1
|
Corson E, Pendyala B, Patras A, D'Souza DH. Ultraviolet (UV-C) Light Systems for the Inactivation of Feline Calicivirus and Tulane Virus in Model Fluid Foods. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:506-515. [PMID: 39384722 DOI: 10.1007/s12560-024-09614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Conventional UV-C (254 nm) inactivation technologies have limitations and potential operator-safety risk. To overcome these disadvantages, novel UV-C light-emitting diodes (LED) are developed and investigated for their performance. This study aimed to determine the inactivation of human norovirus (HuNoV) surrogates, Tulane virus (TV), and feline calicivirus (FCV-F9), by UV-C (254 nm) in comparison to UV-C LED (279 nm) in phosphate-buffered saline (PBS) and coconut water (CW). Five-hundred microliters of FCV-F9 (~ 5 log plaque forming units (PFU)/mL) or TV (~ 6 log PFU/mL) were added to 4.5 mL PBS or CW in continuously stirred glass beakers and exposed to 254 nm UV-C for 0 up to 15 min (maximum dosage of 33.89 mJ/cm2) or 279 nm UV-C LED for 0 up to 2.5 min (maximum dosage of 7.03 mJ/cm2). Recovered viruses were assayed in duplicate from each treatment replicated thrice. Mixed model analysis of variance was used for data analysis. Significantly lower D10 values were obtained in PBS and CW (p ≤ 0.05) for both tested viruses using UV-C LED (279 nm) where FCV-F9 showed D10 values of 7.08 ± 1.75 mJ/cm2 and 3.75 ± 0.11 mJ/cm2, while using UV-C (254 nm) showed D10 values of 13.81 ± 0.40 mJ/cm2 and 6.43 ± 0.44 mJ/cm2 in PBS and CW, respectively. Similarly, lower D10 values were obtained for TV of 3.91 ± 1.03 mJ/cm2 and 4.26 ± 1.02 mJ/cm2 with 279 nm UV-C LED and were 18.76 ± 3.16 mJ/cm2 and 10.21 ± 1.48 mJ/cm2 with 254 nm UV-C in PBS and CW, respectively. Viral resistance to these treatments was fluid-matrix dependent. These findings indicate that use of 279 nm UV-C LED is more effective in inactivating HuNoV surrogates than conventional 254 nm UV-C in the tested fluids.
Collapse
Affiliation(s)
- E Corson
- Department of Food Science, University of Tennessee, 2600 River Drive, Knoxville, TN, 37996, USA
| | - B Pendyala
- Tennessee State University, Nashville, TN, USA
| | - A Patras
- Tennessee State University, Nashville, TN, USA
| | - D H D'Souza
- Department of Food Science, University of Tennessee, 2600 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Goraichuk IV, Davis JF, Afonso CL, Suarez DL. Sequencing of historic samples provides complete coding sequences of chicken calicivirus from the United States. Microbiol Resour Announc 2024; 13:e0077724. [PMID: 39264163 PMCID: PMC11465789 DOI: 10.1128/mra.00777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we report the coding-complete genomic sequences of two chicken caliciviruses from US poultry flocks in 2003 and 2004. They show the same genomic organization as that of other members of the Bavovirus genus and have the highest nucleotide identity (~88%) with strains from clinically normal chickens from Germany in 2004 and Netherlands in 2019.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - James F. Davis
- Georgia Poultry Laboratory Network, Gainesville, Georgia, USA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| |
Collapse
|
3
|
Hamilton AN, Gibson KE. Tulane Virus Persistence and Microbial Stability in 3D Food Ink under Various Storage Conditions: A Pre- and Post-Printing Analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:351-362. [PMID: 38709390 PMCID: PMC11422428 DOI: 10.1007/s12560-024-09597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
3D food printers facilitate novel customization of the physicochemical properties of food. This study aimed to investigate the impact of storage conditions on the inactivation of the human norovirus surrogate, Tulane virus (TuV), within 3D printed foods. TuV-inoculated protein cookie food ink (∽ 4 log PFU/g) was distributed into 18 3D food printer capsules (50 g each); half immediately underwent extrusion. Storage of the capsules and printed food products at 20 °C (0, 6, 12, and 24 h), 4 °C (0, 1, 3, and 5d), and - 18 °C (0, 1, 3, and 5d) was completed before analysis for TuV via plaque assays in addition to aerobic plate count, yeast and mold counts, and pH and water activity (aw) measurements. A significant 3-way interaction effect was observed between time, temperature, and storage method (capsule/print) (p = 0.006). Significant findings include: (1) A greater reduction in virions was observed in capsules after 24 h at 20 °C and (2) a substantial reduction in virions at 4 °C from day 0 to day 1 was observed, independent of storage method. Microbial indicators remained steady across temperatures, with storage temperature significantly impacting pH and aw. A significant two-way interaction effect (p = 0.006) was found between microorganism type (yeast/aerobic counts) and temperature. This research seeks to provide insights for the food industry and regulatory bodies in crafting guidelines for the safe storage and handling of 3D printed foods and inks.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
4
|
Hinds J, Apaa T, Parry RH, Withers AJ, MacKenzie L, Staley C, Morrison J, Bennett M, Bremner-Harrison S, Chadwick EA, Hailer F, Harrison SW, Lambin X, Loose M, Mathews F, Tarlinton R, Blanchard A. Multiple novel caliciviruses identified from stoats (Mustela erminea) in the United Kingdom. Access Microbiol 2024; 6:000813.v4. [PMID: 39130737 PMCID: PMC11316584 DOI: 10.1099/acmi.0.000813.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
The Caliciviridae family, comprising positive-sense RNA viruses, is characterised by its non-enveloped, small virions, broad host range, and notable tendency for host switching. These viruses are primarily associated with gastroenteric disease, though they can lead to haemorrhagic or respiratory infections. Our study employed a metagenomics analysis of faecal samples from stoats (Mustela erminea), identifying two novel calicivirus species, named stoat vesivirus and stoat valovirus. Stoat vesivirus was identified in three samples (ST008, ST006, ST004), exhibiting a genome wide nucleotide identity of approximately 92 %. The complete coding sequences of these samples were 8471 (ST004) and 8322 (ST006) nucleotides in length, respectively. Each comprised three open reading frames (ORF), closely resembling the Vesivirus mink calicivirus (China/2/2016), with 70-72 % similarity in ORF1, 61-62 % in ORF2 and 71 % in ORF3. Phylogenetic analysis robustly supported stoat vesivirus as belonging within the Vesivirus genus. The second calivicirus (stoat valovirus), detected solely in sample ST008, was 6527 nucleotides in length and with complete coding sequences present. It shared highest similarity with St-Valérien swine virus and marmot norovirus HT16, showing 39.5 and 38.8 % protein identity with ORF1 and 43.3 and 42.9 % for VP1. Stoat valovirus is borderline for meeting the ICTV criteria for a new genus, demonstrating 60 % divergence in ORF1 compared to the other valovirus', however it clusters basally within the Valovirus genus, supporting leaving it included in this genus.
Collapse
Affiliation(s)
- Joseph Hinds
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Ternenge Apaa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency, Addlestone Surrey, UK
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Amy J. Withers
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency, Addlestone Surrey, UK
| | - Laura MacKenzie
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ceri Staley
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Joshua Morrison
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Samantha Bremner-Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Vincent Wildlife Trust, Eastnor, Ledbury, UK
| | | | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Cardiff, UK
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Beijing, PR China
| | - Stephen W.R. Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- School of Veterinary Medicine, University of Central Lancashire, Preston, UK
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fiona Mathews
- School of Life sciences, University of Sussex, Falmer, UK
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Adam Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
5
|
Guan B, Hong H, Kim M, Lu J, Moore MD. Evaluating the Potential of Ozone Microbubbles for Inactivation of Tulane Virus, a Human Norovirus Surrogate. ACS OMEGA 2024; 9:23184-23192. [PMID: 38854534 PMCID: PMC11154720 DOI: 10.1021/acsomega.3c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the efficacy of low-dose ozone microbubble solution and conventional aqueous ozone as inactivation agents against Tulane virus samples in water over a short period of time. Noroviruses are the primary cause of foodborne illnesses in the US, and the development of effective inactivation agents is crucial. Ozone has a high oxidizing ability and naturally decomposes to oxygen, but it has limitations due to its low dissolution rate, solubility, and stability. Ozone microbubbles have been promising in enhancing inactivation, but little research has been done on their efficacy against noroviruses. The study examined the influence of the dissolved ozone concentration, inactivation duration, and presence of organic matter during inactivation. The results showed that ozone microbubbles had a longer half-life (14 ± 0.81 min) than aqueous ozone (3 ± 0.35 min). After 2, 10, and 20 min postgeneration, the ozone concentration of microbubbles naturally decreased from 4 ppm to 3.2 ± 0.2, 2.26 ± 0.19, and 1.49 ± 0.23 ppm and resulted in 1.43 ± 0.44, 0.88 ± 0.5, and 0.68 ± 0.53 log10 viral reductions, respectively, while the ozone concentration of aqueous ozone decreased from 4 ppm to 2.52 ± 0.07, 0.43 ± 0.05, and 0.09 ± 0.01 ppm and produced 0.8 ± 0.28, 0.29 ± 0.41, and 0.16 ± 0.21 log10 reductions against Tulane virus, respectively (p = 0.0526), suggesting that structuring of ozone in the bubbles over the applied treatment conditions did not have a significant effect, though future study with continuous generation of ozone microbubbles is needed.
