1
|
Wang JH, Cui M, Liu H, Guo P, McGowan J, Cheng SY, Gessler DJ, Xie J, Punzo C, Tai PW, Gao G. Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection. Mol Ther Methods Clin Dev 2025; 33:101426. [PMID: 40027263 PMCID: PMC11872077 DOI: 10.1016/j.omtm.2025.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a leading vector for retinal gene therapy due to its favorable safety profile demonstrated by the FDA-approved Luxturna for Leber congenital amaurosis. However, challenges with low transduction efficiency and immunogenicity, coupled with the invasiveness of subretinal injections, have driven efforts to engineer AAV capsids for minimally invasive intravitreal delivery. Intravitreal injections face the barrier of the inner limiting membrane (ILM), particularly with AAV2-based vectors. In this study, we displayed cell-penetrating peptides (CPPs) on AAV2 capsids to enhance retinal cell transduction via intravitreal injection. Through in vivo capsid screening, we identified AAV2.CPP1, which showed significantly improved pan-retinal expression and photoreceptor transduction in mice as well as a reduced immune response compared to the AAV2.7m8 vector. We also revealed that the CPP1 insertion reduced heparan sulfate binding, improving ILM penetration. These findings highlight AAV2.CPP1 as a promising candidate for retinal gene therapy via intravitreal injection, offering enhanced efficiency and a minimized immune response.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Mengtian Cui
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Sandoval IM, Kelley CM, Bernal-Conde LD, Steece-Collier K, Marmion DJ, Davidsson M, Crosson SM, Boye SL, Boye SE, Manfredsson FP. Engineered AAV capsid transport mutants overcome transduction deficiencies in the aged CNS. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102332. [PMID: 39445231 PMCID: PMC11497394 DOI: 10.1016/j.omtn.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapy has enjoyed great successes over the past decade, with Food and Drug Administration-approved therapeutics and a robust clinical pipeline. Nonetheless, barriers to successful translation remain. For example, advanced age is associated with impaired brain transduction, with the diminution of infectivity depending on anatomical region and capsid. Given that CNS gene transfer is often associated with neurodegenerative diseases where age is the chief risk factor, we sought to better understand the causes of this impediment. We assessed two AAV variants hypothesized to overcome factors negatively impacting transduction in the aged brain; specifically, changes in extracellular and cell-surface glycans, and intracellular transport. We evaluated a heparin sulfate proteoglycan null variant with or without mutations enhancing intracellular transport. Vectors were injected into the striatum of young adult or aged rats to address whether improving extracellular diffusion, removing glycan receptor dependence, or improving intracellular transport are important factors in transducing the aged brain. We found that, regardless of the viral capsid, there was a reduction in many of our metrics of transduction in the aged brain. However, the transport mutant was less sensitive to age, suggesting that changes in the cellular transport of AAV capsids are a key factor in age-related transduction deficiency.
Collapse
Affiliation(s)
- Ivette M. Sandoval
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christy M. Kelley
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Luis Daniel Bernal-Conde
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49506, USA
| | - David J. Marmion
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Marcus Davidsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sean M. Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Fredric P. Manfredsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| |
Collapse
|
3
|
Giacomoni J, Åkerblom M, Habekost M, Fiorenzano A, Kajtez J, Davidsson M, Parmar M, Björklund T. Identification and validation of novel engineered AAV capsid variants targeting human glia. Front Neurosci 2024; 18:1435212. [PMID: 39193523 PMCID: PMC11348808 DOI: 10.3389/fnins.2024.1435212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Direct neural conversion of endogenous non-neuronal cells, such as resident glia, into therapeutic neurons has emerged as a promising strategy for brain repair, aiming to restore lost or damaged neurons. Proof-of-concept has been obtained from animal studies, yet these models do not efficiently recapitulate the complexity of the human brain, and further refinement is necessary before clinical translation becomes viable. One important aspect is the need to achieve efficient and precise targeting of human glial cells using non-integrating viral vectors that exhibit a high degree of cell type specificity. While various naturally occurring or engineered adeno-associated virus (AAV) serotypes have been utilized to transduce glia, efficient targeting of human glial cell types remains an unsolved challenge. In this study, we employ AAV capsid library engineering to find AAV capsids that selectively target human glia in vitro and in vivo. We have identified two families of AAV capsids that induce efficient targeting of human glia both in glial spheroids and after glial progenitor cell transplantation into the rat forebrain. Furthermore, we show the robustness of this targeting by transferring the capsid peptide from the parent AAV2 serotype onto the AAV9 serotype, which facilitates future scalability for the larger human brain.
Collapse
Affiliation(s)
- Jessica Giacomoni
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mette Habekost
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Janko Kajtez
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Ball JB, Frank MG, Green-Fulgham SM, Watkins LR. Use of adeno-associated viruses for transgenic modulation of microglia structure and function: A review of technical considerations and challenges. Brain Behav Immun 2024; 118:368-379. [PMID: 38471576 PMCID: PMC11103248 DOI: 10.1016/j.bbi.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia play a central role in the etiology of many neuropathologies. Transgenic tools are a powerful experiment approach to gain reliable and specific control over microglia function. Adeno-associated virus (AAVs) vectors are already an indispensable tool in neuroscience research. Despite ubiquitous use of AAVs and substantial interest in the role of microglia in the study of central nervous system (CNS) function and disease, transduction of microglia using AAVs is seldom reported. This review explores the challenges and advancements made in using AAVs for expressing transgenes in microglia. First, we will examine the functional anatomy of the AAV capsid, which will serve as a basis for subsequent discussions of studies exploring the relationship between capsid mutations and microglia transduction efficacy. After outlining the functional anatomy of AAVs, we will consider the experimental evidence demonstrating AAV-mediated transduction of microglia and microglia-like cell lines followed by an examination of the most promising experimental approaches identified in the literature. Finally, technical limitations will be considered in future applications of AAV experimental approaches.
Collapse
Affiliation(s)
- Jayson B Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew G Frank
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Suzanne M Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
6
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Zareh-Khoshchehreh R, Salimi V, Nasab GSF, Naseri M, Fard FAN, Azad TM. Genetic Characterization of the H Gene of MeV Strains (H1, B3, and D4) Recently Circulated in Iran for Improving the Molecular Measles Surveillance in the National Measles Lab. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1730-1738. [PMID: 37744531 PMCID: PMC10512145 DOI: 10.18502/ijph.v52i8.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/19/2023] [Indexed: 09/26/2023]
Abstract
Background Despite decreasing the global burden of measles disease after the introduction of vaccination, measles remains one of the most devastating childhood diseases. Since genotype B3 is reported as a predominant Measles Virus (MeV) genotype recently, the current study aimed to better understand MeV genetic variation by analyzing the complete sequence of Hemagglutinin (H) gene associated with outbreaks of circulated genotypes in Iran. Methods Nine positive measles specimens were selected from three circulated different genotypes H1, B3, and D4. Two different regions of MeV RNA were detected by RT-PCR assay. Sequence data and phylogenetic trees were analyzed and constructed by MEGA X software program. Moreover, missense and silent mutations in critical positions of the MeV-H protein were investigated. Results The result of phylogenetic analysis from the C-terminus of the Nucleoprotein gene (NP-450) and the complete H gene revealed that the mean sequence diversity was 0.06%-0.08% and 0.04%, respectively. Genotype H1 had the highest mutation in this study; however, the substitutions in genotype B3 fundamentally occurred in critical epitopes. Moreover, genotype D4 was more stable than genotypes B3 and H1. Conclusion Mutations were investigated in the whole sequence of H protein. Moreover, the mutations that occur in the critical sites of the protein have an important effect on the pathogenicity of the virus. In this way, we were able to illustrate why genotype B3 is more transmissible than other measles genotypes and is the most important circulating genotype around the world.
