; 14:e1006989. [PMID: 29652922 PMCID: PMC5927464 DOI: 10.1371/journal.ppat.1006989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/30/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.
Collapse
Affiliation(s)
- Melissa Drappier
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Babal Kant Jha
- Translational Hematology and Oncology Research, Taussig Cancer Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sasha Stone
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ruth Elliott
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Zhang
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
18
|
Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity. J Virol 2017; 92:JVI.01531-17. [PMID: 29046453 DOI: 10.1128/jvi.01531-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that counteract the host innate immune response to facilitate efficient viral replication. CoV nonstructural protein 14 (nsp14) encodes 3'-to-5' exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order Nidovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade double-stranded RNA (dsRNA) replication intermediates. In this study, we tested the hypothesis that CoV ExoN also functions to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-β) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor-deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-β gene expression, and in the presence of an IFN-β-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to those of untreated samples. However, ExoN(-) virus generated from IFN-β-pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest murine hepatitis virus (MHV) ExoN activity is required for resistance to the innate immune response, and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity.IMPORTANCE CoVs encode multiple antagonists that prevent or disrupt an efficient innate immune response. Additionally, no specific antiviral therapies or vaccines currently exist for human CoV infections. Therefore, the study of CoV innate immune antagonists is essential for understanding how CoVs overcome host defenses and to maximize potential therapeutic interventions. Here, we sought to determine the contributions of nsp14 ExoN activity in the induction of and resistance to the innate immune response. We show that viruses lacking nsp14 ExoN activity are more sensitive than wild-type MHV to restriction by exogenous IFN-β and that viruses produced in the presence of an antiviral state are less capable of establishing a subsequent viral infection. Our results support the hypothesis that murine hepatitis virus ExoN activity is required for resistance to the innate immune response.
Collapse
|
19
|
Wang X, Ohnstad M, Nelsen A, Nelson E. Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine. Vet Microbiol 2017; 208:77-81. [PMID: 28888653 PMCID: PMC7117325 DOI: 10.1016/j.vetmic.2017.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 11/28/2022]
Abstract
PEDV fails to replicate in porcine Mo-DC. PEDV does not compromise the viability of porcine Mo-DC. PEDV activates the transcription of type I interferon. PEDV activates the transcription of IP-10.
Porcine epidemic diarrhea virus (PEDV) belongs to the alphacoronavirus of the Coronaviridae. It is the major etiological agent of the recent outbreaks of piglet diarrhea and death in the US. Limited knowledge is currently available regarding the role of dendritic cells in PEDV infection. Here, we observed that PEDV did not replicate in monocyte-derived dendritic cells as evidenced by the decrease of viral gene transcript copies in infected cells by qRT-PCR and the absence of viral proteins by immunofluorescence staining as well as the absence of virus particles in infected cells by transmission electron microscopy. In addition, PEDV did not compromise cell viability at 48, 72, and 96 h after infection at either a MOI of 2.5 or 5. Interestingly, an increased transcription of type I interferon including interferon-α and β was observed in infected cells compared to mock infected cells. Surprisingly, we did not detect any interferon-β in the supernatants of infected cells. A slight increase in interferon-α protein production in the supernatants of PEDV-infected cells was observed compared to mock infected cells. We also observed a markedly increased transcription of interferon inducible protein −10 (IP-10). Overall, PEDV does not replicate in porcine Mo-DC, but activates the transcription of type I interferon and chemokine IP-10.
Collapse
Affiliation(s)
- Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, United States, United States.
| | - Martha Ohnstad
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, United States, United States
| | - April Nelsen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, United States, United States
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, United States
| |
Collapse
|
20
|
Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, Züst R, Hwang M, V’kovski P, Stalder H, Marti S, Habjan M, Cervantes-Barragan L, Elliot R, Karl N, Gaughan C, van Kuppeveld FJM, Silverman RH, Keller M, Ludewig B, Bergmann CC, Ziebuhr J, Weiss SR, Kalinke U, Thiel V. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 2017; 13:e1006195. [PMID: 28158275 PMCID: PMC5310923 DOI: 10.1371/journal.ppat.1006195] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/15/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.
Collapse
Affiliation(s)
- Eveline Kindler
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jochen Wilhelm
- Universities Giessen & Marburg Lung Center (UGMLC), Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Huib H. Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Philip V’kovski
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Sabrina Marti
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | | | | | - Ruth Elliot
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nadja Karl
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - John Ziebuhr
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Volker Thiel
- Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Qu L, Murakami K, Broughman JR, Lay MK, Guix S, Tenge VR, Atmar RL, Estes MK. Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response. J Virol 2016; 90:8906-23. [PMID: 27466422 PMCID: PMC5021416 DOI: 10.1128/jvi.01425-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these viruses. Studies on murine norovirus (MNV) have shown the importance of an interferon (IFN) response in host control of MNV replication, but this remains unclear for HuNoVs. Here, we investigated the IFN response to HuNoV RNA replication in mammalian cells using Norwalk virus stool RNA transfection, a reverse genetics system, IFN neutralization reagents, and shRNA knockdown methods. Our results show that HuNoV RNA replication in mammalian epithelial cells does not induce an IFN response, nor can it be enhanced by blocking the IFN response. These results suggest a limited role of the epithelial IFN response in host control of HuNoV RNA replication, providing important insights into our understanding of the host defense to HuNoVs that differs from that to MNV.