Collapse
Affiliation(s)
- Bozhong Guan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Haknyeong Hong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Stoppel SM, Lunestad BT, Myrmel M. The effect of enzymatic and viability dye treatment in combination with long-range PCR on assessing Tulane virus infectivity. J Virol Methods 2024; 327:114919. [PMID: 38531509 DOI: 10.1016/j.jviromet.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.
Collapse
Affiliation(s)
- Sarah M Stoppel
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway.
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Seafood Hazards, Nordnesgaten 50, Bergen 5005, Norway
| | - Mette Myrmel
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Elizabeth Stephansens vei 15, Ås 1430, Norway
| |
Collapse
|
7
|
Álvarez ÁL, Arboleya A, Abade dos Santos FA, García-Manso A, Nicieza I, Dalton KP, Parra F, Martín-Alonso JM. Highs and Lows in Calicivirus Reverse Genetics. Viruses 2024; 16:866. [PMID: 38932159 PMCID: PMC11209508 DOI: 10.3390/v16060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.
Collapse
Affiliation(s)
- Ángel L. Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aroa Arboleya
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Fábio A. Abade dos Santos
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal
| | - Alberto García-Manso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José M. Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Allende A, Férez-Rubio JA, Tudela JA, Aznar R, Gil MI, Sánchez G, Randazzo W. Human intestinal enteroids and predictive models validate the operational limits of sanitizers used for viral disinfection of vegetable process wash water. Int J Food Microbiol 2024; 413:110601. [PMID: 38301540 DOI: 10.1016/j.ijfoodmicro.2024.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 11/20/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. Taking these data together, we demonstrated the value of applying the HIE model to validate current operational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, along with the predictive model described in this study expand the current knowledge to implement post-harvest produce safety procedures in industry settings.
Collapse
Affiliation(s)
- Ana Allende
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - José Antonio Férez-Rubio
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Juan Antonio Tudela
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Rosa Aznar
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Maria Isabel Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables (MxQ), Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| |
Collapse
|
9
|
Monnot M, Ollivier J, Taligrot H, Garry P, Cordier C, Stravakakis C, Le Guyader FS, Moulin P. Retention of Virus Versus Surrogate, by Ultrafiltration in Seawater: Case Study of Norovirus Versus Tulane. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:14-24. [PMID: 38184502 DOI: 10.1007/s12560-023-09574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
In the field of chemical engineering and water treatment, the study of viruses, included surrogates, is well documented. Often, surrogates are used to study viruses and their behavior because they can be produced in larger quantities in safer conditions and are easier to handle. In fact, surrogates allow studying microorganisms which are non-infectious to humans but share some properties similar to pathogenic viruses: structure, composition, morphology, and size. Human noroviruses, recognized as the leading cause of epidemics and sporadic cases of gastroenteritis across all age groups, may be mimicked by the Tulane virus. The objectives of this work were to study (i) the ultrafiltration of Tulane virus and norovirus to validate that Tulane virus can be used as a surrogate for norovirus in water treatment process and (ii) the retention of norovirus and the surrogate as a function of water quality to better understand the use of the latter pathogenic viruses. Ultrafiltration tests showed significant logarithmic reduction values (LRV) in viral RNA: around 2.5 for global LRV (i.e., based on the initial and permeate average concentrations) and between 2 and 6 for average LRV (i.e., retention rate considering the increase of viral concentration in the retentate), both for norovirus and the surrogate Tulane virus. Higher reduction rates (from 2 to 6 log genome copies) are obtained for higher initial concentrations (from 101 to 107 genome copies per mL) due to virus aggregation in membrane lumen. Tulane virus appears to be a good surrogate for norovirus retention by membrane processes.
Collapse
Affiliation(s)
- M Monnot
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - J Ollivier
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - H Taligrot
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - P Garry
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - C Cordier
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France
| | - C Stravakakis
- Ifremer - EMMA Plateforme Expérimentale Mollusques Marins Atlantique, 85230, Bouin, France
| | - F S Le Guyader
- Ifremer - U. Microbiologie, Aliment, Santé et Environnement (LSEM/RBE), Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France
| | - P Moulin
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europôle de l'Arbois, Pavillon Laennec, Hall C, BP80, 13545, Aix-en-Provence, France.
| |
Collapse
|
10
|
Corson E, Pendyala B, Patras A, D'Souza D. Inactivation of hepatitis A virus, feline calicivirus, and Tulane virus on Formica coupons using ultraviolet light technologies. Heliyon 2024; 10:e25201. [PMID: 38371995 PMCID: PMC10873656 DOI: 10.1016/j.heliyon.2024.e25201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Contaminated fomites can lead to hepatitis A virus (HAV) and human norovirus (HuNoV) disease outbreaks. Improved decontamination methods that are user-friendly, cost-effective, and waterless are being researched for sustainability. Traditional ultraviolet light (UV-C) technologies though effective for surface decontamination have drawbacks, using mercury lamps, that pose user-safety risk and environmental hazards. Therefore, UV-C light emitting diode (LED) systems are being designed for delivering required antiviral doses. The objective of this research was to determine the ability of UV-C LED (279 nm) systems to inactivate HuNoV surrogates, feline calicivirus (FCV-F9) and Tulane virus (TV), and HAV on Formica coupons in comparison to UV-C (254 nm) systems. FCV-F9 (∼6 log PFU/mL), TV (∼7 log PFU/mL), or HAV (∼6 log PFU/mL) at 100 μL were surface-spread on sterile Formica coupons (3 × 3 cm2), air-dried, and treated for up to 2.5 min with both systems. Each experiment was replicated thrice. Recovered infectious plaque counts were statistically analyzed using mixed model analysis of variance. FCV-F9, TV, and HAV showed D10 values of 23.37 ± 0.91 mJ/cm2, 16.32 ± 3.6 mJ/cm2, and 12.39 ± 0.70 mJ/cm2 using 279 nm UV-C LED, respectively and D10 values of 9.97 ± 2.44 mJ/cm2, 6.83 ± 1.13 mJ/cm2 and 12.40 ± 1.15 mJ/cm2, respectively with 254 nm UV-C. Higher 279 nm UV-C LED doses were required to cause HuNoV surrogate reduction than 254 nm UV-C, except similar doses with both systems were needed for HAV inactivation on Formica surfaces. It remains critical to measure UV intensity of optical sources and optimize exposure times for desired log reduction on surfaces.
Collapse
Affiliation(s)
- E. Corson
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN 37996, USA
| | - B. Pendyala
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| | - A. Patras
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee 37209, USA
| | - D.H. D'Souza
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Sun C, Huang P, Xu X, Vago FS, Li K, Klose T, Jiang XJ, Jiang W. The 2.6 Å Structure of a Tulane Virus Variant with Minor Mutations Leading to Receptor Change. Biomolecules 2024; 14:119. [PMID: 38254719 PMCID: PMC10813083 DOI: 10.3390/biom14010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of acute gastroenteritis, contributing significantly to annual foodborne illness cases. However, studying these viruses has been challenging due to limitations in tissue culture techniques for over four decades. Tulane virus (TV) has emerged as a crucial surrogate for HuNoVs due to its close resemblance in amino acid composition and the availability of a robust cell culture system. Initially isolated from rhesus macaques in 2008, TV represents a novel Calicivirus belonging to the Recovirus genus. Its significance lies in sharing the same host cell receptor, histo-blood group antigen (HBGA), as HuNoVs. In this study, we introduce, through cryo-electron microscopy (cryo-EM), the structure of a specific TV variant (the 9-6-17 TV) that has notably lost its ability to bind to its receptor, B-type HBGA-a finding confirmed using an enzyme-linked immunosorbent assay (ELISA). These results offer a profound insight into the genetic modifications occurring in TV that are necessary for adaptation to cell culture environments. This research significantly contributes to advancing our understanding of the genetic changes that are pivotal to successful adaptation, shedding light on fundamental aspects of Calicivirus evolution.
Collapse
Affiliation(s)
- Chen Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (F.S.V.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xueyong Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (F.S.V.)
| | - Frank S. Vago
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (F.S.V.)
| | - Kunpeng Li
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (F.S.V.)
| | - Xi Jason Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (F.S.V.)
| |
Collapse
|
12
|
DeWitt CAM, Nelson KA, Kim HJ, Kingsley DH. Ultralow temperature high pressure processing enhances inactivation of norovirus surrogates. Int J Food Microbiol 2024; 408:110438. [PMID: 37839148 DOI: 10.1016/j.ijfoodmicro.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
High pressure processing (HPP) is a powerful non-thermal method for inactivating pathogens. Human norovirus and genetically-related caliciviruses are moderately sensitive to temperatures above 0 °C with >400 MPa (MPa) or higher required to inactivate multiple logs of virus. Sensitivity of murine norovirus (MNV) and Tulane virus (TV) to ice phase transitions was evaluated using ultra low temperature HPP. Identical samples containing MNV or TV were either equilibrated to +1.5 °C (thawed) or -40 °C (frozen) 24 h prior to pressurization. All samples (thawed and frozen) were then placed in a pre-chilled chamber which was then rapidly filled with -40 °C chamber fluid. Samples were immediately pressurized for 5 min at 200, 250 or 300 MPa. Controls were not pressurized. For samples that were thawed and then pressurized in 40 °C chamber fluid, the MNV average log reduction at 200 MPa was 4.4, while >6.1 log reduction (non-detectable) was achieved at 250 and 300 MPa. TV samples averaged 2.3, 5 and 4.3 log reduction at 200, 250, and 300 MPa respectively. For samples that were frozen and then pressurized in 40 °C chamber fluid, the MNV average log reductions were 2.3, 3.2 and 4.2 at 200 MPa, 250 MPa and 300 MPa, respectively, while TV samples averaged 0.81, 2.3 and 1.7 log reductions at 200, 250, and 300 MPa, respectively. Inactivation of TV within oysters at these pressures was also demonstrated. Overall, results indicate that in addition to enhancing inactivation of norovirus surrogates compared to higher temperatures, ultra-cold HPP performed on thawed samples especially enhances inactivation.