Collapse
Affiliation(s)
- Raziyeh Zareh-Khoshchehreh
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Reference Laboratory for Measles and Rubella, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Sadat Fatemi Nasab
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Reference Laboratory for Measles and Rubella, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Adjami Nezhad Fard
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Reference Laboratory for Measles and Rubella, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Reference Laboratory for Measles and Rubella, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Periasamy R, Patel DD, Boye SL, Boye SE, Lipinski DM. Improving retinal vascular endothelial cell tropism through rational rAAV capsid design. PLoS One 2023; 18:e0285370. [PMID: 37167304 PMCID: PMC10174500 DOI: 10.1371/journal.pone.0285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Vascular endothelial cells (VEC) are essential for retinal homeostasis and their dysfunction underlies pathogenesis in diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD). Studies have shown that recombinant adeno-associated virus (rAAV) vectors are effective at delivering new genetic material to neural and glial cells within the retina, but targeting VECs remains challenging. To overcome this limitation, herein we developed rAAV capsid mutant vectors with improved tropism towards retinal VEC. rAAV2/2, 2/2[QuadYF-TV], and rAAV2/9 serotype vectors (n = 9, capsid mutants per serotype) expressing GFP were generated by inserting heptameric peptides (7AA) designed to increase endothelial targeting at positions 588 (2/2 and 2/2[QuadYF-TV] or 589 (2/9) of the virus protein (VP 1-3). The packaging and transduction efficiency of the vectors were assessed in HEK293T and bovine VECs using Fluorescence microscopy and flow cytometry, leading to the identification of one mutant, termed EC5, that showed improved endothelial tropism when inserted into all three capsid serotypes. Intra-ocular and intravenous administration of EC5 mutants in C57Bl/6j mice demonstrated moderately improved transduction of the retinal vasculature, particularly surrounding the optic nerve head, and evidence of sinusoidal endothelial cell transduction in the liver. Most notably, intravenous administration of the rAAV2/2[QuadYF-TV] EC5 mutant led to a dramatic and unexpected increase in cardiac muscle transduction.
Collapse
Affiliation(s)
- Ramesh Periasamy
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dwani D. Patel
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Daniel M. Lipinski
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
10
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
11
|
Puzzo F, Zhang C, Powell Gray B, Zhang F, Sullenger BA, Kay MA. Aptamer-programmable adeno-associated viral vectors as a novel platform for cell-specific gene transfer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:383-397. [PMID: 36817723 PMCID: PMC9929486 DOI: 10.1016/j.omtn.2023.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.
Collapse
Affiliation(s)
- Francesco Puzzo
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chuanling Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
13
|
Rode L, Bär C, Groß S, Rossi A, Meumann N, Viereck J, Abbas N, Xiao K, Riedel I, Gietz A, Zimmer K, Odenthal M, Büning H, Thum T. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol Ther 2022; 30:3601-3618. [PMID: 35810332 PMCID: PMC9734024 DOI: 10.1016/j.ymthe.2022.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.
Collapse
Affiliation(s)
- Laura Rode
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Naisam Abbas
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Anika Gietz
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Karina Zimmer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hildegard Büning
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Abstract
Adeno-associated virus (AAV) has a single-stranded DNA genome encapsidated in a small icosahedrally symmetric protein shell with 60 subunits. AAV is the leading delivery vector in emerging gene therapy treatments for inherited disorders, so its structure and molecular interactions with human hosts are of intense interest. A wide array of electron microscopic approaches have been used to visualize the virus and its complexes, depending on the scientific question, technology available, and amenability of the sample. Approaches range from subvolume tomographic analyses of complexes with large and flexible host proteins to detailed analysis of atomic interactions within the virus and with small ligands at resolutions as high as 1.6 Å. Analyses have led to the reclassification of glycan receptors as attachment factors, to structures with a new-found receptor protein, to identification of the epitopes of antibodies, and a new understanding of possible neutralization mechanisms. AAV is now well-enough characterized that it has also become a model system for EM methods development. Heralding a new era, cryo-EM is now also being deployed as an analytic tool in the process development and production quality control of high value pharmaceutical biologics, namely AAV vectors.
Collapse
Affiliation(s)
- Scott
M. Stagg
- Department
of Biological Sciences, Florida State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Craig Yoshioka
- Department
of Biomedical Engineering, Oregon Health
& Science University, Portland Oregon 97239, United States
| | - Omar Davulcu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Michael S. Chapman
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
16
|
Becker J, Fakhiri J, Grimm D. Fantastic AAV Gene Therapy Vectors and How to Find Them—Random Diversification, Rational Design and Machine Learning. Pathogens 2022; 11:pathogens11070756. [PMID: 35890005 PMCID: PMC9318892 DOI: 10.3390/pathogens11070756] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), BioQuant, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (J.F.); (D.G.); Tel.: +49-174-3486203 (J.F.); +49-6221-5451331 (D.G.)
| |
Collapse
|
17
|
Nagase K, Kitazawa S, Kogure T, Yamada S, Katayama K, Kanazawa H. Viral vector purification with thermoresponsive-anionic mixed polymer brush modified beads-packed column. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Meumann N, Schmithals C, Elenschneider L, Hansen T, Balakrishnan A, Hu Q, Hook S, Schmitz J, Bräsen JH, Franke AC, Olarewaju O, Brandenberger C, Talbot SR, Fangmann J, Hacker UT, Odenthal M, Ott M, Piiper A, Büning H. Hepatocellular Carcinoma Is a Natural Target for Adeno-Associated Virus (AAV) 2 Vectors. Cancers (Basel) 2022; 14:cancers14020427. [PMID: 35053588 PMCID: PMC8774135 DOI: 10.3390/cancers14020427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gene therapy is a novel approach to treat diseases by introducing corrective genetic information into target cells. Adeno-associated virus vectors are the most frequently applied gene delivery tools for in vivo gene therapy and are also studied as part of innovative anticancer strategies. Here, we report on the natural preference of AAV2 vectors for hepatocellular carcinoma (HCC) compared to nonmalignant liver cells in mice and human tissue. This preference in transduction is due to the improved intracellular processing of AAV2 vectors in HCC, resulting in significantly more vector genomes serving as templates for transcription in the cell nucleus. Based on this natural tropism for HCC, novel therapeutic strategies can be designed or existing therapeutic approaches can be strengthened as they currently result in only a minor improvement of the poor prognosis for most liver cancer patients. Abstract Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current—or develop novel—strategies for treating HCC.
Collapse
Affiliation(s)
- Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Christian Schmithals
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
| | - Leroy Elenschneider
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, 30625 Hannover, Germany; (L.E.); (T.H.)
| | - Asha Balakrishnan
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Qingluan Hu
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Sebastian Hook
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany; (J.S.); (J.H.B.)
| | - Ann-Christin Franke
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
| | - Olaniyi Olarewaju
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Josef Fangmann
- KRH Klinikum Siloah, Liver Center Hannover (LCH), 30459 Hannover, Germany;
| | - Ulrich T. Hacker
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- Institute of Pathology, University Hospital Cologne, 50931 Cologne, Germany
| | - Michael Ott
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (A.B.); (Q.H.); (S.H.); (M.O.)