Collapse
Affiliation(s)
- Lin Qu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita K Lay
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Susana Guix
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Xu HF, Fang XY, Zhu SH, Xu XH, Zhang ZX, Wang ZF, Zhao ZQ, Ding YJ, Tao LY. Glucocorticoid treatment inhibits intracerebral hemorrhage‑induced inflammation by targeting the microRNA‑155/SOCS‑1 signaling pathway. Mol Med Rep 2016; 14:3798-804. [PMID: 27601160 DOI: 10.3892/mmr.2016.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Intracerebral hemorrhage (ICH) results in inflammation, and glucocorticoids have been proven to be effective inhibitors of ICH‑induced inflammation. However, the precise underlying mechanisms of ICH‑induced inflammation and glucocorticoid function remain largely undefined. Using a mouse ICH model, the present study demonstrated that the short non‑coding RNA molecule microRNA‑155 (miR‑155) is involved in the inflammatory process initiated by ICH in mice. Increased mRNA expression levels of miR‑155, as well as the pro‑inflammatory cytokines interferon‑β (IFN‑β), tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6), were observed in vivo following ICH. By contrast, the expression level of suppressor of cytokine signaling 1 (SOCS‑1) protein was reduced in the ICH group compared with control mice. Similar results were observed in vitro using astrocytes, the primary effector cells in ICH. Compared with wild type astrocytes, astrocytes overexpressing miR‑155 exhibited significant inhibition of SOCS‑1 protein expression levels. These results suggest that miR‑155 contributes to the development of ICH‑induced inflammation in mice by downregulating SOCS‑1 protein expression levels and promoting pro‑inflammatory cytokine (IFN‑β, TNF‑α and IL‑6) production. Expression levels of miR‑155 and pro‑inflammatory cytokines in the ICH group were significantly decreased following dexamethasone administration. This suggests that glucocorticoids attenuate ICH‑induced inflammation by targeting the miR‑155/SOCS‑1 signaling pathway in mice. In conclusion, the results of the present study demonstrated that the miR‑155/SOCS‑1 signaling pathway is required for ICH‑induced inflammation, and glucocorticoids inhibit this process by targeting the miR‑155/SOCS‑1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiao-Yun Fang
- Jiangsu Patent Examination Assistance Center Under State Intellectual Property Office of The People's Republic of China, Suzhou, Jiangsu 215163, P.R. China
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-Xiang Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Jie Ding
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
23
|
Porcine Epidemic Diarrhea Virus Infection Inhibits Interferon Signaling by Targeted Degradation of STAT1. J Virol 2016; 90:8281-92. [PMID: 27384656 DOI: 10.1128/jvi.01091-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Porcine epidemic diarrhea virus (PEDV) is a worldwide-distributed alphacoronavirus, but the pathogenesis of PEDV infection is not fully characterized. During virus infection, type I interferon (IFN) is a key mediator of innate antiviral responses. Most coronaviruses develop some strategy for at least partially circumventing the IFN response by limiting the production of IFN and by delaying the activation of the IFN response. However, the molecular mechanisms by which PEDV antagonizes the antiviral effects of interferon have not been fully characterized. Especially, how PEDV impacts IFN signaling components has yet to be elucidated. In this study, we observed that PEDV was relatively resistant to treatment with type I IFN. Western blot analysis showed that STAT1 expression was markedly reduced in PEDV-infected cells and that this reduction was not due to inhibition of STAT1 transcription. STAT1 downregulation was blocked by a proteasome inhibitor but not by an autophagy inhibitor, strongly implicating the ubiquitin-proteasome targeting degradation system. Since PEDV infection-induced STAT1 degradation was evident in cells pretreated with the general tyrosine kinase inhibitor, we conclude that STAT1 degradation is independent of the IFN signaling pathway. Furthermore, we report that PEDV-induced STAT1 degradation inhibits IFN-α signal transduction pathways. Pharmacological inhibition of STAT1 degradation rescued the ability of the host to suppress virus replication. Collectively, these data show that PEDV is capable of subverting the type I interferon response by inducing STAT1 degradation. IMPORTANCE In this study, we show that PEDV is resistant to the antiviral effect of IFN. The molecular mechanism is the degradation of STAT1 by PEDV infection in a proteasome-dependent manner. This PEDV infection-induced STAT1 degradation contributes to PEDV replication. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response.
Collapse
|
24
|
Mutagenesis of S-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity. J Virol 2016; 90:7248-7256. [PMID: 27252528 PMCID: PMC4984653 DOI: 10.1128/jvi.00542-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/24/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Eukaryotic mRNAs possess a methylated 5'-guanosine cap that is required for RNA stability, efficient translation, and protection from cell-intrinsic defenses. Many viruses use 5' caps or other mechanisms to mimic a cap structure to limit detection of viral RNAs by intracellular innate sensors and to direct efficient translation of viral proteins. The coronavirus (CoV) nonstructural protein 14 (nsp14) is a multifunctional protein with N7-methyltransferase (N7-MTase) activity. The highly conserved S-adenosyl-l-methionine (SAM)-binding residues of the DxG motif are required for nsp14 N7-MTase activity in vitro However, the requirement for CoV N7-MTase activity and the importance of the SAM-binding residues during viral replication have not been determined. Here, we engineered mutations in murine hepatitis virus (MHV) nsp14 N7-MTase at residues D330 and G332 and determined the effects of these mutations on viral replication, sensitivity to mutagen, inhibition by type I interferon (IFN), and translation efficiency. Virus encoding a G332A substitution in nsp14 displayed delayed replication kinetics and decreased peak titers relative to wild-type (WT) MHV. In addition, replication of nsp14 G332A virus was diminished following treatment of cells with IFN-β, and nsp14 G332A genomes were translated less efficiently both in vitro and during viral infection. In contrast, substitution of alanine at MHV nsp14 D330 did not affect viral replication, sensitivity to mutagen, or inhibition by IFN-β compared to WT MHV. Our results demonstrate that the conserved MHV N7-MTase SAM-binding-site residues are not required for MHV viability and suggest that the determinants of CoV N7-MTase activity differ in vitro and during virus infection. IMPORTANCE Human coronaviruses, most notably severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, cause severe and lethal human disease. Since specific antiviral therapies are not available for the treatment of human coronavirus infections, it is essential to understand the functions of conserved CoV proteins in viral replication. Here, we show that substitution of alanine at G332 in the N7-MTase domain of nsp14 impairs viral replication, enhances sensitivity to the innate immune response, and reduces viral RNA translation efficiency. Our data support the idea that coronavirus RNA capping could be targeted for development of antiviral therapeutics.