Collapse
Affiliation(s)
- Christina A M DeWitt
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - Kevin A Nelson
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - Hyung Joo Kim
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - David H Kingsley
- USDA ARS ERRC Residue Chemistry and Predictive Microbiology Research Unit, J.W.W. Baker Center Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
13
|
Jilani MG, Hoque M, Ali S. Microsatellite diversity and complexity in the viral genomes of the family Caliciviridae. J Genet Eng Biotechnol 2023; 21:140. [PMID: 37999808 PMCID: PMC10673786 DOI: 10.1186/s43141-023-00582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Microsatellites or simple sequence repeats (SSR) consist of 1-6 nucleotide motifs of DNA or RNA which are ubiquitously present in tandem repeated sequences across genome in viruses: prokaryotes and eukaryotes. They may be localized to both the coding and non-coding regions. SSRs play an important role in replication, gene regulation, transcription, and protein function. The Caliciviridae (CLV) family of viruses have ss-RNA, non-enveloped, icosahedral symmetry 27-35 nm in diameter in size. The size of the genome lies between 6.4 and 8.6 kb. RESULTS The incidence, composition, diversity, complexity, and host range of different microsatellites in 62 representatives of the family of Caliciviridae were systematically analyzed. The full-length genome sequences were assessed from NCBI ( https://www.ncbi.nlm.nih.gov ), and microsatellites were extracted through MISA software. The average genome size is about 7538 bp ranging from 6273 (CLV61) to 8798 (CLV47) bp. The average GC content of the genomes was ~ 51%. There are a total of 1317 SSRs and 53 cSSRs in the studied genomes. CLV 41 and CLV 49 contain the highest and lowest value of SSRs with 32 and 10 respectively, while CLV16 had maximum cSSR incidence of 4. There were 29 species which do not contain any cSSR. The incidence of mono-, di-, and tri-nucleotide SSRs was 219, 884, and 206, respectively. The most prevalent mono-, di-, and tri-nucleotide repeat motifs were "C" (126 SSRs), AC/CA (240 SSRs), and TGA/ACT (23 SSRs), respectively. Most of the SSRs and cSSRs are biased toward the coding region with a minimum of ~ 90% incident SSRs in the genomes' coding region. Viruses with similar host are found close to each other on the phylogenetic tree suggesting virus host being one of the driving forces for their evolution. CONCLUSIONS The Caliciviridae genomes does not conform to any pattern of SSR signature in terms of incidence, composition, and localization. This unique property of SSR plays an important role in viral evolution. Clustering of similar host in the phylogenetic tree is the evidence of the uniqueness of SSR signature.
Collapse
Affiliation(s)
- Md Gulam Jilani
- Department of Biological Sciences, Clinical and Applied Genomics (CAG) Laboratory, Aliah University, IIA/27, Newtown, Kolkata, 700160, India
| | - Mehboob Hoque
- Department of Biological Sciences, Applied Bio-Chemistry (ABC) Lab, Aliah University, Kolkata, India
| | - Safdar Ali
- Department of Biological Sciences, Clinical and Applied Genomics (CAG) Laboratory, Aliah University, IIA/27, Newtown, Kolkata, 700160, India.
| |
Collapse
|
14
|
Péloquin L, Goetz C, Jubinville E, Jean J. Protective Effect of Select Bacterial Species Representative of Fresh Produce on Human Norovirus Surrogates Exposed to Disinfecting Pulsed Light. Appl Environ Microbiol 2023; 89:e0004323. [PMID: 37154750 PMCID: PMC10231187 DOI: 10.1128/aem.00043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Contamination of berries and leafy greens with human norovirus (HuNoV) is a major cause of outbreaks of epidemic gastroenteritis worldwide. Using murine norovirus type 1 (MNV-1) and Tulane virus, we studied the possible extension of HuNoV persistence by biofilm-producing epiphytic bacteria on fresh produce. Nine bacterial species frequently found on the surface of berries and leafy greens (Bacillus cereus, Enterobacter cloacae, Escherichia coli, Kocuria kristinae, Lactobacillus plantarum, Pantoea agglomerans, Pseudomonas fluorescens, Raoultella terrigena, and Xanthomonas campestris) were evaluated for the ability to form biofilms in the MBEC Assay Biofilm Inoculator and in 96-well microplates. The biofilm-forming bacteria were further tested for binding MNV-1 and Tulane virus and the ability to protect them against loss of capsid integrity upon exposure to disinfecting pulsed light at a fluence of 11.52 J/cm2. Based on viral reductions, MNV-1 did not benefit from attachment to biofilm whereas Tulane virus was significantly more resistant than the control when attached to biofilms of E. cloacae (P ≤ 0.01), E. coli (P ≤ 0.01), K. kristinae (P ≤ 0.01), P. agglomerans (P ≤ 0.05), or P. fluorescens (P ≤ 0.0001). Enzymatic dispersion of biofilm and microscopic observations suggest that the biofilm matrix composition may contribute to the virus resistance. Our results indicate that direct virus-biofilm interaction protects Tulane virus against disinfecting pulsed light, and that HuNoV on fresh produce therefore might resist such treatment more than suggested by laboratory tests so far. IMPORTANCE Recent studies have shown that bacteria may be involved in the attachment of HuNoV to the surface of fresh produce. Because these foods are difficult to disinfect by conventional methods without compromising product quality, nonthermal nonchemical disinfectants such as pulsed light are being investigated. We seek to understand how HuNoV interacts with epiphytic bacteria, particularly with biofilms formed by bacterial epiphytes, with cells and extracellular polymeric substances, and to determine if it thus escapes inactivation by pulsed light. The results of this study should advance understanding of the effects of epiphytic biofilms on the persistence of HuNoV particle integrity after pulsed light treatment and thus guide the design of novel pathogen control strategies in the food industry.
Collapse
Affiliation(s)
- Laurence Péloquin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Coralie Goetz
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Eric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
15
|
Gan T, Droit L, Vernon S, Barouch DH, Wang D. Isolation of a rhesus calicivirus that can replicate in human cells. Virology 2023; 582:83-89. [PMID: 37031656 PMCID: PMC10264158 DOI: 10.1016/j.virol.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recoviruses (rhesus enteric caliciviruses) are members of the Caliciviridae family. They are a valuable model for studying human caliciviruses such as noroviruses. It has been suggested that some recoviruses may infect humans, which necessitates detailed studies on the cell type tropism of recoviruses. For the recoviruses that have been cultured to date, successful growth has only been reported in monkey kidney cell lines, precluding their use to study virus interactions with human cells. We isolated and characterized a new recovirus, Recovirus Mo/TG30/2012, from monkey stool which grew efficiently in the monkey kidney cell line LLC-MK2. Notably, the virus can infect and replicate in several human cell lines derived from different organs. The ability to infect a human cell culture system with a recovirus expands our understanding of the potential for spillover to humans as well as increases the value of recoviruses as a model of human caliciviruses.
Collapse
Affiliation(s)
- Tianyu Gan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Susan Vernon
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Porcine sapovirus-induced RIPK1-dependent necroptosis is proviral in LLC-PK cells. PLoS One 2023; 18:e0279843. [PMID: 36735696 PMCID: PMC9897573 DOI: 10.1371/journal.pone.0279843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sapoviruses belonging to the genus Sapovirus within the family Caliciviridae are commonly responsible for severe acute gastroenteritis in both humans and animals. Caliciviruses are known to induce intrinsic apoptosis in vitro and in vivo, however, calicivirus-induced necroptosis remains to be fully elucidated. Here, we demonstrate that infection of porcine kidney LLC-PK cells with porcine sapovirus (PSaV) Cowden strain as a representative of caliciviruses induces receptor-interacting protein kinase 1 (RIPK1)-dependent necroptosis and acts as proviral compared to the antiviral function of PSaV-induced apoptosis. Infection of LLC-PK cells with PSaV Cowden strain showed that the interaction of phosphorylated RIPK1 (pRIPK1) with RIPK3 (pRIPK3), mixed lineage kinase domain-like protein (pMLKL) increased in a time-dependent manner, indicating induction of PSaV-induced RIPK1-dependent necroptosis. Interfering of PSaV-infected cells with each necroptotic molecule (RIPK1, RIPK3, or MLKL) by treatment with each specific chemical inhibitor or knockdown with each specific siRNA significantly reduced replication of PSaV but increased apoptosis and cell viability, implying proviral action of PSaV-induced necroptosis. In contrast, treatment of PSaV-infected cells with pan-caspase inhibitor Z-VAD-FMK increased PSaV replication and necroptosis, indicating an antiviral action of PSaV-induced apoptosis. These results suggest that PSaV-induced RIPK1-dependent necroptosis and apoptosis‒which have proviral and antiviral effects, respectively‒counterbalanced each other in virus-infected cells. Our study contributes to understanding the nature of PSaV-induced necroptosis and apoptosis and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.