- Twincore Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (C.S.); (A.P.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (N.M.); (A.-C.F.); (O.O.); (U.T.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany;
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence: ; Tel.: +49-511-532-5106
| |
Collapse
|
19
|
Stiles K, Frenk EZ, Kaminsky SM, Crystal RG. Genetic Modification of the AAV5 Capsid with Lysine Residues Results in a Lung-tropic, Liver-detargeted Gene Transfer Vector. Hum Gene Ther 2022; 33:148-154. [PMID: 35018834 DOI: 10.1089/hum.2021.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intravenous (IV) administration of naturally occurring adeno-associated virus (AAV) vectors are liver tropic, with a significant proportion of the total vector dose mediating gene expression in liver hepatocytes. AAV capsids that are directed towards other organs such as lung may be useful for therapy of non-liver-based diseases. Based on the knowledge that the lung capillary endothelium is the first capillary bed encountered by an intravenously administered AAV vector, and that the lung endothelium glycocalyx is enriched in negatively charged sialic acid, we hypothesized that adding positively changed lysine residues to the AAV capsid would enhance AAV biodistribution to the lung following intravenous administration. Using site directed mutagenesis, two lysine residues were inserted into variable loop VIII of the AAV serotype 5 capsid vector (AAV5-PK2). Organ distribution of AAV5-PK2 was compared to AAV5, AAVrh.10, AAV2, and AAV2-7m8 4 wk after intravenous administration (1011 gc) to C57Bl/6 male mice. As predicted, following intravenous administration, AAAV5-PK2 had the highest biodistribution in the lung (p<0.02 compared to AAV5, AAVrh.10, AAV2 and AAV2-7m8). Further, biodistribution to liver of AAV5-PK2 was 2-logs decreased compared to AAV5 (p<10-4) with a ratio of AAV5-PK2 lung to liver of 62-fold compared to AAV5 of 0.2-fold (p<0.0003). The AAV5-PK2 capsid represents a lung-tropic AAV vector that is also significantly detargeted from the liver, a property that may be useful in lung directed gene therapies.
Collapse
Affiliation(s)
- Katie Stiles
- Weill Cornell Medicine, 12295, New York, New York, United States;
| | - Esther Z Frenk
- Weill Cornell Medical College, 12295, 1300 York Avenue, New York, New York, United States, 10065;
| | | | - Ronald G Crystal
- Weill Medical College of Cornell University, Department of Genetic Medicine, 1300 York Avenue, Box 96, New York, New York, United States, 10021;
| |
Collapse
|
20
|
Zolotukhin S, Vandenberghe L. AAV capsid design: A Goldilocks challenge. Trends Mol Med 2022; 28:183-193. [DOI: 10.1016/j.molmed.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
|
21
|
Large EE, Silveria MA, Zane GM, Weerakoon O, Chapman MS. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry. Viruses 2021; 13:1336. [PMID: 34372542 PMCID: PMC8310307 DOI: 10.3390/v13071336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA; (E.E.L.); (M.A.S.); (G.M.Z.); (O.W.)
| |
Collapse
|
22
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
23
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
24
|
Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, Bartoe JT, Siedlecki J, Gerhardt MJ, Babutzka S, Bogedein J, Wagner JE, Priglinger SG, Biel M, Petersen‐Jones SM, Büning H, Michalakis S. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med 2021; 13:e13392. [PMID: 33616280 PMCID: PMC8033523 DOI: 10.15252/emmm.202013392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy using recombinant adeno-associated virus (rAAV) vectors to treat blinding retinal dystrophies has become clinical reality. Therapeutically impactful targeting of photoreceptors still relies on subretinal vector delivery, which detaches the retina and harbours substantial risks of collateral damage, often without achieving widespread photoreceptor transduction. Herein, we report the development of novel engineered rAAV vectors that enable efficient targeting of photoreceptors via less invasive intravitreal administration. A unique in vivo selection procedure was performed, where an AAV2-based peptide-display library was intravenously administered in mice, followed by isolation of vector DNA from target cells after only 24 h. This stringent selection yielded novel vectors, termed AAV2.GL and AAV2.NN, which mediate widespread and high-level retinal transduction after intravitreal injection in mice, dogs and non-human primates. Importantly, both vectors efficiently transduce photoreceptors in human retinal explant cultures. As proof-of-concept, intravitreal Cnga3 delivery using AAV2.GL lead to cone-specific expression of Cnga3 protein and rescued photopic cone responses in the Cnga3-/- mouse model of achromatopsia. These novel rAAV vectors expand the clinical applicability of gene therapy for blinding human retinal dystrophies.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Christian Schön
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Laurence M Occelli
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMIUSA
| | - Axel Rossi
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
| | - Nadja Meumann
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Ryan F Boyd
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Joshua T Bartoe
- Ophthalmology ServicesCharles River LaboratoriesMattawanMIUSA
| | - Jakob Siedlecki
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Sabrina Babutzka
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Jacqueline Bogedein
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | - Johanna E Wagner
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Martin Biel
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| | | | - Hildegard Büning
- Laboratory for Infection Biology and Gene TransferInstitute of Experimental HaematologyHannover Medical SchoolHannoverGermany
- REBIRTH Research Centre for Translational Regenerative MedicineHannover Medical SchoolHannoverGermany
| | - Stylianos Michalakis
- Department of OphthalmologyLudwig‐Maximilians‐UniversityMunichGermany
- Centre for Integrated Protein Science Munich (CIPSM) at the Department of PharmacyLudwig‐Maximilians‐UniversityMunichGermany
| |
Collapse
|
25
|
Policarpi C, Dabin J, Hackett JA. Epigenetic editing: Dissecting chromatin function in context. Bioessays 2021; 43:e2000316. [PMID: 33724509 DOI: 10.1002/bies.202000316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
How epigenetic mechanisms regulate genome output and response to stimuli is a fundamental question in development and disease. Past decades have made tremendous progress in deciphering the regulatory relationships involved by correlating aggregated (epi)genomics profiles with global perturbations. However, the recent development of epigenetic editing technologies now enables researchers to move beyond inferred conclusions, towards explicit causal reasoning, through 'programing' precise chromatin perturbations in single cells. Here, we first discuss the major unresolved questions in the epigenetics field that can be addressed by programable epigenome editing, including the context-dependent function and memory of chromatin states. We then describe the epigenetic editing toolkit focusing on CRISPR-based technologies, and highlight its achievements, drawbacks and promise. Finally, we consider the potential future application of epigenetic editing to the study and treatment of specific disease conditions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Juliette Dabin
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| |
Collapse
|
26
|
Rodríguez-Márquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opin Biol Ther 2020; 21:749-766. [PMID: 33331201 DOI: 10.1080/14712598.2021.1865303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Gene therapy clinical trials with adeno-associated virus (AAV) vectors report impressive clinical efficacy data. Nevertheless, challenges have become apparent, such as the need for high vector doses and the induction of anti-AAV immune responses that cause the loss of vector-transduced hepatocytes. This fostered research focusing on development of next-generation AAV vectors capable of dealing with these hurdles.Areas Covered: While both the viral vector genome and the capsid are subjects to engineering, this review focuses on the latter. Specifically, we summarize the principles of capsid engineering strategies, and describe developments and applications of engineered capsid variants for liver-directed gene therapy.Expert Opinion: Capsid engineering is a promising strategy to significantly improve efficacy of the AAV vector system in clinical application. Reduction in vector dose will further improve vector safety, lower the risk of host immune responses and the cost of manufacturing. Capsid engineering is also expected to result in AAV vectors applicable to patients with preexisting immunity toward natural AAV serotypes.