Collapse
|
25
|
Luo J, Fang L, Dong N, Fang P, Ding Z, Wang D, Chen H, Xiao S. Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-β production. Virology 2016; 495:10-7. [PMID: 27152478 PMCID: PMC7111668 DOI: 10.1016/j.virol.2016.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/05/2022]
Abstract
Porcine deltacoronavirus (PDCoV), an emerging animal coronavirus causing enteric disease in pigs, belongs to the newly identified Deltacoronavirus genus in the Coronaviridae family. Although extensive studies have been carried out to investigate the regulation of interferon (IFN) responses by alphacoronaviruses, betacoronaviruses, and gammacoronaviruses, little is known about this process during deltacoronavirus infection. In this study, we found that PDCoV infection fails to induce, and even remarkably inhibits, Sendai virus- or poly(I: C)-induced IFN-β production by impeding the activation of transcription factors NF-κB and IRF3. We also found that PDCoV infection significantly suppresses the activation of IFN-β promoter stimulated by IRF3 or its upstream molecules (RIG-I, MDA5, IPS-1, TBK1, IKKε) in the RIG-I signaling pathway, but does not counteract its activation by the constitutively active mutant of IRF3 (IRF3–5D). Taken together, our results demonstrate that PDCoV infection suppresses RIG-I-mediated IFN signaling pathway, providing a better understanding of the PDCoV immune evasion strategy. PDCoV infection fails to induce IFN-β production in LLC-PK1 cells. PDCoV infection suppresses Sendai virus-or poly(I: C)-induced IFN-β production. PDCoV impedes Sendai virus- or poly(I: C)-induced activation of NF-κB and IRF3. PDCoV interrupts RIG-I signaling pathway to inhibit IFN-β production.
Collapse
Affiliation(s)
- Jingyi Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
26
|
Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal Oas Gene Expression and Independent of Virus-Induced Interferon. J Virol 2016; 90:3160-72. [PMID: 26739051 DOI: 10.1128/jvi.03036-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The oligoadenylate synthetase (OAS)-RNase L pathway is a potent interferon (IFN)-induced antiviral activity. Upon sensing double-stranded RNA, OAS produces 2',5'-oligoadenylates (2-5A), which activate RNase L. Murine coronavirus (mouse hepatitis virus [MHV]) nonstructural protein 2 (ns2) is a 2',5'-phosphodiesterase (PDE) that cleaves 2-5A, thereby antagonizing RNase L activation. PDE activity is required for robust replication in myeloid cells, as a mutant of MHV (ns2(H126R)) encoding an inactive PDE fails to antagonize RNase L activation and replicates poorly in bone marrow-derived macrophages (BMM), while ns2(H126R) replicates to high titer in several types of nonmyeloid cells, as well as in IFN receptor-deficient (Ifnar1(-/-)) BMM. We reported previously that myeloid cells express significantly higher basal levels of OAS transcripts than nonmyeloid cells. Here, we investigated the contributions of Oas gene expression, basal IFN signaling, and virus-induced IFN to RNase L activation. Infection with ns2(H126R) activated RNase L in Ifih1(-/-) BMM to a similar extent as in wild-type (WT) BMM, despite the lack of IFN induction in the absence of MDA5 expression. However, ns2(H126R) failed to induce RNase L activation in BMM treated with IFNAR1-blocking antibody, as well as in Ifnar1(-/-) BMM, both expressing low basal levels of Oas genes. Thus, activation of RNase L does not require virus-induced IFN but rather correlates with adequate levels of basal Oas gene expression, maintained by basal IFN signaling. Finally, overexpression of RNase L is not sufficient to compensate for inadequate basal OAS levels. IMPORTANCE The oligoadenylate synthetase (OAS)-RNase L pathway is a potent antiviral activity. Activation of RNase L during murine coronavirus (mouse hepatitis virus [MHV]) infection of myeloid cells correlates with high basal Oas gene expression and is independent of virus-induced interferon secretion. Thus, our data suggest that cells with high basal Oas gene expression levels can activate RNase L and thereby inhibit virus replication early in infection upon exposure to viral double-stranded RNA (dsRNA) before the induction of interferon and prior to transcription of interferon-stimulated antiviral genes. These findings challenge the notion that activation of the OAS-RNase L pathway requires virus to induce type I IFN, which in turn upregulates OAS gene expression, as well as to provide dsRNA to activate OAS. Our data further suggest that myeloid cells may serve as sentinels to restrict viral replication, thus protecting other cell types from infection.
Collapse
|
27
|
Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity. J Virol 2015; 89:12047-57. [PMID: 26401035 DOI: 10.1128/jvi.01057-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system.
Collapse
|
28
|
Cao L, Ge X, Gao Y, Herrler G, Ren Y, Ren X, Li G. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-β production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway. Virol J 2015; 12:127. [PMID: 26283628 PMCID: PMC4539884 DOI: 10.1186/s12985-015-0345-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022] Open
Abstract
Background The lack of optimal porcine cell lines has severely impeded the study and progress in elucidation of porcine epidemic diarrhea virus (PEDV) pathogenesis. Vero cell, an African green monkey kidney cell line, was often used to isolate and propagate PEDV. Nonetheless, the target cells of PEDV in vivo are intestinal epithelial cells, during infection, intestinal epithelia would be damaged and resulted in digestive disorders. The immune functions of porcine epithelial cells and interactions with other immune cell populations display a number of differences compared to other species. Type I interferon (IFN) plays an important role in antiviral immune response. Limited reports showed that PEDV could inhibit type I interferon production. In this study, porcine small intestinal epithelial cells (IECs), the target cells of PEDV, were used as the infection model in vitro to identify the possible molecular mechanisms of PEDV-inhibition IFN-β production. Results PEDV not only failed to induce IFN-β expression, but also inhibited dsRNA-mediated IFN-β production in IECs. As the key IFN-β transcription factors, we found that dsRNA-induced activation of IFN regulatory factor 3 (IRF-3) was inhibited after PEDV infection, but not nuclear factor-kappaB (NF-κB). To identify the mechanism of PEDV intervention with dsRNA-mediated IFN-β expression more accurately, the role of individual molecules of RIG-I signaling pathway were investigated. In the upstream of IRF-3, TANK-binding kinase 1 (TBK1)-or inhibitor of κB kinase-ε (IKKε)-mediated IFN-β production was not blocked by PEDV, while RIG-I-and its adapter molecule IFN-β promoter stimulator 1 (IPS-1)-mediated IFN-β production were completely inhibited after PEDV infection. Conclusion Taken together, our data demonstrated for the first time that PEDV infection of its target cell line, IECs, inhibited dsRNA-mediated IFN-β production by blocking the activation of IPS-1 in RIG-I-mediated pathway. Our studies offered new visions in understanding of the interaction between PEDV and host innate immune system.