Collapse
|
17
|
Cardeti G, Cersini A, Manna G, De Santis P, Scicluna MT, Albani A, Simula M, Sittinieri S, De Santis L, De Liberato C, Ngakan PO, Wahid I, Carosi M. Detection of viruses from feces of wild endangered Macaca maura: a potential threat to moor macaque survival and for zoonotic infection. BMC Vet Res 2022; 18:418. [PMID: 36447236 PMCID: PMC9706849 DOI: 10.1186/s12917-022-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To date, there is a scarcity of information and literature on Macaca maura health status relative to viral diseases. The objectives of the present study were to investigate on the potential spread of enteric and non-enteric viruses shed in the environment through a wild macaque feces and to understand the possible interrelation in the spread of zoonotic viruses in a poorly studied geographical area, the Sulawesi Island. This study will also contribute providing useful information on potential threats to the health of this endangered species. METHODS The sampling was conducted between 2014 and 2016 in the Bantimurung Bulusaraung National Park, in the south of the Sulawesi Island and non-invasive sampling methods were used to collect fresh stools of the M. maura, one of the seven macaque species endemic to the island of Sulawesi, Indonesia. The population under study consisted in two wild, neighboring social macaque groups with partially overlapping home ranges; twenty-four samples were collected and examined using negative staining electron microscopy and a panel of PCR protocols for the detection of ten RNA and two DNA viruses. RESULTS Viral particles resembling parvovirus (5 samples), picornavirus (13 samples) and calicivirus (13 samples) were detected by electron microscopy whereas the PCR panel was negative for the 12 viruses investigated, except for one sample positive for a mosquito flavivirus. The results did not correlate with animal sex; furthermore, because all of the animals were clinically healthy, it was not possible to correlate feces consistency with viral presence. CONCLUSIONS As information on viral infections in wild moor macaques remains limited, further studies are yet required to identify the fecal-oral and blood transmitted potentially zoonotic viruses, which may infect the moor macaque and other macaque species endemic to the South Sulawesi Island.
Collapse
Affiliation(s)
- Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Alessandro Albani
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy ,Royal Society for the Protection of Birds/Gola Rainforest National Park, Kenema, Sierra Leone
| | - Massimiliano Simula
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Stefania Sittinieri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Putu Oka Ngakan
- grid.412001.60000 0000 8544 230XFaculty of Forestry, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Isra Wahid
- grid.412001.60000 0000 8544 230XFaculty of Medicine, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Monica Carosi
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy
| |
Collapse
|
18
|
Wang F, Nisar HJ, Li Y, Araud E, Nguyen TH, Kesavadas T. Low-Cost UVBot Using SLAM to Mitigate the Spread of Noroviruses in Occupational Spaces. SENSORS (BASEL, SWITZERLAND) 2022; 22:8926. [PMID: 36433523 PMCID: PMC9696947 DOI: 10.3390/s22228926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 05/28/2023]
Abstract
Noroviruses (NoVs) cause over 90% of non-bacterial gastroenteritis outbreaks in adults and children in developed countries. Therefore, there is a need for approaches to mitigate the transmission of noroviruses in workplaces to reduce their substantial health burden. We developed and validated a low-cost, autonomous robot called the UVBot to disinfect occupational spaces using ultraviolet (UV) lamps. The total cost of the UVBOT is less than USD 1000, which is much lower than existing commercial robots that cost as much as USD 35,000. The user-friendly desktop application allows users to control the robot remotely, check the disinfection map, and add virtual walls to the map. A 2D LiDAR and a simultaneous localization and mapping (SLAM) algorithm was used to generate a map of the space being disinfected. Tulane virus (TV), a human norovirus surrogate, was used to validate the UVBot's effectiveness. TV was deposited on a painted drywall and exposed to UV radiation at different doses. A 3-log (99.9%) reduction of TV infectivity was achieved at a UV dose of 45 mJ/cm2. We further calculated the sanitizing speed as 3.5 cm/s and the efficient sanitizing distance reached up to 40 cm from the UV bulb. The design, software, and environment test data are available to the public so that any organization with minimal engineering capabilities can reproduce the UVBot system.
Collapse
Affiliation(s)
- Fanxin Wang
- Health Care Engineering Systems Center, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Harris Junaid Nisar
- Health Care Engineering Systems Center, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Yao Li
- Department of Mathematics, Harbin Institute of Technology, Haerbin 150001, China
| | - Elbashir Araud
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Thanh H. Nguyen
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Thenkurussi Kesavadas
- Research and Economic Development, University at Albany—State University of New York, Albany, NY 12222, USA
| |
Collapse
|
19
|
Genetic and pathogenic characteristics of two novel/recombinant avian orthoreovirus. Vet Microbiol 2022; 275:109601. [DOI: 10.1016/j.vetmic.2022.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
20
|
Martino M, Taligrot H, Cordier C, Moulin P. Supercritical fluid treatment of organic membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Faircloth J, Goulter RM, Manuel CS, Arbogast JW, Escudero-Abarca B, Jaykus LA. The Efficacy of Commercial Surface Sanitizers against Norovirus on Formica Surfaces with and without Inclusion of a Wiping Step. Appl Environ Microbiol 2022; 88:e0080722. [PMID: 36005755 PMCID: PMC9469706 DOI: 10.1128/aem.00807-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Commonly used surface sanitizers often lack activity against human noroviruses (hNoVs). The impact of inactivation versus removal when these products are applied via wiping is poorly characterized. The purpose of this work was to assess the anti-hNoV efficacy of various surface sanitizer chemistries, as applied to a laminate material commonly used for restaurant tabletops, using standard surface assays (ASTM E1053-11) and a newly developed wiping protocol. Four commercially available products with different active ingredient(s) (i.e., ethanol [EtOH], acid + anionic surfactant [AAS], quaternary ammonium compound [QAC], and sodium hypochlorite [NaOCl]) and a water control were evaluated against hNoV GII.4 Sydney, hNoV GI.6, and the cultivable surrogate Tulane virus (TuV). Virus concentration was evaluated using RNase-reverse transcriptase (RT)-quantitative PCR (qPCR) (hNoV) and infectivity assay (TuV). Only the EtOH-based product significantly reduced virus concentration (>3.5 log10 reduction [LR]) by surface assay, with all other products producing ≤0.5 LR. The inclusion of a wiping step enhanced the efficacy of all products, producing complete virus elimination for the EtOH-based product and 1.6 to 3.8 LR for the other chemistries. For hNoVs, no detectable residual virus could be recovered from paper towels used to wipe the EtOH-based product, while high concentrations of virus could be recovered from the used paper towel and the wiped coupon (1.5 to 2.5 log10 lower genome equivalent copies [GEC] compared to control) for the QAC- and AAS-based products and for water. These results illustrate the variability in anti-hNoV activity of representative surface sanitizers and highlights the value of wiping, the efficacy of which appears to be driven by a combination of virus inactivation and removal. IMPORTANCE Human noroviruses (hNoVs) are the leading cause of acute gastroenteritis and food-borne disease worldwide. Noroviruses are difficult to inactivate, being recalcitrant to sanitizers and disinfectants commonly used by the retail food sector. This comparative study demonstrates the variability in anti-hNoV activity of representative surface sanitizers, even those allowed to make label claims based on the cultivable surrogate, feline calicivirus (FCV). It also highlights the importance of wiping in the process of sanitization, which significantly improves product efficacy through the action of physical removal of surface microbes. There is a need for more and better product formulations with demonstrated efficacy against hNoVs, which will likely necessitate the use of alternative cultivable surrogates, such as Tulane virus (TuV). These findings help food safety professionals make informed decisions on sanitizing product selection and application methods in order to reduce the risk of hNoV contamination and transmission in their facilities.
Collapse
Affiliation(s)
- Jeremy Faircloth
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rebecca M. Goulter
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | - Blanca Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
22
|
Characterization of a Novel RNA Virus Causing Massive Mortality in Yellow Catfish, Pelteobagrus fulvidraco, as an Emerging Genus in Caliciviridae ( Picornavirales). Microbiol Spectr 2022; 10:e0062422. [PMID: 35924844 PMCID: PMC9431444 DOI: 10.1128/spectrum.00624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An emerging disease in farmed yellow catfish (Pelteobagrus fulvidraco) causing massive mortality broke out in 2020 in Hubei, China. Histopathological examination indicated significant changes in kidneys and spleens of diseased fish. Electron microscopy revealed large numbers of viral particles in the kidneys and spleens. These particles were spherical with a diameter of approximately 35 nm. By using RNA sequencing and rapid identification of cDNA ends, the full nucleotide sequence of the virus was identified. The viral genome comprises 7,432 bp and contains three open reading frames sharing no nucleotide sequence similarity with other viruses; however, the amino acid sequence partially matched that of the nonstructural (NS) proteins from viruses in the order Picornavirales. Combined with the phylogenetic analysis, the conserved amino acid motifs and the domains of the viral genome predict a genome order typical of a calicivirus. Therefore, this virus was tentatively named yellow catfish calicivirus (YcCV). Cell culture showed that YcCV could cause a cytopathic effect in the channel catfish kidney cell line (CCK) at early passages. In artificial infection, this virus could infect healthy yellow catfish and led to clinical symptoms similar to those that occurred naturally. In situ hybridization analysis detected positive signals of the virus in kidney, spleen, liver, heart, and gill tissues of diseased fish. This study represents the first report of calicivirus infection in yellow catfish and provides a solid basis for future studies on the control of this viral disease. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. A novel calicivirus identified from yellow catfish also causes substantial mortality. Using an RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE) method, the full nucleotide sequence was identified and characterized, and this virus was tentatively named yellow catfish calicivirus (YcCV). A nucleotide sequence similarity search found no match with other viruses, and an amino acid sequence comparison indicated approximately 23.3% amino acid homology with the viruses in the order Picornavirales. These findings may represent a new avenue to explain virus evolution and suggest a need to further study the pathogenesis of calicivirus and characterize possible interactions among interspecific viruses in the aquaculture environment.