Collapse
Affiliation(s)
- Esther Rodríguez-Márquez
- Universidad Autónoma De Madrid, Madrid, Spain.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF, Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
27
|
Hsu HL, Brown A, Loveland AB, Lotun A, Xu M, Luo L, Xu G, Li J, Ren L, Su Q, Gessler DJ, Wei Y, Tai PWL, Korostelev AA, Gao G. Structural characterization of a novel human adeno-associated virus capsid with neurotropic properties. Nat Commun 2020; 11:3279. [PMID: 32606306 PMCID: PMC7327033 DOI: 10.1038/s41467-020-17047-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are currently considered the safest and most reliable gene delivery vehicles for human gene therapy. Three serotype capsids, AAV1, AAV2, and AAV9, have been approved for commercial use in patients, but they may not be suitable for all therapeutic contexts. Here, we describe a novel capsid identified in a human clinical sample by high-throughput, long-read sequencing. The capsid, which we have named AAVv66, shares high sequence similarity with AAV2. We demonstrate that compared to AAV2, AAVv66 exhibits enhanced production yields, virion stability, and CNS transduction. Unique structural properties of AAVv66 visualized by cryo-EM at 2.5-Å resolution, suggest that critical residues at the three-fold protrusion and at the interface of the five-fold axis of symmetry likely contribute to the beneficial characteristics of AAVv66. Our findings underscore the potential of AAVv66 as a gene therapy vector.
Collapse
Affiliation(s)
- Hung-Lun Hsu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alexander Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna B Loveland
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Meiyu Xu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Li Luo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Guangchao Xu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lingzhi Ren
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R., China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Cabanes-Creus M, Westhaus A, Navarro RG, Baltazar G, Zhu E, Amaya AK, Liao SHY, Scott S, Sallard E, Dilworth KL, Rybicki A, Drouyer M, Hallwirth CV, Bennett A, Santilli G, Thrasher AJ, Agbandje-McKenna M, Alexander IE, Lisowski L. Attenuation of Heparan Sulfate Proteoglycan Binding Enhances In Vivo Transduction of Human Primary Hepatocytes with AAV2. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1139-1154. [PMID: 32490035 PMCID: PMC7260615 DOI: 10.1016/j.omtm.2020.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Erwan Sallard
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kimberley L Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Arkadiusz Rybicki
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100 Puławy, Poland
| |
Collapse
|
29
|
Chen SH, Papaneri A, Walker M, Scappini E, Keys RD, Martin NP. A Simple, Two-Step, Small-Scale Purification of Recombinant Adeno-Associated Viruses. J Virol Methods 2020; 281:113863. [PMID: 32371233 DOI: 10.1016/j.jviromet.2020.113863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/22/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are robust and versatile tools for in vivo gene delivery. Natural and designer capsid variations in rAAVs allow for targeted gene delivery to specific cell types. Low immunogenicity and lack of pathogenesis also add to the popularity of this virus as an innocuous gene delivery vector for gene therapy. rAAVs are routinely used to express recombinases, sensors, detectors, CRISPR-Cas9 components, or to simply overexpress a gene of interest for functional studies. High production demand has given rise to multiple platforms for the production and purification of rAAVs. However, most platforms rely heavily on large amounts of starting material and multiple purification steps to produce highly purified viral particles. Often, researchers require several small-scale purified rAAVs. Here, we describe a simple and efficient technique for purification of recombinant rAAVs from small amounts of starting material in a two-step purification method. In this method, rAAVs are released into the packaging cell medium using high salt concentration, pelleted by ultracentrifugation to remove soluble impurities. Then, the resuspended pellet is purified using a protein spin-concentrator. In this protocol, we modify the conventional rAAV purification methods to eliminate the need for fraction collection and the labor-intensive steps for evaluating the titer and purity of individual fractions. The resulting rAAV preparations are comparable in titer and purity to commercially available samples. This simplified process can be used to generate highly purified rAAV particles on a small scale, thereby saving resources, generating less waste, and reducing a laboratory's environmental footprint.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A
| | | | - Mitzie Walker
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A
| | | | - Robert D Keys
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH/DHHS, 111 T.W. Alexander Drive, Research Triangle Park, N.C. 27709, U.S.A
| | - Negin P Martin
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A.
| |
Collapse
|
30
|
Zhang L, Rossi A, Lange L, Meumann N, Koitzsch U, Christie K, Nesbit MA, Moore CBT, Hacker UT, Morgan M, Hoffmann D, Zengel J, Carette JE, Schambach A, Salvetti A, Odenthal M, Büning H. Capsid Engineering Overcomes Barriers Toward Adeno-Associated Virus Vector-Mediated Transduction of Endothelial Cells. Hum Gene Ther 2020; 30:1284-1296. [PMID: 31407607 DOI: 10.1089/hum.2019.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (EC) are targets in gene therapy and regenerative medicine, but they are inefficiently transduced with adeno-associated virus (AAV) vectors of various serotypes. To identify barriers hampering efficient transduction and to develop an optimized AAV variant for EC transduction, we screened an AAV serotype 2-based peptide display library on primary human macrovascular EC. Using a new high-throughput selection and monitoring protocol, we identified a capsid variant, AAV-VEC, which outperformed the parental serotype as well as first-generation targeting vectors in EC transduction. AAV vector uptake was improved, resulting in significantly higher transgene expression levels from single-stranded vector genomes detectable within a few hours post-transduction. Notably, AAV-VEC transduced not only proliferating EC but also quiescent EC, although higher particle-per-cell ratios had to be applied. Also, induced pluripotent stem cell-derived endothelial progenitor cells, a novel tool in regenerative medicine and gene therapy, were highly susceptible toward AAV-VEC transduction. Thus, overcoming barriers by capsid engineering significantly expands the AAV tool kit for a wide range of applications targeting EC.
Collapse
Affiliation(s)
- L Zhang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - A Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,International Center for Research in Infectiology (CIRI), INSERM U1111, CNRS UMR5308, Lyon, France
| | - L Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - N Meumann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - U Koitzsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - K Christie
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland
| | - M A Nesbit
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland
| | - C B T Moore
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland.,Avellino Labs USA, Menlo Park, California
| | - U T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,1st Medical Department, University Cancer Center Leipzig, University Leipzig Medical Center, Leipzig, Germany
| | - M Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - D Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - J Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - J E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - A Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - A Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, CNRS UMR5308, Lyon, France
| | - M Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - H Büning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne and Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
31
|
Pre-arrayed Pan-AAV Peptide Display Libraries for Rapid Single-Round Screening. Mol Ther 2020; 28:1016-1032. [PMID: 32105604 DOI: 10.1016/j.ymthe.2020.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/07/2019] [Accepted: 02/08/2020] [Indexed: 12/27/2022] Open
Abstract
Display of short peptides on the surface of adeno-associated viruses (AAVs) is a powerful technology for the generation of gene therapy vectors with altered cell specificities and/or transduction efficiencies. Following its extensive prior use in the best characterized AAV serotype 2 (AAV2), recent reports also indicate the potential of other AAV isolates as scaffolds for peptide display. In this study, we systematically explored the respective capacities of 13 different AAV capsid variants to tolerate 27 peptides inserted on the surface followed by production of reporter-encoding vectors. Single-round screening in pre-arrayed 96-well plates permitted rapid and simple identification of superior vectors in >90 cell types, including T cells and primary cells. Notably, vector performance depended not only on the combination of capsid, peptide, and cell type, but also on the position of the inserted peptide and the nature of flanking residues. For optimal data availability and accessibility, all results were assembled in a searchable online database offering multiple output styles. Finally, we established a reverse-transduction pipeline based on vector pre-spotting in 96- or 384-well plates that facilitates high-throughput library panning. Our comprehensive illustration of the vast potential of alternative AAV capsids for peptide display should accelerate their in vivo screening and application as unique gene therapy vectors.