Collapse
Affiliation(s)
- Liyan Cao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Xuying Ge
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Yu Gao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Georg Herrler
- Institute of Virology University of Veterinary Medicine, BÜnteweg 17, D-30559, Hannover, Germany.
| | - Yudong Ren
- College of Electrical and Information, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaofeng Ren
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
29
|
Hosey KL, Hu S, Derbigny WA. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells. J Interferon Cytokine Res 2015; 35:901-16. [PMID: 26262558 DOI: 10.1089/jir.2015.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription.
Collapse
Affiliation(s)
- Kristen Lynette Hosey
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sishun Hu
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana.,2 College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Wilbert Alfred Derbigny
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
30
|
The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. J Virol 2015; 89:9029-43. [PMID: 26085159 DOI: 10.1128/jvi.01331-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Collapse
|
31
|
Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol 2015; 89:8416-27. [PMID: 26041293 DOI: 10.1128/jvi.00948-15] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The 5' cap structures of eukaryotic mRNAs are important for RNA stability and protein translation. Many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases (2'-O-MTase) to autonomously modify their mRNAs and carry a cap-1 structure (m7GpppNm) at the 5' end, thereby facilitating viral replication and escaping innate immune recognition in host cells. Previous studies showed that the 2'-O-MTase activity of severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 16 (nsp16) needs to be activated by nsp10, whereas nsp16 of feline coronavirus (FCoV) alone possesses 2'-O-MTase activity (E. Decroly et al., J Virol 82:8071-8084, 2008, http://dx.doi.org/10.1128/JVI.00407-08; M. Bouvet et al., PLoS Pathog 6:e1000863, 2010, http://dx.doi.org/10.1371/journal.ppat.1000863; E. Decroly et al., PLoS Pathog 7:e1002059, 2011, http://dx.doi.org/10.1371/journal.ppat.1002059; Y. Chen et al., PLoS Pathog 7:e1002294, 2011, http://dx.doi.org/10.1371/journal.ppat.1002294) . In this study, we demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a universal and conserved mechanism in coronaviruses, including FCoV, and that nsp10 is functionally interchangeable in the stimulation of nsp16 of different coronaviruses. Based on our current and previous studies, we designed a peptide (TP29) from the sequence of the interaction interface of mouse hepatitis virus (MHV) nsp10 and demonstrated that the peptide inhibits the 2'-O-MTase activity of different coronaviruses in biochemical assays and the viral replication in MHV infection and SARS-CoV replicon models. Interestingly, the peptide TP29 exerted robust inhibitory effects in vivo in MHV-infected mice by impairing MHV virulence and pathogenesis through suppressing virus replication and enhancing type I interferon production at an early stage of infection. Therefore, as a proof of principle, the current results indicate that coronavirus 2'-O-MTase activity can be targeted in vitro and in vivo. IMPORTANCE Coronaviruses are important pathogens of animals and human with high zoonotic potential. SARS-CoV encodes the 2'-O-MTase that is composed of the catalytic subunit nsp16 and the stimulatory subunit nsp10 and plays an important role in virus genome replication and evasion from innate immunity. Our current results demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a common mechanism for coronaviruses, and nsp10 is functionally interchangeable in the stimulation of nsp16 among different coronaviruses, which underlies the rationale for developing inhibitory peptides. We demonstrate that a peptide derived from the nsp16-interacting domain of MHV nsp10 could inhibit 2'-O-MTase activity of different coronaviruses in vitro and viral replication of MHV and SARS-CoV replicon in cell culture, and it could strongly inhibit virus replication and pathogenesis in MHV-infected mice. This work makes it possible to develop broad-spectrum peptide inhibitors by targeting the nsp16/nsp10 2'-O-MTase of coronaviruses.
Collapse
|
32
|
Kashiwazaki H, Kakizaki M, Ikehara Y, Togayachi A, Narimatsu H, Watanabe R. Mice lacking α1,3-fucosyltransferase 9 exhibit modulation of in vivo immune responses against pathogens. Pathol Int 2015; 64:199-208. [PMID: 24888773 PMCID: PMC7167665 DOI: 10.1111/pin.12159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/25/2014] [Indexed: 01/13/2023]
Abstract
Carbohydrate structures, including Lewis X (Lex), which is not synthesized in mutant mice that lack α1,3‐fucosyltransferase 9 (Fut9−/−), are involved in cell–cell recognition and inflammation. However, immunological alteration in Fut9−/− mice has not been studied. Thus, the inflammatory response of Fut9−/− mice was examined using the highly neurovirulent mouse hepatitis virus (MHV) JHMV srr7 strain. Pathological study revealed that inflammation induced in the brains of Fut9−/− mice after infection was more extensive compared with that of wild‐type mice, although viral titers obtained from the brains of mutant mice were lower than those of wild‐type mice. Furthermore, the reduction in cell numbers in the spleens of wild‐type mice after infection was not observed in the infected Fut9−/− mice. Although there were no clear differences in the levels of cytokines examined in the brains between Fut9−/− and wild‐type mice except for interferon‐β (IFN‐β) expression, some of those in the spleens, including interferon‐γ (IFN‐γ), interleukin‐6 (IL‐6), and monocyte chemoattractant protein‐1 (MCP‐1), showed higher levels in Fut9−/− than in wild‐type mice. Furthermore, Fut9−/− mice were refractory to the in vivo inoculation of endotoxin (LPS) compared with wild‐type mice. These results indicate that Lex structures are involved in host responses against viral or bacterial challenges.