Collapse
|
23
|
Jones SL, Gibson KE. Temperature, Time, and Type, Oh My! Key Environmental Factors Impacting the Recovery of Salmonella Typhimurium, Listeria monocytogenes, and Tulane Virus from Surfaces. J Food Prot 2022; 85:1157-1165. [PMID: 35588461 DOI: 10.4315/jfp-22-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Environmental monitoring (EM) programs are designed to detect the presence of pathogens in food manufacturing environments, with the goal of preventing microbial contamination of food. Nevertheless, limited knowledge exists regarding the influence of environmental conditions on microbial recovery during EM. This study uses a commercially available polyurethane foam EM tool to determine the influence of environmental factors on the recovery of foodborne pathogens. The specific objectives of this study were to determine if environmental conditions and surface composition impact the recovery of sought-after microorganisms found in food processing environments. These data are compared across (i) microorganism type, (ii) surface type, (iii) environmental temperature and relative humidity (RH), and (iv) exposure time. Two bacteria (Listeria monocytogenes and Salmonella Typhimurium) and one human norovirus surrogate (Tulane virus) were inoculated onto three nonporous surfaces (polypropylene, stainless steel, and neoprene). Surfaces were held in an environmental chamber for 24 or 72 h at 30°C with 30% RH, 6°C with 85% RH, and 30°C with 85% RH. Data indicate that microbial recovery from environmental surfaces significantly (P ≤ 0.05) varies by microorganism type, environmental conditions, and exposure time. For instance, all microorganisms were significantly different from each other, with the greatest mean log reduction being Tulane virus and the lesser reduction being L. monocytogenes at 4.94 ± 1.75 log PFU per surface and 2.54 ± 0.91 log CFU per surface, respectively. Overall, these data can be used to improve the effectiveness of EM programs and underscores the need to better comprehend how EM test results are impacted by food manufacturing environmental conditions. HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah L Jones
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Drive, Fayetteville, Arkansas 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Drive, Fayetteville, Arkansas 72704, USA
| |
Collapse
|
24
|
Inactivation Mechanism and Efficacy of Grape Seed Extract for Human Norovirus Surrogate. Appl Environ Microbiol 2022; 88:e0224721. [PMID: 35465682 DOI: 10.1128/aem.02247-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess antimicrobial and antifungal properties, but antiviral effects are not well-known. Here we show that GSE outperformed chemical disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, a process that correlated with a decrease in virus titers. This aggregation and disinfection were not reversible. Molecular docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols physically associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chemical disinfectants to remove infectious viruses from water or food. IMPORTANCE Human noroviruses are major food- and waterborne pathogens, causing approximately 20% of all cases of acute gastroenteritis cases in developing and developed countries. Proper sanitation or disinfection are critical strategies to minimize human norovirus-caused disease until a reliable vaccine is created. Grape seed extract (GSE) is a mixture of plant-derived polyphenols used as a health supplement. Polyphenols are known for antimicrobial, antifungal, and antibiofilm activities, but antiviral effects are not well-known. In studies presented here, plant-derived polyphenols outperformed chemical disinfectants (i.e., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. Based on data from molecular assays and molecular docking simulations, the current model is that the polyphenols in GSE bind to the Tulane virus capsid, an event that triggers virion aggregation. It is thought that this aggregation prevents Tulane virus from entering host cells.
Collapse
|
25
|
Davidson I, Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Kritas SK. The Complexity of Swine Caliciviruses. A Mini Review on Genomic Diversity, Infection Diagnostics, World Prevalence and Pathogenicity. Pathogens 2022; 11:pathogens11040413. [PMID: 35456088 PMCID: PMC9030053 DOI: 10.3390/pathogens11040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of viruses that are the proven or suspected etiological agents of gastroenteritis, the pathogenicity of the members of Caliciviridae family is among the less well understood. In this context, the present review presents and discusses the current knowledge of two genera belonging to this family, namely the Norovirus and the Sapovirus, in relation to swine. Aspects such as pathogenicity, clinical evidence, symptoms, epidemiology and worldwide prevalence, genomic diversity, identification tools as well as interchanging hosts are not only reviewed but also critically evaluated. Generally, although often asymptomatic in pigs, the prevalence of those microbes in pig farms exhibits a worldwide substantial increasing trend. It should be mentioned, however, that the factors influencing the symptomatology of these viruses are still far from well established. Interestingly, both these viruses are also characterized by high genetic diversity. These high levels of molecular diversity in Caliciviridae family are more likely a result of recombination rather than evolutionary or selective adaptation via mutational steps. Thus, molecular markers for their detection are mostly based on conserved regions such as the RdRp region. Finally, it should be emphasized that Norovirus and the Sapovirus may also infect other domestic, farm and wild animals, including humans, and therefore their surveillance and clarification role in diseases such as diarrhea is a matter of public health importance as well.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel;
| | - Efthymia Stamelou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| | - Konstantinos V. Papageorgiou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| |
Collapse
|
26
|
Mariita RM, Davis JH, Randive RV. Illuminating Human Norovirus: A Perspective on Disinfection of Water and Surfaces Using UVC, Norovirus Model Organisms, and Radiation Safety Considerations. Pathogens 2022; 11:226. [PMID: 35215169 PMCID: PMC8879714 DOI: 10.3390/pathogens11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS Inc., an Asahi Kasei Company, 70 Cohoes Avenue, Green Island, NY 12183, USA; (J.H.D.); (R.V.R.)
| | | | | |
Collapse
|
27
|
Escudero-Abarca BI, Goulter RM, Bradshaw J, Faircloth J, Leslie RA, Manuel CS, Arbogast JW, Jaykus LA. Efficacy of an alcohol-based surface disinfectant formulation against human norovirus. J Appl Microbiol 2022; 132:3590-3600. [PMID: 35137492 PMCID: PMC9306916 DOI: 10.1111/jam.15479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Aim To evaluate the anti‐noroviral efficacy of PURELL® surface sanitizer and disinfectant spray (PSS, an alcohol‐based formulation) using human norovirus GII.4 Sydney [hNoV, by RT‐qPCR and human intestinal enteroid (HIE) infectivity assay] and its cultivable surrogate, Tulane virus (TuV, infectivity assay), compared to sodium hypochlorite (NaOCl) solutions. Methods and Results PSS efficacy was evaluated in suspension and on surfaces [stainless steel (SS)] using ASTM methods. Results were expressed as log10 reduction (LR) of genome equivalent copy number (GEC, for hNoV, assayed by RT‐qPCR) and plaque forming units (PFU, for TuV, per infectivity assay). In suspension, PSS achieved a 2.9 ± 0.04 LR hNoV GEC irrespective of contact time (30 or 60 s) and soil load (2.5% or 5%). Under all treatment conditions, infectious TuV could not be recovered following exposure to PSS, corresponding to the assay limit of detection (3.1–5.2 log10 PFU). Infectious hNoV could not be detected in the HIE model after exposure to PSS. On SS and 2.5% soil, PSS produced a 3.1 ± 0.1 LR hNoV GEC, comparable to 500 ppm NaOCl for 60 s. With 5.0% soil, PSS produced a 2.5 ± 0.2 LR hNoV GEC, which was similar to 1000–5000 ppm NaOCl for 60 s. Conclusions PSS showed high anti‐hNoV efficacy by RT‐qPCR and in in vitro (TuV) and ex vivo (HIE) infectivity assays and performed similar to 1000–5000 ppm NaOCl for a 60‐s contact time on SS with added soil. Significance and Impact of Study hNoV remains a significant cause of morbidity globally, partly due to its resistance to numerous surface disinfectants. RT‐qPCR results from this study indicate PSS efficacy against hNoV is comparable to NaOCl efficacy. Infectivity assays leveraging TuV and the HIE model for hNoV support and confirm loss of virus infectivity. Collectively, these results indicate the product’s ability to inactivate hNoV quickly, which could be beneficial in settings having elevated risk for hNoV transmission.