Collapse
|
32
|
Yang H, Xiong H, Mi K, Zhang Y, Zhang X, Chen G. The surface syndecan protein from Macrobrachium rosenbergii could function as mediator in bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2020; 96:62-68. [PMID: 31704203 DOI: 10.1016/j.fsi.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the aquatic animal pathogens are numerous and specific, the pathogen invasion mechanisms are more complicated. The cell surface receptors play vital roles to understand these mechanisms. Syndecan is a cell surface protein and could function as a receptor involved bacteria and virus infections. But there are few studies on the function of syndecan in shrimp and their interaction with aquatic bacterial pathogens. In the present study, we identified a syndecan receptor gene from Macrobrachium rosenbergii and analyzed its functions during the bacterial infections. The MrSDC was expressed in various tissues and presented a constitutive expression distribution except in eyestalk. Recombinant MrSDC-his tag protein was expressed in the E. coli BL21 with pET30a/MrSDC plasmid and exhibited a broad bacterial binding activities. The inhibition of MrSDC expression by dsRNA interference and antibody blocked could significantly reduce the number of Aeromonas hydrophila in hepatopancreas compared with the control. The overexpression of MrSDC by mRNA injection could significantly increase the number of A. hydrophila. In addition, the functional role of syndecan heparan sulfate chains in bacterial recognition was also studied. After extra injection of heparan sulfate in vivo, the bacterial numbers and accumulative mortality of M. rosenbergii were significantly higher than control groups and exhibit a dose effect. All these data could indicate that the cell surface syndecan protein could function as mediator in bacterial infections by the heparan sulfate chains. Our present study will provide new insights into the functions of shrimp syndecan.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
33
|
Davidsson M, Wang G, Aldrin-Kirk P, Cardoso T, Nolbrant S, Hartnor M, Mudannayake J, Parmar M, Björklund T. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci U S A 2019; 116:27053-27062. [PMID: 31818949 PMCID: PMC6936499 DOI: 10.1073/pnas.1910061116] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) capsid modification enables the generation of recombinant vectors with tailored properties and tropism. Most approaches to date depend on random screening, enrichment, and serendipity. The approach explored here, called BRAVE (barcoded rational AAV vector evolution), enables efficient selection of engineered capsid structures on a large scale using only a single screening round in vivo. The approach stands in contrast to previous methods that require multiple generations of enrichment. With the BRAVE approach, each virus particle displays a peptide, derived from a protein, of known function on the AAV capsid surface, and a unique molecular barcode in the packaged genome. The sequencing of RNA-expressed barcodes from a single-generation in vivo screen allows the mapping of putative binding sequences from hundreds of proteins simultaneously. Using the BRAVE approach and hidden Markov model-based clustering, we present 25 synthetic capsid variants with refined properties, such as retrograde axonal transport in specific subtypes of neurons, as shown for both rodent and human dopaminergic neurons.
Collapse
Affiliation(s)
- Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Gang Wang
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Janitha Mudannayake
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
34
|
Feiner RC, Teschner J, Teschner KE, Radukic MT, Baumann T, Hagen S, Hannappel Y, Biere N, Anselmetti D, Arndt KM, Müller KM. rAAV Engineering for Capsid-Protein Enzyme Insertions and Mosaicism Reveals Resilience to Mutational, Structural and Thermal Perturbations. Int J Mol Sci 2019; 20:ijms20225702. [PMID: 31739438 PMCID: PMC6887778 DOI: 10.3390/ijms20225702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viruses (rAAV) provide outstanding options for customization and superior capabilities for gene therapy. To access their full potential, facile genetic manipulation is pivotal, including capsid loop modifications. Therefore, we assessed capsid tolerance to modifications of the structural VP proteins in terms of stability and plasticity. Flexible glycine-serine linkers of increasing sizes were, at the genetic level, introduced into the 587 loop region of the VP proteins of serotype 2, the best studied AAV representative. Analyses of biological function and thermal stability with respect to genome release of viral particles revealed structural plasticity. In addition, insertion of the 29 kDa enzyme β-lactamase into the loop region was tested with a complete or a mosaic modification setting. For the mosaic approach, investigation of VP2 trans expression revealed that a Kozak sequence was required to prevent leaky scanning. Surprisingly, even the full capsid modification with β-lactamase allowed for the assembly of capsids with a concomitant increase in size. Enzyme activity assays revealed lactamase functionality for both rAAV variants, which demonstrates the structural robustness of this platform technology.
Collapse
Affiliation(s)
- Rebecca C. Feiner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Julian Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Kathrin E. Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Marco T. Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Tobias Baumann
- Biocatalysis group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany;
| | | | - Yvonne Hannappel
- Physical and Biophysical Chemistry (PCIII), Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany;
| | - Niklas Biere
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Katja M. Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany;
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
- Correspondence: ; Tel.: +49-521-106-6323
| |
Collapse
|
35
|
Gorbatyuk OS, Warrington KH, Gorbatyuk MS, Zolotukhin I, Lewin AS, Muzyczka N. Biodistribution of adeno-associated virus type 2 with mutations in the capsid that contribute to heparan sulfate proteoglycan binding. Virus Res 2019; 274:197771. [PMID: 31577935 DOI: 10.1016/j.virusres.2019.197771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
We compared the phenotypes of three mutant AAV2 viruses containing mutations in arginine amino acids (R585, R588 and R484) previously shown to be involved in AAV2 heparan sulfate binding. The transduction efficiencies of wild type and mutant viruses were determined in the eye, the brain and peripheral organs following subretinal, striatal and intravenous injection, respectively, in mice and rats. We found that each of the three mutants (the single mutant R585A; the double mutant R585, 588A; and the triple mutant R585, 588, 484A) had a unique phenotype compared to wt and each other. R585A was completely defective for transducing peripheral organs via intravenous injection, suggesting that R585A may be useful for targeting peripheral organs by substitution of peptide ligands in the capsid surface. In the brain, all three mutants displayed widespread transduction, with the double mutant R585, 588A displaying the greatest spread and the greatest number of transduced neurons. The double mutant was also extremely efficient for retrograde transport, while the triple mutant was almost completely defective for retrograde transport. This suggested that R484 may be directly involved in interaction with the transport machinery. Finally, the double mutant also displayed improved transduction of the eye compared to wild type and the other mutants.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States.
| | - Kenneth H Warrington
- Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Marina S Gorbatyuk
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Irene Zolotukhin
- Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Alfred S Lewin
- Department of Pediatrics, College of Medicine, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States.
| |
Collapse
|
36
|
Tordo J, O'Leary C, Antunes ASLM, Palomar N, Aldrin-Kirk P, Basche M, Bennett A, D'Souza Z, Gleitz H, Godwin A, Holley RJ, Parker H, Liao AY, Rouse P, Youshani AS, Dridi L, Martins C, Levade T, Stacey KB, Davis DM, Dyer A, Clément N, Björklund T, Ali RR, Agbandje-McKenna M, Rahim AA, Pshezhetsky A, Waddington SN, Linden RM, Bigger BW, Henckaerts E. A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain 2019; 141:2014-2031. [PMID: 29788236 PMCID: PMC6037107 DOI: 10.1093/brain/awy126] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.