Collapse
Affiliation(s)
- Hiromi Kashiwazaki
- Department of BioinformaticsFaculty of EngineeringSoka UniversityHachiojiTokyoJapan
| | - Masatoshi Kakizaki
- Department of BioinformaticsFaculty of EngineeringSoka UniversityHachiojiTokyoJapan
| | - Yuzuru Ikehara
- Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Akira Togayachi
- Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Hisashi Narimatsu
- Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Rihito Watanabe
- Department of BioinformaticsFaculty of EngineeringSoka UniversityHachiojiTokyoJapan
| |
Collapse
|
33
|
The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU. J Virol 2015; 89:3598-609. [PMID: 25589656 DOI: 10.1128/jvi.03535-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Mouse hepatitis virus (MHV) isolates JHM.WU and JHM.SD promote severe central nervous system disease. However, while JHM.WU replicates robustly and induces hepatitis, JHM.SD fails to replicate or induce pathology in the liver. These two JHM variants encode homologous proteins with few polymorphisms, and little is known about which viral proteins(s) is responsible for the liver tropism of JHM.WU. We constructed reverse genetic systems for JHM.SD and JHM.WU and, utilizing these full-length cDNA clones, constructed chimeric viruses and mapped the virulence factors involved in liver tropism. Exchanging the spike proteins of the two viruses neither increased replication of JHM.SD in the liver nor attenuated JHM.WU. By further mapping, we found that polymorphisms in JHM.WU structural protein M and nonstructural replicase proteins nsp1 and nsp13 are essential for liver pathogenesis. M protein and nsp13, the helicase, of JHM.WU are required for efficient replication in vitro and in the liver in vivo. The JHM.SD nsp1 protein contains a K194R substitution of Lys194, a residue conserved among all other MHV strains. The K194R polymorphism has no effect on in vitro replication but influences hepatotropism, and introduction of R194K into JHM.SD promotes replication in the liver. Conversely, a K194R substitution in nsp1 of JHM.WU or A59, another hepatotropic strain, significantly attenuates replication of each strain in the liver and increases IFN-β expression in macrophages in culture. Our data indicate that both structural and nonstructural proteins contribute to MHV liver pathogenesis and support previous reports that nsp1 is a Betacoronavirus virulence factor. IMPORTANCE The Betacoronavirus genus includes human pathogens, some of which cause severe respiratory disease. The spread of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) into human populations demonstrates the zoonotic potential of emerging coronaviruses, and there are currently no vaccines or effective antivirals for human coronaviruses. Thus, it is important to understand the virus-host interaction that regulates coronavirus pathogenesis. Murine coronavirus infection of mice provides a useful model for the study of coronavirus-host interactions, including the determinants of tropism and virulence. We found that very small changes in coronavirus proteins can profoundly affect tropism and virulence. Furthermore, the hepatotropism of MHV-JHM depends not on the spike protein and viral entry but rather on a combination of the structural protein M and nonstructural replicase-associated proteins nsp1 and nsp13, which are conserved among betacoronaviruses. Understanding virulence determinants will aid in the design of vaccines and antiviral strategies.
Collapse
|
34
|
Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res 2014; 194:110-23. [PMID: 25304691 PMCID: PMC7114476 DOI: 10.1016/j.virusres.2014.09.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/11/2022]
Abstract
Coronavirus replication is structurally and functionally associated with the endoplasmic reticulum (ER), a major site of protein synthesis, folding, modification and sorting in the eukaryotic cells. Disturbance of ER homeostasis may occur under various physiological or pathological conditions. In response to the ER stress, signaling pathways of the unfolded protein response (UPR) are activated. UPR is mediated by three ER transmembrane sensors, namely the PKR-like ER protein kinase (PERK), the inositol-requiring protein 1 (IRE1) and the activating transcriptional factor 6 (ATF6). UPR facilitates adaptation to ER stress by reversible translation attenuation, enhancement of ER protein folding capacity and activation of ER-associated degradation (ERAD). In cells under prolonged and irremediable ER stress, UPR can also trigger apoptotic cell death. Accumulating evidence has shown that coronavirus infection causes ER stress and induces UPR in the infected cells. UPR is closely associated with a number of major signaling pathways, including autophagy, apoptosis, the mitogen-activated protein (MAP) kinase pathways, innate immunity and pro-inflammatory response. Therefore, studies on the UPR are pivotal in elucidating the complicated issue of coronavirus-host interaction. In this paper, we present the up-to-date knowledge on coronavirus-induced UPR and discuss its potential involvement in regulation of innate immunity and apoptosis.
Collapse
Affiliation(s)
- To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mei Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
35
|
Activation of the chicken type I interferon response by infectious bronchitis coronavirus. J Virol 2014; 89:1156-67. [PMID: 25378498 DOI: 10.1128/jvi.02671-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Coronaviruses from both the Alphacoronavirus and Betacoronavirus genera interfere with the type I interferon (IFN) response in various ways, ensuring the limited activation of the IFN response in most cell types. Of the gammacoronaviruses that mainly infect birds, little is known about the activation of the host immune response. We show that the prototypical Gammacoronavirus, infectious bronchitis virus (IBV), induces a delayed activation of the IFN response in primary renal cells, tracheal epithelial cells, and a chicken cell line. In fact, Ifnβ expression is delayed with respect to the peak of viral replication and the accompanying accumulation of double-stranded RNA (dsRNA). In addition, we demonstrate that MDA5 is the primary sensor for Gammacoronavirus infections in chicken cells. Furthermore, we provide evidence that accessory proteins 3a and 3b of IBV modulate the response at the transcriptional and translational levels. Finally, we show that, despite the lack of activation of the IFN response during the early phase of IBV infection, the signaling of nonself dsRNA through both MDA5 and TLR3 remains intact in IBV-infected cells. Taken together, this study provides the first comprehensive analysis of host-virus interactions of a Gammacoronavirus with avian innate immune responses. IMPORTANCE Our results demonstrate that IBV has evolved multiple strategies to avoid the activation of the type I interferon response. Taken together, the present study closes a gap in the understanding of host-IBV interaction and paves the way for further characterization of the mechanisms underlying immune evasion strategies as well as the pathogenesis of gammacoronaviruses.
Collapse
|
36
|
McGruder B, Leibowitz JL. A review of genetic methods and models for analysis of coronavirus-induced severe pneumonitis. J Gen Virol 2014; 96:494-506. [PMID: 25252685 PMCID: PMC4811657 DOI: 10.1099/vir.0.069732-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Coronaviruses (CoVs) have been studied for over 60 years, but have only recently gained notoriety as deadly human pathogens with the emergence of severe respiratory syndrome CoV and Middle East respiratory syndrome virus. The rapid emergence of these viruses has demonstrated the need for good models to study severe CoV respiratory infection and pathogenesis. There are, currently, different methods and models for the study of CoV disease. The available genetic methods for the study and evaluation of CoV genetics are reviewed here. There are several animal models, both mouse and alternative animals, for the study of severe CoV respiratory disease that have been examined, each with different pros and cons relative to the actual pathogenesis of the disease in humans. A current limitation of these models is that no animal model perfectly recapitulates the disease seen in humans. Through the review and analysis of the available disease models, investigators can employ the most appropriate available model to study various aspects of CoV pathogenesis and evaluate possible antiviral treatments that may potentially be successful in future treatment and prevention of severe CoV respiratory infections.