Collapse
Affiliation(s)
- Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Rebecca M Goulter
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Justin Bradshaw
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC.,Current Affiliation: Johnston Community College, Smithfield, NC
| | - Jeremy Faircloth
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | | | | | | | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC
| |
Collapse
|
28
|
Barnes C, Barber R, Schneider KR, Danyluk MD, Wright AC, Jones MK, Montazeri N. Application of Chitosan Microparticles against Human Norovirus. J Food Prot 2021; 84:2092-2098. [PMID: 34324675 DOI: 10.4315/jfp-21-220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Human norovirus (HuNoV) is the leading cause of foodborne illness outbreaks and the second most common cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CMs) against HuNoV GII.4 Sydney and its cultivable surrogate Tulane virus (TuV) in suspensions mimicking fecally contaminated water. CMs were prepared by cross-linking chitosan molecules with sodium sulfate, and the antiviral activity of CMs was assessed with an infectivity assay on TuV and by quantitative reverse transcription PCR on TuV and HuNoV. A 3% CM suspension in phosphate-buffered saline (pH 7.2) bound to TuV particles but had a negligible impact on virus infectivity (P > 0.05). A 10-min contact time resulted in a 1.5-log reduction in genomic copies per mL of TuV and HuNoV in fecal suspensions (P < 0.05). Despite the negligible impact on viral infectivity, CMs can moderately bind to infectious virus particles and help purify environmental water by removing these particles. In this study, TuV was a suitable surrogate for HuNoV with similar log reductions in fecal suspension. These findings highlight the potential application of CM as a novel treatment to minimize the spread of waterborne viral pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Candace Barnes
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Rebecca Barber
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Keith R Schneider
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Michelle D Danyluk
- Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| | - Anita C Wright
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Melissa K Jones
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| | - Naim Montazeri
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
29
|
Faircloth J, Moore MD, Stoufer S, Kim M, Jaykus LA. Generation of Nucleic Acid Aptamer Candidates against a Novel Calicivirus Protein Target. Viruses 2021; 13:v13091716. [PMID: 34578297 PMCID: PMC8473235 DOI: 10.3390/v13091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Human norovirus is the leading cause of foodborne illness globally. One of the challenges in detecting noroviruses is the identification of a completely broadly reactive ligand; however, all detection ligands generated to date target the viral capsid, the outermost of which is the most variable region of the genome. The VPg is a protein covalently linked to the viral genome that is necessary for replication but hitherto remains underexplored as a target for detection or therapeutics. The purpose of this work was to generate nucleic acid aptamers against human norovirus (Norwalk) and cultivable surrogate (Tulane) VPgs for future use in detection and therapeutics. Eight rounds of positive-SELEX and two rounds of counter-SELEX were performed. Five and eight unique aptamer sequences were identified for Norwalk and Tulane VPg, respectively, all of which were predicted to be stable (∆G < −5.0) and one of which occurred in both pools. All candidates displayed binding to both Tulane and Norwalk VPg (positive:negative > 5.0), and all but two of the candidates displayed very strong binding (positive:negative > 10.0), significantly higher than binding to the negative control protein (p < 0.05). Overall, this work reports a number of aptamer candidates found to be broadly reactive and specific for in vitro-expressed VPgs across genus that could be used for future application in detection or therapeutics. Future work characterizing binding of the aptamer candidates against native VPgs and in therapeutic applications is needed to further evaluate their application.
Collapse
Affiliation(s)
- Jeremy Faircloth
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (J.F.); (L.-A.J.)
| | - Matthew D. Moore
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (J.F.); (L.-A.J.)
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (S.S.); (M.K.)
- Correspondence: ; Tel.: +1-413-545-1019
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (S.S.); (M.K.)
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (S.S.); (M.K.)
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (J.F.); (L.-A.J.)
| |
Collapse
|
30
|
Smertina E, Hall RN, Urakova N, Strive T, Frese M. Calicivirus Non-structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front Microbiol 2021; 12:712710. [PMID: 34335548 PMCID: PMC8318036 DOI: 10.3389/fmicb.2021.712710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Michael Frese
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
31
|
Aggarwal S, Hassan E, Baldridge MT. Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses 2021; 13:975. [PMID: 34070283 PMCID: PMC8225081 DOI: 10.3390/v13060975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Every year, millions of children are infected with viruses that target the gastrointestinal tract, causing acute gastroenteritis and diarrheal illness. Indeed, approximately 700 million episodes of diarrhea occur in children under five annually, with RNA viruses norovirus, rotavirus, and astrovirus serving as major causative pathogens. Numerous methodological advancements in recent years, including the establishment of novel cultivation systems using enteroids as well as the development of murine and other animal models of infection, have helped provide insight into many features of viral pathogenesis. However, many aspects of enteric viral infections remain elusive, demanding further study. Here, we describe the different in vitro and in vivo tools available to explore different pathophysiological attributes of human enteric RNA viruses, highlighting their advantages and limitations depending upon the question being explored. In addition, we discuss key areas and opportunities that would benefit from further methodological progress.
Collapse
Affiliation(s)
- Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Ebrahim Hassan
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.A.); (E.H.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway. J Virol 2021; 95:JVI.00051-21. [PMID: 33692204 PMCID: PMC8139687 DOI: 10.1128/jvi.00051-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tight junctions (TJs) are a major barrier and also an important portal of entry for different pathogens. Porcine sapovirus (PSaV) induces early disruption of the TJ integrity of polarized LLC-PK cells, allowing it to bind to the buried occludin co-receptors hidden beneath the TJs on the basolateral surface. However, the signaling pathways involved in the PSaV-induced TJ dissociation are not yet known. Here, we found that the RhoA/ROCK/MLC signaling pathway was activated in polarized LLC-PK cells during the early infection of PSaV Cowden strain in the presence of bile acid. Specific inhibitors of RhoA, ROCK, and MLC restored PSaV-induced reduction of transepithelial resistance, increase of paracellular flux, intracellular translocation of occludin, and lateral membrane lipid diffusion. Moreover, each inhibitor significantly reduced PSaV replication, as evidenced by a reduction in viral protein synthesis, genome copy number, and progeny viruses. The PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, known to dissociate TJs, were not activated during early PSaV infection. Among the above signaling pathways, the RhoA/ROCK/MLC signaling pathway was only activated by PSaV in the absence of bile acid, and specific inhibitors of this signaling pathway restored early TJ dissociation. Our findings demonstrate that PSaV binding to cell surface receptors activates the RhoA/ROCK/MLC signaling pathway, which in turn disrupts TJ integrity via the contraction of the actomyosin ring. Our study contributes to understanding how PSaV enters the cells and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.IMPORTANCEPorcine sapovirus (PSaV), one of the most important enteric pathogens, is known to disrupt tight junction (TJ) integrity to expose its buried co-receptor occludin in polarized LLC-PK cells. However, the cellular signaling pathways that facilitate TJ dissociation are not yet completely understood. Here, we demonstrate that early infection of PSaV in polarized LLC-PK cells in either the presence or absence of bile acids activates the RhoA/ROCK/MLC signaling pathway, whose inhibitors reverse the early PSaV infection-induced early dissociation of TJs and reduce PSaV replication. However, early PSaV infection did not activate the PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, which are also known to dissociate TJs. This study provides a better understanding of the mechanism involved in early PSaV infection-induced disruption of TJs, which is important for controlling or preventing PSaV and other calicivirus infections.
Collapse
|
33
|
Ailavadi S, Morgan MT, D'Souza DH. Aichi virus inactivation by heat in 2-ml glass vials. J Food Sci 2021; 86:4110-4118. [PMID: 33929042 DOI: 10.1111/1750-3841.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Aichi virus (AiV) that results in gastroenteritis worldwide, is spread through contaminated shellfish and water. The resistance/tolerance of AiV to common inactivation processes along with the absence of commercially available vaccines makes it necessary to study its thermal inactivation kinetics. This research evaluated the heat inactivation of AiV in cell-culture media using 2-ml sterile glass vials by the linear and Weibull models. Heat treatments of AiV titers of 7 log plaque forming units (PFU)/ml were conducted thrice in a water-bath at 50, 54, and 58 °C for up to 90 min. Plaque assays for each dilution in duplicate were used to determine infectious virus titers. Linear model D-values for AiV at 50 ± 1 °C (± = standard error) (come-up time = 68 s), 54 ± 0.7 °C (130 s), and 58 ± 0.6°C (251 s) were 43.3 ± 4.23 (R2 = 0.40, RMSE = 0.56), 5.69 ± 0.28 (R2 = 0.80, RMSE = 0.43), and 1.20 ± 0.63 min (R2 = 0.69, RMSE = 0.39), respectively, and the linear model z-value was 5.14 ± 0.39°C (R2 = 0.99, RMSE = 0.08). For the same temperatures, the Weibull model td = 1 values were 20.98 ± 8.8 (R2 = 0.62, RMSE = 0.46, α (scale parameter) = 2.30, β (shape parameter) = 0.38), 3.84 ± 0.69 (R2 = 0.85, RMSE = 0.38, α = 1.08, β = 0.66), and 0.87 ± 0.10 min (R2 = 0.80, RMSE = 0.32, α = 0.22, β = 0.61), respectively and the z-value (using Td = 1 ) was 5.79 ± 0.22 °C (R2 = 1.0, RMSE = 0.03). A better fit was obtained with the Weibull model for log reductions versus time with higher R2 and lower RMSE values. Application of AiV inactivation parameters can help reduce the risk of AiV outbreaks.