Collapse
Affiliation(s)
- Julie Tordo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - André S L M Antunes
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nuria Palomar
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Mark Basche
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zelpha D'Souza
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Hélène Gleitz
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Annie Godwin
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Ai Yin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Rouse
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Amir Saam Youshani
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Larbi Dridi
- CHU Ste-Justine, University of Montreal, Montreal, Canada
| | - Carla Martins
- CHU Ste-Justine, University of Montreal, Montreal, Canada
| | - Thierry Levade
- Centre Hospitalo-Universitaire de Toulouse, Institut Fédératif de Biologie, Laboratoire de Biochimie Métabolique, and Unité Mixte de Recherche (UMR) 1037 Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Kevin B Stacey
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Adam Dyer
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | | | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R Michael Linden
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Els Henckaerts
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
37
|
Liu SH, Hong Y, Markowiak S, Sanchez R, Creeden J, Nemunaitis J, Kalinoski A, Willey J, Erhardt P, Lee J, van Dam M, Brunicardi FC. BIRC5 is a target for molecular imaging and detection of human pancreatic cancer. Cancer Lett 2019; 457:10-19. [PMID: 31059751 DOI: 10.1016/j.canlet.2019.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer mortality with a dismal overall survival rate and an urgent need for detection of minute tumors. Current diagnostic modalities have high sensitivity and specificity for larger tumors, but not for minute PDAC. In this study, we test the feasibility of a precision diagnostic platform for detecting and localizing minute human PDAC in mice. This platform includes: 1) defining BIRC5 as an early PDAC-upregulated gene and utilizing an enhanced BIRC5 super-promoter to drive expression of dual Gaussia luciferase (GLuc) and sr39 thymidine kinase (sr39TK) reporter genes exponentially and specifically in PDAC; 2) utilizing a genetically-engineered AAV2RGD to ensure targeted delivery of GLuc and sr39TK specifically to PDAC; 3) using serologic GLuc and sr39TK microPET/CT imaging to detect and localize minute human PDAC in mice. The study demonstrates feasibility of a precision diagnostic platform using an integrated technology through a multiple-stage amplification strategy of dual reporter genes to enhance the specificity and sensitivity of detection and localization of minute PDAC tumors and currently undetectable disease.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yeahwa Hong
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Stephen Markowiak
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robbi Sanchez
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Justin Creeden
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Paul Erhardt
- Department of Pharmacology-Medicinal/Biological Chemistry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jason Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
38
|
Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, Odenthal M, Adriouch S, Salvetti A, Büning H. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep 2019; 9:3631. [PMID: 30842485 PMCID: PMC6403382 DOI: 10.1038/s41598-019-40071-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
AAV vectors poorly transduce Dendritic cells (DC), a feature invoked to explain AAV's low immunogenicity. However, the reason for this non-permissiveness remained elusive. Here, we performed an in-depth analysis using human monocyte-derived immature DC (iDC) as model. iDC internalized AAV vectors of various serotypes, but even the most efficient serotype failed to transduce iDC above background. Since AAV vectors reached the cell nucleus, we hypothesized that AAV's intracellular processing occurs suboptimal. On this basis, we screened an AAV peptide display library for capsid variants more suitable for DC transduction and identified the I/VSS family which transduced DC with efficiencies of up to 38%. This property correlated with an improved vector uncoating. To determine the consequence of this novel feature for AAV's in vivo performance, we engineered one of the lead candidates to express a cytoplasmic form of ovalbumin, a highly immunogenic model antigen, and assayed transduction efficiency as well as immunogenicity. The capsid variant clearly outperformed the parental serotype in muscle transduction and in inducing antigen-specific humoral and T cell responses as well as anti-capsid CD8+ T cells. Hence, vector uncoating represents a major barrier hampering AAV vector-mediated transduction of DC and impacts on its use as vaccine platform.
Collapse
Affiliation(s)
- Axel Rossi
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Léa Dupaty
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France
| | - Ludovic Aillot
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France
| | - Liang Zhang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Célia Gallien
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
| | - Michael Hallek
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Sahil Adriouch
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France.
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France.
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France.
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
39
|
Büning H, Srivastava A. Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:248-265. [PMID: 30815511 PMCID: PMC6378346 DOI: 10.1016/j.omtm.2019.01.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past decade, recombinant vectors based on a non-pathogenic parvovirus, the adeno-associated virus (AAV), have taken center stage as a gene delivery vehicle for the potential gene therapy for a number of human diseases. To date, the safety of AAV vectors in 176 phase I, II, and III clinical trials and their efficacy in at least eight human diseases are now firmly documented. Despite these remarkable achievements, it has also become abundantly clear that the full potential of first generation AAV vectors composed of naturally occurring capsids is not likely to be realized, since the wild-type AAV did not evolve for the purpose of therapeutic gene delivery. In this article, we provide a brief historical account of the progress that has been made in the development of capsid-modified, next-generation AAV vectors to ensure both the safety and efficacy of these vectors in targeting a wide variety of human diseases.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics & Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
40
|
Herrmann AK, Bender C, Kienle E, Grosse S, El Andari J, Botta J, Schürmann N, Wiedtke E, Niopek D, Grimm D. A Robust and All-Inclusive Pipeline for Shuffling of Adeno-Associated Viruses. ACS Synth Biol 2019; 8:194-206. [PMID: 30513195 DOI: 10.1021/acssynbio.8b00373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adeno-associated viruses (AAV) are attractive templates for engineering of synthetic gene delivery vectors. A particularly powerful technology for breeding of novel vectors with improved properties is DNA family shuffling, i.e., generation of chimeric capsids by homology-driven DNA recombination. Here, to make AAV DNA shuffling available to a wider community, we present a robust experimental and bioinformatical pipeline comprising: (i) standardized and partially codon-optimized plasmids carrying 12 different AAV capsid genes; (ii) a scalable protocol including troubleshooting guide for viral library production; and (iii) the freely available software SALANTO for comprehensive analysis of chimeric AAV DNA and protein sequences. Moreover, we describe a set of 12 premade and ready-to-use AAV libraries. Finally, we demonstrate the usefulness of DNA barcoding technology to trace AAV capsid libraries within a complex mixture. Our protocols and resources facilitate the implementation and tailoring of AAV evolution technology in any laboratory interested in customized viral gene transfer.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Christian Bender
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, 55131, Germany
| | - Eike Kienle
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Stefanie Grosse
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Jihad El Andari
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Julia Botta
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, 69120, Germany
| | - Nina Schürmann
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Ellen Wiedtke
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Dominik Niopek
- Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB) and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, 69120, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University Hospital, Heidelberg, 69120, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, 69120, Germany
| |
Collapse
|
41
|
Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res 2018; 84:545-551. [PMID: 30323349 PMCID: PMC6266866 DOI: 10.1038/s41390-018-0095-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Targeting specific tissues remains a major challenge to the promise of gene therapy. For example, several strategies have failed to target adeno-associated virus 2 (AAV2) vectors, to bone. We have evaluated in vitro and in vivo the affinity of an AAV2 vector to bone matrix, hydroxyapatite (HA) to treat Mucopolysacccharidosis IVA. METHODS To increase vector affinity to HA, an aspartic acid octapeptide (D8) was inserted immediately after the N-terminal region of the VP2 capsid protein. The modified vector had physical titers and transduction efficiencies comparable to the unmodified vector. RESULTS The bone-targeting vector had significantly higher HA affinity and vector genome copies in bone than the unmodified vector. The modified vector was also released from HA, and its enzyme activity in bone, 3 months post infusion, was 4.7-fold higher than the unmodified vector. CONCLUSION Inserting a bone-targeting peptide into the vector capsid increases gene delivery and expression in the bone without decreasing enzyme expression. This approach could be a novel strategy to treat systemic bone diseases.