Collapse
Affiliation(s)
- Brenna McGruder
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, TX 77807, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
37
|
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5:296. [PMID: 24987391 PMCID: PMC4060729 DOI: 10.3389/fmicb.2014.00296] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/29/2014] [Indexed: 12/27/2022] Open
Abstract
The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.
Collapse
Affiliation(s)
- To S Fung
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Ding X Liu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
38
|
Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J Virol 2014; 88:8936-45. [PMID: 24872591 DOI: 10.1128/jvi.00700-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea in piglets and results in large economic losses in many Asian and European countries. A large-scale outbreak of porcine epidemic diarrhea occurred in China in 2010, and the virus emerged in the United States in 2013 and spread rapidly, posing significant economic and public health concerns. Previous studies have shown that PEDV infection inhibits the synthesis of type I interferon (IFN), and viral papain-like protease 2 has been identified as an IFN antagonist. In this study, we found that the PEDV-encoded nucleocapsid (N) protein also inhibits Sendai virus-induced IFN-β production, IFN-stimulated gene expression, and activation of the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB. We also found that N protein significantly impedes the activation of the IFN-β promoter stimulated by TBK1 or its upstream molecules (RIG-I, MDA5, IPS-1, and TRAF3) but does not counteract its activation by IRF3. A detailed analysis revealed that the PEDV N protein targets TBK1 by direct interaction and that this binding sequesters the association between TBK1 and IRF3, which in turn inhibits both IRF3 activation and type I IFN production. Together, our findings demonstrate a new mechanism evolved by PEDV to circumvent the host's antiviral immunity. IMPORTANCE PEDV has received increasing attention since the emergence of a PEDV variant in China and the United States. Here, we identify nucleocapsid (N) protein as a novel PEDV-encoded interferon (IFN) antagonist and demonstrate that N protein antagonizes IFN production by sequestering the interaction between IRF3 and TBK1, a critical step in type I IFN signaling. This adds another layer of complexity to the immune evasion strategies evolved by this economically important viral pathogen. An understanding of its immune evasion mechanism may direct us to novel therapeutic targets and more effective vaccines against PEDV infection.
Collapse
|
39
|
Ayllon J, García-Sastre A, Martínez-Sobrido L. Rescue of recombinant Newcastle disease virus from cDNA. J Vis Exp 2013. [PMID: 24145366 DOI: 10.3791/50830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Newcastle disease virus (NDV), the prototype member of the Avulavirus genus of the family Paramyxoviridae(1), is a non-segmented, negative-sense, single-stranded, enveloped RNA virus (Figure 1) with potential applications as a vector for vaccination and treatment of human diseases. In-depth exploration of these applications has only become possible after the establishment of reverse genetics techniques to rescue recombinant viruses from plasmids encoding their complete genomes as cDNA(2-5). Viral cDNA can be conveniently modified in vitro by using standard cloning procedures to alter the genotype of the virus and/or to include new transcriptional units. Rescue of such genetically modified viruses provides a valuable tool to understand factors affecting multiple stages of infection, as well as allows for the development and improvement of vectors for the expression and delivery of antigens for vaccination and therapy. Here we describe a protocol for the rescue of recombinant NDVs.
Collapse
Affiliation(s)
- Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai
| | | | | |
Collapse
|
40
|
Elliott R, Li F, Dragomir I, Chua MMW, Gregory BD, Weiss SR. Analysis of the host transcriptome from demyelinating spinal cord of murine coronavirus-infected mice. PLoS One 2013; 8:e75346. [PMID: 24058676 PMCID: PMC3776850 DOI: 10.1371/journal.pone.0075346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/12/2013] [Indexed: 01/29/2023] Open
Abstract
Persistent infection of the mouse central nervous system (CNS) with mouse hepatitis virus (MHV) induces a demyelinating disease pathologically similar to multiple sclerosis and is therefore used as a model system. There is little information regarding the host factors that correlate with and contribute to MHV-induced demyelination. Here, we detail the genes and pathways associated with MHV-induced demyelinating disease in the spinal cord. High-throughput sequencing of the host transcriptome revealed that demyelination is accompanied by numerous transcriptional changes indicative of immune infiltration as well as changes in the cytokine milieu and lipid metabolism. We found evidence that a Th1-biased cytokine/chemokine response and eicosanoid-derived inflammation accompany persistent MHV infection and that antigen presentation is ongoing. Interestingly, increased expression of genes involved in lipid transport, processing, and catabolism, including some with known roles in neurodegenerative diseases, coincided with demyelination. Lastly, expression of several genes involved in osteoclast or bone-resident macrophage function, most notably TREM2 and DAP12, was upregulated in persistently infected mouse spinal cord. This study highlights the complexity of the host antiviral response, which accompany MHV-induced demyelination, and further supports previous findings that MHV-induced demyelination is immune-mediated. Interestingly, these data suggest a parallel between bone reabsorption by osteoclasts and myelin debris clearance by microglia in the bone and the CNS, respectively. To our knowledge, this is the first report of using an RNA-seq approach to study the host CNS response to persistent viral infection.
Collapse
Affiliation(s)
- Ruth Elliott
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fan Li
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Isabelle Dragomir
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ming Ming W. Chua
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Homologous 2',5'-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci U S A 2013; 110:13114-9. [PMID: 23878220 DOI: 10.1073/pnas.1306917110] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Efficient and productive virus infection often requires viral countermeasures that block innate immunity. The IFN-inducible 2',5'-oligoadenylate (2-5A) synthetases (OASs) and ribonuclease (RNase) L are components of a potent host antiviral pathway. We previously showed that murine coronavirus (MHV) accessory protein ns2, a 2H phosphoesterase superfamily member, is a phosphodiesterase (PDE) that cleaves 2-5A, thereby preventing activation of RNase L. The PDE activity of ns2 is required for MHV replication in macrophages and for hepatitis. Here, we show that group A rotavirus (RVA), an important cause of acute gastroenteritis in children worldwide, encodes a similar PDE. The RVA PDE forms the carboxy-terminal domain of the minor core protein VP3 (VP3-CTD) and shares sequence and predicted structural homology with ns2, including two catalytic HxT/S motifs. Bacterially expressed VP3-CTD exhibited 2',5'-PDE activity, which cleaved 2-5A in vitro. In addition, VP3-CTD expressed transiently in mammalian cells depleted 2-5A levels induced by OAS activation with poly(rI):poly(rC), preventing RNase L activation. In the context of recombinant chimeric MHV expressing inactive ns2, VP3-CTD restored the ability of the virus to replicate efficiently in macrophages or in the livers of infected mice, whereas mutant viruses expressing inactive VP3-CTD (H718A or H798R) were attenuated. In addition, chimeric viruses expressing either active ns2 or VP3-CTD, but not nonfunctional equivalents, were able to protect ribosomal RNA from RNase L-mediated degradation. Thus, VP3-CTD is a 2',5'-PDE able to functionally substitute for ns2 in MHV infection. Remarkably, therefore, two disparate RNA viruses encode proteins with homologous 2',5'-PDEs that antagonize activation of innate immunity.