Collapse
Affiliation(s)
- Sukriti Ailavadi
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Mark T Morgan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Doris H D'Souza
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
34
|
Shearer AEH, Kniel KE. Effect of Plant-Derived Proteases on Infectivity of Tulane Virus, Murine Norovirus, and Hepatitis A Virus. J Food Prot 2021; 84:418-423. [PMID: 33125048 DOI: 10.4315/jfp-20-296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Plant-derived proteases, bromelain, papain, and ficin, are broad-acting enzymes with generally recognized as safe status for foods and have current application in several food industries. These proteases have also been reported to have antimicrobial properties. This study investigated the efficacy of commercially prepared bromelain, papain, and ficin, individually and combined (2,500 ppm of crude extract), for inactivation of hepatitis A virus (HAV) and human norovirus surrogates, Tulane virus (TV), and murine norovirus (MNV). Various treatment temperatures (45, 50, or 55°C), times (10 or 60 min), and pH values (5.5 or 7.0) in the presence of cysteine (2 mM) were evaluated. Inactivation was assessed by infectivity in plaque assay for TV and MNV and by median tissue culture infective dose for HAV. No reduction in infectious TV or HAV was attributed to the plant-derived proteases at any of the conditions tested. Infectious MNV was reduced by 1 to 3 log PFU/mL; the most effective treatment was bromelain at pH 7 and 50°C for 10 min. A time course study with MNV in bromelain at 50°C indicated that a 2-log PFU/mL reduction could be achieved within 6 min, but extended treatment of 15 min was still insufficient to eliminate infectious MNV. The lack of or limited efficacy of bromelain, papain, and ficin on HAV, TV, and MNV, even at elevated temperatures and exposure times, suggests the plant-derived proteases are not commercially applicable for inactivation of virus on commodities or materials that could not also withstand mild heat treatment. The variable susceptibilities observed between TV and MNV illustrate limitations in utilization of surrogates for predicting pathogen behavior for a structure-specific treatment. HIGHLIGHTS
Collapse
Affiliation(s)
- Adrienne E H Shearer
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
35
|
Cuéllar-Cruz M. The histo-blood group antigens of the host cell may determine the binding of different viruses such as SARS-CoV-2. Future Microbiol 2021; 16:107-118. [PMID: 33459559 PMCID: PMC7842250 DOI: 10.2217/fmb-2020-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses have caused the death of millions of people worldwide. Specifically, human viruses are grouped into 21 families, including the family of coronaviruses (CoVs). In December 2019, in Wuhan, China, a new human CoV was identified, SARS-CoV-2. The first step of the infection mechanism of the SARS-CoV-2 in the human host is adhesion, which occurs through the S glycoprotein that is found in diverse human organs. Another way through which SARS-CoV-2 could possibly attach to the host's cells is by means of the histo-blood group antigens. In this work, we have reviewed the mechanisms by which some viruses bind to the histo-blood group antigens, which could be related to the susceptibility of the individual and are dependent on the histo-blood group.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, México
| |
Collapse
|
36
|
Rowell CER, Dobrovolny HM. Energy Requirements for Loss of Viral Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:281-294. [PMID: 32757142 PMCID: PMC7405386 DOI: 10.1007/s12560-020-09439-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Outside the host, viruses will eventually lose their ability to infect cells due to conformational changes that occur to proteins on the viral capsid. In order to undergo a conformational change, these proteins require energy to activate the chemical reaction that leads to the conformational change. In this study, data from the literature is used to calculate the energy required for viral inactivation for a variety of different viruses by means of the Arrhenius equation. We find that some viruses (rhinovirus, poliovirus, human immunodeficiency virus, Alkhumra hemorrhagic fever virus, and hepatitis A virus) have high inactivation energies, indicative of breaking of a chemical double bond. We also find that several viruses (respiratory syncytial virus, poliovirus, and norovirus) have nonlinear Arrhenius plots, suggesting that there is more than a single pathway for inactivation of these viruses.
Collapse
Affiliation(s)
- Caroline E R Rowell
- Department of Chemistry, Wingate University, Hendersonville, NC, USA
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
37
|
Fuzawa M, Bai H, Shisler JL, Nguyen TH. The Basis of Peracetic Acid Inactivation Mechanisms for Rotavirus and Tulane Virus under Conditions Relevant for Vegetable Sanitation. Appl Environ Microbiol 2020; 86:e01095-20. [PMID: 32709728 PMCID: PMC7499037 DOI: 10.1128/aem.01095-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
We determined the disinfection efficacy and inactivation mechanisms of peracetic acid (PAA)-based sanitizer using pH values relevant for vegetable sanitation against rotavirus (RV) and Tulane virus (TV; a human norovirus surrogate). TV was significantly more resistant to PAA disinfection than RV: for a 2-log10 reduction of virus titer, RV required 1 mg/liter PAA for 3.5 min of exposure, while TV required 10 mg/liter PAA for 30 min. The higher resistance of TV can be explained, in part, by significantly more aggregation of TV in PAA solutions. The PAA mechanisms of virus inactivation were explored by quantifying (i) viral genome integrity and replication using reverse transcription-quantitative PCR (RT-qPCR) and (ii) virus-host receptor interactions using a cell-free binding assay with porcine gastric mucin conjugated with magnetic beads (PGM-MBs). We observed that PAA induced damage to both RV and TV genomes and also decreased virus-receptor interactions, with the latter suggesting that PAA damages viral proteins important for binding its host cell receptors. Importantly, the levels of genome-versus-protein damage induced by PAA were different for each virus. PAA inactivation correlated with higher levels of RV genome damage than of RV-receptor interactions. For PAA-treated TV, the opposite trends were observed. Thus, PAA inactivates each of these viruses via different molecular mechanisms. The findings presented here potentially contribute to the design of a robust sanitation strategy for RV and TV using PAA to prevent foodborne disease.IMPORTANCE In this study, we examined the inactivation mechanisms of peracetic acid (PAA), a sanitizer commonly used for postharvest vegetable washing, for two enteric viruses: Tulane virus (TV) as a human norovirus surrogate and rotavirus (RV). PAA disinfection mechanisms for RV were mainly due to genome damage. In contrast, PAA disinfection in TV was due to damage of the proteins important for binding to its host receptor. We also observed that PAA triggered aggregation of TV to a much greater extent than RV. These studies demonstrate that different viruses are inactivated via different PAA mechanisms. This information is important for designing an optimal sanitation practice for postharvest vegetable washing to minimize foodborne viral diseases.
Collapse
Affiliation(s)
- Miyu Fuzawa
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hezi Bai
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
38
|
Islam A, Hossain ME, Rostal MK, Ferdous J, Islam A, Hasan R, Miah M, Rahman M, Rahman MZ, Daszak P, Epstein JH. Epidemiology and Molecular Characterization of Rotavirus A in Fruit Bats in Bangladesh. ECOHEALTH 2020; 17:398-405. [PMID: 32876756 PMCID: PMC7464061 DOI: 10.1007/s10393-020-01488-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 05/06/2023]
Abstract
Rotavirus A (RVA) is the primary cause of acute dehydrating diarrhea in human and numerous animal species. Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. We screened fresh feces from 416 bats (201 Pteropus medius, 165 Rousettus leschenaultii and 50 Taphozous melanopogon) for RVA using rRT-PCR. We detected a prevalence of 7% (95% CI 3.5-10.8) and 2% (95% CI 0.4-5.2) in P. medius and R. leschenaultii, respectively. We did not detect RVA in the insectivorous bat (T. melanopogon). We identified RVA strains similar to the human strains of G1 and G8 based on sequence-based genotyping, which underscores the importance of including wildlife species in surveillance for zoonotic pathogens to understand pathogen transmission and evolution better.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Melinda K Rostal
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
| | - Jinnat Ferdous
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ausraful Islam
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rashedul Hasan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Ziaur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA
| | - Jonathan H Epstein
- EcoHealth Alliance, 460 West 34th Street, Suite 17, New York, NY, 10001, USA.
| |
Collapse
|
39
|
Vinjé J, Estes MK, Esteves P, Green KY, Katayama K, Knowles NJ, L'Homme Y, Martella V, Vennema H, White PA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Caliciviridae. J Gen Virol 2020; 100:1469-1470. [PMID: 31573467 PMCID: PMC7011698 DOI: 10.1099/jgv.0.001332] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4–8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.
Collapse
Affiliation(s)
- Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pedro Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Bari, Italy
| | - Harry Vennema
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
40
|
Shearer AEH, Kniel KE. Effect of Bacteria and Bacterial Constituents on Recovery and Resistance of Tulane Virus. J Food Prot 2020; 83:661-667. [PMID: 32221571 DOI: 10.4315/0362-028x.jfp-19-300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/05/2019] [Indexed: 01/17/2023]
Abstract
Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.
Collapse
Affiliation(s)
- Adrienne E H Shearer
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
41
|
Fuzawa M, Araud E, Li J, Shisler JL, Nguyen TH. Free Chlorine Disinfection Mechanisms of Rotaviruses and Human Norovirus Surrogate Tulane Virus Attached to Fresh Produce Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11999-12006. [PMID: 31517478 DOI: 10.1021/acs.est.9b03461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To fill the knowledge gap on how effective free chlorine is against viral-contaminated produce, we inoculated the surfaces of outdoor- or greenhouse-grown kale and mustard with Rotavirus (RV) or a human norovirus surrogate (Tulane virus, TV) and then disinfected the leaves with free chlorine. Disinfection efficacies for RV strain OSU and Wa were approximately 1-log10 higher when attached to mustard than to kale. Similar disinfection efficacies were observed for TV attached to mustard or kale. When examining TV and RV OSU in suspension (not attached to leaf surfaces), TV was more resistant to free chlorine than RV OSU. Inactivation efficacies were higher for these viruses in suspension versus viruses attached to produce the surface. We also found that free chlorine damaged viral capsids, allowing free chlorine access to viral RNA to damage viral genomes. Exposure to free chlorine at 1.7 ppm over 1 min caused VP8* of RV OSU to lose its ability to bind to its host receptors. TV lost its ability to bind to its receptor only after exposure to free chlorine at 29 ppm over 1 min. Thus, to reduce foodborne viral infections, it is important to consider the differences in virus' reactivity and inactivation mechanisms with free chlorine.