Collapse
Affiliation(s)
- Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| |
Collapse
|
42
|
Finet JE, Wan X, Donahue JK. Fusion of Anthopleurin-B to AAV2 increases specificity of cardiac gene transfer. Virology 2018; 513:43-51. [PMID: 29032346 DOI: 10.1016/j.virol.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
AAV-mediated gene therapy has become a promising therapeutic strategy for chronic diseases. Its clinical utilization, however, is limited by the potential risk of off-target effects. In this work we attempt to overcome this challenge, hypothesizing that cardiac ion channel-specific ligands could be fused onto the AAV capsid, and narrow its tropism to cardiac myocytes. We successfully fused the cardiac sodium channel (Nav1.5)-binding toxin Anthopleurin-B onto the AAV2 capsid without compromising virus integrity, and demonstrated increased specificity of cardiomyocyte attachment. Although virus attachment to Nav1.5 did not supersede the natural heparan-mediated virus binding, heparan-binding ablated vectors carrying Anthopleurin-B eliminated hepatic and other extracardiac gene transfer, while preserving cardiac myocyte gene transfer. Virus binding to the cardiac sodium channel transiently decreased sodium current density, but did not cause any arrhythmias. Our findings expand the knowledge of attachment, infectivity, and intracellular processing of AAV vectors, and present an alternative strategy for vector retargeting.
Collapse
Affiliation(s)
- J Emanuel Finet
- Krannert Institute of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Xiaoping Wan
- Heart and Vascular Research Center, Case Western Reserve University, MetroHealth Campus, Cleveland, OH, USA
| | - J Kevin Donahue
- Division of Cardiology, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, 7th floor, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Wooley DP, Sharma P, Weinstein JR, Kotha Lakshmi Narayan P, Schaffer DV, Excoffon KJDA. A directed evolution approach to select for novel Adeno-associated virus capsids on an HIV-1 producer T cell line. J Virol Methods 2017; 250:47-54. [PMID: 28918073 PMCID: PMC6112236 DOI: 10.1016/j.jviromet.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
A directed evolution approach was used to select for Adeno-associated virus (AAV) capsids that would exhibit more tropism toward an HIV-1 producer T cell line with the long-term goal of developing improved gene transfer vectors. A library of AAV variants was used to infect H9 T cells previously infected or uninfected by HIV-1 followed by AAV amplification with wild-type adenovirus. Six rounds of biological selection were performed, including negative selection and diversification after round three. The H9 T cells were successfully infected with all three wild-type viruses (AAV, adenovirus, and HIV-1). Four AAV cap mutants best representing the small number of variants emerging after six rounds of selection were chosen for further study. These mutant capsids were used to package an AAV vector and subsequently used to infect H9 cells that were previously infected or uninfected by HIV-1. A quantitative polymerase chain reaction assay was performed to measure cell-associated AAV genomes. Two of the four cap mutants showed a significant increase in the amount of cell-associated genomes as compared to wild-type AAV2. This study shows that directed evolution can be performed successfully to select for mutants with improved tropism for a T cell line in the presence of HIV-1.
Collapse
Affiliation(s)
- Dawn P Wooley
- Neuroscience, Cell Biology, and Physiology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Priyanka Sharma
- Biological Sciences, Wright State University, Dayton, OH, 45435, USA.
| | - John R Weinstein
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | | - David V Schaffer
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | |
Collapse
|
44
|
Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes 2017; 53:707-713. [PMID: 28762205 DOI: 10.1007/s11262-017-1502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022]
Abstract
During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.
Collapse
Affiliation(s)
- Jonas Weinmann
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,BioQuant, University of Heidelberg, Heidelberg, Germany. .,German Center for Infection Research (DZIF), partner site Heidelberg, Braunschweig, Germany.
| |
Collapse
|
45
|
Selot R, Arumugam S, Mary B, Cheemadan S, Jayandharan GR. Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Front Pharmacol 2017; 8:441. [PMID: 28769791 PMCID: PMC5511854 DOI: 10.3389/fphar.2017.00441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Of the 12 common serotypes used for gene delivery applications, Adeno-associated virus (AAV)rh.10 serotype has shown sustained hepatic transduction and has the lowest seropositivity in humans. We have evaluated if further modifications to AAVrh.10 at its phosphodegron like regions or predicted immunogenic epitopes could improve its hepatic gene transfer and immune evasion potential. Mutant AAVrh.10 vectors were generated by site directed mutagenesis of the predicted targets. These mutant vectors were first tested for their transduction efficiency in HeLa and HEK293T cells. The optimal vector was further evaluated for their cellular uptake, entry, and intracellular trafficking by quantitative PCR and time-lapse confocal microscopy. To evaluate their potential during hepatic gene therapy, C57BL/6 mice were administered with wild-type or optimal mutant AAVrh.10 and the luciferase transgene expression was documented by serial bioluminescence imaging at 14, 30, 45, and 72 days post-gene transfer. Their hepatic transduction was further verified by a quantitative PCR analysis of AAV copy number in the liver tissue. The optimal AAVrh.10 vector was further evaluated for their immune escape potential, in animals pre-immunized with human intravenous immunoglobulin. Our results demonstrate that a modified AAVrh.10 S671A vector had enhanced cellular entry (3.6 fold), migrate rapidly to the perinuclear region (1 vs. >2 h for wild type vectors) in vitro, which further translates to modest increase in hepatic gene transfer efficiency in vivo. More importantly, the mutant AAVrh.10 vector was able to partially evade neutralizing antibodies (~27-64 fold) in pre-immunized animals. The development of an AAV vector system that can escape the circulating neutralizing antibodies in the host will substantially widen the scope of gene therapy applications in humans.
Collapse
Affiliation(s)
- Ruchita Selot
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
| | - Sabna Cheemadan
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of TechnologyKanpur, India
- Department of Hematology and Centre for Stem Cell Research (CSCR), Christian Medical CollegeVellore, India
| |
Collapse
|
46
|
Optimization of design and production strategies for novel adeno-associated viral display peptide libraries. Gene Ther 2017. [PMID: 28622288 DOI: 10.1038/gt.2017.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.