Collapse
|
42
|
Cell-type-specific activation of the oligoadenylate synthetase-RNase L pathway by a murine coronavirus. J Virol 2013; 87:8408-18. [PMID: 23698313 DOI: 10.1128/jvi.00769-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2',5'-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types-neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I·C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.
Collapse
|
43
|
de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens RWAL, Posthuma CC, van der Meer Y, Bárcena M, Haagmans BL, Snijder EJ, van den Hoogen BG. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol 2013; 94:1749-1760. [PMID: 23620378 PMCID: PMC3749523 DOI: 10.1099/vir.0.052910-0] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. The 2003 outbreak of severe acute respiratory syndrome (SARS) highlighted the potentially lethal consequences of CoV-induced disease in humans. In 2012, a novel CoV (Middle East Respiratory Syndrome coronavirus; MERS-CoV) emerged, causing 49 human cases thus far, of which 23 had a fatal outcome. In this study, we characterized MERS-CoV replication and cytotoxicity in human and monkey cell lines. Electron microscopy of infected Vero cells revealed extensive membrane rearrangements, including the formation of double-membrane vesicles and convoluted membranes, which have been implicated previously in the RNA synthesis of SARS-CoV and other CoVs. Following infection, we observed rapidly increasing viral RNA synthesis and release of high titres of infectious progeny, followed by a pronounced cytopathology. These characteristics were used to develop an assay for antiviral compound screening in 96-well format, which was used to identify cyclosporin A as an inhibitor of MERS-CoV replication in cell culture. Furthermore, MERS-CoV was found to be 50–100 times more sensitive to alpha interferon (IFN-α) treatment than SARS-CoV, an observation that may have important implications for the treatment of MERS-CoV-infected patients. MERS-CoV infection did not prevent the IFN-induced nuclear translocation of phosphorylated STAT1, in contrast to infection with SARS-CoV where this block inhibits the expression of antiviral genes. These findings highlight relevant differences between these distantly related zoonotic CoVs in terms of their interaction with and evasion of the cellular innate immune response.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Stalin Raj
- Viroscience Lab, Erasmus MC, Rotterdam, The Netherlands
| | - Diede Oudshoorn
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Ronald W A L Limpens
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne van der Meer
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
44
|
Lei L, Ying S, Baojun L, Yi Y, Xiang H, Wenli S, Zounan S, Deyin G, Qingyu Z, Jingmei L, Guohui C. Attenuation of mouse hepatitis virus by deletion of the LLRKxGxKG region of Nsp1. PLoS One 2013; 8:e61166. [PMID: 23593419 PMCID: PMC3620170 DOI: 10.1371/journal.pone.0061166] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Coronaviruses are a family of large positive-sense RNA viruses that are responsible for a wide range of important veterinary and human diseases. Nsp1 has been shown to have an important role in the pathogenetic mechanisms of coronaviruses in vivo. To assess the function of a relatively conserved domain (LLRKxGxKG) of MHV nsp1, a mutant virus, MHV-nsp1-27D, with a 27 nts (LLRKxGxKG) deletion in nsp1, was constructed using a reverse genetic system with a vaccinia virus vector. The mutant virus had similar growth kinetics to MHV-A59 wild-type virus in 17CI-1 cells, but was highly attenuated in vivo. Moreover, the mutant virus completely protected C57BL/6 mice from a lethal MHV-A59 challenge. To further analyze the mechanism of the attenuation of the mutant virus, changes in reporter gene expression were measured in nsp1- or nsp1-27D-expressing cells; the results showed that nsp1 inhibited reporter gene expression controlled by different promoters, but that this inhibition was reduced for nsp1-27D. The research in vivo and in vitro suggests that the LLRKxGxKG region of nsp1 may play an important role in this process.
Collapse
Affiliation(s)
- Lin Lei
- State Key Laboratory of Pathogen and Biosecurity, Institute of Epidemiology and Microbiology, Academy of Millitary Medical Sciences, Beijing, China
| | - Sun Ying
- State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan, China
| | - Luo Baojun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Epidemiology and Microbiology, Academy of Millitary Medical Sciences, Beijing, China
| | - Yang Yi
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
| | - He Xiang
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
| | - Su Wenli
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
| | - Sun Zounan
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
| | - Guo Deyin
- State Key Laboratory of Virology and The Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhu Qingyu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Epidemiology and Microbiology, Academy of Millitary Medical Sciences, Beijing, China
| | - Liu Jingmei
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LJ); (CG)
| | - Chang Guohui
- State Key Laboratory of Pathogen and Biosecurity, Institute of Epidemiology and Microbiology, Academy of Millitary Medical Sciences, Beijing, China
- Institute of Disease Prevention and Control, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LJ); (CG)
| |
Collapse
|
45
|
Weinger JG, Marro BS, Hosking MP, Lane TE. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology 2013; 435:110-7. [PMID: 23217621 PMCID: PMC3522860 DOI: 10.1016/j.virol.2012.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022]
Abstract
Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry, UC Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
46
|
Mao X, Ren XF. Functions of proteins of porcine epidemic diarrhea virus. Shijie Huaren Xiaohua Zazhi 2013; 21:44-53. [DOI: 10.11569/wcjd.v21.i1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is caused by porcine epidemic diarrhea virus (PEDV), which belongs to the order Nidovirales in the family Coronaviridae. Since PED was first discovered in Europe in 1987, it has become a severe infectious disease in Asian countries (including China, Korea, Japan, Philippines and Thailand) and has caused great economic losses in swine industry. Although bivalent vaccine for PEDV and transmissible gastroenteritis virus (TGEV, another porcine coronavirus) can decrease the incidence of both diseases, PED is still increasing annually in China. Unfortunately, there have been few studies on viral proteins and pathogenesis of PEDV. This review aims to provide some functional insights on PEDV viral proteins based on the available information from coronaviruse studies.