Collapse
Affiliation(s)
| | | | - Jianrong Li
- Department of Veterinary Biosciences , The Ohio State University , Columbus 43210 , Ohio , United States
| | | | | |
Collapse
|
42
|
Peñaflor-Téllez Y, Trujillo-Uscanga A, Escobar-Almazán JA, Gutiérrez-Escolano AL. Immune Response Modulation by Caliciviruses. Front Immunol 2019; 10:2334. [PMID: 31632406 PMCID: PMC6779827 DOI: 10.3389/fimmu.2019.02334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Noroviruses and Sapoviruses, classified in the Caliciviridae family, are small positive-stranded RNA viruses, considered nowadays the leading cause of acute gastroenteritis globally in both children and adults. Although most noroviruses have been associated with gastrointestinal disease in humans, almost 50 years after its discovery, there is still a lack of comprehensive evidence regarding its biology and pathogenesis mainly because they can be neither conveniently grown in cultured cells nor propagated in animal models. However, other members of this family such as Feline calicivirus (FCV), Murine norovirus (MNV), Rabbit hemorrhagic disease virus (RHDV), and Porcine sapovirus (PS), from which there are accessible propagation systems, have been useful to study the calicivirus replication strategies. Using cell cultures and animal models, many of the functions of the viral proteins in the viral replication cycles have been well-characterized. Moreover, evidence of the role of viral proteins from different members of the family in the establishment of infection has been generated and the mechanism of their immunopathogenesis begins to be understood. In this review, we discuss different aspects of how caliciviruses are implicated in membrane rearrangements, apoptosis, and evasion of the immune responses, highlighting some of the pathogenic mechanisms triggered by different members of the Caliciviridae family.
Collapse
Affiliation(s)
- Yoatzin Peñaflor-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Jesús Alejandro Escobar-Almazán
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| |
Collapse
|
43
|
Strtak AC, Perry JL, Sharp MN, Chang-Graham AL, Farkas T, Hyser JM. Recovirus NS1-2 Has Viroporin Activity That Induces Aberrant Cellular Calcium Signaling To Facilitate Virus Replication. mSphere 2019; 4:e00506-19. [PMID: 31533997 PMCID: PMC6751491 DOI: 10.1128/msphere.00506-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Enteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca2+) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca2+ homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca2+ signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca2+ homeostasis. We found that TV increases Ca2+ signaling during infection and that increased cytoplasmic Ca2+ levels are important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum, the predominant intracellular Ca2+ store, and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca2+ signaling when expressed in mammalian cells, but truncation of the VPD abrogated these activities. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and support the premise that enteric viruses, including those within Caliciviridae, exploit host Ca2+ signaling to facilitate their replication.IMPORTANCE Tulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and amass >65 billion dollars per year in treatment and health care-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cells, enteroids, and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are still largely lacking. Here, we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated by conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.
Collapse
Affiliation(s)
- Alicia C Strtak
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob L Perry
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mark N Sharp
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Summer Research Internship Program, Augustana College, Rock Island, Illinois, USA
| | - Alexandra L Chang-Graham
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Tibor Farkas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, Baton Rouge, Louisiana, USA
| | - Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Smertina E, Urakova N, Strive T, Frese M. Calicivirus RNA-Dependent RNA Polymerases: Evolution, Structure, Protein Dynamics, and Function. Front Microbiol 2019; 10:1280. [PMID: 31244803 PMCID: PMC6563846 DOI: 10.3389/fmicb.2019.01280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
The Caliciviridae are viruses with a positive-sense, single-stranded RNA genome that is packaged into an icosahedral, environmentally stable protein capsid. The family contains five genera (Norovirus, Nebovirus, Sapovirus, Lagovirus, and Vesivirus) that infect vertebrates including amphibians, reptiles, birds, and mammals. The RNA-dependent RNA polymerase (RdRp) replicates the genome of RNA viruses and can speed up evolution due to its error-prone nature. Studying calicivirus RdRps in the context of genuine virus replication is often hampered by a lack of suitable model systems. Enteric caliciviruses and RHDV in particular are notoriously difficult to propagate in cell culture; therefore, molecular studies of replication mechanisms are challenging. Nevertheless, research on recombinant proteins has revealed several unexpected characteristics of calicivirus RdRps. For example, the RdRps of RHDV and related lagoviruses possess the ability to expose a hydrophobic motif, to rearrange Golgi membranes, and to copy RNA at unusually high temperatures. This review is focused on the structural dynamics, biochemical properties, kinetics, and putative interaction partners of these RdRps. In addition, we discuss the possible existence of a conserved but as yet undescribed structural element that is shared amongst the RdRps of all caliciviruses.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Michael Frese
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
45
|
|
46
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
47
|
Desselberger U. Caliciviridae Other Than Noroviruses. Viruses 2019; 11:v11030286. [PMID: 30901945 PMCID: PMC6466229 DOI: 10.3390/v11030286] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Besides noroviruses, the Caliciviridae family comprises four other accepted genera: Sapovirus, Lagovirus, Vesivirus, and Nebovirus. There are six new genera proposed: Recovirus, Valovirus, Bavovirus, Nacovirus, Minovirus, and Salovirus. All Caliciviridae have closely related genome structures, but are genetically and antigenically highly diverse and infect a wide range of mammalian host species including humans. Recombination in nature is not infrequent for most of the Caliciviridae, contributing to their diversity. Sapovirus infections cause diarrhoea in pigs, humans and other mammalian hosts. Lagovirus infections cause systemic haemorrhagic disease in rabbits and hares, and vesivirus infections lead to lung disease in cats, vesicular disease in swine, and exanthema and diseases of the reproductive system in large sea mammals. Neboviruses are an enteric pathogen of cattle, differing from bovine norovirus. At present, only a few selected caliciviruses can be propagated in cell culture (permanent cell lines or enteroids), and for most of the cultivatable caliciviruses helper virus-free, plasmid only-based reverse genetics systems have been established. The replication cycles of the caliciviruses are similar as far as they have been explored: viruses interact with a multitude of cell surface attachment factors (glycans) and co-receptors (proteins) for adsorption and penetration, use cellular membranes for the formation of replication complexes and have developed mechanisms to circumvent innate immune responses. Vaccines have been developed against lagoviruses and vesiviruses, and are under development against human noroviruses.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
48
|
Ailavadi S, Davidson PM, Morgan MT, D'Souza DH. Thermal Inactivation Kinetics of Tulane Virus in Cell-Culture Medium and Spinach. J Food Sci 2019; 84:557-563. [DOI: 10.1111/1750-3841.14461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/25/2018] [Accepted: 01/12/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sukriti Ailavadi
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - P. Michael Davidson
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - Mark T. Morgan
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - Doris H. D'Souza
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| |
Collapse
|
49
|
Early Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor. J Virol 2019; 93:JVI.01773-18. [PMID: 30463963 PMCID: PMC6364031 DOI: 10.1128/jvi.01773-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Sapovirus belongs to the family Caliciviridae, and its members are common causative agents of severe acute gastroenteritis in both humans and animals. Some caliciviruses are known to use either terminal sialic acids or histo-blood group antigens as attachment factors and/or cell surface proteins, such as CD300lf, CD300ld, and junctional adhesion molecule 1 of tight junctions (TJs), as receptors. However, the roles of TJs and their proteins in sapovirus entry have not been examined. In this study, we found that porcine sapovirus (PSaV) significantly decreased transepithelial electrical resistance and increased paracellular permeability early in infection of LLC-PK cells, suggesting that PSaV dissociates TJs of cells. This led to the interaction between PSaV particles and occludin, which traveled in a complex into late endosomes via Rab5- and Rab7-dependent trafficking. Inhibition of occludin using small interfering RNA (siRNA), a specific antibody, or a dominant-negative mutant significantly blocked the entry of PSaV. Transient expression of occludin in nonpermissive Chinese hamster ovary (CHO) cells conferred susceptibility to PSaV, but only for a limited time. Although claudin-1, another TJ protein, neither directly interacted nor was internalized with PSaV particles, it facilitated PSaV entry and replication in the LLC-PK cells. We conclude that PSaV particles enter LLC-PK cells by binding to occludin as a coreceptor in PSaV-dissociated TJs. PSaV and occludin then form a complex that moves to late endosomes via Rab5- and Rab7-dependent trafficking. In addition, claudin-1 in the TJs opened by PSaV infection facilitates PSaV entry and infection as an entry factor.IMPORTANCE Sapoviruses (SaVs) cause severe acute gastroenteritis in humans and animals. Although they replicate in intestinal epithelial cells, which are tightly sealed by apical-junctional complexes, such as tight junctions (TJs), the mechanisms by which SaVs hijack TJs and their proteins for successful entry and infection remain largely unknown. Here, we demonstrate that porcine SaVs (PSaVs) induce early dissociation of TJs, allowing them to bind to the TJ protein occludin as a functional coreceptor. PSaVs then travel in a complex with occludin into late endosomes through Rab5- and Rab7-dependent trafficking. Claudin-1, another TJ protein, does not directly interact with PSaV but facilitates the entry of PSaV into cells as an entry factor. This work contributes to our understanding of the entry of SaV and other caliciviruses into cells and may aid in the development of efficient and affordable drugs to treat SaV infections.
Collapse
|
50
|
Kamarasu P, Hsu HY, Moore MD. Research Progress in Viral Inactivation Utilizing Human Norovirus Surrogates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|