Collapse
|
47
|
Fischer MD, Hickey DG, Singh MS, MacLaren RE. Evaluation of an Optimized Injection System for Retinal Gene Therapy in Human Patients. Hum Gene Ther Methods 2017; 27:150-8. [PMID: 27480111 DOI: 10.1089/hgtb.2016.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many retinal gene therapy clinical trials require subretinal injections of small volumes of adeno-associated viral (AAV) vector solutions in patients with retinal dystrophies, using equipment not specifically designed for this purpose. We therefore evaluated an optimized injection system in order to identify variables that might influence the rate of injection and final dose of vector delivered. An optimized injection system was assembled with a 41G polytetrafluoroethylene tip for retinal gene therapy. Flow rate was recorded at relevant infusion pressures (2-22 psi [14-152 kPa]), different target pressures (0.02-30 mm Hg [0.003-4 kPa]) and temperatures (18°C vs. 36°C) using a semiautomated Accurus(®) Surgical System. Retention of AAV2/8 and AAV2/8(Y733F) vector was quantified after simulating loading/injection with or without 0.001% Pluronic(®) F-68 (PF-68). The optimized injection system provided a linear flow rate (μl/s)-to-infusion pressure (psi) relationship (y = 0.62x; r(2) = 0.99), independent of temperature and pressure changes relevant for intraocular surgery (18-36°C, 0.02-30 mm Hg). Differences in length of 41G polytetrafluoroethylene tips caused significant variation in flow rate (p < 0.001). Use of PF-68 significantly (p < 0.001) reduced loss of vector genomes in the injection system by 55% (AAV2/8) and 52% (AAV2/8(Y733F)). A customized subretinal injection system assembled using equipment currently available in the operating room can deliver a controlled volume of vector at a fixed rate across a range of possible clinical parameters encountered in vitreoretinal surgery. The inclusion of 0.001% PF-68 had a significant effect on the final dose of vector genomes delivered. The described technique is currently used successfully in a clinical trial.
Collapse
Affiliation(s)
- M Dominik Fischer
- 1 Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom.,2 Oxford Eye Hospital, Oxford University Hospitals NHS Trust , Oxford, United Kingdom.,3 University Eye Hospital , Centre for Ophthalmology, Tübingen, Germany
| | - Doron G Hickey
- 1 Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom
| | - Mandeep S Singh
- 1 Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom.,2 Oxford Eye Hospital, Oxford University Hospitals NHS Trust , Oxford, United Kingdom.,4 Moorfields Eye Hospital NHS Foundation Trust , Oxford, United Kingdom
| | - Robert E MacLaren
- 1 Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford , Oxford, United Kingdom.,2 Oxford Eye Hospital, Oxford University Hospitals NHS Trust , Oxford, United Kingdom.,4 Moorfields Eye Hospital NHS Foundation Trust , Oxford, United Kingdom
| |
Collapse
|
48
|
Kanaan NM, Sellnow RC, Boye SL, Coberly B, Bennett A, Agbandje-McKenna M, Sortwell CE, Hauswirth WW, Boye SE, Manfredsson FP. Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:184-197. [PMID: 28918020 PMCID: PMC5503098 DOI: 10.1016/j.omtn.2017.06.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Adeno-associated virus (AAV) is the most common vector for clinical gene therapy of the CNS. This popularity originates from a high safety record and the longevity of transgene expression in neurons. Nevertheless, clinical efficacy for CNS indications is lacking, and one reason for this is the relatively limited spread and transduction efficacy in large regions of the human brain. Using rationally designed modifications of the capsid, novel AAV capsids have been generated that improve intracellular processing and result in increased transgene expression. Here, we sought to improve AAV-mediated neuronal transduction to minimize the existing limitations of CNS gene therapy. We investigated the efficacy of CNS transduction using a variety of tyrosine and threonine capsid mutants based on AAV2, AAV5, and AAV8 capsids, as well as AAV2 mutants incapable of binding heparan sulfate (HS). We found that mutating several tyrosine residues on the AAV2 capsid significantly enhanced neuronal transduction in the striatum and hippocampus, and the ablation of HS binding also increased the volumetric spread of the vector. Interestingly, the analogous tyrosine substitutions on AAV5 and AAV8 capsids did not improve the efficacy of these serotypes. Our results demonstrate that the efficacy of CNS gene transfer can be significantly improved with minor changes to the AAV capsid and that the effect is serotype specific.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - Rhyomi C Sellnow
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Ben Coberly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48825, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, The McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Mercy Health Saint Mary's, Grand Rapids, MI 49503, USA.
| |
Collapse
|
49
|
Robinson TM, Judd J, Ho ML, Suh J. Role of Tetra Amino Acid Motif Properties on the Function of Protease-Activatable Viral Vectors. ACS Biomater Sci Eng 2016; 2:2026-2033. [PMID: 29721519 PMCID: PMC5926792 DOI: 10.1021/acsbiomaterials.6b00439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protease-activatable viruses (PAV) based on adeno-associated virus have previously been generated for gene delivery to pathological sites characterized by elevated extracellular proteases. "Peptide locks", composed of a tetra-aspartic acid motif flanked by protease cleavage sequences, were inserted into the virus capsid to inhibit virus-host cell receptor binding and transduction. In the presence of proteases, the peptide locks are cleaved off the capsid, restoring the virus' ability to bind cells and deliver cargo. Although promising, questions remained regarding how the peptide locks prevented cell binding. In particular, it was unclear if the tetra-amino acid (4AA) motif blocks receptor binding via electrostatic repulsion or steric obstruction. To explore this question, we generated a panel of PAVs with lock designs incorporating altered 4AA motifs, each wielding various chemical properties (negative, positive, uncharged polar, and hydrophobic) and characterized the resultant PAV candidates. Notably, all mutants display reduced receptor binding and decreased transduction effciency in the absence of proteases, suggesting simple electrostatics between heparin and the D4 motif do not play an exclusive role in obstructing virus-receptor binding. Even small hydrophobic (A4) and uncharged polar (SGGS) motifs confer a reduction in heparin binding compared to the wild type. Furthermore, both uncharged polar N4 and Q4 mutants (comparable in size to the D4 and E4 motifs respectively, but lacking the negative charge) demonstrate partial ablation of heparin binding. Collectively, these results support a possible dual mechanism of PAV lock operation, where steric hindrance and electrostatics make nonredundant contributions to the disruption of virus-receptor interactions. Finally, because of high virus titer production and superior capsid stability, only the negatively charged 4AA motifs remain viable design choices for PAV construction. Future studies probing the structure-function relationship of PAVs will further expand its promise as a gene delivery vector able to target diseased tissues exhibiting elevated extracellular proteases.
Collapse
Affiliation(s)
- T. M. Robinson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - J. Judd
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - M. L. Ho
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - J. Suh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
50
|
Cheng YY, Cheng CS, Lee TR, Chang WSW, Lyu PC. A clamp-like orientation of basic residues set in a parallelogram is essential for heparin binding. FEBS Lett 2016; 590:3089-97. [PMID: 27531580 DOI: 10.1002/1873-3468.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/06/2022]
Abstract
While the majority of studies have focused on the biological roles of heparin-binding proteins, relatively little is known about their key residues and structural elements responsible for heparin interaction. In this study, we employed the IgG-binding domain B1 of Streptococcal protein G as a miniature scaffold to investigate how certain positively charged residues within the β-sheet conformation become favorable for heparin binding. By performing a series of arginine substitution mutations followed by gain-of-heparin-binding analysis, we deduced that a clamp-like orientation with discontinuous basic residues separated by ~ 5 Å with ~ 100° interior angle is advantageous for high heparin affinity.
Collapse
Affiliation(s)
- Yi-Yun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tian-Ren Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan. .,Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|