Collapse
|
47
|
Zhao L, Jha BK, Wu A, Elliott R, Ziebuhr J, Gorbalenya AE, Silverman RH, Weiss SR. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 2012; 11:607-16. [PMID: 22704621 PMCID: PMC3377938 DOI: 10.1016/j.chom.2012.04.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/26/2012] [Accepted: 04/17/2012] [Indexed: 01/19/2023]
Abstract
Many viruses induce hepatitis in humans, highlighting the need to understand the underlying mechanisms of virus-induced liver pathology. The murine coronavirus, mouse hepatitis virus (MHV), causes acute hepatitis in its natural host and provides a useful model for understanding virus interaction with liver cells. The MHV accessory protein, ns2, antagonizes the type I interferon response and promotes hepatitis. We show that ns2 has 2′,5′-phosphodiesterase activity, which blocks the interferon inducible 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway to facilitate hepatitis development. Ns2 cleaves 2′,5′-oligoadenylate, the product of OAS, to prevent activation of the cellular endoribonuclease RNase L and consequently block viral RNA degradation. An ns2 mutant virus was unable to replicate in the liver or induce hepatitis in wild-type mice, but was highly pathogenic in RNase L deficient mice. Thus, RNase L is a critical cellular factor for protection against viral infection of the liver and the resulting hepatitis.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou Y, Yan SD, Jia SZ, Wang HP, Fu QX, Du J, Wang XH, Liang SQ, Zhang JG, Zhan LS. Noninvasive molecular imaging of interferon beta activation in mouse liver. Liver Int 2012; 32:383-91. [PMID: 22221924 DOI: 10.1111/j.1478-3231.2011.02733.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/29/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Interferon beta (IFN-β) is the priming cytokine in the interferons (IFNs) response that plays essential roles in innate immune system. Only very few studies on IFN activation in animals have been reported before, therefore, we embarked to develop a novel method to dynamically examine IFN-β activation in mouse liver by noninvasive molecular imaging. METHODS Interferon beta promoter-directed firefly luciferase gene was integrated into chromosomes of hepatocytes by hydrodynamic injection. Mouse hepatitis virus type 3 (MHV-3) and polyinosinic-polycytidylic acid [poly(I:C)] were used to stimulate the activation of IFN-β. Luciferase activity was used as an indicator of the IFN-β promoter activity in vitro and in vivo. The expression level of IFN-β in the sera and firefly luciferase in the liver was assessed by ELISA and bioluminescence imaging respectively. Western blot was used for detecting proteins expression. RESULTS A rapid and elevated luciferase expression in the mouse liver induced by poly (I:C) and MHV-3 was detected by bioluminescence imaging. The detectable level of IFN-β in the sera was not induced by MHV-3. Moreover, IFN-β activation was significantly inhibited by the hepatitis C virus (HCV) NS3/4A protease in mouse liver. These results were consistent with IFN-β production in the sera. Therefore, a novel visual method to monitor IFN-β promoter activity was established in the current study. CONCLUSION This novel sensitive method can be used for not only assessing IFN-β activation or inhibition in the liver under different conditions, but also screening drug candidates of stimulating or inhibiting of IFN-β production.
Collapse
Affiliation(s)
- Yong Zhou
- Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Comparison of innate immune responses to pathogenic and putative non-pathogenic hantaviruses in vitro. Virus Res 2011; 160:367-73. [PMID: 21820021 DOI: 10.1016/j.virusres.2011.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 02/06/2023]
Abstract
Hantaviruses are human pathogens that cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The mechanisms accounting for the differences in virulence between pathogenic and non-pathogenic hantaviruses are not well known. We have examined the pathogenesis of different hantavirus groups by comparing the innate immune responses induced in the host cell following infection by pathogenic (Sin Nombre, Hantaan, and Seoul virus) and putative non-pathogenic (Prospect Hill, Tula, and Thottapalayam virus) hantaviruses. Pathogenic hantaviruses were found to replicate more efficiently in interferon-competent A549 cells than putative non-pathogenic hantaviruses. The former also suppressed the expression of the interferon-β and myxovirus resistance protein genes, while the transcription level of both genes increased rapidly within 24 h post-infection in the latter. In addition, the induction level of interferon correlated with the activation level of interferon regulatory factor-3. Taken together, these results suggest that the observed differences are correlated with viral pathogenesis and further indicate that pathogenic and putative non-pathogenic hantaviruses differ in terms of early interferon induction via activation of the interferon regulatory factor-3 in infected host cells.
Collapse
|
50
|
Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol 2011; 85:10058-68. [PMID: 21752905 DOI: 10.1128/jvi.05075-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies have demonstrated that mouse hepatitis virus (MHV) hepatotropism is determined largely by postentry events rather than by availability of the viral receptor. In addition, mutation of MHV nonstructural protein 2 (ns2) abrogates the ability of the virus to replicate in the liver and induce hepatitis but does not affect replication in the central nervous system (CNS). Here we show that replication of ns2 mutant viruses is attenuated in bone marrow-derived macrophages (BMM) generated from wild-type (wt) mice but not in L2 fibroblasts, primary astrocytes, or BMM generated from type I interferon receptor-deficient (IFNAR(-/-)) mice. In addition, ns2 mutants are more sensitive than wt virus to pretreatment of BMM, but not L2 fibroblasts or primary astrocytes, with alpha/beta interferon (IFN-α/β). The ns2 mutants induced similar levels of IFN-α/β in wt and IFNAR(-/-) BMM, indicating that ns2 expression has no effect on the induction of IFN but rather that it antagonizes a later step in IFN signaling. Consistent with these in vitro data, the virulence of ns2 mutants increased to near that of wt virus after depletion of macrophages in vivo. These data imply that the ability of MHV to replicate in macrophages is a prerequisite for replication in the liver and induction of hepatitis but not for replication or disease in the CNS, underscoring the importance of IFN signaling in macrophages in vivo for protection of the host from hepatitis. Our results further support the notion that viral tissue tropism is determined in part by postentry events, including the early type I interferon response.
Collapse
|